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Self-Supervised Emotion Representation Disentanglement for
Speech-Preserving Facial Expression Manipulation

Anonymous Author(s)

ABSTRACT
Speech-preserving Facial Expression Manipulation (SPFEM) aims
to alter facial emotions in video content while preserving the facial
movements associated with speech. Current works often fall short
due to the inadequate representation of emotion as well as the
absence of time-aligned paired data—two corresponding frames
from the same speaker that showcase the same speech content but
differ in emotional expression. In this work, we introduce a novel
framework, Self-Supervised Emotion Representation Disentangle-
ment (SSERD), to disentangle emotion representation for accurate
emotion transfer while implementing a paired data construction
module to facilitate automated, photorealistic facial animations.
Specifically, We developed a module for learning emotion latent
codes using StyleGAN’s latent space, employing a cross-attention
mechanism to extract and predict emotion editing codes, with
contrastive learning to differentiate emotions. To overcome the
lack of strictly paired data in the SPFEM task, we exploit pretrained
StyleGAN to generate paired data, focusing on expression vectors
unrelated to mouth shape. Additionally, we employed a hybrid
training strategy using both synthetic paired and real unpaired
data to enhance the realism of SPFEM model’s generated images.
Extensive experiments conducted on benchmark datasets, including
MEAD and RAVDESS, have validated the effectiveness of our
framework, demonstrating its superior capability in generating
photorealistic and expressive facial animations.

CCS CONCEPTS
• Computing methodologies→ Image manipulation.

KEYWORDS
Emotion Representation Disentanglement, Self-Supervision, Ex-
pression Manipulation, Lip Synchronization

1 INTRODUCTION
Speech-preserving facial expression manipulation (SPFEM) aims
to adjust emotional expressions while maintaining the natural
movement of the mouth in videos. This capability significantly
enhances human expressiveness, offering substantial benefits to a
variety of applications such as virtual avatars and film/television
production. Traditionally, capturing the precise emotional expres-
sions of actors requires considerable effort, including numerous
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takes and extensive post-production work. However, with a robust
SPFEM system, it is possible to effortlessly modify facial emotions to
achieve the desired effect during post-production. This innovation
not only streamlines the filmmaking process but also opens up new
possibilities for creative expression, making it a highly anticipated
advancement in the industry.

Previous studies have primarily focused on adapting existing
face reenactment algorithms [31] or merging the identity and
expressions from target and source videos respectively [22] to
tackle this challenge. However, these approaches fall short due
to the absence of paired data, i.e., recordings of the same script by
the same actor with varying expressions. Even with the recording
of such data, there’s no guarantee that video frames corresponding
to different emotions will align on a one-to-one basis, leading to
inaccuracies in supervision. Consequently, it leads to sub-optimal
results in the following two aspects. First, current approaches are
hindered by an inadequate representation of emotion information,
limiting their ability to accurately manipulate facial expressions
based on reference images. Second, they cannot well preserve the
facial animation of the original speech due to the lack of mouth
shape guidance aligned with reference emotions.

To address the issues discussed above, we propose focusing on
two primary aspects. Firstly, disentangling emotion representation
is crucial. This entails the efficient extraction of emotional cues
from a reference face and their precise transfer to the source face’s
emotional representation. In this way, we ensure the provision
of a solid and accurate informational foundation for the creation
of face images that aligned with reference emotions. Secondly,
developing an accurate paired supervision mechanism is essential.
This mechanism aims to automatically steer the model towards
accurately generating faces based on emotional representations
without additional manual annotation. With meticulous frame-by-
frame supervision, we ensure that the generated face images not
only visually embody specific emotions but also exhibit motion
coherence with the source speech content, leading to more realistic
and expressive facial animations.

To this end, we propose a novel Self-Supervised Emotion
Representation Disentanglement (SSERD) framework, which learns
decoupled emotion representation and establishes paired super-
vision in a self-supervised manner. Specifically, we first design a
contrastive emotion latent code learning module, which harnesses
the latent space of StyleGAN [17] for efficient representation
of emotion information. This module employs a cross-attention
mechanism to extract emotion information from reference latent
codes and to predict editing codes as residuals relative to the
original latent codes. To ensure capturing emotional information,
we introduce contrastive learning that promotes proximity between
editing codes linked to identical emotions, while simultaneously
discouraging the closeness of codes associated with divergent
emotions. Next, we propose a paired data construction module
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to address the challenge posed by the absence of strictly paired data
in the SPFEM task. This module leverages a pretrained StyleGAN
to generate accurately paired data by identifying and modifying
expression editing vectors that are independent of mouth shape.
Moreover, to narrow the gap between synthetic data and real data,
we adopt a hybrid training strategy that utilizes both type of data
for training. This training strategy aims to improve the realism of
the images generated by the SPFEM model.

In summary, the contributions of this work can be summarized
as follows: 1) A novel Self-Supervised Emotion Representation
Disentanglement (SSERD) framework is proposed. This framework
is capable of producing photorealistic videos that feature natural
expressions and lip movements. 2) A contrastive emotion latent
code learning module is designed for efficient representation of
emotion information within the latent space of StyleGAN[17]. 3)
A paired data construction module is developed to automatically
synthesis paired data via a pretrained StyleGAN, which facilitates
the training of SPFEM task. 4) Extensive experiments have been
conducted on various benchmarks (e.g. MEAD [34], RAVDESS[20]),
demonstrating the superior performance of the proposed frame-
work.We will release the codes and trained models to facilitate SPFEM
research.

2 RELATEDWORKS
In this section, we review three key areas related to the task of
SPFEM: video-based face manipulation, facial reenactment, and
speech-preserving facial expression manipulation.
Video-based face manipulation. Video-based face manipulation
methods [12, 18, 21, 24] usually employ conditional Generative
Adversarial Networks (GANs) [11] or 3D facial models (for example,
3D Morphable Models (3DMM) [2]) to adjust the attributes of
speaking faces. It facilitates the conversion of visuals across
varied realms, preserving the essence of the original footage.
For example, GANimation [24] introduces a GAN conditioning
approach using Action Units [9] annotations, effectively mapping
the facial movements that characterize human expressions on
a continuous spectrum. Tzaban et al. [32] leverages StyleGAN
[15] alignment and the neural networks’ affinity for learning low-
frequency functions to solve temporal consistency issues. Liu
et al. [29] manipulate facial expressions in videos by separately
representing and estimating the 3D facial structure and movement.
Gan et al. [10] employ a pretrained emotion-agnostic talking
head transformer and incorporate adaptation modules to facilitate
accurate emotional manipulation. SPFEM poses a greater challenge
than traditional face alteration methods as it demands the alteration
of facial expressions without compromising the original speech
animations.
Face reenactment. This involves mimicking the speech and
facial expressions from a source video [19, 26, 31, 35, 37]. 2D-
based techniques produce the desired image directly. For instance,
ICface [31] manipulates the pose and facial expressions based on
interpretable control signals like head pose angles and action unit
values. FOMM [27] separates appearance and motion using a set
of key points and their affine transformations. StyleHEAT [39]
employs a video motion generation module and an audio-based
one to alter StyleGAN’s latent features for visual animation, while

a calibration network addresses transformation distortions. Some
approaches use 3DMM for separating expression and identity, using
a neural renderer for 2D imagemapping. Head2Head++ [7] captures
complex facial movements and synthesizes temporally cohesive
videos with a sequential generator and a specialized dynamics
discriminator. SPFEM extends beyond expression manipulation by
also needing to maintain the mouth movements of the original
speech, adding to its complexity.
Speech preserving facial expression manipulation SPFEM’s
goal is to alter a source video to reflect a target emotion, all
while maintaining the speech-related facial movements. Previous
approaches, adapted facial reenactment techniques for SPFEM such
as ICface [31]. However, these could alter expressions and mouth
shapes together, failing to preserve speech accurately.More recently,
Papantoniou et al. [22] suggested blending the 3DMM parameters
of the source identity and target emotion for this purpose. Sun
et al. [30] use 3DMM to capture emotional facial movements
and use StyleGAN to model texture map to capture appearance
details. Despite significant progress have been made by these works,
achieving photorealistic quality and natural expressions remains a
challenge due to inadequate emotion representation and the lack
of time-aligned paired data. Our work leverages StyleGAN’s latent
space for comprehensive emotion representation and its editable
nature to create high-quality paired training data, addressing this
issue effectively.

3 METHODOLOGY
The Self-Supervised Emotion Representation Disentanglement
(SSERD) framework learns decoupled emotion representation and
establishes paired supervision via a pretrained StyleGAN. SSERD
contains three key compoments: First, the contrastive emotion
latent code learning (CELCL) module leverages the cross-attention
mechanism to extract emotion information from reference images.
Second, the paired data construction module harnesses StyleGAN’s
robust generative capabilities and the editable nature of its latent
space to generate paired data. Third, the hybrid training strategy
utilizes both synthetic paired data and real unpaired data for
training to narrow the gap between synthetic images and real
images. An overall illustration is presented in Figure 1.

3.1 Contrastive Emotional Latent Code
Learning

The CELCL module is designed to disentangle emotion information
from reference images and predicts emotion latent codes as residual
to the source latent codes. It leverages StyleGAN’s [17] latent space
for comprehensive emotion representation. Concretely, given a
source image 𝐼𝑠 and a reference image 𝐼𝑟 , we first utilize a latent
encoder 𝐸, implemented by IResNet50 [8], to derive source latent
code 𝜔𝑠 ∈ R18×512 and reference latent code 𝜔𝑟 ∈ R18×512,
formulated as

𝜔𝑠 = 𝐸 (𝐼𝑠 )
𝜔𝑟 = 𝐸 (𝐼𝑟 )

(1)

Previous research [13] has demonstrated that learning residuals is
more feasible than learning the entire feature set directly. Moreover,
the source image also possesses emotional attributes, which must
be considered together with the reference emotion for effective
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Figure 1: An overall pipeline of the proposed Self-Supervised Emotion Representation Disentanglement framework. Given a
source image and a reference image, the latent encoder predicts their latent codes. Following this, the CELCL module extracts
emotion information and outputs emotion latent code. Finally, the StyleGAN takes the sum of source latent code and emotion
latent code as input, and generates the output image. During training, we utilize synthetic paired data for additional supervision.

manipulation. Therefore, we employ a multi-head cross-attention
(MHCA) mechanism [33] to predict the emotional residual. It takes
𝜔𝑠 as query Q, 𝜔𝑟 as key and value K,V via

Q = 𝜔𝑠w𝑞 + b𝑞
K = 𝜔𝑟w𝑘 + b𝑘
V = 𝜔𝑟w𝑣 + b𝑣

(2)

Then, we use a MHCA layer followed by several feed forward
network (FFN) layers to fuse them

𝜔𝑒 = FFN (MHCA (Q,K,V)) (3)

Since the distribution of the latent code after MHCA diverges from
the original latent space of StyleGAN, additional nonlinear layers
is essential for improved model fitting. Therefore, we adopt two
transformer layers T 2 [33] to refine the emotion latent code

𝜔+𝑒 = T 2 (𝜔𝑒 ) (4)

Finally, the emotion latent code 𝜔+𝑒 is added to the source latent
code 𝜔𝑠 and then fed into StyleGAN to generate an image that
matches the reference emotion.

During training, it is expected that the emotion latent codes
corresponding to the same emotion should be similar, whereas codes
associated with different emotions should be dissimilar. Specifically,
we define the emotion set with seven emotions followed by [22].

Given the emotion latent code 𝜔+𝑒
𝑖,𝑘

of 𝑖-th image with emotion
𝜖𝑘 , 𝑘 ∈ [1, 7], we calculate the contrastive loss as follows

ℓ𝑖 = − log
exp

(
𝜔+𝑒
𝑖,𝑘

· 𝜔+𝑒
∗,𝑘/𝜏

)
exp

(
𝜔+𝑒
𝑖,𝑘

· 𝜔+𝑒
∗,𝑘/𝜏

)
+∑7

𝑘
′
=1,𝑘 ′

≠𝑘
exp

(
𝜔+𝑒
𝑖,𝑘

· 𝜔+𝑒
∗,𝑘 ′ /𝜏

)
(5)

where 𝜏 is a temperature coefficient that is set 0.1 in our experiments.
The 𝜔+𝑒

∗,𝑘 and 𝜔+𝑒
∗,𝑘 ′ are cached emotion latent codes. To optimize

memory usage, we cache emotion latent codes from previous
iterations. When calculating the contrastive loss, we randomly
select cached codes associated with specific emotions, categorizing
them as either positive or negative samples. We calculate the
summation over all images to obtain the final objective function,
formulated as

L𝑐𝑙 =
∑︁
𝑖

ℓ𝑖 (6)

3.2 Paired Data Construction
While the CELCL module is effective in extracting emotion infor-
mation, the generator still depends on pixel-level supervision to
produce the intended outcomes. Moreover, the absence of time-
aligned paired data for the SPFEM task presents challenges in
providing such detailed supervision. According to the previous
researches [3, 16, 38], a pretrained StyleGAN showcases exceptional
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capabilities in editing and controllable generation. By manipulating
the latent code towards a specific direction within the latent space,
it is capable to produce high-quality images with specific attributes.
Therefore, we propose a paired data construction module that
utilizes a pretrained StyleGAN to synthesize paired data.

Our approach begins with the training of a latent encoder
designed for StyleGAN inversion, enabling the mapping of images
to their corresponding latent codes. The structure of the latent
encoder is consistent with 𝐸 in Section 3.1. Subsequently, we
identify discriminative boundaries among the latent codes asso-
ciated with faces expressing varying emotions, which serve as
the emotion editing direction. It’s crucial that the emotion editing
direction is predominantly influenced by the emotion, rather than
the mouth shape, since latent codes representing the same emotion
but different mouth shapes should be categorized identically. Once
the emotion editing direction is established, we edit the latent codes
to generate paired data via StyleGAN.

More concretely, given an input image 𝐼𝑠 , we derive latent code
𝜔𝑠 via Equation 1. Then we feed 𝜔𝑠 into StyleGAN to reconstruct
the input image

𝐼𝑠
′
= 𝐺 (𝜔𝑠 ) (7)

where 𝐺 is the pretrained StyleGAN with frozen weights. The
reconstructed image 𝐼𝑠

′
is supposed to be consistent with 𝐼𝑠 . The

reconstruction loss is defined as follows

L𝑟𝑒𝑐 =

𝐼𝑠′ − 𝐼𝑠
2 + 𝛼

𝜙𝑝 (𝐼𝑠′ ) − 𝜙𝑝 (𝐼𝑠 )
2 (8)

where 𝜙𝑝 denotes VGG19 [28] for calculating percepotion loss, and
𝛼 is a balance factor that is set to 0.8. We also utilize generative
adversarial loss to improve the realism of reconstruction

L𝑎𝑑𝑣 = min
𝐺

max
𝐷
E
[
log(𝐷 (𝐼𝑠 ))

]
+ E

[
log(1 − 𝐷 (𝐼𝑠

′
))
]

(9)

Moreover, we introduce emotion contrastive loss to the latent code
𝜔𝑠 as defined in Equation 6. This objective function amplifies
the distinction between latent codes associated with varying
emotions, thereby enhancing their discriminability. The total loss
for StyleGAN inversion can be defined as the sum of these losses

L𝑖𝑛𝑣 = L𝑟𝑒𝑐 + 𝜆1L𝑎𝑑𝑣 + 𝜆2L𝑐𝑙 (10)

where 𝜆1 and 𝜆2 are balance factors that are both set to 0.1.
After training the latent encoder, it predicts latent codes for

all the training images. Subsequently, we take the latent codes
associated with a neutral emotion as the source and the latent codes
associated with other emotions as references. Then we sequentially
identify the boundaries between the neutral emotion and the other
six emotions. Taking the happy emotion as an example, we label
the latent codes corresponding to a neutral emotion as 0 and
those corresponding to a happy emotion as 1. We then apply a
Support Vector Machine (SVM) [5] to classify these latent codes and
output a decision boundary. This decision boundary is subsequently
normalized to define the direction for editing emotions. A brief
overview of this process is illustrated in the bottom right of Figure
1. The formula can be defined as follows

�̃� = N(𝜙𝑠𝑣𝑚 (Ω,Y)) (11)

where Ω represents the union of latent codes associated with the
two emotions, while Y denotes the set of labels corresponding

to these latent codes. The function 𝜙svm signifies the application
of a SVM to fit the input data and corresponding labels, and N
represents the L2 normalization function. In this way, we obtain
an editing direction �̃� that transitions from a neutral emotion to
a happy emotion. Finally, we use the editing direction to produce
pairs of neutral and happy images

𝐼𝑡 = 𝐺 (𝜔𝑠 + 𝛽�̃�) (12)

where 𝐼𝑡 is the synthesized image expressing happy emotion and
matching the mouth shape of 𝐼𝑠 . 𝛽 is the intensity coefficient and is
set to 15. Such process is repeated until paired data is constructed
for each emotion.

We realize that this method also allows us to manipulate
facial expressions in SPFEM task. However, the SPFEM task
requires altering the emotion in a source image to match that of
a reference image, while the way of editing latent code depends
on a predetermined editing direction. The SPFEM approach offers
greater flexibility in practical applications. Therefore, the emotion
disentanglement in our framework is necessary for SPFEM and we
can utilize this method to supervise our framework.

3.3 Hybrid Training Strategy
After establishing paired data, we leverage it to train our framework
for SPFEM. Given a source image 𝐼𝑠 , a reference image 𝐼𝑟1 from the
same speaker with 𝐼𝑠 , another reference 𝐼𝑟2 from a different speaker,
and a target image 𝐼𝑡 , our framework generates output images 𝐼𝑜1
and 𝐼𝑜2 that convey the emotion depicted in the reference images.
Here, 𝐼𝑠 and 𝐼𝑡 are synthetic paired images that exhibit a consistent
mouth shape yet differ in emotion. We utilize the target image to
provide pixel-level supervision through pixel loss and perception
loss [40]. The loss functions can be defined as follows

L𝑝𝑖𝑥 =
𝐼𝑜1 − 𝐼𝑡

2 + 𝐼𝑜2 − 𝐼𝑡
2

L𝑙𝑝𝑖𝑝𝑠 =
𝜙𝑝 (𝐼𝑜1 ) − 𝜙𝑝 (𝐼𝑡 )

2 + 𝜙𝑝 (𝐼𝑜2 ) − 𝜙𝑝 (𝐼𝑡 )
2 (13)

Particularly, 𝐼𝑠 is usually a synthetic image in the above training
process, as the source images may represent any one of the
seven emotions during training, and images depicting emotions
other than neutral are synthetic. However, the synthetic images
inevitably differ from real images, potentially undermining model
performance. To further improve the image quality of SPFEM, we
propose a hybrid training strategy that utilizing both sythetic paired
images and real unpaired images for training. This method aims
to mitigate overfitting to synthetic data, ensuring a more robust
and effective model performance. Specifically, if the source image
is synthetic, we utilize the target image for supervision; otherwise,
we focus on optimizing the generative adversarial loss exclusively.
The overall objective function can be defined as follows

L𝑎𝑙𝑙 = 1(𝐼𝑠 )
[
L𝑝𝑖𝑥 + 𝛼L𝑙𝑝𝑖𝑝𝑠

]
+ 𝜆1L𝑎𝑑𝑣 + 𝜆2L𝑐𝑙 (14)

where 1(·) is an indicator function that returns 0 for real images
and 1 for synthetic images. 𝛼 , 𝜆1, 𝜆2 are balance coefficients that
are set to 0.8, 0.1, 0.1, respectively.
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Datasets Methods Intra-ID Cross-ID
FAD↓ LSE-D↓ CSIM↑ FAD↓ LSE-D↓ CSIM↑

MEAD

ICface 6.795 10.083 0.775 9.540 11.238 0.688
EAT - - - 6.186 9.551 0.761
DSM 2.152 9.531 0.806 4.460 9.917 0.778
NED 2.108 9.454 0.831 4.448 9.906 0.773
Ours 0.740 9.126 0.904 2.453 9.200 0.848

RAVDESS

ICface 8.443 8.480 0.755 9.424 11.539 0.677
EAT - - - 8.051 8.154 0.668
DSM 2.354 7.653 0.871 4.258 8.209 0.756
NED 3.057 7.562 0.825 5.412 8.034 0.760
Ours 1.399 7.441 0.894 3.360 7.621 0.790

Table 1: Comparision results of average FAD, LSE-D and
CSIM of our framework and competing methods in the
intra-identity and cross-identity settings on the MEAD and
RAVDESS dataset.

4 EXPERIMENTS
4.1 Experimental Settings
Dataset. MEAD [34] contains 60 speakers, where each speaker
records 30 videos in each emotional state (i.e., neutral, happy, angry,
surprised, fear, sad, and disgusted). We select 6 speakers (M003,
M009, W029, M012, M030, and W015) that have 1,260 videos to
train our framework. We randomly select 90% as the training set
and the rest 10% as the test set. We also evaluate the performance
of our framework on another widely-used RAVDESS dataset [20].
Specifically, we also select 6 speakers (actors 1-6) with 168 videos.
Identically, 90% videos are randomly selected as the training set
while the rest 10% are used as the test set.
Implementation Details. The preprocessing of the training and
test data follows the method described by [22]. Subsequently, we
resize the facial images to 320×320 pixels and apply a center crop
to obtain 256×256 pixel images, ensuring tightly framed faces. Our
framework is trained using the Ranger [36] optimizer over 50,000
iterations. We set the learning rate to 0.0001 with a batch size of 2.
All models are trained on a single NVIDIA RTX 4090.
Evaluation Protocol. In this work, we evaluate using the following
metrics. 1) Frechet Arcface Distance (FAD) [14] extract feature
vectors of generated and real videos using a state-of-the-art face
recognition network [6] and compute their difference to measure
the realism of generated video. A small FAD value indicates better
realism. This metric not only measures the clarity of images
but also evaluates the naturalness of generated faces and the
consistency of the expression style with real images. 2) Lip Sync
Error-Distance (LSE-D) [23] computes the distance between the lip
and audio representations via a pre-trained model [4], which can
be used to evaluate the lip-audio preserving accuracy. 3) Cosine
similarity (CSIM) [41] extracts their features using a state-of-the-
art expression recognition network and computes their similarity
to measure the emotion similarity between the generated video
and target emotional video. A large CSIM value suggests higher
similarity. We present the results of two settings, i.e., the intra-
identity setting that the emotion reference and source video belong
to the same speaker, and the cross-identity setting that belong to
different speakers.

4.2 Comparison with State-of-the-art Methods
To evaluate the effectiveness of the proposed framework, we
compare it with the following algorithms: 1) ICface (WACV 2020)
[31] employs action units to depict facial expressions and to
transition the source face to the target emotion. 2) DSM (ECCV
2022) [29] learns person-specific expression representation in the
Valence-Arousal space and renders them as facial images. 3) NED
(CVPR 2022) [22] combines the 3DMM parameters of the source
identity and target emotion to achieve expression manipulation.
4) EAT (ICCV 2023) [10] employs a pretrained emotion-agnostic
talking head transformer and integrates adaptation modules for
emotional manipulation. Note that there are no intra-identity
and cross-identity settings for EAT. This is because EAT employs
predetermined emotional guidances to modify facial expressions,
instead of extracting emotional cues from reference faces. To ensure
a reasonably equitable comparison, we compare it against other
methods under the cross-identity setting.

4.2.1 Quantitative Comparisons.
The performance comparisons are illustrated in Table 1. ICface is a
faical reenactment algorithm that adapts to SPFEM task. Although
capable of altering expressions, it struggles to accurately preserve
speech content. DSM, NED and EAT leverages the 3DMM or 3D
keypoints to effectively preserve the original speech by controlling
the mouth’s movements. However, facial expressions encompass
complexities that extend beyond what can be captured by 3D
parameters/keypoints with limited number of dimensions. This
limitation leads to sub-optimal image realism and emotion simi-
larity. In contrast, our framework SSERD harnesses the StyleGAN
latent space to comprehensively capture emotion information and
to construct paired data for detailed supervision, resulting in higher
image quality and more natural expressions while preserving the
original shape of the mouth.

We first present the performance comparisons on the MEAD
dataset. Due to the page limitation, we present the average results
across seven emotions in Table 1. Detailed results for each emotion
are presented in the supplemental materials. In intra-identity setting,
our framework achieves superior performance in manipulating
various expressions. Compared to the current SOTA method NED,
which obtains average FAD, LSE-D, and CSIM of 2.108, 9.454,
and 0.831, SSERD decreases the average FAD, LSE-D to 0.740,
9.126, and increases the CSIM to 0.904. These results indicate
that our framework can generate more photorealistic images
that well preserve the lip-audio synchronization while effectively
manipulating target expressions. Cross-identity is a more general
and practical setting, and our framework also shows obvious
advantages on FAD, LSE-D, and CSIM as shown in Table 1.
Compared to NED, our SSERD obtains a relative average FAD and
LSE-D decrement of 44.9% and 7.1% and a relative average CSIM
increment of 9.7%.

To demonstrate the robustness of the proposed framework, we
also present the performance comparisons on the RAVDESS dataset.
As shown in Table 1, SSERD also exhibits significant advantages
for various expression manipulation in both settings. Compared to
DSM, in intra-identity setting, SSERD decreases the average FAD,
LSE-D by 0.703, 0.212, with a relative decrement of 29.9%, 2.8%. And
it increases the average CSIM by 0.023, with a relative decrement of
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Figure 2: Qualitative comparisons with state-of-the-art methods on the MEAD dataset. Our framework produces expressive
talking faces featuring natural expressions and synchronized lip movements.

2.6%. In cross-identification setting, SSERD decreases the average
FAD, LSE-D by 0.898, 0.588 and increases CSIM by 0.034.

4.2.2 Qualitative Comparisons.
In this part, we present some visualization results of our framework
and competing methods in Figure 2. Similar to the quantitative
metrics, we analyze the qualitative comparisons from three aspects.
1) Realism. ICface produces blurred faces and suffers from identity
confusion. DSM, NED and EAT yield faces that appear unnatural,
particularly in the regions of the eyes and mouth, as evidenced
in the first and third rows. In contrast, our framework generates
faces with higher realism. 2) Lip-audio preserving accuracy. Due
to the absence of time-aligned paired data, existing approaches
struggle to accurately preserve mouth shapes in accordance with
the source audio. This issue is evident in the second and fifth
rows, where the mouth shapes in images generated by current
methods markedly diverge from those in the source images. In
contrast, by introducing paired data for supervision, our framework
enhances the preservation of mouth shapes corresponding to the
original audio. 3) Emotion similarity. Current methods utilize 3D
parameters or 3D keypoints for emotion representation, which

are inadequate for capturing complex facial expressions. This
limitation leads to significant discrepancies in facial expressions
when compared to reference images, as evident in the third and
fourth rows. In contrast, our framework harnesses the latent space
of StyleGAN to achieve a more comprehensive representation of
emotions, thus significantly improving the accuracy of generated
expressions. More visualization results on the MEAD and RAVDESS
datasets are presented in the supplementary materials. For a more
intuitive comparison, we have also included some video comparisons
in the supplementary materials.

4.3 User Study
We conduct web-based user studies to present the comparisons
of our framework and the state-of-the-art methods. It consists of
three parts corresponding to the above three metrics, i.e., realism,
emotion similarity with the reference emotion, and mouth shape
similarity with the source video. For each emotion, we select 10
videos from MEAD dataset and RAVDESS dataset, thus obtaining
70 videos. We find 20 participants to judge the three aspects of each
video. As shown in Table 2, our framework surpasses other leading
methods in all three metrics. Specifically, our framework achieves
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Methods Realism Emotion
similarity

Mouth shape
similarity

ICface 1% 1% 1%
EAT 14% 19% 11%
DSM 26% 20% 25%
NED 19% 22% 19%
Ours 40% 36% 43%

Table 2: Realism, emotion similarity, and mouth shape
similarity ratings of the user study.

ratings of 40% for realism, 36% for emotion similarity, and 43% for
mouth shape similarity, outperforming NED by 21%, 14%, and 24%,
respectively. Detailed results for each emotion are available in the
supplemental materials. All test videos utilized in the user study are
included in the supplementary materials, facilitating verification and
review.

4.4 Ablation Study
The above comparisons with state-of-the-art methods well demon-
strate the effectiveness of the proposed SSERD framework as a
whole. In this part, we further delve into a detailed module to ana-
lyze their actual contributions. Here, we conduct the experiments
on MEAD dataset.

4.4.1 Analysis of Contrastive Learning.

Settings Methods FAD↓ LSE-D↓ CSIM↑

Intra-ID w/o L𝑐𝑙 0.923 9.134 0.891
w/ L𝑐𝑙 0.740 9.126 0.904

Cross-ID w/o L𝑐𝑙 2.601 9.227 0.842
w/ L𝑐𝑙 2.453 9.200 0.848

Table 3: Comparision results of average FAD, CSIM, and LSE-
D of our framework with and without contrastive learning.

Figure 3: PCA visualization of emotion latent codes with and
without contrastive learning.

Contrastive learning is employed to disantengle emotion-related
information from reference faces and minimize irrelevant details. In

our study, we removed this module to assess its impact. According
to Table 3, incorporating contrastive learning significantly enhances
the expression similarity and the realism of the generated images.
For a clearer comparison, we visualize emotion latent codes using
the PCA algorithm. Figure 3 reveals that, without contrastive
learning, the emotion latent codes for anger (blue) and disgust
(green) tend to merge. Additionally, the codes representing sadness
(yellow), happiness (orange), and fear (purple) cluster closely
together. In contrast, with contrastive learning, there’s a marked
improvement in the separation of latent codes for each distinct
emotion, underscoring its effectiveness. Further qualitative analysis,
as shown in Figure 4, indicates that contrastive learning results in
more photorealistic facial expressions. Consequently, it not only
improves emotion similarity but also enhances image realism by
aligning the distribution of facial expressions more closely with
real images.

Figure 4: Qualitative comparisons of our framework with
and without contrastive learning. Introducing contrastive
learning results in more photorealistic facial expressions.

4.4.2 Analysis of paired data construction module.

Settings Paired Data FAD↓ LSE-D↓ CSIM↑

Intra-ID
MEAD 0.732 9.254 0.904
NED 1.463 9.160 0.874
Ours 0.740 9.126 0.904

Cross-ID
MEAD 2.431 9.342 0.849
NED 5.035 9.346 0.732
Ours 2.453 9.200 0.848

Table 4: Comparision results of average FAD, CSIM, and LSE-
D of our framework with different paired data.

In this work, we construct paired data by editing latent codes
for different emotions using a pretrained StyleGAN. In fact, MEAD
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dataset includes some paired data. However, these data are not
strictly aligned in time, complicating the implementation of frame-
by-frame supervision. Here, we align the paired data in MEAD
dataset by aligning audios via dynamic time warping [1] algorithm,
and use the aligned data to train our framework for comparison.
As shown in Table 4, using paired data of MEAD dataset results in
diminished lip synchronization. This discrepancy arises because
the paired data lacks precise alignment, and the mouth shapes
corresponding to different emotions are sometimes inconsistent.
Conversely, our method successfully produces well-aligned pairs,
thereby more accurately preserving the original speech. Further-
more, although using recorded paired data in MEAD dataset
achieves a lower FAD, it increases the cost of video recording for
practical application.

To further demonstrate the effectiveness of our proposed paired
data construction module, we also use pretrained NED models to
generate paired data for training. As shown in Table 4, utilizing
paired data derived fromNED leads to enhanced lip synchronization
in Intra-ID setting when compared to using paired data fromMEAD,
albeit with a trade-off in terms of image realism and emotion
similarity. Notably, our approach excels the NED in terms of FAD,
LSE-D, and CSIM across both settings.

4.4.3 Analysis of Hybrid Training Strategy.

Settings Training Data FAD↓ LSE-D↓ CSIM↑

Intra-ID
Unpaired data 3.052 9.419 0.877
Paired data 0.835 9.155 0.900
Mixed data 0.740 9.126 0.904

Cross-ID
Unpaired data 4.314 9.567 0.826
Paired data 2.524 9.210 0.845
Mixed data 2.453 9.200 0.848

Table 5: Comparision results of average FAD, CSIM, and LSE-
D of our framework with different training strategy. Using
mixed data achieves better image realism.

Figure 5: Plot of loss curves. (a) Generative loss. (b) Perception
loss.

We conduct experiments using different training strategies to
demonstrate the effectiveness of the proposed hybrid training
strategy. As shown in Table 5, utilizing only unpaired data for
training leads to sub-optimal performance, attributable to the

inherent unpredictability of GANs. Sole reliance on generative
adversarial losses proves inadequate for producing the desired
outcomes, highlighting the indispensability of detailed paired
supervision for SPFEM. In contrast, the use of synthetic paired
data markedly enhances performance across all evaluated metrics.
Nonetheless, synthetic paired images inherently diverge from their
real counterparts. As illustrated in Figure 5.(a), the generation
loss associated with synthetic paired data (blue) increases during
training, suggesting an increasing ease for the discriminator in
identifying fake images. Conversely, the generation loss incurred
from combining synthetic paired data with real unpaired data
(orange) is close to that of employing solely real unpaired data
(green), signifying a closer alignment of the model’s outputs with
real images. The results in Table 5 also show that using mixed
data for training achieves better image realism. Moreover, we can
further analyze this from the perception loss. As shown in Figure
5.(b), although using solely paired data yields better perception
loss convergence, the quality of images generated by SPFEM model
is heavily relied on the quality of synthetic paired data. In the
contrary, introducing real data into the training process mitigates
the overfitting to synthetic data, thereby improving the overall
image realism.

5 LIMITATIONS
While our framework can generate photorealistic facial animations,
it still faces some limitations, especially the constraint imposed
by the limited set of emotions. In the current implementation,
our approach relies on predetermined editing directions for seven
specific emotions to synthesize paired data. This methodology
enables the framework to effectively modify facial expressions to
reflect these particular emotions; however, it does not support the
creation of expressions outside this predefined set. This limitation
restricts the versatility of our framework, confining the scope of
expressiveness to a fixed vocabulary of emotional states. To address
this constraint, future work could explore more flexible methods
that encompass a wider and more varied range of emotions. For
instance, we could leverage multi-modal large model techniques
like CLIP [25] to depict an unlimited range of emotions through
text descriptions.

6 CONCLUSION
This work presents a Self-Supervised Emotion Representation
Disentanglement (SSERD) framework that focuses on disentangling
emotion representation for accurate emotional cue transfer and
develops a paired data constructionmodule for effective supervision.
The SSERD framework employs a contrastive learning module inte-
gratedwith the latent space of StyleGAN for emotion representation
and a cross-attention mechanism for emotion transference. This
framework overcomes data pairing challenges by generating paired
training data via a pretrained StyleGAN. It is further combined with
a hybrid training strategy that leverages both synthetic and real
data to enhance image realism. Extensive experiments conducted
on various benchmarks have demonstrated the effectiveness of the
proposed SSERD framework.
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