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Abstract

Medical Multimodal Large Language Mod-001
els (Med-MLLMs) have shown great promise002
in medical visual question answering (Med-003
VQA). However, when deployed in low-004
resource settings where abundant labeled data005
are unavailable, existing Med-MLLMs com-006
monly fail due to their medical reasoning ca-007
pability bottlenecks: (i) the intrinsic reason-008
ing bottleneck that ignores the details from009
the medical image; (ii) the extrinsic reason-010
ing bottleneck that fails to incorporate special-011
ized medical knowledge. To address those012
limitations, we propose AMANDA, a training-013
free agentic framework that performs medi-014
cal knowledge augmentation via LLM agents.015
Specifically, our intrinsic medical knowledge016
augmentation focuses on coarse-to-fine ques-017
tion decomposition for comprehensive diagno-018
sis, while extrinsic medical knowledge aug-019
mentation grounds the reasoning process via020
biomedical knowledge graph retrieval. Exten-021
sive experiments across eight Med-VQA bench-022
marks demonstrate substantial improvements in023
both zero-shot and few-shot Med-VQA settings.024
The code is available at https://anonymous.025
4open.science/r/AMANDA-CF56.026

1 Introduction027

Medical Visual Question Answering (Med-VQA)028

aims to automatically answer natural language029

questions about medical images, serving as an AI-030

powered assistant to enhance healthcare profes-031

sionals’ diagnostic efficiency and accuracy (Hart-032

sock and Rasool, 2024; Lin et al., 2023b). Un-033

like general-domain VQA which focuses on every-034

day scenes and objects, Med-VQA requires fine-035

grained analysis of subtle pathological features,036

understanding of professional medical terminology,037

and integration of domain-specific medical knowl-038

edge (Lin et al., 2023b). These unique characteris-039

tics make Med-VQA particularly challenging yet040

crucial for empowering precise medical diagnosis.041

Recent advances in Medical Multimodal Large Lan- 042

guage Models (Med-MLLMs) have demonstrated 043

promising results in Med-VQA through extensive 044

pre-training and task-specific fine-tuning (Li et al., 045

2024b; Eslami et al., 2023; Zhang et al., 2023b; 046

Jiang et al., 2024c). However, obtaining a large- 047

scale medical dataset for Med-MLLM pre-training 048

or fine-tuning requires labor-intensive expert an- 049

notations, making it impractical in data-efficient 050

scenarios. When deployed in low-resource settings 051

where abundant training or fine-tuning data are 052

unavailable (i.e., zero-shot or few-shot settings), 053

existing Med-MLLMs commonly fail due to two 054

bottlenecks of their medical reasoning capability: 055

• From the intrinsic perspective, current Med- 056

MLLMs usually focus on understanding the im- 057

age from a general view, while ignoring the fine- 058

grained examination of subtle pathological fea- 059

tures that are critical for accurate diagnosis (Lin 060

et al., 2023b). In clinical practice, medical profes- 061

sionals achieve comprehensive analysis through 062

an iterative process of questioning and exami- 063

nation, progressively uncovering crucial details. 064

However, the single-step inference adopted by 065

existing Med-MLLMs fails to capture this itera- 066

tive nature of the medical diagnosis, leading to 067

superficial analyses without critical diagnostic 068

details (Wang et al., 2023; Jiang et al., 2024a,b). 069

• From the extrinsic perspective, while Med- 070

MLLMs possess basic medical knowledge 071

through pre-training, these models are typically 072

static and lack mechanisms to access or incorpo- 073

rate new medical knowledge continually. In Med- 074

VQA tasks, such specialized medical knowledge 075

from up-to-date knowledge bases is particularly 076

crucial. Correspondingly, existing methods of- 077

ten struggle to provide comprehensive and con- 078

textually grounded answers, with a concerning 079

tendency to generate hallucinations (Xia et al., 080

2024b; Yan et al., 2024) – plausible but factually 081
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incorrect responses that pose significant risks for082

real-world medical diagnosis.083

To address the aforementioned challenges, we084

present a training-free MLLM agentic frame-085

work – AMANDA (Agentic MedicAl KNowleDge086

Augmentation) for data-efficient medical visual087

question answering. In essence, our framework en-088

hances Med-MLLMs’ reasoning capability through089

Medical Knowledge Augmentation (Med-KA) from090

both intrinsic and extrinsic reasoning perspectives.091

On the one hand, to enhance the medical reason-092

ing depth, we propose Intrinsic Med-KA, which093

leverages a coarse-to-fine question decomposition094

strategy to fully utilize the intrinsic visual un-095

derstanding capabilities within Med-MLLMs, en-096

abling comprehensive diagnosis through progres-097

sive examination. On the other hand, to bridge the098

gap between models’ pre-trained knowledge and099

reliable medical expertise, we develop Extrinsic100

Med-KA, which retrieves relevant medical knowl-101

edge from biomedical knowledge graphs to ground102

the reasoning process. These complementary ap-103

proaches are orchestrated by multiple LLM agents104

that can adaptively control the depth of knowledge105

integration to maintain both effectiveness and ef-106

ficiency. In addition, AMANDA can incorporate107

in-context learning examples, enabling further per-108

formance gains in few-shot settings. Overall, our109

contributions can be summarized as follows:110

• Problem. We target the challenging problem of111

data-efficient Med-VQA and propose a training-112

free agentic framework that addresses the intrin-113

sic and extrinsic bottlenecks of Med-MLLMs’114

reasoning capability via Med-KA.115

• Method. We develop a Med-KA approach from116

two complementary perspectives: intrinsic Med-117

KA through coarse-to-fine question decomposi-118

tion and extrinsic Med-KA via medical knowl-119

edge graph retrieval, unified under an adaptive120

refinement mechanism.121

• Experiments. Through comprehensive exper-122

iments on eight Med-VQA benchmarks, we123

demonstrate substantial improvements in both124

zero-shot and few-shot settings, with strong gen-125

eralization across different types of MLLMs.126

2 Related Work127

Medical Visual Question Answering. Cur-128

rent Med-VQA approaches primarily follow two129

paradigms: discriminative methods that select from130

predefined options (Zhang et al., 2023b; Eslami131

et al., 2023), and generative methods that enable 132

open-ended responses (Bazi et al., 2023; Liu et al., 133

2023; van Sonsbeek et al., 2023). While discrimi- 134

native methods achieve high performance in con- 135

trolled settings, their predefined answer space lim- 136

its applicability in real-world medical scenarios. 137

Recent Med-MLLMs (Li et al., 2024b; Jiang et al., 138

2024c) have shown promising results with flexible 139

response generation. However, they require exten- 140

sive labeled data for training and fine-tuning. To 141

address this limitation, our AMANDA introduces a 142

novel MLLM agentic framework for data-efficient 143

scenarios without task-specific fine-tuning. 144

Large Multimodal Agent. Recent research has 145

demonstrated the effectiveness of combining 146

LLMs’ reasoning capabilities (OpenAI, 2022, 147

2023) with MLLMs for visual tasks. Early 148

works like PNP-VQA (Tiong et al., 2022) and 149

Img2LLM (Guo et al., 2023) demonstrated the ef- 150

fectiveness of integrating visual understanding with 151

LLMs’ reasoning capabilities. This integration 152

has evolved into sophisticated large multimodal 153

agent systems (You et al., 2023; Surís et al., 2023; 154

Wu et al., 2023c; Xie et al., 2024), where multiple 155

LLM-powered agents collaborate. However, in the 156

medical domain, most existing agent systems (Tang 157

et al., 2023; Fan et al., 2024; Schmidgall et al., 158

2024; Wei et al., 2024; Li et al., 2024c; Kim 159

et al., 2024) primarily focus on text-based scenar- 160

ios, lacking crucial multimodal capabilities. While 161

recent work like MMedAgent (Li et al., 2024a) ex- 162

plores multimodal agents for medical applications, 163

it requires extensive task-specific training, limit- 164

ing its applicability in data-efficient settings. Our 165

AMANDA addresses these limitations by introduc- 166

ing a training-free MLLM agentic framework for 167

data-efficient medical visual reasoning. 168

Medical Knowledge Augmentation. Integrating 169

medical knowledge has proven essential for en- 170

hancing medical AI systems (Fang et al., 2019; 171

Gonzalez-Diaz, 2018; Wang et al., 2020; Chen 172

et al., 2022; Tan et al., 2019; Chen et al., 2020; 173

Soman et al., 2023; Wu et al., 2023a). Representa- 174

tive works include Med-VLP (Chen et al., 2022), 175

which employs UMLS Knowledge Graph (Bo- 176

denreider, 2004) for cross-modal alignment, and 177

KG-RAG (Soman et al., 2023), which leverages 178

biomedical knowledge graphs with LLMs. Build- 179

ing upon these advances, our AMANDA introduces 180

a holistic knowledge augmentation approach to en- 181

able comprehensive and reliable medical reasoning. 182
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Figure 1: Overview of our AMANDA framework. The framework comprises five specialized agents (Perceiver,
Reasoner, Evaluator, Explorer, and Retriever) working collaboratively to enable comprehensive and reliable
medical reasoning. Specifically, the Explorer incorporates intrinsic medical knowledge through coarse-to-fine
question decomposition to enhance reasoning depth, and the Retriever integrates extrinsic medical knowledge
from biomedical knowledge graphs to enable reliable medical reasoning. The Evaluator adaptively controls the
depth of Med-KA to enable efficient and accurate medical diagnosis.

3 Proposed Approach – AMANDA183

In this section, we first formalize the Med-VQA184

problem and present our AMANDA framework185

(Sec. 3.1 and 3.2). We then detail our Med-KA186

approaches (Sec. 3.3) and present two extensions:187

the adaptive reasoning refinement mechanism and188

the few-shot enhancement strategies (Sec. 3.4).189

3.1 Problem Formulation190

We target Med-VQA in data-efficient scenarios,
particularly zero-shot and few-shot settings, where
task-specific training data is limited or unavailable.
Traditional Med-VQA approaches (Li et al., 2024b;
Eslami et al., 2023; Zhang et al., 2023b) typically
employ a single Med-MLLM for direct inference.
Following previous works (Zhang et al., 2023c),
this process can be formulated as:

â = ΦMedVQA (I, q)

where â is the output answer, I ∈ RH×W×C repre-191

sents the input medical image with height H , width192

W , and channel number C, q denotes the question,193

and Φ is the Med-MLLM model.194

However, this single-step approach, directly195

adapted from the general domain, faces two critical196

limitations in medical image analysis (Liu et al.,197

2024). First, it fails to systematically examine mul-198

tiple aspects of medical images, often missing sub-199

tle details that are crucial for differentiating simi-200

lar conditions. Second, in data-efficient scenarios201

where models encounter novel cases, the lack of202

comprehensive medical knowledge leads to unreli-203

able analysis or hallucinations (Xia et al., 2024b;204

Yan et al., 2024).205

To address these limitations, we reformulate Med-206

VQA as an iterative reasoning process that lever-207

ages multiple specialized agents: 208

ât = Φiterative(I, q,Ht−1 ∪
⋃
i∈A

hit) 209

where ât represents the refined answer at iteration 210

t, Φiterative denotes our proposed iterative reasoning 211

framework, Ht−1 is the accumulated reasoning his- 212

tory up to iteration t − 1, A represents our agent 213

set and hit denotes each agent’s output at iteration 214

t. This formulation transforms the single-step ap- 215

proach into an iterative reasoning process where 216

specialized agents collaboratively refine the answer 217

through progressive analysis. 218

3.2 Architecture Overview 219

To enable such iterative medical reasoning, we de- 220

sign an agentic framework – AMANDA. Our frame- 221

work comprises three functional modules, where 222

specialized agents work collaboratively: 223

• Perception Module. The Perceiver agent, im- 224

plemented using a Med-MLLM (e.g., LLaVA- 225

Med v1.5 (Li et al., 2024b)), establishes the foun- 226

dation for visual analysis. Unlike single-step ap- 227

proaches (Li et al., 2024b) that directly generate 228

answers, our Perceiver provides two outputs: a 229

detailed medical caption c and an initial answer 230

â0 to the main question. The medical caption c 231

is generated through carefully designed prompts 232

(see Appendix H) to systematically describe gen- 233

eral observation. The initial answer â0, while 234

potentially imperfect, provides a basic founda- 235

tion that will be progressively refined. Together, 236

these outputs enable more accurate and compre- 237

hensive analysis in subsequent modules. 238

• Planning Module. Building upon the Perception 239

Module’s outputs, the Planning Module coordi- 240
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nates the overall reasoning process through two241

LLM-based agents. The Reasoner analyzes the242

available information (medical caption, initial an-243

swer, and any augmented knowledge) to generate244

a refined answer through systematic medical rea-245

soning. The Evaluator then assesses the reason-246

ing quality through a confidence score, determin-247

ing whether additional knowledge augmentation248

is needed (detailed in Sec. 3.4).249

• Action Module. Triggered by the Planning Mod-250

ule, the Action Module addresses both reasoning251

bottlenecks through two complementary knowl-252

edge augmentation agents. From the intrinsic253

perspective, the Explorer, powered by LLM,254

enhances the visual reasoning depth by decom-255

posing the original question q into sub-questions256

qsub, which are then answered by the same Med-257

MLLM used in the Perceiver. From the ex-258

trinsic perspective, the Retriever, also imple-259

mented using LLM, grounds the analysis by re-260

trieving and integrating relevant medical knowl-261

edge from biomedical knowledge graphs. Both262

agents’ outputs are fed back to the Planning Mod-263

ule for further answer refinement.264

Collaborative Medical Reasoning Workflow.265

Our AMANDA framework orchestrates these three266

modules in a collaborative workflow. As shown in267

Fig. 1: 1 The Perceiver performs visual analy-268

sis to generate a general medical caption and an269

initial answer. 2 The Reasoner synthesizes all270

the available information to produce a refined an-271

swer. 3 The Evaluator assesses the confidence272

of current answer. 4 When additional knowl-273

edge is needed, the Explorer and Retriever per-274

forms both intrinsic Med-KA and extrinsic Med-275

KA. This augmented knowledge is then fed back276

to the Reasoner for further refinement.277

3.3 Medical Knowledge Augmentation with278

LLM Agents279

Building upon our agentic framework, we now de-280

tail our medical knowledge augmentation strategies281

that enhance Med-MLLMs’ reasoning capability282

in data-efficient scenarios.283

Intrinsic Medical Knowledge Augmentation. In284

data-efficient scenarios where abundant training285

data is unavailable, Med-MLLMs often struggle286

with comprehensive visual analysis due to their287

single-step inference approach. For instance, when288

asked "Does the chest X-ray look healthy?", mod-289

els typically provide general responses like "no 290

obvious abnormalities" without examining key di- 291

agnostic features. This limitation stems from the 292

lack of progressive questioning in single-step in- 293

ference, where models fail to focus on specific yet 294

crucial details, resulting in superficial responses 295

that overlook critical diagnostic features. 296

To address this intrinsic bottleneck, we draw inspi- 297

ration from the question decomposition strategy, 298

where complex problems are broken down into fo- 299

cused sub-questions for comprehensive analysis. 300

Recent studies have demonstrated that LLMs pos- 301

sess strong capabilities in reasoning enhancement 302

through question decomposition (Wu et al., 2023c; 303

Surís et al., 2023; Zhu et al., 2023; You et al., 2023). 304

These methods leverage LLMs to decompose com- 305

plex tasks into manageable sub-questions, enabling 306

progressive understanding through structured ques- 307

tioning. Motivated by these advances, we adapt 308

this approach to medical visual analysis to enable 309

deeper and more thorough reasoning. 310

Specifically, we propose a coarse-to-fine intrin- 311

sic Med-KA strategy through our Explorer agent. 312

The strategy is triggered when the Evaluator de- 313

tects insufficient reasoning depth in the Reasoner’s 314

analysis. Our Explorer agent consists of two key 315

components: (1) an LLM-powered questioning 316

component that analyzes the main question, medi- 317

cal caption, and current reasoning history to gener- 318

ate targeted follow-up questions, and (2) an answer- 319

ing component that utilizes the same Med-MLLM 320

as in the Perceiver to provide detailed analysis 321

for each question. At each iteration, Explorer 322

generates three follow-up questions and their cor- 323

responding answers in a hierarchical strategy: 324

• General Observation. First focuses on overall 325

appearance and key findings (e.g., “What is the 326

overall appearance of the image?"), establishing 327

a foundation for medical analysis. 328

• Anatomical Analysis. Then examines specific 329

anatomical regions or structures, considering 330

their characteristics (size, shape, alignment) and 331

spatial relationships (e.g., “What is the appear- 332

ance and position of the cardiac silhouette?"). 333

• Detailed Findings. Finally investigates potential 334

pathological features in regions of interest (e.g., 335

"Are there any infiltrates or masses in the lower 336

right lung field, and what are their specific char- 337

acteristics?"), enabling the detection of subtle 338

abnormalities through focused analysis. 339
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Figure 2: (a) Adaptive Reasoning Refinement: The Evaluator agent dynamic controls the medical knowledge
augmentation process by analyzing the consistency between the current answer and accumulated reasoning history.
(b) In-Context Examples Selection: The system ranks candidate examples using a dual-similarity metric combining
visual and textual features, selecting top-K examples as in-context examples.

This coarse-to-fine approach enhances the intrin-340

sic medical reasoning capability of Med-MLLMs341

in two ways: (1) breaking down complex analy-342

ses into focused steps through hierarchical ques-343

tioning, enabling thorough examination of diag-344

nostic features; and (2) building a clear reasoning345

chain that progressively refines visual understand-346

ing. Through this progressive analysis, we effec-347

tively guide Med-MLLMs to uncover their intrinsic348

medical knowledge and generate more accurate and349

detailed diagnostic insights.350

Extrinsic Medical Knowledge Augmentation.351

While our intrinsic Med-KA enhances the depth of352

medical visual reasoning, Med-MLLMs still face353

the extrinsic medical reasoning bottleneck due to354

their static pre-trained knowledge. This issue is par-355

ticularly critical in data-efficient scenarios where356

models encounter novel cases that require special-357

ized medical expertise. Without comprehensive358

domain knowledge, models often generate plau-359

sible but incorrect responses, leading to potential360

hallucinations (Xia et al., 2024b; Yan et al., 2024).361

To address this remaining challenge, we introduce362

an extrinsic Med-KA strategy accomplished by our363

Retriever agent. Inspired by recent advances in364

Retrieval Augmented Generation (Soman et al.,365

2024; Xiong et al., 2024), our approach consists of366

two steps. First, the Retriever agent uses an LLM367

to analyze the accumulated context (including med-368

ical captions, questions, and reasoning history) to369

extract key medical concepts such as "pulmonary370

nodule". These concepts then serve as queries to371

SPOKE (Morris et al., 2023), a comprehensive372

biomedical knowledge graph containing 42 million373

nodes and 160 million edges assembled from 41374

different biomedical databases. Through SPOKE375

queries, the Retriever agent obtains relevant sub- 376

graphs containing structured medical knowledge, 377

including disease-symptom associations, anatomi- 378

cal relationships, and medical presentations. These 379

medical facts are then transformed into natural lan- 380

guage descriptions for integration into the reason- 381

ing process to ground the medical diagnosis. 382

This extrinsic Med-KA mechanism strengthens 383

Med-MLLMs’ reasoning reliability in two ways. 384

First, by retrieving relevant medical knowledge 385

from an external medical knowledge graph, we 386

provide models with specialized expertise needed 387

for novel cases in data-efficient scenarios. Second, 388

the retrieved structured medical facts serve as re- 389

liable domain expertise to ground the reasoning 390

process, effectively reducing hallucinations. To- 391

gether with intrinsic Med-KA, this approach en- 392

ables Med-MLLMs to perform more reliable med- 393

ical reasoning through both deeper visual analy- 394

sis and grounded domain knowledge, especially in 395

data-efficient scenarios. 396

3.4 Implementation Extensions 397

Building upon our Med-KA mechanisms, we intro- 398

duce two extensions to further enhance our frame- 399

work’s effectiveness and efficiency: an adaptive 400

reasoning refinement mechanism, and a few-shot 401

enhancement strategy. 402

Adaptive Reasoning Refinement. While our two 403

Med-KA mechanisms enhance medical reasoning 404

capabilities, they often require multiple iterations 405

of analysis to achieve comprehensive understand- 406

ing. However, we observe that excessive refine- 407

ment can be counterproductive (shown in Fig. 3(a): 408

continuous accumulation of information beyond 409

what’s necessary may introduce noise and incon- 410

sistencies, potentially overturning initially correct 411
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judgments. Moreover, unnecessary iterations in-412

crease computational overhead without propor-413

tional gains in accuracy. To balance reasoning414

thoroughness with computational efficiency, we415

introduce an adaptive reasoning refinement mecha-416

nism, implemented through our Evaluator agent417

(Fig.2(a)). The Evaluator dynamically controls418

the knowledge augmentation process by analyz-419

ing the consistency between current answers and420

accumulated reasoning history. It computes a confi-421

dence score based on predefined criteria (detailed in422

AppendixH). When this score exceeds a threshold423

of 3 out of 5—indicating sufficient reasoning depth424

and reliability—the system concludes its analysis.425

If the maximum iteration limit is reached with-426

out meeting the confidence threshold, the system427

adopts the final iteration’s response. This adap-428

tive control prevents excessive refinement while429

ensuring accurate and efficient medical reasoning.430

Few-Shot Enhancement. To further demonstrate431

our framework’s effectiveness in data-efficient set-432

tings, we extend it to few-shot scenarios via in-433

context learning. The key challenge lies in se-434

lecting the most relevant examples that can ef-435

fectively guide the reasoning process. To address436

this, we propose a dual-similarity selection strat-437

egy. As illustrated in Fig. 2(b), we utilize PubMed-438

CLIP (Zhang et al., 2023b) to compute similarities439

in both textual and visual domains. Formally, given440

a test sample with question embedding T and im-441

age embedding I, we select the top K examples442

from a candidate sample set M through:443

ICLK = TopKi∈M
1

2
(sim(T , Ti) + sim(I, Ii))444

where ICLK = {(ck, qk, âk)}Kk=1 represents the se-445

lected examples containing caption, question, and446

answer triplets. The caption ck is generated by the447

Perceiver agent from the corresponding medical448

image. These carefully chosen examples are inte-449

grated into our framework, enabling the Reasoner450

to leverage similar cases for more accurate diagno-451

sis. This extension demonstrates our framework’s452

adaptability across both zero-shot and few-shot set-453

tings, highlighting its effectiveness in data-efficient454

medical visual reasoning.455

4 Experiments456

4.1 Experimental Details457

Experimental Setup. We evaluate AMANDA on458

eight Med-VQA benchmarks that cover diverse459

medical domains and imaging modalities (detailed 460

in Appendix B). For evaluation models, we primar- 461

ily use LLaVA-Med-v1.5 (Li et al., 2024b). We 462

also develop variants of Med-InstructBLIP (Dai 463

et al., 2023) and Med-BLIVA (Hu et al., 2024a) 464

both using LLaMA-v1 as their LLM backbone and 465

following LLaVA-Med’s training methodology (de- 466

tailed in Appendix A). Following prior work (Li 467

et al., 2024b), we use accuracy for closed-ended 468

questions and recall for open-ended questions. Ad- 469

ditional experiments with general-purpose MLLMs 470

are provided in Appendix D. 471

Baselines. We compare AMANDA with three types 472

of approaches: (1) Single-step inference by Med- 473

MLLMs serving as our zero-shot baseline; (2) Two- 474

stage methods such as Img2LLM (Guo et al., 2023), 475

which generate image captions via MLLMs before 476

LLM reasoning; and (3) Agent-based approaches 477

like IdealGPT (You et al., 2023) that utilize multi- 478

ple LLMs for collaborative reasoning. 479

Implementation Details. Our framework uses 480

GPT-4o as the core reasoning engine for all agents 481

by default. For adaptive reasoning refinement, we 482

set a maximum of 3 iterations and a confidence 483

threshold of 3/5. For few-shot experiments, we use 484

4 in-context examples as the default setting. 485

4.2 Effectiveness of AMANDA 486

Zero-shot Med-VQA. As shown in Table 1 demon- 487

strates the substantial improvements achieved 488

by our framework across different Med-MLLMs 489

and evaluation benchmarks. With LLaVA-Med- 490

v1.5 (Li et al., 2024b), AMANDA achieves an av- 491

erage improvement of 19.36% over the direct in- 492

ference baseline. Using Med-BLIVA (Hu et al., 493

2024a), our method outperforms existing LLM- 494

empowered approaches like Img2LLM (Guo et al., 495

2023) and IdealGPT (You et al., 2023) by 6.36% 496

and 5.42% respectively. These significant im- 497

provements stem from our medical-specific design 498

choices. While Img2LLM (Guo et al., 2023) only 499

relies on caption generation and IdealGPT (You 500

et al., 2023) uses general-purpose agent collabora- 501

tion, our framework enhances medical reasoning 502

through both intrinsic and extrinsic Med-KA along 503

with adaptive reasoning refinement. 504

Few-shot Med-VQA. We further enhance our 505

framework’s effectiveness through few-shot learn- 506

ing, enabling performance gains without model 507

fine-tuning. As shown in Table 1, this few-shot en- 508

hancement leads to consistent improvements across 509
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Method
VQA-RAD SLAKE IU-Xray OL3I OmniMedVQA FairVL-Med PMC-OA

Average

Open Closed Open Closed Closed Closed Closed Open Open

LLaVA-Med-v1.5 30.50 52.94 41.74 44.95 34.50 22.80 40.30 54.58 56.46 42.09
+ Img2LLM 37.81 (+7.31) 47.43 (-5.51) 50.89 (+9.15) 59.86 (+14.91) 70.60 (+36.10) 49.80 (+27.00) 54.40 (+14.10) 61.74 (+7.16) 63.03 (+6.57) 55.06 (+12.97)
+ IdealGPT 41.56 (+11.06) 61.40 (+8.46) 50.96 (+9.22) 69.95 (+25.00) 67.80 (+33.30) 65.40 (+42.60) 53.90 (+13.60) 63.13 (+8.55) 68.02 (+11.56) 60.23 (+18.14)
+ AMANDA 42.19 (+11.69) 61.03 (+8.09) 54.39 (+12.65) 70.43 (+25.48) 70.30 (+35.80) 65.40 (+42.60) 57.20 (+16.90) 66.60 (+12.02) 65.51 (+9.05) 61.45 (+19.36)
+ AMANDA w/ FS 41.73 (+11.23) 63.97 (+11.03) 54.41 (+12.67) 73.56 (+28.61) 70.80 (+36.30) 67.00 (+44.20) 62.20 (+21.90) 66.85 (+12.27) 65.76 (+9.30) 62.92 (+20.83)

Med-InstructBLIP 32.41 61.76 42.82 59.38 68.60 34.40 29.50 52.18 57.85 48.77
+ Img2LLM 37.61 (+5.20) 57.72 (-4.04) 47.33 (+4.51) 69.23 (+9.85) 73.10 (+4.50) 46.00 (+11.60) 59.60 (+30.10) 59.75 (+7.57) 56.39 (-1.46) 56.30 (+7.53)
+ IdealGPT 40.22 (+7.81) 65.07 (+3.31) 48.85 (+6.03) 65.14 (+5.76) 80.70 (+12.10) 67.40 (+33.00) 56.30 (+26.80) 64.12 (+11.94) 60.10 (+2.25) 60.88 (+12.11)
+ AMANDA 41.02 (+8.61) 68.75 (+6.99) 51.13 (+8.31) 69.47 (+10.09) 79.50 (+10.90) 67.60 (+33.20) 62.70 (+33.20) 66.61 (+14.43) 63.97 (+6.12) 63.42 (+14.65)
+ AMANDA w/ FS 46.75 (+14.34) 74.26 (+12.50) 52.03 (+9.21) 72.84 (+13.46) 84.90 (+16.30) 67.00 (+32.60) 71.20 (+41.70) 67.10 (+12.98) 65.74 (+7.89) 66.87 (+18.10)

Med-BLIVA 29.19 61.76 43.51 56.01 69.80 38.20 31.90 49.33 54.41 48.24
+ Img2LLM 32.76 (+3.57) 59.93 (-1.83) 44.95 (+1.44) 62.74 (+6.73) 70.10 (+0.30) 46.20 (+8.00) 57.80 (+25.90) 62.43 (+13.10) 55.69 (+1.28) 55.27 (+7.03)
+ IdealGPT 40.84 (+11.65) 53.31 (-8.45) 50.08 (+6.57) 64.66 (+8.65) 71.40 (+1.60) 47.20 (+9.00) 57.80 (+25.90) 64.94 (+15.61) 61.30 (+6.89) 56.84 (+8.60)
+ AMANDA 41.40 (+12.21) 61.76 (+0.00) 50.95 (+7.44) 68.75 (+12.74) 76.70 (+6.90) 67.00 (+28.80) 63.20 (+31.30) 66.61 (+17.28) 63.97 (+9.56) 62.26 (+14.02)
+ AMANDA w/ FS 45.16 (+15.97) 67.65 (+5.89) 50.49 (+6.98) 69.23 (+13.22) 84.60 (+14.80) 65.80 (+27.60) 65.90 (+34.00) 67.10 (+17.77) 65.74 (+11.33) 64.63 (+16.39)

Table 1: Zero-shot and Few-shot Performance Comparison. Our framework consistently improves the perfor-
mance of different Med-MLLMs across various benchmarks. FS denotes experiments with 4 in-context examples.

Model Hallucination Question Type Average
Organ Condition Abnormality

LLaVA-Med-v1.5 39.60 30.30 21.96 30.62
+ AMANDA 88.00 (+48.40) 91.80 (+61.50) 54.00 (+32.04) 77.93 (+47.31)

+ AMANDA w/ FS 92.40 (+52.80) 94.80 (+64.50) 54.40 (+32.44) 80.53 (+49.91)

Med-InstructBLIP 37.20 16.60 60.60 38.13
+ AMANDA 89.80 (+52.60) 94.00 (+77.40) 64.40 (+3.80) 82.73 (+44.60)

+ AMANDA w/ FS 92.00 (+54.80) 93.00 (+76.40) 65.60 (+5.00) 83.53 (+45.40)

Med-BLIVA 65.80 53.60 61.80 60.40
+ AMANDA 83.80 (+18.00) 87.80 (+34.20) 61.20 (-0.60) 77.60 (+17.20)

+ AMANDA w/ FS 90.60 (+24.80) 92.80 (+39.20) 64.20 (+2.40) 82.53 (+22.13)

Table 2: Effectiveness in reducing hallucination.

all benchmarks, with Med-InstrcuctBLIP achiev-510

ing a further 3.45% gain over its zero-shot per-511

formance. These improvements demonstrate the512

effectiveness of our dual-similarity selection strat-513

egy, which provides the Reasoner with highly rel-514

evant in-context examples to strengthen its med-515

ical reasoning capability. These results highlight516

AMANDA’s strong adaptability in data-efficient sce-517

narios, from zero-shot to few-shot settings.518

Medical Hallucination Reduction. Beyond im-519

proving overall performance, a critical measure520

of our framework’s effectiveness lies in reducing521

medical hallucinations. We evaluate this capa-522

bility using ProbMed (Yan et al., 2024), a spe-523

cialized benchmark for assessing models’ medi-524

cal reasoning reliability. As shown in Table 2,525

AMANDA achieves substantial reductions in hal-526

lucination rates across all tested models, with Med-527

InstructBLIP (Dai et al., 2023) achieving a 47.37%528

reduction. These results demonstrate that our in-529

trinsic and extrinsic Med-KA effectively grounds530

the medical reasoning process with reliable domain531

knowledge, addressing a crucial challenge in real-532

(b) Performance vs. Number of In-Context Examples

(c) Performance vs. Different Reasoning Engines

(a) Adaptive Refinement vs. Fixed

Figure 3: Analysis of framework components.

world clinical applications. 533

4.3 Further Analysis 534

Effectiveness of Adaptive Refinement. Fig. 3(a) 535

demonstrates the superiority of our adaptive ap- 536

proach over fixed-iteration strategies. In fixed- 537
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iteration settings, performance initially improves538

with additional iterations but eventually degrades,539

revealing the detrimental effects of excessive refine-540

ment. Our adaptive mechanism achieves dual ben-541

efits: it increases accuracy from 66.54% to 68.75%542

while reducing the average number of iterations543

from 3.0 to 0.61, resulting in approximately 4.9x544

improved efficiency.545

Number of In-Context Examples. Fig. 3(b) il-546

lustrates how the number of in-context examples547

affects model performance. While increasing exam-548

ples initially improves results, the benefits plateau549

beyond an optimal point. This finding suggests that550

carefully selected examples are more crucial than551

quantity for enhancing medical reasoning.552

Reasoning Engines Compatibility. As shown553

in Fig. 3(c), our framework demonstrates com-554

patibility with both closed-source (GPT-4o, GPT-555

4o-mini) and open-source (DeepSeek-R1-Distill-556

Qwen-32B (Guo et al., 2025)) LLMs as reason-557

ing engines. GPT-4o achieves superior perfor-558

mance on open-ended questions, while open-source559

alternatives like DeepSeek-R1-Distill-Qwen-32B560

show competitive results on closed-ended ques-561

tions. This versatility highlights our method’s562

adaptability across different reasoning engines, en-563

abling users to balance performance requirements564

with computational cost considerations.565

Impact of MLLM Backbones. Table 3 presents a566

comprehensive analysis of MLLMs with varying567

backbones and training configurations. Our evalua-568

tion reveals three key findings: 1 larger language569

backbones generally achieve better performance,570

particularly on closed-ended questions where pre-571

cise reasoning is crucial; 2 increasing the pre-572

training dataset size from 60K (Li et al., 2024b)573

to 150K (Cui et al., 2024) samples leads to signifi-574

cant improvements across all metrics; and 3 mod-575

els with medical domain pre-training like PMC-576

LLaMA (Wu et al., 2023b) demonstrate strong577

performance, highlighting the value of domain-578

specific knowledge in medical reasoning.579

4.4 Ablation Study580

We conduct systematic ablation experiments to581

evaluate each agent’s contribution to our frame-582

work. 1 Removing Perceiver eliminates the583

foundation for understanding query images, re-584

sulting in significant performance degradation. 2585

Without Explorer, the framework loses its ability586

Model Model Size Dataset Size VQA-RAD SLAKE

Open Closed Open Closed

LLaMA 7B 60K 41.40 61.76 50.95 68.75
LLaMA 13B 60K 38.34 66.54 51.85 69.47
LLaMA 7B 150K 47.90 66.18 51.25 68.27
Vicuna 7B 60K 41.63 58.82 51.90 67.31

PMC-LLaMA 7B 60K 40.80 62.87 51.01 68.75

Table 3: Analysis of language backbones in Med-
BLIVA. Each column’s highest score is in bold, while
the second highest score is underlined.

Method VQA-RAD SLAKE

Open Closed Open Closed

AMANDA 42.19 61.03 54.39 70.43
- Perceiver 22.70 (-19.49) 40.81 (-20.22) 28.72 (-25.67) 35.58 (-34.85)

- Explorer 38.82 (-3.37) 56.62 (-4.41) 50.28 (-4.11) 64.66 (-5.77)

- Retriever 41.11 (-1.08) 60.29 (-0.74) 52.90 (-1.49) 69.47 (-0.96)

- Reasoner 38.09 (-4.10) 57.72 (-3.31) 50.21 (-4.18) 68.03 (-2.40)

- Evaluator 43.56 (+1.37) 57.35 (-3.68) 54.72 (+0.33) 69.23 (-1.20)

Table 4: Ablation study. Analysis of different agents
by removing each from the full model.

to progressively uncover key diagnostic features, 587

limiting the depth of medical reasoning. 3 The ab- 588

sence of Retriver reduces performance by remov- 589

ing access to extrinsic domain expertise. 4 With- 590

out Reasoner, the framework cannot effectively an- 591

alyze accumulated information and refine answers, 592

leading to lower accuracy. 5 The Evaluator 593

agent proves crucial for efficiency: while open- 594

ended questions benefit from extended reasoning 595

cycles, closed-ended questions suffer from unnec- 596

essary refinements that can introduce noise and con- 597

tradictions. Moreover, the Evaluator substantially 598

reduces the average number of iterations while 599

maintaining performance. These results collec- 600

tively validate each agent’s essential role in achiev- 601

ing efficient and accurate medical reasoning. 602

5 Conclusion 603

In this work, we present AMANDA, a training-free 604

agentic framework that addresses Med-MLLMs’ 605

intrinsic and extrinsic bottlenecks in data-efficient 606

scenarios. Our framework enhances medical visual 607

reasoning through coarse-to-fine question decom- 608

position and grounds its analysis with extrinsic 609

knowledge graphs, while maintaining efficiency 610

through adaptive reasoning refinement. Extensive 611

experiments demonstrate substantial improvements 612

on Med-VQA in both zero-shot and few-shot set- 613

tings, highlighting AMANDA’s potential for reli- 614

able AI-assisted medical diagnosis in resource- 615

constrained environments. 616
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6 Limitations617

While our work demonstrates promising results,618

several perspectives remain for future exploration.619

First, although we evaluate on eight diverse Med-620

VQA benchmarks, testing on more specialized621

medical datasets across different modalities (e.g.,622

MRI, CT) could further validate our framework’s623

generalizability. Second, our experiments primar-624

ily focus on publicly available Med-MLLMs with625

language models up to 13B parameters; investi-626

gating the impact of larger language models (e.g.,627

70B) could potentially reveal additional perfor-628

mance gains. Third, incorporating more diverse629

external medical knowledge resources (e.g., medi-630

cal textbooks, clinical guidelines, and medical re-631

ports) could potentially enhance our framework’s632

capability in handling various types of medical633

queries. Fourth, enabling our agents to utilize ex-634

isting medical tools and collaborate with hospitals635

for diagnosis would be a promising direction for636

real-world deployment. Finally, while we focus637

on a training-free approach, exploring lightweight638

fine-tuning strategies could potentially achieve bet-639

ter performance improvements while maintaining640

reasonable computational requirements in resource-641

constrained scenarios.642
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A Details of Evaluated MLLMs927

We evaluate our framework across both medical928

domain-specific and general-domain MLLMs to929

demonstrate its versatility and effectiveness.930

A.1 Medical Domain-Specific MLLMs931

• LLaVA-Med-v1.5(Li et al., 2024b): Built on932

Mistral-7B(Jiang et al., 2023), this is our primary933

evaluation model. It extends LLaVA (Liu et al.,934

2024) for medical domain understanding through935

specialized training on medical image-text pairs936

and conversational data.937

• Med-InstructBLIP: Our medical adaptation of938

InstructBLIP (Dai et al., 2023) using LLaMa-939

7B (Touvron et al., 2023). Following LLaVA-940

Med’s training methodology (Li et al., 2024b),941

we adapt the model for medical visual under-942

standing while maintaining its instruction-tuning943

capabilities.944

• Med-BLIVA: A medical version of BLIVA (Hu945

et al., 2024a) based on LLaMa-7B (Touvron et al.,946

2023). We adapt it using LLaVA-Med’s training947

strategy (Li et al., 2024b) to combine BLIVA’s vi-948

sual reasoning capabilities with medical domain949

expertise.950

A.2 Pre-training Details of Med-MLLMs951

For Med-InstructBLIP and Med-BLIVA, we follow952

LLaVA-Med’s (Li et al., 2024b) two-stage training953

strategy:954

• Stage 1: Feature Alignment. We first align the955

visual features with medical concepts through956

projection learning. Using 600K filtered image-957

text pairs from PMC-15M, we train only the pro-958

jection layer while keeping both the visual en-959

coder and language model frozen. This stage960

enables the models to understand biomedical vi-961

sual concepts efficiently.962

• Stage 2: Instruction Tuning. We then perform963

end-to-end instruction tuning with the projection964

layer and language model unfrozen. Using 60K965

medical image-text instruction data, we train the966

models to follow various medical instructions967

and perform visual reasoning tasks. This stage968

enhances the models’ capabilities in medical vi-969

sual understanding and dialogue interaction.970

A.3 General-Domain MLLMs 971

• InstructBLIP (Dai et al., 2023): A strong 972

general-domain MLLM with instruction-tuning 973

capabilities. We evaluate it using its original 974

pre-trained weights to assess our framework’s 975

effectiveness on models without medical domain 976

adaptation. 977

• xGen-MM (Xue et al., 2024): The latest BLIP 978

architecture variant with advanced visual reason- 979

ing capabilities. We use its original weights to 980

test our framework’s compatibility with state-of- 981

the-art general-purpose MLLMs. 982

Evaluating these general-domain models along- 983

side medical-specific ones demonstrates our frame- 984

work’s versatility across different architectures and 985

its ability to enhance medical reasoning capabilities 986

regardless of domain specialization. 987

B Details of Med-VQA Benchmarks 988

We utilize open-source Med-VQA benchmarks, 989

which cover a wide range of medical image modal- 990

ities and anatomical regions: VQA-RAD (Lau 991

et al., 2018), SLAKE (Liu et al., 2021), IU- 992

Xray (Demner-Fushman et al., 2016), Harvard- 993

FairVLMed (Luo et al., 2024), PMC-OA (Lin et al., 994

2023a), OL3I (Zambrano Chaves et al., 2023), Om- 995

niMedVQA (Hu et al., 2024b), and ProbMed (Yan 996

et al., 2024). Table 5 provides comprehensive statis- 997

tics about these datasets. The details of each bench- 998

mark are as follows: 999

• VQA-RAD (Lau et al., 2018): A dedicated Med- 1000

VQA dataset containing 315 medical images and 1001

3,515 question-answer pairs. It covers various 1002

medical imaging modalities including chest X- 1003

rays and CT scans. The questions are carefully 1004

designed to evaluate both visual understanding 1005

and clinical reasoning capabilities, categorized 1006

into different types including modality, plane, 1007

organ system, and abnormality detection. 1008

• SLAKE (Liu et al., 2021): A comprehensive 1009

Med-VQA dataset comprising 14,028 question- 1010

answer pairs on 8,851 medical images across 1011

multiple modalities (CT, MRI, X-Ray). The 1012

questions assess different levels of understand- 1013

ing, from basic pattern recognition to complex 1014

clinical reasoning. The dataset contains 11,222 1015

training samples and 1,061 testing samples. 1016

• IU-Xray (Demner-Fushman et al., 2016): A spe- 1017
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Table 5: Comprehensive statistics of the Med-VQA Benchmarks.

Index Data Source Modality Region # Images # QA Items Answer Type # Test

1 VQA-RAD (Lau et al., 2018) X-Ray, CT Chest, Abd 315 3,515 Mixed 451
2 SLAKE (Liu et al., 2021) CT, MRI, X-Ray Mixture 8,851 14,028 Open-ended 1,061
3 IU-Xray (Demner-Fushman et al., 2016) X-Ray Chest 589 2,573 Yes/No 1,000
4 Harvard-FairVLMed (Luo et al., 2024) Fundus Eye 713 2,838 Open-ended 1,000
5 OL3I (Zambrano Chaves et al., 2023) CT Heart 1,000 1,000 Yes/No 500
6 PMC-OA (Zhang et al., 2023c) Mixture Mixture 2,587 13,294 Open-ended 1,000
7 OmniMedVQA (Hu et al., 2024b) Mixture* Mixture 10,995 12,227 Multi-choice 1,000
8 ProbMed (Yan et al., 2024) Mixture* Mixture 6,303 57,132 Yes/No 1,500

cialized dataset focusing on chest X-ray images1018

and their corresponding diagnostic reports. Our1019

benchmark includes 589 frontal chest X-rays1020

from the test set, along with their detailed clinical1021

reports.1022

• Harvard-FairVLMed (Luo et al., 2024): A mul-1023

timodal dataset of fundus images designed to1024

evaluate fairness in AI models. It contains image1025

and text data from diverse demographic groups,1026

specifically focusing on bias assessment in medi-1027

cal visual understanding.1028

• PMC-OA (Lin et al., 2023a): A large-scale1029

collection of biomedical images extracted from1030

open-access publications. We incorporate 2,5871031

diverse image-text pairs randomly selected from1032

the test set into our benchmark.1033

• OL3I (Zambrano Chaves et al., 2023): A pub-1034

licly available dataset focused on predicting1035

ischemic heart disease (IHD) using contrast-1036

enhanced abdominal-pelvic CT examinations. It1037

features a retrospective cohort with up to 5 years1038

of follow-up data.1039

• OmniMedVQA (Hu et al., 2024b): A compre-1040

hensive Med-VQA benchmark collected from 731041

different medical datasets. It encompasses 12 dif-1042

ferent imaging modalities and covers more than1043

20 distinct anatomical areas, providing broad cov-1044

erage of medical visual understanding tasks.1045

• ProbMed (Yan et al., 2024): A specialized1046

benchmark designed for evaluating model hal-1047

lucination, comprising 6,303 images and 57,1321048

question-answer pairs. It includes carefully de-1049

signed adversarial QA pairs across three modali-1050

ties (X-ray, MRI, CT scan) and four anatomical1051

regions (abdomen, brain, chest, spine).1052

B.1 Evaluation Protocol 1053

Following (Xia et al., 2024a), we construct our 1054

evaluation benchmark using diverse medical image- 1055

text pairs from eight datasets. For classic Med- 1056

VQA benchmarks VQA-RAD and SLAKE, we use 1057

their complete test sets (451 and 1,061 QA pairs 1058

respectively) to maintain consistency with previous 1059

works. For larger-scale datasets (IU-Xray, Harvard- 1060

FairVLMed, OL3I, PMC-OA, OmniMedVQA, and 1061

ProbMed), we randomly sample 500-1,500 test ex- 1062

amples from their original test sets due to computa- 1063

tional constraints. 1064

The remaining training samples from these datasets 1065

serve as our in-context learning pool for few-shot 1066

evaluation. For each test image, we retrieve similar 1067

examples based on visual and semantic similarity to 1068

construct few-shot prompts. This diverse collection 1069

of datasets, covering various modalities and answer 1070

formats (Yes/No, Open-ended, and Multi-choice), 1071

enables comprehensive evaluation of medical vi- 1072

sual understanding capabilities. 1073

C Evaluation Metrics 1074

For the closed-ended questions, we report the ac- 1075

curacy in a more strict way compared to prior 1076

work (Li et al., 2024b). Instead of checking 1077

whether the ground-truth answer appears anywhere 1078

in the generated response, we only consider the 1079

first occurring yes/no-type word as the final predic- 1080

tion. This eliminates the inflated accuracy caused 1081

by long generated texts that include both "yes" and 1082

"no". For open-ended questions, we use recall to 1083

evaluate the ratio of ground-truth tokens that ap- 1084

pear in the generated sequences. Different from the 1085

literature that selects from a fixed set of training 1086

answers, we do not provide any constraints on the 1087

model’s open-ended responses. This makes our for- 1088

mulation closer to real open-ended questions but is 1089

intrinsically more challenging. For a fair compari- 1090

13



Method
VQA-RAD SLAKE IU-Xray OL3I OmniMedVQA FairVL-Med PMC-OA

Average

Open Closed Open Closed Closed Closed Closed Open Open

General MLLMs (without Medical Pre-training)
InstructBLIP 16.09 62.50 22.14 59.86 62.30 36.11 33.40 45.22 42.90 42.28

+ AMANDA 29.86 (+13.77) 65.81 (+3.31) 41.03 (+18.89) 66.35 (+6.49) 68.30 (+6.00) 61.11 (+25.00) 52.30 (+18.90) 64.83 (+19.61) 63.08 (+20.18) 56.96 (+14.68)
+ AMANDA w/ FS 38.96 (+22.87) 68.01 (+5.51) 48.61 (+26.47) 69.71 (+9.85) 71.30 (+9.00) 63.89 (+27.78) 54.40 (+21.00) 64.81 (+19.59) 63.12 (+20.22) 60.31 (+18.03)

Xgen-MM 16.08 62.50 22.14 59.86 53.30 37.80 44.70 58.38 49.19 44.88
+ AMANDA 35.20 (+19.12) 67.28 (+4.78) 46.47 (+24.33) 70.19 (+10.33) 59.20 (+5.90) 48.80 (+11.00) 54.10 (+9.40) 67.34 (+8.96) 64.85 (+15.66) 57.05 (+12.17)
+ AMANDA w/ FS 37.76 (+21.68) 75.37 (+12.87) 47.92 (+25.78) 74.28 (+14.42) 69.60 (+16.30) 51.60 (+13.80) 58.10 (+13.40) 67.42 (+9.04) 64.72 (+15.53) 60.75 (+15.87)

Table 6: Generalization to general-purpose MLLMs. Zero-shot and few-shot results across Med-VQA bench-
marks using general MLLMs, showing the framework’s strong generalization capability beyond Med-MLLMs.

LLM Engine Method
VQA-RAD SLAKE

Open Closed Open Closed

DeepSeek-R1-Distill-Qwen-32B Med-InstructBLIP 32.41 61.76 42.82 59.38
+ AMANDA 35.81 (+3.40) 67.28 (+5.52) 43.87 (+1.05) 70.91 (+11.53)

DeepSeek-R1-Distill-Llama-70B Med-InstructBLIP 32.41 61.76 42.82 59.38
+ AMANDA 34.28 (+1.87) 66.18 (+4.42) 44.34 (+1.52) 70.43 (+11.05)

Table 7: Performance of different open source LLMs as reasoning engine on VQA-RAD and SLAKE datasets.

Method
VQA-RAD SLAKE

Open Closed Open Closed

SIRI (Wang et al., 2023) - 45.80 - -
KG-RAG (Soman et al., 2024) 35.56 52.57 46.71 66.34
BiomedGPT-S (Zhang et al., 2023a) 13.40 57.80 66.50 73.40
AMANDA 42.19 61.03 54.39 70.43

Table 8: Comparison of different methods on VQA-
RAD and SLAKE datasets.

Metric
VQA-RAD SLAKE

Open Closed Open Closed

Average 42.80 61.32 54.12 70.28
Std 0.79 0.88 0.82 0.47
CV 0.02 0.01 0.02 0.01

Table 9: Stability analysis of AMANDA across 5 runs
with different random seeds. Std represents standard
error and CV denotes coefficient of variation

son, we use the same strict accuracy metric for all1091

methods. While this might lead to lower absolute1092

numbers compared to what is typically reported,1093

we believe it better reflects the true performance1094

and is more meaningful.1095

D Additional Results of AMANDA1096

Framework on General MLLMs1097

While our main experiments demonstrate the ef-1098

fectiveness of AMANDA on medical-specialized1099

MLLMs, we further evaluate its generalization ca-1100

pability on general-domain MLLMs that lack med-1101

ical pre-training. As shown in Table 6, our frame-1102

work demonstrates strong generalization capabil-1103

ity across different models. Specifically, when ap- 1104

plied to InstructBLIP (Dai et al., 2023), AMANDA 1105

achieves an average improvement of 14.68% over 1106

direct inference. These results suggest that our 1107

framework can effectively bridge the domain gap 1108

and enable general-purpose MLLMs to perform 1109

reliable medical visual reasoning. 1110

E Compatibility with Different LLM 1111

Engines 1112

To demonstrate the versatility of AMANDA, we 1113

evaluate its performance using different open- 1114

source LLMs as reasoning engines. As shown in 1115

Table 7, we test our framework with DeepSeek- 1116

R1-Distill-Qwen-32B and DeepSeek-R1-Distill- 1117

Llama-70B (Guo et al., 2025) on the VQA-RAD 1118

and SLAKE datasets. When integrated with Med- 1119

InstructBLIP, both models show substantial im- 1120

provements across all question types. Notably, with 1121

DeepSeek-R1-Distill-Qwen-32B, we achieve sig- 1122

nificant gains on closed-ended questions (+5.52% 1123

on VQA-RAD, +11.53% on SLAKE), while main- 1124

taining competitive performance on open-ended 1125

questions. Similar improvements are observed with 1126

DeepSeek-R1-Distill-Llama-70B, demonstrating 1127

that AMANDA can effectively enhance medical vi- 1128

sual reasoning capabilities regardless of the under- 1129

lying LLM engine. These results indicate that our 1130

framework provides a cost-effective solution for 1131

improving Med-VQA performance without requir- 1132

ing specialized training or extensive computational 1133

resources. 1134
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E.1 Comparison with Strong Baselines1135

To provide a more comprehensive evaluation,1136

we compare AMANDA with several strong base-1137

lines, including both zero-shot and supervised ap-1138

proaches. The results in Table 8 demonstrate1139

AMANDA’s effectiveness across different evalu-1140

ation settings. Our framework significantly out-1141

performs other zero-shot approaches, including1142

SIRI (Wang et al., 2023) (a multi-agent framework)1143

and KG-RAG (Soman et al., 2024) (which com-1144

bines knowledge retrieval with LLM reasoning).1145

Notably, AMANDA achieves superior performance1146

on VQA-RAD and competitive results on SLAKE1147

compared to BiomedGPT-S (Zhang et al., 2023a),1148

despite the latter’s advantage of supervised training1149

on downstream tasks. These comprehensive com-1150

parisons validate the effectiveness of our training-1151

free approach in medical visual reasoning tasks.1152

E.2 Framework Stability1153

We have thoroughly evaluated our framework’s sta-1154

bility. As shown in Table 9, we have conducted1155

additional experiments, running LLaVA-Med v1.51156

with AMANDA 5 times with different seeds on dif-1157

ferent benchmarks. These results demonstrate the1158

high stability of our framework, with standard de-1159

viations consistently below 1% and coefficients of1160

variation as low as 0.01-0.02. To put these varia-1161

tions in perspective, they are significantly smaller1162

than the performance improvements our framework1163

achieves over the baseline (e.g., an 8-25% absolute1164

improvement), confirming that AMANDA provides1165

stable and reliable enhancements across different1166

medical visual reasoning tasks and models.1167

F Pseudo-Code of AMANDA Framework1168

The algorithm illustrates how our framework or-1169

chestrates multiple specialized agents for collabo-1170

rative medical reasoning. The process operates as1171

follows:1172

• The Perceiver agent first analyzes the medical1173

image and generates a detailed caption along with1174

an initial answer, establishing a foundation for1175

visual understanding.1176

• The Reasoner agent then processes this initial1177

information to generate a preliminary medical1178

analysis based on the visual findings.1179

• The Evaluator agent assesses the confidence of1180

the current answer by analyzing its consistency1181

with the accumulated evidence.1182

Algorithm 1 AMANDA Framework Pipeline

1 def AMANDA(I: Image , Q: str) -> str:
2 """
3 Data -efficient Med -VQA
4 Args:
5 I: Input medical image
6 Q: Input question
7 Returns:
8 Final answer
9 """

10 # Initialize reasoning history
11 H = []
12

13 # Initial Visual Understanding
14 C, A_0 = Perceiver(I, Q) # Generate

medical caption and initial
answer

15 H.append ((C, A_0))
16 A_0 = Reasoner(Q, H) # Initial

reasoning
17 confidence = Evaluator(A_0 , H)
18

19 # Medical Knowledge Augmentation
20 while confidence < THRESHOLD:
21 # Intrinsive Med -KA
22 Q_sub , A_sub = Explorer(Q, H)
23 H.append ((Q_sub , A_sub))
24

25 # Extrinsive Med -KA
26 K = Retriever(H)
27 H.append(K)
28

29 # Re-reasoning with Enhanced
Knowledge

30 A_t = Reasoner(Q, H)
31 confidence = Evaluator(A_t , H)
32

33 return A_t

• When confidence is insufficient, the Explorer 1183

agent generates strategic follow-up questions to 1184

probe deeper into critical visual details, while the 1185

Retriever agent supplements the analysis with rel- 1186

evant medical knowledge from external sources. 1187

• This iterative process continues until the 1188

Evaluator determines that sufficient confidence 1189

has been achieved, ensuring both comprehensive 1190

analysis and reliable diagnosis. 1191

G Case Study 1192

As shown in Table 10, this case study demonstrates 1193

how our AMANDA framework effectively corrects 1194

initial misdiagnosis through comprehensive med- 1195

ical knowledge augmentation. Initially, the Med- 1196

MLLM baseline incorrectly identifies a rightward 1197

mediastinal shift. Our framework then initiates a 1198

systematic analysis through three key components. 1199

First, the Perceiver generates a detailed medi- 1200

cal caption, establishing a foundation for under- 1201
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standing the image’s key features. Second, through1202

intrinsic Med-KA, the Explorer generates strate-1203

gically designed sub-questions that progressively1204

examine the mediastinal position from different1205

perspectives. Third, the Retriever provides rel-1206

evant medical knowledge about the mediastinum.1207

Based on this augmented knowledge, the Reasoner1208

generates a refined answer, which the Evaluator1209

determines to be highly confident, demonstrating1210

the effectiveness of our adaptive reasoning refine-1211

ment. This case study exemplifies how our frame-1212

work enhances medical reasoning through struc-1213

tured analysis and knowledge augmentation, lead-1214

ing to efficient and accurate diagnosis.1215

H Prompt Design of AMANDA1216

In this section, we provide detailed prompt designs1217

for each agent in our framework. First, Table 111218

presents the caption generation prompts used by1219

the Perceiver agent for comprehensive medical1220

image understanding. Then, Table 12 shows the1221

structured instructions for the Explorer agent to1222

generate coarse-to-fine follow-up questions. Ta-1223

ble 15 details how the Evaluator agent assesses1224

reasoning confidence. Finally, Tables 14 and 131225

provide the Reasoner agent’s prompts for handling1226

closed-ended and open-ended questions respec-1227

tively, demonstrating our framework’s ability to1228

adapt to different question types.1229
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Table 10: A case study AMANDA showing how our framework progressively refines the answer through knowledge
augmentation.

Main Question: Has the midline of the mediastinum shifted?

Medical Caption:
This is a chest X-ray, which is a type of medical imaging study that uses low-energy X-rays to visualize
the structures within the chest, including the lungs, heart, and bones. The chest X-ray shows bilateral
ground-glass opacities in both lungs, which can be indicative of various lung conditions such as infections,
inflammation, or other abnormalities.

Initial Answer: Yes, the midline of the mediastinum has shifted to the right.
Evaluator: Confident Score : 1

Coarse-to-fine question decomposition:
Q1: Are there any visible signs of mediastinal shift, such as displacement of the trachea or heart?
A1: No, the chest X-ray does not show any visible signs of mediastinal shift, such as displacement of the
trachea or heart.

Q2: Is the position of the heart and trachea symmetrical and centered within the thoracic cavity?
A2: Yes, the position of the heart and trachea appears to be symmetrical and centered within the thoracic
cavity.

Q3: Are there any abnormalities in the lung volumes or pleural spaces that could contribute to a shift in
the mediastinum?
A3: No, there are no abnormalities in the lung volumes or pleural spaces that could contribute to a shift in
the mediastinum.

Retrieved Medical Knowledge:
Lung disease Localizes in: cavity, chest, diaphragm, mediastinum.

Iteration 1 Answer: No, the midline of the mediastinum has not shifted.
Evaluator: Confident Score : 4

Final Answer: No, the midline of the mediastinum has not shifted.
Ground Truth: No.
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Table 11: Prompts for the Perceiver Agent. Following LLaVA-Med’s instruction tuning strategy, we randomly
select one of these prompts to guide the Perceiver agent in generating comprehensive medical image descriptions.

PERCEIVER_CAPTION_PROMPTS:

• Describe the following image in detail
• Provide a detailed description of the given image
• Give an elaborate explanation of the image you see
• Share a comprehensive rundown of the presented image
• Offer a thorough analysis of the image
• Explain the various aspects of the image before you
• Clarify the contents of the displayed image with great detail
• Characterize the image using a well-detailed description
• Break down the elements of the image in a detailed manner
• Walk through the important details of the image
• Portray the image with a rich, descriptive narrative
• Narrate the contents of the image with precision
• Analyze the image in a comprehensive and detailed manner
• Illustrate the image through a descriptive explanation
• Examine the image closely and share its details
• Write an exhaustive depiction of the given image

18



Table 12: Explorer agent instructions for generating follow-up questions.

EXPLORER_SYSTEM_PROMPT:

You are an AI language model tasked with helping clinicians analyze medical images. Your goal is to
decompose a primary clinical question into several sub-questions. By answering these sub-questions,
it will be easier to arrive at a comprehensive answer for the main question.
Instruction: Given a general caption that might not be entirely precise but provides an overall
description, and a clinical question, generate a series of sub-questions to help thoroughly answer
the main question. These sub-questions should guide the analysis step by step, focusing on the
different aspects that could influence the final answer, keeping in mind clinical relevance and imaging
characteristics.
Rules:

• Break down the question into smaller parts following this hierarchical approach:
(a) First, ask about general/overall observations
(b) Then, focus on specific anatomical regions or structures
(c) Finally, ask about detailed findings or specific characteristics

• Consider these aspects in your questions:
– Presence or absence of specific findings
– Characteristics of structures (e.g., size, shape, alignment)
– Orientation and positioning of the patient or organs
– Comparison of abnormal vs. normal findings

• The number of sub-questions should be less or equal to {max_sub_questions}.
• Order your questions from general to specific (coarse to fine-grained).

Format:
Sub-question 1: [General observation question]
Sub-question 2: [Specific anatomical region question]
Sub-question 3: [Detailed finding question]
...

EXPLORER_PROMPT:
Image description: {caption}
Main question: {question}
History: {history}
Please generate a series of follow-up questions following a coarse-to-fine approach. Start with
general observations and progressively move to more specific details.
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Table 13: Open-ended Reasoner instructions.

OPEN_ENDED_REASONER_SYSTEM_PROMPT:

You are a medical AI assistant with rich visual commonsense knowledge and strong reasoning
abilities.
You will be provided with:

1. A main question about an image.
2. An imperfect initial answer to the main question provided by a visual AI model. Note that the

answers may not be entirely precise.
3. A general caption that might not be entirely precise but provides an overall description.
4. Some conversation history containing follow-up questions and answers.
5. Some grounded medical information.
6. Some similar examples with their answers for reference.

Your goal: Based on the above information, find the answer to the main question.
Rules:

1. Begin with a brief paragraph demonstrating your reasoning and inference process. Start with
the format: "Analysis:".

2. Be logical and consistent in evaluating all clues, including as many relevant details as possible.
3. Use similar examples to inform your reasoning.

Response Format:
Analysis: xxxxxx.

Answer: xxxxxx

OPEN_ENDED_REASONER_PROMPT:
Imperfect image description: {caption}
Open-ended question: {question}
Initial answer: {initial_answer}
History:
{history}
Additional information: {rag_context}
Please provide a detailed answer to the open-ended question based on all the information provided.
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Table 14: Closed-ended Reasoner instructions.

CLOSED_ENDED_REASONER_SYSTEM_PROMPT:

You are a medical AI assistant with rich visual commonsense knowledge and strong reasoning
abilities.
You will be provided with:

1. A main question about an image.
2. An imperfect initial answer to the main question provided by a visual AI model. Note that the

answers may not be entirely precise.
3. A general caption that might not be entirely precise but provides an overall description.
4. Some conversation history containing follow-up questions and answers.
5. Some grounded medical information.
6. Some similar examples with their answers for reference.

Your goal: Based on the above information, find the answer to the main question.
Rules:

1. Begin with a brief paragraph demonstrating your reasoning and inference process. Start with
the format: "Analysis:".

2. Be logical and consistent in evaluating all clues, but aim to preserve the initial answer unless
strong contradictions arise.

3. Use similar examples to inform your reasoning.
Response Format:

Analysis: xxxxxx.

Answer: [Yes/No] or [Selected Option]

CLOSED_ENDED_REASONER_PROMPT:
Imperfect image description: {caption}
Closed-ended question: {question}
Initial answer: {initial_answer}
History:
{history}
Additional information: {rag_context}
Please provide an answer to the closed-ended question based on all the information provided.
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Table 15: Evaluator agent instructions for assessing confidence levels in medical image analysis responses.

EVALUATOR_SYSTEM_PROMPT:

You are a medical AI assistant specialized in evaluating answers for medical image analysis.
You will be provided with:

1. A main question about a medical image.
2. A general caption that might not be entirely precise and may contain false information.
3. Current answer.
4. History of the conversation.
5. Examples from in-context learning.

Your goal:
1. Assess the confidence level of a given answer and provide a brief explanation.
2. Provide a confidence score from 1 to 5, where 1 means completely uncertain and 5 means very

certain.
3. Use examples from in-context learning to assist in evaluating the answer.

Evaluation Criteria:
• Contradictory Evidence: Look for any information that strongly contradicts the current answer.

If significant conflicting information is found, reduce the confidence level.
Scoring Guidance:

• Score 5: The answer is accurate, consistent with all provided information, and has no significant
conflicting evidence.

• Score 4: The answer is mostly correct, with minor issues or slight uncertainty.
• Score 3: The answer is generally acceptable, with some uncertainty or minor inconsistencies,

but it mostly aligns with the question.
• Score 2: The answer has notable inaccuracies or lacks consistency, with some conflicting

information present.
• Score 1: The answer is largely incorrect, inconsistent, or contains major contradictions with the

provided information.
Response Format:

Score: [1-5]
Explanation: [Your explanation]

EVALUATOR_PROMPT:
Imperfect image description: {caption}
Main question: {question}
Current answer: {answer}
History:
{history}
Please evaluate the confidence level of the current answer and provide a brief explanation.
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