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ABSTRACT

The success of large language models (LLMs) has prompted efforts to integrate
speech and audio data, aiming to create general foundation models capable of
processing both textual and non-textual inputs. Recent advances, such as GPT-
4o, highlight the potential for end-to-end speech LLMs, which preserves non-
semantic information and world knowledge for deeper speech understanding. To
guide the development of speech LLMs, we propose a five-level roadmap, ranging
from basic automatic speech recognition (ASR) to advanced superhuman mod-
els capable of integrating non-semantic information with abstract acoustic knowl-
edge for complex tasks. Moreover, we design a benchmark, SAGI Bechmark,
that standardizes critical aspects across various tasks in these five levels, uncover-
ing challenges in using abstract acoustic knowledge and completeness of capabil-
ity. Our findings reveal gaps in handling paralinguistic cues and abstract acoustic
knowledge, and we offer future directions. This paper outlines a roadmap for ad-
vancing speech LLMs, introduces a benchmark for evaluation, and provides key
insights into their current limitations and potential.

1 INTRODUCTION

Paradigms to process language have been reshaped due to large language model (LLM) and its scal-
ing law. Given the success of LLMs, one may expect to integrate extensive data in speech and audio
modality into LLMs (similar to visual language models Liu et al. (2023); Li et al. (2023) 1), result-
ing in a more general foundation model. Towards this path, the exploration on speech foundation
models recently brings new research insights from the perspectives of multi-task and multi-lingual
processing (Radford et al., 2023; Bapna et al., 2021; Zhang et al., 2023c; Seamless Communication
et al., 2023; Pratap et al., 2024). A remarkable event is the release of GPT-4o, which is notable
for its ability in open-ended speech-to-speech dialogue. Its performance in speech understanding,
speech synthesis, and system latency has reached new levels, leading to a wave of studies on speech
LLMs. The next question is, where are we now and where should we go? To answer this, we begin
by introducing the potential of using LLMs to understand speech.

Processing Speech using LLMs Compared to the traditional approach of feeding ASR-transcribed
text into text-only language models, unified speech-language models process raw audio or speech di-
rectly in an end-to-end fashion. The benefits for using LLMs to process speech are mainly two-fold.
I) Preservation of non-semantic information: Processing raw speech directly through language
models allows for the preservation of non-semantic information, such as emphasis, speaker identity,
background sounds, emotions, and feelings, to the greatest extent possible. II) World knowledge
inherited in LLMs: LLMs have superior language understanding capabilities compared to tradi-
tional models and store vast amounts of world knowledge. Therefore, starting with an LLM as the
foundation for speech processing allows for the natural inheritance of this embedded knowledge,
which might benefit at speech recognition level.

Five-level Speech Understanding The two benefits highlight the potential of speech LLMs, achiev-
ing of which requires the models to perceive complete speech information and achieve abstraction

1There exists lighweight solutions for adapting language models to process data beyond text (e.g., visual or
auditory), such as: 1) using a lightweight encoder and alignment process, and 2) discretizing data into tokens,
which supports the autoregressive objectives of LLMs.
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Figure 1: Levels of speech understanding using LLMs.

of expert speech/acoustic knowledge (e.g., inferring from cough and melody in some applications).
To this regards, we define five levels (see Fig. 1.) as below:

• Basic Level At the most basic level (Level 1), speech language models should be able to
recognize speech as text. The rationale for defining automatic speech recognition as the
foundational level is that it serves as the basis for directly interacting with LLMs through
speech. However, these capabilities at the basic level (e.g., speech recognition) offer limited
additional benefits for ASR-equipped cascade model to understand human speech as it is
somehow equivalent to a combination with a ASR model and a text-only LLM.

• Acoustic Information Perception Levels More advanced models (at Level 2 and Level
3) are expected to directly perceive basic paralinguistic information such as tone, pitch, and
loudness, and further enable them to comprehend non-semantic cues like emotions and the
surrounding environment (e.g., sarcasm).

• Abstract Acoustic Knowledge Levels At a higher level (at Level 4), models can integrate
speech with expert speech/audio knowledge to perform specialized tasks, such as medi-
cal assessments. At the final lavel (Level 5), the ultimate goal is to develop the Speech
Artificial General Intelligence (SAGI) capable of combining non-semantic information
with speech/audio knowledge to perform all speech understanding tasks, even achieving
superhuman speech understanding.

The Benchmark However, these levels remain insufficiently intuitive. Therefore, we have prelimi-
narily developed a benchmark to concretize and exemplify these capability levels. We designed the
SAGI Benchmark to evaluate speech LLMs across various tasks that typically represent the char-
acteristics of each level. The benchmark covers a wide range of tasks, including speech recognition,
language distinction, volume perception, emotion recognition, and more, with each task corresponds
to a specific level of capability within speech LLMs. The reliability of these evaluation sets was ver-
ified using human test, open-source and custom-trained models, demonstrating that the tasks are
feasible and can be accomplished. The benchmark aims to comprehensive, tiered evaluate speech
LLMs’ capabilities, and exploration of their ability to apply abstract acoustic knowledge.

Findings Human was generally strong in tasks from level 1 to 3. However, at higher levels, human
performance was limited due to a lack of abstract acoustic knowledge, which speech LLMs may
start to outperform in certain tasks. The current speech LLMs, though capable of surpassing
human performance in a few areas, still fall short in terms of task diversity and comprehensiveness.
Most models struggle with even basic paralinguistic information processing, highlighting the need
for further improvement. We analyzed four reasons for performance deficiency : 1) limited
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types of training data, 2) inability to comprehensively perceive acoustic information, 3) inadequate
instruction following, and 4) weak LLM backbones.

The contributions of this paper are as follows: We propose a roadmap to surpass human-level
speech understanding, outlining five distinct levels to better characterize the current state of speech
language models. Additionally, we design a benchmark aligned with this roadmap, supplementing
existing benchmarks with a variety of tasks. Finally, we present key findings from the benchmark,
based on evaluations of both speech LLMs and humans, and conduct a comprehensive analysis of
the factors behind their suboptimal performance, offering insights and guidance for future model
and architecture development.

2 ROADMAP TOWARDS UNDERSTANDING SPEECH

To design a roadmap for future speech LLMs, we first analyzed the development process of speech
LLMs in the past (in Sec. 2.1). Following that, we present our philosophy of the roadmap in Sec. 2.2.

2.1 THE BACKGROUND

Current speech LLMs are mainly divided into two types: the Cascade Paradigm and the End-to-End
Paradigm. Below, we will focus on analyzing these two approaches.
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Figure 2: Cascade and End-to-end paradigms.

Cascade Paradigm A straightforward approach
to understanding speech using LLMs is to feed
speech transcriptions (in text format) into LLMs.
This is known as the cascade paradigm (see the
left in Fig. 2). While this method allows for ba-
sic speech understanding, it lacks the ability to
perceive non-semantic information (e.g., emotion,
stress) within LLMs. This hinders a deeper under-
standing of the spoken content as its non-semantic
information is often crucial for fully grasping the
intent or nuances in speech.

End-to-end Paradigm In contrast, an end-to-end
speech LLM can process both semantic and non-
semantic information simultaneously within a single model. This approach not only retains more
detailed information within the LLM but also allows the world knowledge embedded in the LLM to
interact directly with speech data. Note that this end-to-end speech paradigm introduces additional
complexity, as it requires LLMs to handle raw speech data, which operates at a lower level compared
to textual inputs.

In summary, the end-to-end solution enables LLMs to directly handle non-semantic information,
such as emotions. Additionally, due to its stronger perceptual capabilities, it holds greater potential
for understanding and applying abstract acoustic knowledge. As a result, end-to-end solution can be
considered the future direction for the development of speech LLMs.

2.2 THE PHILOSOPHY OF THE ROADMAP

With the rise of large language models (LLMs), there is an increasing demand to understand infor-
mation beyond text, particularly speech. The core idea is that speech conveys richer information
than text alone, positioning ASR (Automatic Speech Recognition) as a foundational level. End-to-
end speech LLMs can begin with ASR capabilities to directly leverage the capabilities of text LLMs.
And then, it progressively incorporate more advanced comprehension of non-semantic features. Fi-
nally it contains the ability to retain and apply abstract acoustic knowledge. This progress can be
described as evolving through the following five levels:
Level 1. Speech Recognition Level At the most basic level, a speech language model should be
capable of recognizing text.

These tasks form the most fundamental requirements for interacting with large models using speech.
However, even at Level 1, the model offers limited advantages over a traditional cascade approach

3
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Table 1: Levels of speech understanding using LLMs

Level Semantic Non-Semantic Abstract Acoustic RemarkInformation Information Knowledge

- Pure LLM - - - Without speech input.

L1 Basic ASR ✓ ✗ ✗ Recognizing Speech as texts.

L2 Paralinguistic
Perception ✓ only paralinguistic ✗

Perceiving direct paralinguistic
information like tone, pitch,
loudness, rhythm, and speech rate.

L3 Non-semantic
Comprehension ✓ ✓ ✗

Comprehending non-semantic
information like speaker identity,
gender, age, emotional state, and
environmental sounds.

L4 Speech
Specialist ✓ ✓ specialist Understanding speech with specific

speech knowledge.

L5 Speech AGI
(Generalist) ✓ ✓ generalist Understanding speech with general

speech knowledge.

(e.g., feeding ASR-transcribed text into LLMs). The real benefits of speech LLMs begin to emerge
at the next level, with the ability to capture non-semantic features such as paralinguistic information.
Level 2. Basic Paralinguistic Perception Level At this level, Speech LLMs gain the ability to
perceive basic paralinguistic features in speech, such as tone, pitch, volume, rhythm, and speech
rate.

These elements are essential to speech comprehension and provide distinct advantages over pure
text-based models (or Speech LLMs at Level 1). While this lays the foundation for more advanced
capabilities, the insights derived at this level are still relatively shallow. For deeper understanding,
we must move to Level 3, where a model comprehends a broader range of non-semantic information.
Level 3. Non-semantic Comprehension Level At this stage, the Speech LLM extends beyond ba-
sic paralinguistic features and is capable of comprehending and interpreting more complex non-
semantic information, such as emotions, sarcasm, and heightened states like pride.

For example, emotions are higher-level human experiences that involve cognitive functions, dis-
tinguishing them from basic paralinguistic information. Interestingly, even some higher animals,
like pet dogs, can perceive these types of non-semantic information. To fundamentally distinguish
humans from animals, we designed Level 4 by leveraging the human strengths in higher-level cog-
nitive capabilities.
Level 4. Speech Specialist Level At this advanced level, Speech LLMs integrate expert-level ab-
stract acoustic knowledge to handle a few specific, complex tasks.

This requires integrating abstract acoustic knowledge which are advanced knowledge derived from
acoustic information. This goes beyond mere recognition and comprehension at Level 1 and Level
2, requiring the model to apply higher-order thinking skills (such as analysis, evaluation, and cre-
ation) based on acoustic information 2, according to Bloom’s cognitive taxonomy Krathwohl (2002).
Despite these abilities, the model at this level remains domain-specific, which leads to the need for
a fully generalized Speech LLM, as defined by Level 5.
Level 5. Speech AGI level The ultimate level, Speech Artificial General Intelligence (SAGI), repre-
sents a comprehensive speech model that functions as a generalist. It can integrate knowledge from
various domains and perform both general and specialized tasks, potentially surpassing human ex-
perts.

This vision of SAGI represents the culmination of speech understanding, combining domain exper-
tise, adaptability, and the capacity to exceed human performance in speech-based tasks. SAGI’s

2This capability benefits a range of tasks, such as: 1) using cough sounds to identify the type and origin of
the cough, 2) pronunciation correction, 3) music appreciation, 4) stethoscope auscultation, 5) early screening
for depression and Parkinson’s disease, and 6) understanding animal vocalizations.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

potential to outperform humans probably stems from its ability to scale learning time and superior
memory retention compared to humans. Due to time constraints, humans can typically only spe-
cialize in a narrow domain, as illustrated by ‘The 10,000-Hour Rule’ in Malcolm Gladwell’s book
Outliers. In contrast, LLMs can easily scale their learning time by leveraging larger computing re-
sources. Furthermore, LLMs generally possess longer memory—whether explicit or implicit—than
humans, enhancing their ability to retain and apply vast amounts of information.

3 BENCHMARKING

3.1 THE NEW BENCHMARK: SAGI

To implement the roadmap (Sec.2), we aim to build a comprehensive benchmark to concretes these
levels. Though previous benchmarks for speech LLMs have contributed significantly, they focus
mainly on the first three levels, neglecting abstract acoustic knowledge and broader SAGI applica-
tions (App.A). Additionally, current benchmarks lack the depth needed for full speech LLM devel-
opment, particularly in foundational tasks like pitch and volume perception. To address these gaps,
we propose a new benchmark, detailed in the following section.

Table 2: Overview of the levels and the corresponding tasks.
Level Task Dataset

L1

Language Identification Europarl-ST (Iranzo-Sánchez et al., 2020)
Auto-Speech Recognition LibriSpeech (Panayotov et al., 2015)
ASR for Legal Terms∗ Made of CosyVoice (SpeechTeam, 2024)
ASR for Medical Terms∗ Made of CosyVoice (SpeechTeam, 2024)
Auto-Lyrics Transcription Jam-Lyrics (Durand et al., 2023)

L2
Volume Perception Made of LJSpeech (Ito & Johnson, 2017)
Pitch Perception Made of SpeechAccentArchive (Weinberger, 2013)
Binaural Effect Perception Our proposed method

L3

Ambient Sound Detection Noisy speech (Valentini-Botinhao et al., 2017)
Acoustic Scenes Classification Made of MS-SNSD (Reddy et al., 2019)
Speaker’s Age Prediction Made of AIR-Bench (Yang et al., 2024) & SpeechAccentArchive (Weinberger, 2013)
Speaker’s Gender Recognition VCTK (Yamagishi et al., 2019)
Speech Emotion Recognition Selected from RAVDESS (Livingstone & Russo, 2018)
Cappella Emotion Recognition Selected from RAVDESS (Livingstone & Russo, 2018)
Emotional Intensity Perception Made of RAVDESS (Livingstone & Russo, 2018)
Emotion Translation∗ Made of RAVDESS (Livingstone & Russo, 2018) and CosyVoice (SpeechTeam, 2024)
Singing Detection RAVDESS (Livingstone & Russo, 2018)

L4

COVID-19 Risk Detection Virufy COVID-19 Open Cough Dataset (Chaudhari et al., 2020)
Cough Type Classification Made of COUGHVID(Orlandic et al., 2021)
Cough Origin Diagnosis Made of COUGHVID(Orlandic et al., 2021)
Cough Severity Assessment Made of COUGHVID(Orlandic et al., 2021)

L5 Spoken English Coach Made of speechocean762 (Zhang et al., 2021)
Voice Detective Made of SpeechAccentArchive (Weinberger, 2013)

“*” denotes that utterances are synthesized, and the credibility verification is provided in Appendix C.5.

Philosophy of Benchmark The SAGI Benchmark is structured to align with the five levels of
speech understanding3, and the overview of the benchmark is shown in Tab. 2. The tasks are or-
ganized into five levels: Level 1 focuses on testing the recognition capabilities of speech LLMs,
including ASR, lyrics transcription, and term recognition tasks. Level 2 evaluates foundational per-
ception abilities, such as pitch and volume perception for tasks like age, gender, and emotion recog-
nition. Level 3 assesses non-semantic comprehension, incorporating tasks like emotion-integrated
translation, environment perception, and emotional intensity recognition. Level 4 explores the appli-
cation of abstract acoustic knowledge, specifically focusing on medical-related contexts. Finally,
Level 5 envisions the capabilities of Speech AGI (SAGI), highlighting tasks that promote creativity
and diverse thinking, such as appreciating artwork, with a strong foundation in earlier levels.

3The types of tasks for Level 4 and 5 are not yet complete in the current version; we are working on adding
more diverse tasks.
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Table 3: Performance of Speech LLMs on SAGI Benchmark.

Level Task Human
Baseline

GPT-4o
Manual Test‡

Models

MuLLaMA GAMA SALMONN Qwen2-Audio

L1

Language Identification × 93.75% 8.48% × 35.17% 96.44%
Auto-Speech Recognition 15.49∗ 11.81∗ × × 5.45∗ 4.63∗

ASR for Legal Terms 98.50% 5.00% × × × 81.04%
ASR for Medical Terms 97.50% 35.00% × × × 53.86%
Auto-Lyrics Transcription 26.88∗ × × × 77.12∗ 32.48∗

- Hallucination Rate 3.00% × × × 29.26% 38.21%

L2
Volume Perception 100.00% 66.25% 50.00% 11.98% 53.22% 48.96%
Pitch Perception 96.25% × 33.78% 41.5% 50.00% 50.00%
Binaural Effect Perception 100.00% × × × 49.88% ×

L3

Ambient Noise Detection 91.88% 50.00% 50.00% 60.17% 49.88% 50.00%
Acoustic Scenes Classification 90.28% × 5.07% 12.05% 20.74% 27.67%
Speaker’s Age Prediction 52.59% 35.00% 33.60% × 36.87% 38.55%
Speaker’s Gender Recognition 97.50% 65.00% 50.00% × 48.12% 79.60%
Speech Emotion Recognition 50.71% 20.00% 9.20% 3.68% 10.93% 79.51%
Cappella Emotion Recognition 62.25% 15.00% 12.42% 7.08% 14.62% 62.38%
Emotion Intensity Perception 97.50% 55.00% 50.00% 50.00% 49.29% 50.00%
Emotion Translation† 3.68 0.30 × × 0.27 0.31
Singing Detection 99.38% 55.00% 50.00% 64.82% 56.47% 50.22%

L4

COVID-19 Risk Detection 60.63% × × × 50.00% 14.17%
Cough Type Classification 52.50% × 50.16% 44.17% 49.17% 43.39%
Cough Origin Diagnosis 32.19% × × × 4.01% 25.65%
Cough Severity Assessment 45.42% 30.00% 30.85% 28.50% 38.24% 33.86%

L5 Spoken English Coach† 1.39 0.15 1.29 0.44 0.48 0.54
Voice Detective† 1.20 × 0.84 0.83 0.86 1.24

“×” indicates that the model fails to follow the instruction. “*” denotes that the metric is WER (Word Error Rate) and similar, where
lower values are better. “†” indicates that the task is evaluated by GPT-4, with a score ranging from 1 to 4. ‡ note that we use speech in-
structions to test advanced speech mode of GPT-4o, so it is not fair to directly compare it with other models, details are shown in App. B.
Since GPT-4o tends to reject audio related evaluations, we only record the answers after GPT-4o responds positively to the test.

3.2 BENCHMARKED OBJECTS

Humans To conduct an initial evaluation of human performance, we created evaluation subsets by
randomly selecting 80 samples per label for the objective multiple-choice tasks, and 80 samples in
total for the other tasks. Four students (two males and two females) with strong English proficiency
completed the assessments. The results are recorded in Tab. 3. The participant information and
consistency test is in App. D.1.

Speech LLMs There are four types of speech LLMs, see more details in Sec. 5. We selected an
open-source model for each type, except for video LLMs, where the performance on audio-only
tasks is not stable. For speech-related models, we chose Qwen2-Audio for its strong performance.
We selected Mu-llama for the music model and GAMA for the audio model. Additionally, we tested
SALMONN as a mixed audio and speech model. We also manually tested the advanced speech
mode of GPT-4o. Although it demonstrates a surprisingly interactive experience, it has not yet been
tested in depth. Considering that the next step is to build the ability to follow speech instruction, we
used speech instruction to test GPT-4o in conversations. For more details on model replication and
evaluation settings, please refer to App. D.

3.3 BENCHMARKING RESULTS

Performance for Humans As seen in Tab. 3, human performs generally well from Level 1 to 3.
However, it becomes worse at higher levels due to a lack of acoustic knowledge. On the other side,
speech understanding for humans are generally better than speech language models.

Take-away 1. Human performance: Human generally performs well in speech understanding
from Level 1 to 3, but fails to reach a high level due to a lack of abstract acoustic knowledge.

Performance for speech LLMs As shown in Tab. 3, speech LLMs exhibit a significant weakness in
Level 2 which consists of basic listening abilities of the human. These models are currently focused
on directly addressing high-level tasks while neglecting basic paralinguistic information perception,
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thereby the model fails to shows generalization at higher level. Furthermore, most models do not
fully satisfy the requirements at any given level, highlighting a lack of consideration for both task
diversity and comprehensiveness. Notably, speech LLMs have outperformed humans in tasks like
Emotion Recognition, suggesting they can discern subtle nuances beyond human perception.
Take-away 2. Speech LLMs Performance: Speech LLMs still struggle with non-semantic per-
ception and comprehension from Level 1 to Level 3, despite excelling in some tasks, limiting their
performance on more complex tasks at higher levels.

Performance for GPT-4o We are the first to test the understanding abilities of GPT-4o based
on advanced speech mode. Although GPT-4o demonstrated novel capabilities in speech-to-speech
conversations, it does not perform well in some audio understanding tasks when speech instructions
are applied. On the other hand, it almost refuses to respond to audio and music-related tasks. We
believe this is because speech instructions are more likely to make the model vulnerable to malicious
attacks compared to text instructions.
Take-away 3. GPT-4o performance: Following speech instructions is very challenging, and even
GPT has significant room for improvement.

Future Prospects We observe that abstract acoustic knowledge presents a common bottleneck for
both humans and speech LLMs in reaching higher performance levels. Given superior capabilities
of LLMs in knowledge acquisition, meanwhile, the deficiencies in diversity and completeness of
capabilities can be ameliorated by incorporating additional training data. we contend:
Take-away 4. Speech LLMs have the potential to exceed human capabilities, yet they currently
fall short in addressing the full scope of tasks and integrating abstract acoustic knowledge.

4 MORE ANALYSIS ON PERFORMANCE DEFICIENCY

In this section, we discuss reasons of performance deficiency in SAGI benchmark. We first consider
composition of training data (Sec. 4.1). Then we analyse the model from three perspectives: 1)
perception of acoustic information (Sec. 4.2), 2) ability of instruction following (Sec. 4.3), and 3)
capacity of LLM backbone (Sec. 4.4).

4.1 LIMITED TYPES OF TRAINING DATA

Figure 3: Components of three types of training data.

We observed in Tab. 3 that certain tasks, particularly those in Level 2, are easy for humans but
challenging for speech LLMs. We first analyzed the composition of the training data for speech
LLMs, as shown in Fig. 3. We found that most speech LLMs tend to disregard audio data except
for GAMA, whereas GAMA focuses primarily on audio. This indicates that the data bias across
different speech LLMs is distinct, which subsequently leads to variations in task preference.

To further examine the influence of task preference, we compared the performance of various speech
LLMs with Whisper V3 (trained with ∼5,000k hours), as shown in Tab. 4. We find that Whisper still
outperforms other models on the Lyrics Transcription task, benefiting from the massive training data.
On the other hand, with the help of the learned knowledge, speech LLMs perform significantly better
at recognizing certain terms. This demonstrates that speech LLMs have great potential compared to
traditional speech models. Notably, we also tested a small model trained exclusively on an audio
dataset. This small model achieved 100% accuracy, while speech LLMs struggled with the task.
Take-away 5. Current insufficient diversity and completeness of training data could not help
speech LLMs reach a higher level.

7
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Table 4: Comparison of speech model and LLMs. The small model uses Transformer with 10M
parameters.

Subtask Task type Model Result Best result of LLMs

Language Identification 5-Categories Whisper 91.45% 96.62%
Auto-Speech Recognition Generation Whisper 2.44 2.65
ASR for Legal Term Generation Whisper 33.33% 81.04%
ASR for Medical Term Generation Whisper 34.98% 53.86%
Auto-Lyrics Transcription Generation Whisper 22.10 32.48
Hallucination Rate 2-Categories Whisper 14.63% 29.26%

Volume Perception 2-Categories Small model 100.00% 53.22%

4.2 INABILITY TO COMPREHENSIVELY PERCEIVE ACOUSTIC INFORMATION

The current end-to-end paradigm almost universally adopts the stacking paradigm. But the
stacking paradigm may suffer from two types of information loss: 1) the latent representa-
tion produced by the acoustic encoder does not fully capture or convey the necessary informa-
tion, and 2) the acoustic encoder fails to transfer all the information to the downstream LLMs.
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Figure 4: Representation similarity of different
speeches. Each speech pair has the same content
but is spoken with different style. The representa-
tion is generated by the Whisper encoder.

We first investigate whether the loss of latent
representation contributes to the limited perfor-
mance. We compare the speech features gen-
erated from the same text content, but spoken
by different genders and with different emo-
tions. The features are generated by Whisper
and analyzed using cosine similarity between
the original and perturbed speech. The results,
shown in Fig. 4, indicate that there is no signif-
icant difference between different speech sam-
ples. This suggests that emotion and gender in-
formation are lost during the acoustic encoder
process. This could explain why some speech
LLMs perform poorly on certain simple tasks, as the LLMs cannot compensate for the loss of acous-
tic information.

Table 5: Two types of recognizing error. The
“truncation” and “over-long” denote the genera-
tion is short and longer than the length of refer-
ence more than 20% separately.
Model Total Truncation Over-long

Whisper 64 3 0
Qwen-Audio 68 5 6
Qwen2-Audio 149 89 3
SALMONN 251 154 5

We then assess whether information loss from
the acoustic encoder to downstream LLMs lim-
its speech LLMs’ performance. We choose the
base cases of the ASR task where the WER
(Word Error Rate) is higher than 20%, as shown
in Tab. 5. We found that the error types is dif-
ferent between the whisper and speech LLMs.
Considering that Qwen-Audio is built on Whis-
per, the results confirm that LLMs cannot cor-
rect errors from the acoustic model. A typical
difference between Whisper and speech LLMs is the occurrence of overlong generation, which is a
form of hallucination.

Another notable phenomenon is that almost 60% of error cases are caused by truncation. Addition-
ally, we observed that the speech LLMs sometimes omits the start of a sentence, which does not
happen with Whisper. This prove that speech LLMs suffer the loss of information transfer between
the LLMs and the acoustic encoder. The current stacked paradigm often tunes base on LLMs with
most parameters frozen, which requires the acoustic features to fit the LLMs’ representation space.
This requirement hinders the seamless transmission of acoustic information to the LLMs, leading to
premature termination of the generation process.

Take-away 6. LMs in Current End-to-end solutions fail to encode complete acoustic information.
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4.3 INADEQUATE INSTRUCTION FOLLOWING

We have observed that some models exhibit poor instruction following in Tab. 3. Two reasons can
lead to these results: 1) the models do not understand the instructions, and 2) the instruction fails to
help the models comprehend the speech.

2 4 6 8
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35.0

#Instruction

A
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Qwen2-Audio Mullama Qwen-Audio GAMA
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Figure 5: Performance of speech LLMs with dif-
ferent instruction on speaker age task (left) and
scenes classification task (right).Gray line shows
random selection accuracy. Details about the in-
structions and results are shown in App. E.

We classify the cause by observing changes in
performance after perturbing the prompt. If
the model is insensitive to different perturbed
prompts, it indicates that the model cannot un-
derstand the prompt. On the other hand, if the
models show significantly better performance
with a properly structured prompt, it suggests
that the model could understand the task, while
requires the specific instruction. We choose the
two Level 3 tasks (Age prediction and Ambient
Noise Detection) where the instruction follow-
ing ability is crucial, and the results shown in
Fig. 5.

For the result of Fig. 5, we can find the Mullama
is not sensitive about the instruction. This prove
the model can not figure out this task. Further,
the performance of most speech LLMs highly related with the specific prompt, this shows models
are sensitive with the format of instruction. Comparing with the text LLMs which are robust with
diverse instruction, the speech LLMs need much effect to guarantee instruction following.

Take-away 7. Current speech LLMs follow instructions poorly.

4.4 WEAK LLM BACKBONES

Table 6: There different tasks to test the ability of processing the phone
Task Prompt

Sequence-level Given a phone sequence, “M AA0 R K IH0 Z ...”, what sentence does it represent?

Token-level Given a tokenized phone sequence, “[M AA0 R K] [IH0 Z] ...”, what sentence
does it represent?

Token-level
with one shot

Given a tokenized phone sequence, “[M AA0 R K] [IH0 Z] ...”, what sentence
does it represent? For example, if the phone sequence is “[F AO0 R] [F AY0 V],
[S IH0 K S] [S EH1 V N] [EY0 T]” the sentence can be: “four five six seven eight nine”.

Table 7: Potential of LLMs to process speech.
The metric is WER, and if LLMs show the hallu-
cination or reject to answer, we calculate the WER
with 100% for this case.

Model Seq. ↓ Token ↓ Token ↓
zero-shot one-shot

GPT-4o 17.5 8.3 8.3
Mixtra-7B 99.5 98.9 97.7
Qwen2-7B 99.3 98.3 95.8
Llama3-7B 97.5 89.6 87.9
Llama3.1-8B 94.0 83.7 78.0
Mixtra 8x7B 98.2 95.1 92.6
Qwen2-72B 93.4 75.4 73.5
Llama3.1-70B 80.5 51.1 46.9

Most current speech LLMs follow the paradigm
of stacking the acoustic model and text LLMs.
This paradigm requires the text LLMs to pro-
cess audio-like tokens, raising an intuitive ques-
tion: whether text LLMs have the potential to
handle cross-modal tasks. We designed a di-
rect task of converting a phoneme sequence into
a complete sentence. The phoneme represents
pronunciation in text format, thus understand-
ing phonemes can demonstrate the model’s po-
tential to process audio. We designed three dif-
ferent tasks, as shown in Tab. 6. The most chal-
lenging task requires the model to find the most
likely sentence according to the entire phoneme
sequence, which takes some time even for hu-
mans.

We evaluate the most commonly used LLMs for building speech LLMs, and the results are shown
in Tab. 7. We found that the closed-source GPT-4o demonstrates a surprising ability to process

9
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phonemes, proving that it can easily be converted into a powerful speech LLM. On the other hand,
all the open-source models fail to show potential in handling audio. Even when the size of the model
parameters is increased, the ability remains very limited.

One explanation is that open-source models overlook potential audio-related tasks, which is quite
unlike GPT-4o. This leads to a significant gap between the two types of models. A piece of ev-
idence supporting this is that Llama 3.1, which emphasizes multi-modal capabilities Dubey et al.
(2024), shows a noticeable improvement in WER in token-level tasks and delivers robust perfor-
mance with 70B parameters. Overall, open-source foundation models still have substantial room for
improvement in their ability to handle audio-related tasks.
Take-away 8. The used LLM backbone is relatively weak for current speech LLMs.

5 RELATED WORK

Speech language models have seen a surge in development following the advent of LLMs. Currently,
most work integrates pre-trained acoustic models with LLMs using an alignment module. There
are two main strategies to bridge the gap between the two models: 1) adapters and 2) attention
mechanisms.

Adapter The former method adds modules (usually convolutional networks and MLPs) between
the acoustic model and LLMs. Convolutional networks can compress sequence length (Wang et al.,
2023a), while MLPs are used to align acoustic tokens with text embeddings (Su et al., 2023).

Attention Mechanisms Regarding the attention method, Kong et al. (2024) implemented cross-
attention to filter information from the output of the speech encoder. Li et al. (2023) proposed
the Q-former as an intermediate extractor based on cross-attention. Similarly, Pan et al. (2023)
applied the Q-former to extract useful acoustic information for LLMs. Some works directly treat the
acoustic codec as tokens and do not rely on alignment strategies (Zhang et al., 2023a; Rubenstein
et al., 2023).

Categorization of speech LLMs We have introduced that acoustic models can generally be di-
vided into four types. Some works aim to build universal multi-modal LLMs (Su et al., 2023;
Zhan et al., 2024; Wu et al., 2023b; Lyu et al., 2023; Zhang et al., 2023b; Shukor et al., 2023). Sev-
eral studies focus on enhancing music understanding, an important area that has not yet received
enough attention (Deshmukh et al., 2023; Zhan et al., 2024; Liu et al., 2024a). Most speech LLMs
aim to improve speech-to-text tasks and multi-turn dialogue capabilities (Fathullah et al., 2024;
Shu et al., 2023; Wang et al., 2023b; Pan et al., 2023; Rubenstein et al., 2023; Zhang et al., 2023a;
Bai et al., 2024; Wu et al., 2023a; Maiti et al., 2024; Wang et al., 2023a; Chu et al., 2024; Dubey
et al., 2024). Some works utilize audio codec models to enhance audio processing performance
(Chen et al., 2023; Kong et al., 2024; Nguyen et al., 2024; Das et al., 2024; Gong et al., 2023).
Inspired by these efforts, several studies (Tang et al., 2023; Ghosh et al., 2024a; Hu et al., 2024)
combine acoustic and semantic codecs to integrate audio and speech processing capabilities into a
single model.

6 CONCLUSION

In this paper, we explored the evolving landscape of large language models (LLMs) in the realm
of speech processing. We introduced a five-level roadmap to guide the development of human-level
speech understanding, from basic ASR capabilities to advanced generalist models that integrate non-
semantic information with general abstract acoustic knowledge for complex tasks. To assess the
current state of speech LLMs, we designed a comprehensive benchmark that standardizes critical
aspects across various tasks, ensuring consistency and reliability in performance evaluation. Our
research reveals the current stage and deficiencies in understanding speech by both humans and
speech LLMs. We evaluate the advanced speech mode of GPT-4o and find that following speech
instructions is very challenging. Further analysis has uncovered structural flaws in existing speech
LLMs. Reveals that current speech LLMs face issues in both Acoustic Information Transfer and
Foundation LLMs’ Potentiality. The contributions of this paper provide a structured approach to
advancing speech LLMs, offering valuable insights for future innovations in this field.
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LIMITATION

Artificial intelligence should not be confined to overly narrow domains, as such a focus can lead to
frequent model switching when handling diverse tasks.This requires SAGI, a speech AGI, to be a
powerful assistant capable of completing all kinds of tasks. However, during our primary testing,
most speech LLMs remain at levels 1 and 2, indicating there is still a long way to go in terms of
understanding speech.

To advance further, we conclude some important directions for improving speech LLMs toward
higher level:

• Requiring more diverse speech data to handle complex tasks.
• Enhancing the ability of text LLMs to process speech-related tasks.
• Ensuring that LLMs can receive complete acoustic information.

We advocate for the development of more powerful acoustic models, consideration of cross-domain
compatibility when constructing datasets, and a deepening of expertise in specific research areas.
This approach will enhance the generalization and adaptability of the models.

A EXISTING BENCHMARK

Table 8 summarizes the coverage of existing benchmarks across different levels of speech model
tasks, highlighting gaps in current evaluation methods. L1 tasks such as Speech ASR, Intent Classifi-
cation, and Language Identification are well supported by both Dynamic-SUPERB and AIR-Bench,
though SD-Eval lacks coverage. For L2 foundational perception tasks, like Music Pitch and Velocity,
only AIR-Bench provides support. L3 tasks related to non-semantic comprehension, such as Emo-
tion, Environment, and Speaker Gender/Age, are covered to varying degrees across all benchmarks,
with Dynamic-SUPERB offering the most comprehensive support. However, more specialized tasks
like Sarcasm, Stress, and Spoof Detection are only covered by Dynamic-SUPERB. Notably, L4 (Ab-
stract Knowledge) and L5 (Speech AGI) remain entirely unsupported across all benchmarks. This
underscores the urgent need to build a more comprehensive benchmark that addresses the gaps in
L2, L4, and L5, ensuring more robust evaluation across all levels of speech model tasks.

Table 8: Existing benchmarks across Levels. L2, L4 and L5 have not received enough attention yet.
Level Task Dynamic-SUPERB AIR-Bench SD-Eval

L1
Speech ASR ✓ ✓ ✗
Intent Classification ✓ ✓ ✗
Language Identification ✓ ✓ ✗

L2 Music Pitch and Velocity ✗ ✓ ✗

L3

Emotion ✓ ✓ ✓
Environment ✓ ✓ ✓
Accent ✓ ✗ ✓
Speaker Gender/Age ✗ ✓ ✓
Noise Detection ✓ ✗ ✗
Speaker Verification ✓ ✓ ✗
Sarcasm Detection ✓ ✗ ✗
Stress Detection ✓ ✗ ✗
How Far Are You ✓ ✗ ✗
Spoof Detection ✓ ✗ ✗
Synthesized Voice Detection ✗ ✓ ✗

L4 No Related Work ✗ ✗ ✗
L5 No Related Work ✗ ✗ ✗

B CHALLENGING SPEECH INSTRUCTION

Due to the significant discrepancy between the objective test results of GPT-4o and our intuitive
impressions, we were motivated to explore whether following speech instructions is more challeng-
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ing. Since GPT-4o can only be triggered through speech instructions, we conducted experiments
with Qwen2-Audio, which supports both methods. The results, as shown in Tab. 9, indicate that
following speech instructions is indeed more challenging.

Table 9: Comparison of text instruction and speech instruction.
Language Identification ↑ ASR ↓ ASR for Medical Terms↑ ASR for Legal Terms↑

Text Instr. 96.44% 4.63 53.86% 81.04%
Speech Instr. 48.98% 7.72 55.17% 74.51%

As established, speech instructions are more challenging. So, when using speech instructions, which
is stronger: Qwen2-Audio or GPT-4o? To ensure a fair comparison, We tested Qwen2-Audio on the
same test subset used for GPT-4o. The results are shown in Tab. 10.

Table 10: Comparison of Qwen2-Audio and GPT-4o with speech instruction.
Language Identification ASR ASR for Medical Terms↑ ASR for Legal Terms↑

Qwen2-Audio 47.00% 20.02 65.00% 85.00%
GPT-4o 94.00% 11.81 35.00% 5.00%

C DETAILS OF BENCHMARK CONSTRUCTION

The overall construction principles are provided in Sec.C.1. The data and tools used are detailed in
Sec.C.2. The composition structure of the data is outlined in Sec.C.3. Detailed construction details
for each task are available in Sec.C.4.The credibility verification of synthesized speech is provided
in Sec. C.5.

C.1 GENERAL PRINCIPLES OF DATA CONSTRUCTION

C.1.1 QUESTION CONSTRUCTION

For objective multiple-choice questions, we included multiple-choice options in the questions to
guide large models in generating the final results. For subjective response questions, we specified
the main aspects around which the questions revolve and set suggested answers, although these do
not require the model to produce results that are exactly identical, illustrated in Fig. 6.

C.1.2 UNIFORM SAMPLING RATE

To ensure that these evaluation results truly reflect the differences in the model’s performance across
various tasks without being influenced by the audio sampling rate, and considering that increasing
the sampling rate of audio data may introduce additional errors, this paper chooses to align all
datasets to the one with the lowest sampling rate. Therefore, all test data is downsampled to 16,000
Hz.

C.1.3 UNIFORM NUMBER OF AUDIO CHANNELS

To standardize the format of the input audio, we converted all audio files for the tasks into mono
channel, except for those in the Binaural Effect Perception sub-task.

C.1.4 UNIFORM AUDIO DURATION

Most speech LLMs employ the encoder from Radford et al. (2023), which is designed to handle a
maximum duration of 30 seconds. Consequently, the processing length for the majority of speech
LLMs is capped at 30 seconds. To ensure a level playing field for all speech LLMs, we have
restricted the audio lengths to a maximum of 30 seconds.
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Figure 6: The method for generating the problem prompts.

C.1.5 UNIFORM OPTION RATIO

For the binary classification problem, we performed data balancing so that both options account for
50% of the data. Due to some limitations in the current models, they might always choose one option
in binary classification tasks. If the data were unbalanced, such as 40% for one option and 60% for
the other, different models that always pick the same option could yield very different results, even
though their capabilities are similar. This is not what we want, so we balanced the data for all binary
classification tasks.Please refer to Tab. 11 for detailed information.

C.2 DATA AND TOOLS UTILIZED

We used the following 10 datasets:

Europarl-ST (Iranzo-Sánchez et al., 2020) ,LibriSpeech (Panayotov et al., 2015),JamendoLyrics
MultiLang dataset (Durand et al., 2023), LJSpeech (Ito & Johnson, 2017),Noisy speech (Valentini-
Botinhao et al., 2017),SpeechAccentArchive (Weinberger, 2013) ,VCTK (Yamagishi et al.,
2019),RAVDESS( (Livingstone & Russo, 2018),AISHELL-MDSC (Gao et al., 2024),spee-
chocean762 (Zhang et al., 2021)

We utilized two open-source tools: MS-SNSD (Reddy et al., 2019),cosyVoice (SpeechTeam, 2024)

C.3 DATA STRUCTURE OF BENCHMARK

Data samples are represented as (P, Q, A, D), where P denotes the audio path, Q represents the
question, A corresponds to the answer, and D provides additional explanations to aid researchers in
understanding the data.

C.4 DETAILS OF EACH TASK

C.4.1 LANGUAGE IDENTIFICATION

We used Europarl-ST (Iranzo-Sánchez et al., 2020) to construct our evaluation dataset.Europarl-ST
is a multilingual speech translation corpus containing paired audio-text samples for speech trans-
lation. It was constructed using debates held in the European Parliament between 2008 and 2012.
We selected five commonly used languages: German, English, French, Spanish, and Italian, with
500 data entries for each language. In order for all models to be able to read in this data and ensure
fairness, we used the first 30 seconds of each audio clip as the actual input.The task was set as:
“What language is spoken in this audio segment?Please choose from the German, English, French,
Spanish, and Italian options?”

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 11: Utterances for Each Task
Task Utterances
Language Identification German: 500, Spanish: 500, English: 500,

French: 500, Italian: 500
Auto-Speech Recognition English:2791
ASR for Legal Terms Chinese:102
ASR for Medical Terms Chinese:203
Auto-Lyrics Transcription English: 868
Volume Perception increasing: 512, decreasing: 512
Pitch Perception (80-150)Hz: 300, (180-250)Hz: 300
Binaural Effect Perception left ear: 400, right ear: 400
Ambient Noise Detection has: 824, hasn’t: 824
Acoustic Scenes Classification Babble: 310, CopyMachine: 310, Neighbor: 310,

ShuttingDoor: 315, AirportAnnouncements: 305,
Munching: 300, Typing: 310, AirConditioner:
305, VacuumCleaner: 310

Speaker’s Age teens to twenties: 330, thirties to forties: 330,
fifties to sixties: 330

Speaker’s Gender female: 1410, male: 1410
Speech Emotion Recognition happy: 200, disgust: 200, fearful: 200, sad: 200,

surprised: 200, angry: 200, neutral: 100
Cappella Emotion Recognition angry: 184, sad: 184, happy: 184, fearful: 184,

neutral: 92
Emotion Intensity Perception former: 150, latter: 150
Singing Detection singing: 1012, speech: 1012
Cough Type Classification wet: 300 , dry: 300
Cough Origin Diagnosis COVID-19: 198, healthy cough: 200, lower infec-

tion: 200,upper infection: 200
Cough Severity Assessment pseudocough: 170, mild: 170, severe: 170

C.4.2 AUTOMATIC SPEECH RECOGNITION

We constructed our evaluation dataset based on LibriSpeech (Panayotov et al., 2015).Inspired by
Radford et al. (2023), we used the test-clean and test-other splits as our test sets,a total of 2791 data
entries. It should be noted that the corresponding text of LibriSpeech consists of uppercase letters.
Since we standardized the text during WER computation, as detailed in D.4.1, this will eliminate
the impact of these uppercase letters. Therefore, we did not perform any additional processing when
constructing the dataset.The task was set as:What does the person say?Please answer with “The
person says: xxxx”.

C.4.3 ASR FOR LEGAL TERMS

We selected 27 offenses defined under Chinese criminal law and combined them with four templates
to generate 108 sentences, which were synthesized using cosyVoice (SpeechTeam, 2024). After
manual screening (detailed in Sec. C.5.1), 102 utterances remained.The task was set as:What does
the person say?Please answer with “The person says: xxxx”.This approach is consistent with ASR,
as we believe that this ability should be demonstrated automatically during the ASR process without
the need for additional prompts.

C.4.4 ASR FOR MEDICAL TERMS

We selected 62 medical terms referring to specific locations and combined them with four templates
to generate 248 sentences, which were synthesized using cosyVoice (SpeechTeam, 2024). After
manual screening (detailed in Sec. C.5.1), 203 utterances remained.The task was set as:What does
the person say?Please answer with “The person says: xxxx”.This approach is consistent with ASR,
as we believe that this ability should be demonstrated automatically during the ASR process without
the need for additional prompts.
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C.4.5 AUTOMATIC LYRICS TRANSCRIPTION

We utilized the JamendoLyrics MultiLang dataset (Durand et al., 2023) for our research. We ac-
knowledge that a revised version of this dataset has been released as the Jam-Alt dataset (Cı́fka
et al., 2023). However, in accordance with the constraints outlined in Sec. C.1.4, we were required
to resegment the audio files. Given that the Jam-Alt dataset, as described by its authors, exhibits
certain deviations in its timestamps, we elected to employ the JamendoLyrics MultiLang dataset as
our primary dataset for construction purposes. During the construction process, we manually se-
lected the segmentation points and employed code to segment the audio files, thereby obtaining our
final dataset.The task was set as: “Please transcribe the lyrics of this audio segment.Please answer
with:The lyrics is: xxxx”

C.4.6 VOLUME PERCEPTION

We constructed our evaluation dataset based on LJSpeech (Ito & Johnson, 2017). Following the
data split of Chien et al. (2021), we used 512 test samples. We set up two scenarios: one where
the volume gradually increases from 0 to its original level, and another where it decreases from
the original level to 0. We tasked the model with determining whether the volume is increasing
or decreasing.The task was set as: “Is the volume of this audio segment gradually increasing or
decreasing?”

C.4.7 PITCH PERCEPTION

We used the SpeechAccentArchive (Weinberger, 2013) dataset to construct our test set. During
this process, we first identified the frequency ranges with the highest proportion of fundamental fre-
quency (F0). Ultimately, we selected the ranges (80, 150) Hz and (180, 250) Hz for our experiments.
We framed the problem as follows: “In the following audio segment, into which range does more
than 70% of the fundamental frequency content fall? Please choose from the following two ranges:
(80, 150) Hz and (180, 250) Hz.” We calculated the proportion of F0 content falling within these two
ranges for each audio segment and selected the corresponding data. During the process, we ranked
all the data, prioritizing those segments with a higher proportion.

C.4.8 BINAURAL EFFECT PERCEPTION

We generated random sounds using four methods: sine wave, square wave, triangle wave, and noise.
These sounds are heard only in the left ear or the right ear. For more details, please refer to our
public code. The model is used to determine which ear hears these sounds.The task was set as: “In
this audio segment, does the sound appear in the left ear or the right ear?Please answer with ‘left’ or
‘right’.”

C.4.9 AMBIENT NOISE DETECTION

We constructed the evaluation dataset using Noisy speech (Valentini-Botinhao et al., 2017).Noisy
speech dataset contains corresponding pairs of noisy and clean data. The purpose of the dataset is
to explore methods for speech enhancement.We selected the entire test set from this dataset, which
includes 824 clean audio clips and 824 audio clips with ambient noise. We used all of these data,
and the task was set as: “Is there any ambient noise in this audio segment, in addition to the speaker
voice?Please answer with yes or no.”

C.4.10 ACOUSTIC SCENES CLASSIFICATION

We used MS-SNSD (Reddy et al., 2019) to synthesize these test datasets.MS-SNSD is a tool for
synthesizing speech with environmental noise, aimed at advancing research in speech enhance-
ment. We selected 51 environmental noise samples from its test set to synthesize 6,105 test samples,
and the task was set as: “What is the ambient noise of this audio segment? Please choose from
the [’Babble’, ’CopyMachine’, ’Neighbor’, ’ShuttingDoor’, ’AirportAnnouncements’, ’Munching’,
’Typing’, ’AirConditioner’, ’VacuumCleaner’] options?”
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C.4.11 SPEAKER’S AGE PREDICTION

We have observed that there are relatively few datasets specifically aimed at speaker age recognition.
We noted that the AIR Bench (Yang et al., 2024) has done an excellent job in addressing this task,We
followed their approach of categorizing age into four groups but noticed that their data distribution
was not balanced, specifically: teens to twenties: 653, thirties to forties: 268, fifties to sixties:
64, seventies to eighties: 15. Therefore, we used the SpeechAccentArchive (Weinberger, 2013) to
balance the age distribution. Unfortunately, we found it difficult to obtain sufficient data for the
seventies to eighties category, so we retained only three categories: teens to twenties, thirties to
forties, and fifties to sixties.And the task was set as: “Which age range do you believe best matches
the speaker’s voice? Please choose from the [‘teens to twenties’, ‘thirties to forties’, ‘fifties to
sixties’] options?”

C.4.12 SPEAKER’S GENDER RECOGNITION

We constructed the evaluation dataset using VCTK (Yamagishi et al., 2019).To balance the number
of males and females in the benchmark, considering there are 61 female speakers and 47 male
speakers in the VCTK dataset, we selected the top 47 female speakers along with all the male
speakers. For each speaker, we chose the first 30 audio recordings.The task was set as: “Is the
speaker in this audio segment male or female?Please answer with ‘male’ or ‘female’”

C.4.13 SPEECH EMOTION RECOGNITION

In a genuine sense, understanding emotions in models should not solely depend on interpreting
text. Emotions do not have a one-to-one correspondence with sentences; the same sentence can
express various emotional tones depending on the speaker’s emotional state. Therefore, it is crucial
to advocate for models to move beyond mere textual content of sentences when inferring emotions
and to delve into the non-textual information within the speech. Accordingly, in the evaluation set
for emotion recognition, we employed a dataset unrelated to both the emotions and the sentence
content—the RAVDESS dataset (Livingstone & Russo, 2018).The task is then defined as: “What
emotion does this audio clip convey?Please answer by single word select from [‘neutral’, ‘happy’,
‘sad’, ‘angry’, ‘fearful’, ‘disgust’, ‘surprised’].”

To demonstrate that the emotions in our constructed dataset are independent of the textual content,
we used a combination of the whisper-v3-large (Radford et al., 2023) model and the gpt-4-o (Ope-
nAI, 2023) model to predict the emotions in the audio files of the dataset. The experimental results
can be found in the Tab. 12

Table 12: emotion detection evaluation set Supplementary experiments
First repetition Second repetition Third repetition

accuracy 10.53% 9.33% 9.73%

C.4.14 CAPPELLA EMOTION RECOGNITION

We also used RAVDESS ( (Livingstone & Russo, 2018)) to construct the evaluation set for singing
emotion detection.The task is then defined as: “What emotion does this audio clip convey?Please an-
swer by single word select from [‘neutral’, ‘happy’, ‘sad’, ‘angry’, ‘fearful’, ‘disgust’, ‘surprised’].”

C.4.15 EMOTIONAL INTENSITY PERCEPTION

We used the RAVDESS ( (Livingstone & Russo, 2018)) dataset to construct the evaluation set for
Emotional Intensity Perception. Since most models accept only a single audio input, we merged
two audio segments and tasked the model with analyzing which part of the combined audio segment
exhibits stronger emotional intensity. Specifically, we defined the problem as follows: “In this audio
segment, a sentence is repeated twice. Is the emotion in the ‘former’ stronger or the ‘latter’ stronger?
Please answer with ‘former’ or ‘latter.’”To balance the proportion between the two options, we
alternated the placement of the stronger emotion, sometimes positioning it at the former and other
times at the latter when synthesizing the data.
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C.4.16 EMOTION TRANSLATION

We believe that translations should reflect different expressions based on the emotional context.
For example, the phrase “What are you doing?” can convey various meanings depending on the
emotion—whether it’s anger, surprise, sadness, or neutrality. In an angry context, it expresses strong
disapproval or questioning of the person’s actions; in a surprised context, it conveys disbelief about
what the other person is doing; and in a sad context, it should reflect disappointment. Therefore,
translations should be adjusted accordingly to better capture these nuances.

We observed that cosyVoice (SpeechTeam, 2024) demonstrates excellent zero-shot capabilities,
effectively mimicking the tone and style of the input speech prompt. Therefore, we used cosyVoice
to emulate the sentences with strong emotions from the RAVDESS (Livingstone & Russo, 2018)
dataset to generate speech with corresponding emotions. After synthesis, we had five native speakers
review the generated speech. If any of the native speakers felt that the synthesized speech did not
convey the intended emotion, that segment was discarded. Ultimately, we obtained xxx valid speech
samples.and the task was set as: “Please translate the following sentence into the most appropriate
Chinese, based on the emotion and content of this audio segment.”.

C.4.17 SINGING DETECTION

We aim for singing detection to go beyond simply identifying background music or relying on lyrics
to determine whether singing is occurring. Instead, we seek to differentiate singing from normal
speech by recognizing the distinct rhythm and melody of singing. To achieve this, we constructed
our singing detection dataset using RAVDESS ( (Livingstone & Russo, 2018)), which consists en-
tirely of a cappella performances where the context is unrelated to the singing. The task is then
defined as: “Is there singing in this audio clip?Please answer by yes or no”

C.4.18 COVID-19 RISK DETECTION

We use the Virufy COVID-19 Open Cough Dataset (Chaudhari et al., 2020) to construct our evalu-
ation set. We classify the samples with positive test results as COVID-19 at risk, while those with
negative results are classified as not at risk. And the task was set as: “Please listen to the following
cough sound and determine whether the person is at risk of having a COVID-19 infection. Respond
with ‘yes’ or ‘no’”

C.4.19 COUGH TYPE CLASSIFICATION

We use the COUGHVID (Orlandic et al., 2021) dataset to construct our evaluation set. We only
utilize the data that has been assessed by experts, which falls into two categories: evaluations by
four experts and evaluations by one expert. We prioritize samples where three out of four experts
agree, and then we use samples rated as ”good” by the single expert. In this task, we ask the model
to distinguish whether the cough is a wet cough or a dry cough. And the task was set as: “Please
help me determine whether the cough in this audio segment is a dry cough or a wet cough. Please
respond with ‘wet’ or ‘dry’.”

C.4.20 COUGH ORIGIN DIAGNOSIS

We use the COUGHVID (Orlandic et al., 2021) dataset to construct our evaluation set. We only
utilize the data that has been assessed by experts, which falls into two categories: evaluations by
four experts and evaluations by one expert. We prioritize samples where three out of four experts
agree, and then we use samples rated as ”good” by the single expert. In this task,The origins we
tested include‘COVID-19’, ‘healthy cough’, ‘lower infection’, or ‘upper infection’. And the task
was set as: “Please help me determine the infection origin of the cough in the following audio
segment. Choose from ‘COVID-19’, ‘healthy cough’, ‘lower infection’, or ‘upper infection’.”

C.4.21 COUGH SEVERITY ASSESSMENT

We use the COUGHVID (Orlandic et al., 2021) dataset to construct our evaluation set. We only
utilize the data that has been assessed by experts, which falls into two categories: evaluations by
four experts and evaluations by one expert. We prioritize samples where three out of four experts
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agree, and then we use samples rated as ”good” by the single expert. In this task, the severity
levels we tested include: ‘pseudocough’, ‘mild’, or ‘severe’. And the task was set as: “Please help
me assess the severity of the cough in the audio segment. Choose from ‘pseudocough’, ‘mild’, or
‘severe’.”

C.4.22 SPOKEN ENGLISH COACH

We used speechocean762 (Zhang et al., 2021) to construct our evaluation set.In selecting our evalu-
ation set, we aimed to include a wide variety of pronunciation errors by prioritizing sentences with
poorer pronunciation quality. Here is how we built our sentence collection:

We started by selecting 207 sentences based on word stress errors (score == 5). Next, we chose 6
sentences with incomplete sentences or error-containing words (score < 10). Then, we selected 332
sentences with poor fluency (score <= 5). Following that, we picked 85 sentences with poor rhythm
(score <= 5). Subsequently, we chose 179 sentences with low accuracy (score <= 5). Finally, we
selected 40 sentences from each accuracy score level where the scores were higher. This process
resulted in a final set of 1009 sentences. When constructing the ground truth for the answer output,
we adopted the descriptions used in the original project for dataset scoring, and by concatenating
these descriptions, we formed the final answer.

C.4.23 VOICE DETECTIVE

When constructing the Voice Detective evaluation set, we used the SpeechAccentArchive dataset
(Weinberger, 2013). The primary reason for choosing this dataset is the difficulty in obtaining a
large amount of similar data, which significantly reduces the risk of data leakage. This constraint
also compels researchers to focus more on factors such as the age and background of the users within
the dataset.

C.5 CREDIBILITY VERIFICATION

C.5.1 ASR FOR LEGAL TERM

Since the legal vocabulary we selected, can be found in open-source code, is not complex, we intro-
duced only one evaluator with a background in legal education, who is a native Mandarin speaker.
The remaining three evaluators are regular native Mandarin speakers, making a total of four evalu-
ators. If any one of the evaluators deems the speech quality insufficient, the corresponding speech
will be discarded. The specific details of the evaluators are as follows:

Evaluator 1: 24 years old, male, graduated with a bachelor’s degree from China University of Polit-
ical Science and Law and is currently a master student at China University of Political Science and
Law. Native Mandarin speaker.

Evaluator 2: 20 years old, female, currently an undergraduate student at Hubei University of Tech-
nology. Native Mandarin speaker.

Evaluator 3: 20 years old, female, currently an undergraduate student at Wuchang Shouyi University.
Native Mandarin speaker.

Evaluator 4: 26 years old, male, high school graduate. Native Mandarin speaker.

C.5.2 ASR FOR LEGAL MEDICAL

Due to the involvement of some medical terminology, this paper selected two evaluators with a
medical background, along with two additional evaluators without a medical background. All of
them are native Mandarin speakers. Similarly, if any one of the evaluators finds an abnormality in
the speech, it will be discarded. The specific details of the evaluators are as follows:

Evaluator 1: 33 years old, female, graduated with a bachelor’s degree from Hebei Medical University
and has since been working in a medical-related field. Native Mandarin speaker.

Evaluator 2: 26 years old, female, completed an eight-year integrated program (continuously pur-
sued both bachelor’s and master’s degrees) at Hebei Medical University and continues to work in a
medical-related field. Native Mandarin speaker.
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Evaluator 3: 25 years old, male, graduated with a bachelor’s degree from Beijing Forestry University
and is currently a graduate student at Beijing University of Posts and Telecommunications. Native
Mandarin speaker.

Evaluator 4: 54 years old, male, graduated from a technical secondary school. Native Mandarin
speaker.

C.5.3 EMOTION TRANSLATION

We selected four evaluators and recorded their English proficiency. Similarly, if any one of the eval-
uators finds an abnormality in the speech, it will be discarded. The specific details of the evaluators
are as follows:

Evaluator 1: 25 years old, female, graduated with a bachelor’s degree from China Jiliang University
and a master’s degree from Beijing University of Posts and Telecommunications. English profi-
ciency: CET-6.

Evaluator 2: 25 years old, female, graduated with both a bachelor’s and a master’s degree from
Beijing University of Posts and Telecommunications. English proficiency: CET-6.

Evaluator 3: 23 years old, male, graduated with a bachelor’s degree from Beijing Institute of Tech-
nology and is currently a PhD student at The Chinese University of Hong Kong, Shenzhen. English
proficiency: IELTS Academic score: 6.5.

Evaluator 4: 28 years old, male, graduated with a bachelor’s degree from Beijing University of Posts
and Telecommunications and is a PhD student at Beijing University of Posts and Telecommunica-
tions. English proficiency: CET-6.

D EXPERIMENT DETAILS

Below, we will divide the experiment details into four parts: details of human evaluation in Sec. D.1,
details of model evaluation in Sec. D.3, and metric details in Sec. D.4.

D.1 HUMANS EVALUATION DETAILS

In this section, we will introduce the participant information of our humans performance evaluation
in Sec. D.1.1 and present the results of the consistency test for the result in Sec. D.1.2.

D.1.1 PARTICIPANT INFORMATION

Evaluator 1: Female, 28 years old, graduated with a bachelor’s degree from East China Normal Uni-
versity, PhD from the Institute of Physics CAS. Evaluator 2: Female, 26 years old, graduated with
a bachelor’s degree from Beijing Normal University, master’s degree from Shanghai Jiao Tong Uni-
versity. Evaluator 3: Male, 29 years old, graduated with a bachelor’s degree from Beijing University
of Chemical Technology, PhD from Beijing University of Posts and Telecommunications. Evaluator
4: Male, 27 years old, graduated with a bachelor’s degree from Xidian University, currently pursuing
a PhD at Singapore University of Technology and Design (SUTD).

D.1.2 CONSISTENCY TEST

To verify the consistency of the humans evaluation, We focus on objective multiple-choice questions.
we calculated the proportion of questions where all three volunteers selected the same option, as
well as the proportion where all four volunteers chose the same option, relative to the total number
of questions. These proportions are shown in Tab. 13.

It is also important to note that, since our testers are only proficient in English, they were unable to
complete the Language Identification task.
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Table 13: Consistency for Humans Evaluation

Task Accuracy Num of Questions Proportion Proportion
(3 Evaluators Same) (4 Evaluators Same)

Volume Perception 100.00% 40 100.00% 100.00%
Pitch Perception 96.25% 40 100.00% 95.00%
Binaural Effect Perception 100.00% 40 100.00% 100.00%
Ambient Noise Detection 91.88% 40 100.00% 87.50%
Acoustic Scenes Classification 90.28% 180 97.22% 93.89%
Speaker’s Age Prediction 52.59% 60 76.67% 46.67%
Speaker’s Gender Recognition 97.50% 40 100.00% 100.00%
Speech Emotion Recognition 50.71% 140 94.29% 85.71%
Cappella Emotion Recognition 62.25% 100 92.00% 68.00%
Emotion Intensity Perception 97.50% 40 100.00% 95.00%
Singing Detection 98.13% 40 100.00% 97.50%
COVID-19 Risk Detection 60.63% 40 70.00% 17.50%
Cough Type Classification 52.50% 40 77.50% 22.50%
Cough Origin Diagnosis 32.19% 80 28.75% 2.50%
Cough Severity Assessment 45.42% 60 45.00% 11.67%

D.1.3 DEFICIENCY IN HUMANS EVALUATION.

During the Humans Evaluation process, we were unable to find a native English speaker, but all par-
ticipants involved in the evaluation are proficient English users. We also could not find individuals
who are proficient in multiple languages, which made it difficult to conduct a Humans Evaluation
for the Language Identification task.

D.2 GPT-4O MANUAL TEST DETAILS

To evaluate GPT-4o advanced speech mode, we synthesized the text instructions from each level test
into audio as instructions. We sampled 80 samples for each task. Each test is played by a person
using a speaker to GPT-4o running on an iPhone 15 device. Since the GPT-4o advanced speech
mode supports speech-to-speech conversion, we manually process its text output for evaluation. We
find that GPT-4o currently tends to refuse to answer some audio tasks, we treat them as being unable
to follow instructions.

D.3 MODELS EVALUATION DETAILS

We divide our experimental details into two sections: the model replication platform in Sec. D.3.1,
and the model replication details in Sec. D.3.2.

D.3.1 EXPERIMENTAL PLATFORM

In this paper’s experiments, all servers used are equipped with an Intel® Xeon® Platinum 8358 CPU
@ 2.60GHz as the core processor. Each server is loaded with eight NVIDIA A800-SXM4-80GB
graphics cards, and each model runs with exclusive use of one A800 card.

D.3.2 MODELS REPLICATION DETAILS

In this paper, we aim to select the 7B-level versions of various models wherever possible. However,
due to the differences between various models, it is difficult to ensure that their parameter counts are
exactly the same.

Qwen-Audio For the Qwen-Audio model (Chu et al., 2023), we reproduced the model using its
open-source code.

Mu-LLaMA In the process of implementing the model Mu-LLaMA (Liu et al., 2024b) , this pa-
per used the LLama2-7B-chat (Touvron et al., 2023) checkpoint to maintain consistency with the
original paper, and utilized the open-source MU-LLaMA checkpoint provided.
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GAMA Since the primary focus of this paper is to test the audio understanding capabilities of the
GAMA model (Ghosh et al., 2024b), we consulted with the authors and selected the ‘state4epoch2’
checkpoint over the ‘state5epoch2’ checkpoint, as it has superior audio comprehension abilities

SALMONN For the SALMONN model (Tang et al., 2023), we tested the model using its open-
source code.

Qwen2-Audio For the Qwen2-Audio model (Chu et al., 2024), we reproduced the model using the
7B version of its open-source code.

D.4 MATRIX

We have designed three metrics: WER, the accuracy for objective multiple-choice questions, and
GPT-4o scoring, specifically targeting ASR tasks, objective multiple-choice questions, and subjec-
tive responses. This section will provide detailed explanations. For an overview, please refer to the
following Tab. 14.

Table 14: Metrics for Each task
Task Metric
Language Identification 5-Categories Acc
Speech ASR WER
Song ASR WER
Volume Perception 2-Categories Acc
Binaural Effect Perception 2-Categories Acc
Ambient Noise Detection 2-Categories Acc
Speaker’s Age 3-Categories Acc
Speaker’s Gender 2-Categories Acc
Sound Event Classification 9-Categories Acc
Singing Detection 2-Categories Acc
Speech Emotion Recognition 7-Categories Acc
Song Emotion Recognition 5-Categories Acc
Emotion Intensity Perception 2-Categories Acc
Disorder Detection 2-Categories Acc
Speech Disorders Detection 2-Categories ACC
COVID-19 Risk Detection 2-Categories ACC
ALS Detection 2-Categories ACC
Accent Detection 11-Categories Acc
Emotion Translation GPT Score
Spoken English Coach GPT Score
Voice Detective GPT Score

D.4.1 WER FOR ASR

The Word Error Rate (WER), a key metric for gauging the effectiveness of Automatic Speech Recog-
nition (ASR) systems, quantifies the divergence between an ASR system’s output and a reference
transcript. It assesses the total error rate by tallying the number of insertion, deletion, and substitu-
tion operations needed to align the ASR output with the true reference text.

While computing the WER, certain variances in word usage, like ”I am” compared to ”I’m,” may
be seen as semantically equivalent by human standards but are flagged as errors by computational
algorithms. Thus, a standardization process is essential prior to WER calculation to make both texts
directly comparable. The methodology for this standardization, akin to what is employed in the
Whisper (Radford et al., 2023) framework, has been detailed in a related research paper. It has been
demonstrated that this approach exerts negligible influence on the assessment of WER outcomes
when tested against the LibriSpeech (Panayotov et al., 2015) dataset, which was utilized in our
paper.

For cases where the error rate exceeds 100% (i.e., WER is over 1), we mark them in our experimental
records as having significant recognition errors. Such data will not be included in the calculation
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of the final average WER. In the final record of the experiment, we will focus on two key metrics:
first, the ASR completion rate, which is the percentage of data with a WER less than 1; second, the
mean WER of the completed portion, which is the average WER of data with a WER less than 1. If
the mean WER of the completed portion does not decrease to below 0.8, we will conclude that the
model lacks effective automatic speech recognition (ASR) capabilities and document this finding in
detail in the experimental results.

The implementation details regarding WER (Word Error Rate) can be found in our publicly available
code.

D.4.2 ACCURACY FOR OBJECTIVE MULTIPLE-CHOICE QUESTIONS

A selection is considered correct only if the model chooses the correct answer and no other options.
If the model selects two or more options, even if the correct one is included, it will be deemed
incorrect.

D.4.3 ACCURACY FOR ASR ON TERMS

Since in these tasks we primarily assess the ability of speech LLMs to transcribe terms, we consider a
response correct as long as the correct term is included in the speech transcription, without focusing
on the accuracy of other parts of the sentence.

D.4.4 SCORING FOR SUBJECTIVE RESPONSE QUESTIONS

In our experiments, we used GPT-4o to assist in evaluating the results. The specific prompt used is
as follows.

Prompt for Emotion Translation

I currently need your assistance in evaluating some translations. The most suitable translations
should incorporate the corresponding emotions appropriately. The scoring ranges from 0 to 4. I will
provide you with the original English sentence, the associated emotional label, and the suggested
translation, allowing you to score them based on the context.

Here are some examples:

[Here are some scoring examples. Due to space limitations, we have omitted them in this section.
You can find the details in the code we have made available.]

Now Answer:[ANSWER]

Label:The original sentence is: <emotion>[SENTENCE] The suggested translation is: [SUGGES-
TION].

Please provide your score.

Prompt for Spoken English Coach

I now need you to help me evaluate some Answers for accuracy. You need to evaluate and score in
the order of overall pronunciation, fluency, prosody, words that are mispronounced, and words that
have incorrect stress. The score ranges from 0 to 4. Here are the specific scoring rules: You need
to first check if the evaluation of overall pronunciation in the Answer matches the Label. If they do
not match, give a score of 0 and continue with the evaluation; if there is no relevant description, also
give a score of 0 and continue with the evaluation; if it is correct, add 1 point and continue with the
evaluation.

For fluency and prosody in the Answer compared to the Label, award up to 1 point for each if com-
pletely correct, a partial score for partially correct, and no points if there is no relevant expression.
Finally, check the descriptions in the Answer and Label regarding words that are mispronounced
and words that have incorrect stress. Award 1 point only if all are correct. If part of the descriptions
are correct, you can give a partial score, such as 0.33 points for one out of three correct descriptions.
Here are some examples:

[Here are some scoring examples. Due to space limitations, we have omitted them in this section.
You can find the details in the code we have made available.]
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Now Answer:[ANSWER]

Label:[LABEL]

Please provide your score.

D.4.5 PROMPT FOR VOICE DETECTIVE

I now need you to help me evaluate some Answers for accuracy. You should focus on whether the
information about gender, place of birth, age, and native language in the Answer matches the Label,
and provide a final rating. Award 1 point for each correct piece of information, with no points for
incorrect information. Please give your score on a scale of 0 to 4. Here are some examples:

[Here are some scoring examples. Due to space limitations, we have omitted them in this section.
You can find the details in the code we have made available.]

Now Answer:[ANSWER]

Label:[LABEL]

Please provide your score.

E INSTRUCTION FOLLOW EXPERIMENT

E.1 SPEAKER’S AGE PREDICTION

The instructions used in the experiment are as follows:

• Instruction variation I In which age group do you think the speaker’s voice belongs?

• Instruction variation II What age category do you believe the speaker’s voice fits into
best?

• Instruction variation III Which age bracket do you feel corresponds to the speaker’s
voice?

• Instruction variation IV How old do you think the speaker sounds, based on their voice?

• Instruction variation V Which age range would you assign to the speaker’s voice?

• Instruction variation VI What age range do you associate with the speaker’s voice?

• Instruction variation VII Which age group do you think best describes the speaker’s vocal
characteristics?

• Instruction variation VIII What do you believe is the age range of the speaker judging by
their voice?

The experimental results are recorded in Tab. 15.

Table 15: The impact of different prompts on age detection
Prompt Qwen-Audio Qwen2-Audio MuLLama GAMA
Our benchmark instruction 29.29% 38.55% 33.60% 0.2%
Instruction variation I 23.03% 36.36% 35.45% 0.4%
Instruction variation II 31.82% 36.97% 35.45% 4.85%
Instruction variation III 12.83% 38.38% 34.75% 0.0%
Instruction variation IV 4.44% 43.03% 31.31% 0.2%
Instruction variation V 28.89% 37.37% 33.03% 0.1%
Instruction variation VI 19.90% 37.27% 34.14% 0.0%
Instruction variation VII 6.57% 36.77% 30.81% 0.3%
Instruction variation VIII 26.77% 41.11% 28.67% 0.4%

E.2 ACOUSTIC SCENES CLASSIFICATION

• Instruction variation I How would you detect the background sound in this audio clip?
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• Instruction variation II What kind of ambient noise can be heard in this segment?
• Instruction variation III Can you describe the environmental sounds present in this audio?
• Instruction variation IV What background audio elements are featured in this segment?
• Instruction variation V What atmosphere is created by the sounds in this audio segment?
• Instruction variation VI Can you identify the ambient sound in this clip?
• Instruction variation VII What noises are occurring in the background of this audio?
• Instruction variation VIII What type of surrounding sound is present in this recording?

The experimental results are recorded in Tab. 16.

Table 16: The impact of different prompts on acoustic scenes classification
Prompt Qwen-Audio Qwen2-Audio MuLLama GAMA
Our benchmark instruction 18.84% 27.67% 5.07% 12.05%
Instruction variation I 13.05% 35.68% 1.91% 0.00%
Instruction variation II 8.97% 13.73% 5.91% 0.36%
Instruction variation III 4.29% 9.66% 0.00% 0.94%
Instruction variation IV 5.43% 9.95% 0.00% 1.87%
Instruction variation V 13.95% 28.29% 1.87% 0.54%
Instruction variation VI 15.32% 21.87% 2.02% 0.25%
Instruction variation VII 5.37% 5.23% 1.8% 0.00%
Instruction variation VIII 9.62% 18.92% 6.31% 4.32%

28


	Introduction
	Roadmap towards Understanding Speech
	The Background
	The Philosophy of the Roadmap

	Benchmarking
	The New Benchmark: SAGI
	Benchmarked Objects
	Benchmarking Results

	More Analysis on Performance Deficiency
	Limited Types of Training Data 
	Inability to Comprehensively Perceive Acoustic Information
	Inadequate Instruction Following 
	Weak LLM Backbones

	Related Work
	Conclusion
	Existing Benchmark
	Challenging Speech Instruction
	Details of Benchmark Construction
	General Principles of Data Construction
	Question Construction
	Uniform Sampling Rate
	Uniform number of audio channels
	Uniform Audio Duration
	Uniform Option Ratio

	Data and Tools Utilized
	Data Structure of Benchmark
	Details of Each Task
	Language Identification
	Automatic Speech Recognition
	ASR for Legal Terms
	ASR for Medical Terms
	Automatic Lyrics Transcription
	Volume Perception
	Pitch Perception
	Binaural Effect Perception
	Ambient Noise Detection
	Acoustic Scenes Classification
	Speaker’s Age Prediction
	Speaker’s Gender Recognition
	Speech Emotion Recognition
	Cappella Emotion Recognition
	Emotional Intensity Perception
	Emotion Translation
	Singing Detection
	COVID-19 Risk Detection
	Cough Type Classification
	Cough Origin Diagnosis
	Cough Severity Assessment
	Spoken English Coach
	Voice Detective

	Credibility Verification
	ASR for Legal Term
	ASR for Legal Medical
	Emotion Translation


	Experiment Details
	Humans Evaluation Details
	Participant Information
	Consistency Test
	Deficiency in Humans Evaluation.

	GPT-4o Manual Test Details
	Models Evaluation Details
	Experimental Platform
	Models Replication Details

	Matrix
	WER for ASR
	Accuracy for objective multiple-choice questions
	Accuracy for ASR on Terms
	Scoring for Subjective Response Questions
	Prompt for Voice Detective


	Instruction Follow Experiment
	Speaker’s Age Prediction
	Acoustic Scenes Classification


