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ABSTRACT

Abduction is a powerful form of causal inference employed in many artificial
intelligence tasks, such as medical diagnosis, criminology, root cause analysis, in-
tent recognition. Given an effect, the abductive reasoning allows advancing a plau-
sible set of explanatory hypotheses for its causes. This paper presents a new evolu-
tionary strategy - called Evolutionary Abduction (EVA) - for automated abductive
inference, aiming at effectively generating sets of hypotheses for explaining an
occurred effect and/or predicting an effect that could occur in the future. EVA de-
fines a set of abductive operators to repeatedly construct hypothetical cause-effect
instances, and then automatically assesses their plausibility as well as their nov-
elty with respect to already known instances - a mechanism mimicking the human
reasoning employed whenever we need to select the best candidates from a set
of hypotheses. Experiments with four datasets confirm that, given a background
knowledge, EVA can construct new and realistic multiple-cause hypotheses for
a given effect. EVA outperforms alternative strategies based on causal structure
discovery, generating closer-to-real instances in most settings and datasets.

1 INTRODUCTION

The term abduction was coined by Charles S. Peirce, in his work on the logic of science, to denote a
powerful form of causal reasoning frequently employed both in everyday common-sense reasoning
and as first step of scientific reasoning (Peirce, 1931), (Douven, 2017). It refers to the creative gener-
ation of explanatory hypotheses for a set of facts or observations (Crowder & Carbone, 2017). With
important exceptions ((Spohn, 2012); (Woods, 2013)), many view abduction as the strongest can-
didate for a third top-level inference type besides deduction and induction (Preyer & Mans, 1999),
(Walton, 2001). Abductive reasoning infers possible causes for a given effect; it comes into play
when we try to explain something that has no immediate explanation, by advancing hypotheses or
generating new ideas outside the given facts (Crowder et al., 2020). As such, abduction is said to be
an ampliative form of inference, as it is able to enlarge our knowledge, but uncertain, because its in-
ferences are more susceptible to error than deductive and inductive ones, and need to be “validated”.

This article presents a new algorithm inspired to abduction, named Evolutionary Abduction (EVA).
EVA mimics the process of actively searching for explanations for a given observation, by generating
hypotheses for plausible causes of an effect, exploiting both an experience-based knowledge and the
ontological knowledge a human has about the phenomena in explanation. It defines three operators
to mimic and automate the most common patterns of abduction (Schurz, 2008), which ultimately
lead to construct cause-effect combinations as solutions to causal problems.

The article first formulates a causal problem as a specific class of combinatorial optimization, named
Combinatorial Causal Optimization Problems (CCOP) (Section 3). Then, EVA is presented in Sec-
tion 4, wherein the algorithm, the operators to construct solutions and the mechanisms to assess
their plausibility are introduced. Section 5 and 6 report the evaluation. EVA is experimented on four
real-world datasets, two form the medical domain, one from hazard analysis in the avionic domain,
and one from a decision-support system, having a number of variables (namely, co-occurring causes
for a given effect) that ranges from 9 to 27. Results demonstrate the potential of using evolution-
ary computation for automated causal inference: using a small fraction (10%) of the datasets as
knowledge base, EVA constructs cause-effect combinations very similar to the real occurred events.
For three out of four problems, it produces several combinations (37% of the total, in the average)
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exactly matching the real occurred events. In the hardest problem (hazard analysis in the avionic
domain), which calls for formulating hypotheses for sets of 27 co-occurring causes to predict a po-
tential accident, it gives predictions with up to 24 (out of 27) matching causes. In all the cases,
EVA outperforms alternative strategies based on causal structure discovery algorithms, generating
closer-to-real cause-effect instances in most settings and datasets.

2 BACKGROUND

Consider the rule Bj ← Ai (if Ai then Bj), where Bj are (sets of) observations and Ai their causes
in a given domain U : deduction refers to deriving the conclusion (or explaining the effect) Bj given
the premises (the causes) A and the rule; induction tries to learn the “possible” rule Bj ← Ai from
observing manyAi, Bj pairs; abduction refers to deriving the possible “cause”Ai (i.e., hypothesis)
given Bj and the rule. Both induction and abduction are uncertain but ampliative inferences: the
conclusion is a probable (not a necessary) derivation of the premises, but the information content in
the conclusion is “wider” than its premises. However, while induction just determines a value by
gradual modification of the actual conclusion, only abduction is a process able of introducing any
new idea, allowing to form new explanatory hypotheses. There exist different types of abduction. A
broad classification distinguishes abduction whose task is to choose the best candidate among a set
of possible explanations, called selective , from abduction that introduces new concepts or models,
called creative abduction (Magnani, 2001; 2010). Factual abduction is the common form of selective
abduction, wherein the abduced causes are found by backward reasoning from the effect. Creative
abduction is more rare in common-sense reasoning, but plays a decisive role in advanced scientific
reasoning. It can construct something new, for example a new theoretical model or a new concept.
Following (Schurz, 2008), creative abduction can be classified in analogical and hypothetical cause
abduction, depending on whether the concept is merely partly or completely new. EVA considers:

Factual abduction, in which both the effect and the abduced causes are singular facts. The set of pos-
sible conjectures is finite and can be generated by backward-chaining inference. In this form, abduc-
tive inference has been studied in detail in artifical intelligence (Flach & Kakas, 2000), for instance
in the context of medical and legal reasoning (e.g., (Pukancová & Homola, 2015), (Ciampolini et al.,
2002),(Josephson & Josephson, 1994), (Bex & Verheij, 2012), (Bex & Verheij, 2013)).

Analogical abduction, in which one abduces a partially new hypothesis by projecting knowledge
from previous situations in the domain under analysis – e.g., inferring the propagation and reflection
law of sound based on the laws of water waves. The process involves a conceptual abstraction and a
mapping between a source context (about which the agent has knowledge) and the target context.

Both factual and analogical abduction use a form of experience-based knowledge – the former about
the problem to solve (i.e., the occurred facts), the latter also about an external (source) context from
which the analogies are constructed. Such knowledge will be encoded by EVA.

Hypothetical cause abduction. In this case, one abduces that one or more intercorrelated phenom-
ena are the effect(s) of a hypothetical (unobservable) cause or of a hypothetical common cause. In
both cases, the abductive conjecture postulates a new unobservable entity together with new laws
connecting it with the observable properties, without drawing on analogies to concepts with which
one is already familiar. This also includes the “pure speculation” process that sometimes lead to find
a solution serendipically. Importantly, unlike factual and analogical abduction, hypothetical cause
abduction does not presuppose any experience-based knowledge, but just knowledge about the phe-
nomenon in explanation (namely, about the entities that can be possibly involved in the inference –
in EVA, it is called the ontological knowledge (simply ontology) of the domain under analysis).

3 CAUSAL OPTIMIZATION

The abductive causal inference is hereafter formulated as a combinatorial problem, that we call
Combinatorial Causal Optimization Problem (CCOP). In a CCOP, the goal is to find a proper set of
causes Ai (or explanations or hypotheses) for a given set of effects Bj (or obervations or manifes-
tations) that minimize (maximize) one or more objectives. Causes and effects are abstractions of a
phenomenon or event regarding any element of interest i ∈ U , where U is the domain of the problem
to be solved (namely, the set of elements possibly involved in the inference). There are more ways
of formalising abduction. Here, logic-based abduction is used, without loss of generality. In logic:
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Definition 1 (Cause and effect). Causes and effects are literals, namely atomic formulae or their
negation (a.k.a. atoms). In particular, in first-order logic (and in abductive logic programming
(Kakas et al., 1992)), atoms correspond to predicate symbols together with their arguments, and a
cause-effect pair to infer is a clause conveniently represented as a rule Bj ← Ai.

The literals are the decision variables (DV) of a CCOP, xi, with i = 1, . . . , n = |U |. Each xi takes
values in a non-empty discrete set representing its respective domain, Di. For instance, in medical
diagnosis, a value from blood analysis can be modelled as a decision variable xi taking the following
values from a discrete set Di={M,C}: “M: moderately over the threshold”, “C: critically over the
threshold”. In a CCOP, the DVs are related by a causality relation:

Definition 2 (Causality relation). A causality relation ( c−→) between two decision variables holds if
the values of one – the cause - can determine or contribute to the other – the effect.

Strictly speaking, this is a potential causality relation, since the relation holds if the values of a
variable can, but not necessarily will, be a cause for the other. Let us denote as X = {x1, . . . xn}
a set of DVs. In a CCOP, this is viewed as the union of two subsets of variables, representing the
causes and effects. Given the above, a CCOP is characterized as follows:
Definition 3. A Combinatorial Causal Optimization Problem is an optimization problem where:
i) the (discrete) DVs encode literals referring to any element i ∈ U , where U is the set of elements
possibly involved in the causal inference;
ii) the set of DVsX is the union of two non-empty disjoint subsets related by a causality relationship:
Xs, that is the set of causes (named sources), and Xt, the set of effects to be explained (named
targets): X = Xs ∪ Xt = {xs1 , . . . , xsj ;xtj+1 , . . . , xtn}, and: ∀xs ∈ Xs, ∃xt ∈ Xt : xs

c−→ xt
(i.e., each variable in Xs has a potential causality relation with at least one variable in Xt). Each
source (target) variable {xs1 , . . . , xsj} ({xtj+1

, . . . , xtn}) takes values in the respective discrete set:
Ds = {Ds1 , . . . Dsj} (Dt = {Dtj+1

, . . . Dtn});
iii) C is the set of constraints between DVs: C = Ck ∪ Cu = {ck1

, ..., ckq
; cuq+1

, ..., cul
}, with

Ck and Cu being the known and unknown constraints. Not all constraints are necessarily known a
priori, thus the limits of the admissible solution space are, in general, not known;
iv) KB is the knowledge base, which is a set of cause-effect combinations (i.e., {xs1 , . . . , xsj},
{xtj+1

, . . . , xtn}) already observed, representing the experience-based knowledge with respect to
which plausibility and novelty of solutions are assessed.

Finding a solution of a CCOP means finding suitable combinations of causes and effects that meet
the constraints. For condition iii) of Def. 3, there is no assumption about the knowledge of the con-
straints between DVs (e.g., causes that cannot occur together). Because of this, proposed solutions
can be just hypotheses (like in abductive reasoning) and need to be assessed for their plausibility, as
they could violate constraints not known a priori. Based on Def. 3, a CCOP is expressed as follows:

Maximize π(x),
s.t. ν(x) > ν0, C = (Ck,Cu) = (ck1 , . . . , ckq ; cuq+1 , . . . , cul

)

x = (xs; xt) = (xs1 , . . . , xsj ;xtj+1
, . . . , xtn) ∈ Ω (1)

where:
i) Ω = {Ds ∪ Dt}n is the decision space, the set of all possible values that decision variables
can take. In the abduction metaphor, Ω represents the ontological knowledge (or ontology) of the
domain, namely all the causes and effects that can concur to the inference;
ii) x is a candidate solution – a solution proposes an explanation for the effect(s) in xt by potential
cause(s) in xs. Note that a variable can (not necessarily will) be part of a solution; 1 ≤ |xs|, |xt| ≤ n;
iii) C is the set of constraints. Each cj is a pair 〈vj , Rj〉, where vj ⊂ x is a subset of h DVs and
Rj is a h-ary relation on the corresponding (source/target) subsets Djs/t . An evaluation, namely
a function from a subset of DVs to a particular set of values in the corresponding subsets Djs/t ,
satisfies a constraint 〈vj , Rj〉 if the values assigned to vj satisfy the relationRj . Constraints are split
as known and unknown (Ck, Cu). The former are predefined, hence evaluated during the search by
the algorithm. The satisfaction of the latter is assessed by evaluating the solution’s plausibility;
iv) π, ν. A solution is characterized by a plausibility score, π(x), which is the objective function
(π : Ω → Π ⊆ R). A solution is also assigned a novelty score, ν(x): ν : Ω → N ⊆ R, and ν0 is a
novelty threshold. π(x) and ν(x) are assessed with respect to the KB (see Section 4.2).

3



Under review as a conference paper at ICLR 2022

Algorithm 1: Evolutionary Abduction
1 PF/A/H0

← getRandomPop(); . Get initial random populations. PF/A/H : short for PF , PA, PH

2 SF/A/H0
, TF/A/H0

← getAllSourcesTargets(PF/A/H0
); t← 0;

. Get all different source and target values from current population
3 while stopping conditions are not satisfied do

. Three sequential loops, cycling on PF , PA, and PH

4 for i=1 to |PF/A/Ht | do
5 xi,t← select solution(PF/A/Ht , KBA);
6 yi,t← apply abd operator(xi,t, PF/A/Ht , SF/A/Ht , TF/A/Ht );
7 evaluate(yi,t); . Plausibility evaluation
8 evaluateConstraints(yi,t); . Novelty evaluation
9 PF/A/Ht+1

← PF/A/Ht+1
∪ (yi,t);

10 QF/A/H ← nextPopulation(PF/A/Ht ∪ PF/A/Ht+1
); . Merge by non-dominated sorting

11 t← t+ 1; PF/A/Ht ← QF/A/H ;
12 SF/A/Ht , TF/A/Ht ←getAllSourcesTargets(PF/A/Ht );

13 Pt← PFt ∪ PAt ∪ PHt ; R← getRankedSolutions(Pt); . Merge solutions

4 EVA: THE EVOLUTIONARY ABDUCTION ALGORITHM

4.1 OVERVIEW

EVA builds solutions for the defined CCOPs. To this aim, it keeps an archive of known solutions
representing the KB; besides, it keeps a second archive of solutions called analogical KB (KBA),
representing the further knowledge used in analogical reasoning to find new solutions starting from
solutions in similar problems. The main steps EVA performs (Algorithm 1) follow:
Initialize. Initially, three sets of solutions (named populations) are created by selecting random
values for each variable xi in s and in t from their domainsDi and that satisfy the known constraints
Ck. These represent solutions from the factual, analogical and hypothetical cause abduction, and
are merged to form the initial population P . Plausibility and novelty of P are evaluated (Sec. 4.2).
Apply operators. At every iteration, a selection and a specific abduction operator are applied to
the corresponding sub-population (Section 4.3) – lines 4-9. Selection takes a solution from the
population; the abduction operator operator creates a new solution starting from the selected one.
The latter ones are: the factual, analogical or hypothetical cause operators, which mimic the three
abduction patterns. The loops generate the offpsring sub-populations. The sub-populations evolve
independently, and merged at the end of the algorithm (line 13).
Merge. The current and offspring populations are merged by a crowding distance criterion to form
the new population, similarly to the Deb et al. (Deb et al., 2002) (line 10). All non-dominated fronts
Fi are obtained from the union of current and offspring population by the fast non-dominated sort
algorithm; then, until the population is filled, the crowding distance is calculated in each Fi and the
corresponding solutions are included in the population.

4.2 PLAUSIBILITY AND NOVELTY EVALUATION

Plausibility. Whenever a solution is proposed by an operator, its plausibility needs to be assessed
first. Plausibility is the degree to which a hypothesised solution is judged as possible to occur,
namely how much it is realistic. The following definitions formalize the concepts that a human
typically uses to judge a hypothesis as more or less plausible. Typically, our judgement depends on
whether we recognize “parts” of the hypothesis in what we already know about the phenomenon
under study. These “parts” are co-occurrences of (subsets of) causes and effects: whenever we
recognize cause-effect patterns in the knowledge base (KB) at least once, we increase our belief
about the plausibility of the entire solution, since at least part of the hypothetical solution has already
been seen (hence, it can actually occur). Plausibility assessment is based on such a notion of pattern
occurrence. Given theKB, the k-degree andm-degree of a solution xj={s, t} are defined as follows:

Definition 4 (k- and m-degree of a solution (δk, δM )). The k-degree of xj (δk(xj)) is the number of
distinct k-tuples of the source variables set s (with k ≤ |s|) that occurred at least once in KB along
with the target t. The m-degree of xj (δM (xj)) is the maximum value of k such that δk(xj) > 0.
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Definition 5 (Plausibility). The plausibility π(xj) of a solution xj = {s, t} with p = |s| is:

π(xj) =
∑p

k=1 δk(xj) (2)

which is the sum of all k-tuples of s, excluding the 0-tuple, that occurred at least once in KB along
with t. The so-defined plausibility naturally prefers small solutions, since the denominator explodes
with p. To account for this, π(.) is multiplied by a scale factor, that is p/a (if p ≤ a) or a/p (if
p > a), where p is the solution size and a is the average size of the solutions in the KB.

Novelty. Hypothesised solutions need to be plausible but also different from the ones already ob-
served, to avoid to converge towards solutions already present in KB. A novel solution is one that
is not similar to existing ones. As similarity metric, the Jaccard similarity coefficient is used.
Definition 6 (Novelty). The novelty ν(xj) of a solution xj is given by the minimum dissimilarity of
xj with respect to all solutions xh in KB, thus: ν(xj) = 1 −maxh(J(xj , xh)), where: xh ∈ KB,
with h = 1 to |KB|, J(·, ·) is the Jaccard similarity coefficient.

4.3 OPERATORS

Selection. Selection is always done with the Deb’s version of Binary Tournament (Deb et al., 2002).
Factual abduction. Factual abduction exploits the available experience to “select” the best hypoth-
esis for solving a problem. In EVA, the interest is not in selecting an entire solution, but in creating
a new, diverse, solutions by selecting parts of observed solutions and combining them. The agent
mimics the factual abduction process where single facts are selected from the KB and combined in
a new way. Specifically, it mimics a human that starts from an observed solution (i.e., a cause-effect
occurrence) and comes up with a new solution by modifying the observed one. The agent uses
solutions already observed or hypothesised: starting from them, the operator changes (add, modify
or delete) the sources and targets using either solutions from the KB (observed facts) or from the
current population (i.e., hypothesed facts). The algorithm is in (Appendix A, Algorithm 2).
Analogical abduction Analogical reasoning looks not (merely) for similar causes or effect, but for
similar “relations” between the elements of the analogy across two problems, or two different in-
stances of the same problem, P and P ′ (Schurz, 2008). Thus, the operator acts as follows: the
starting solution x is the one selected from KBA. To build the new solution x’, the operator first
selects a target from the set of all different targets in P . Then, it builds the set of sources, coupled
with the chosen target, by extracting and reproducing structural features of the sources in x. Three
source-level constraints are defined currently in EVA, which require the new solution x’ to have
progressively stronger similarities with x: a cardinality constraint, requiring the number of sources
of x’ to be the same as x; a group membership constraint, requiring the new solution x’ to have the
same number of subsets with the same cardinalities; an ordinal constraint, requiring x’ to have the
same number of subsets with the same σM (see Def. 4) of the subsets of x’ (Alg. 3, Appendix A).
Hypothetical cause abduction This operator mimics the creative abduction allowing a human to
advance hypotheses exploiting just his knowledge about the domain of interest (i.e., the ontology
Ω). The operator (Alg. 4, Appendix A) acts as the factual operator: it adds, modif ies or deletes the
sources of the selected solution, but it considers Ω in lieu ofKB as set from which a new source can
be selected, thus opening to a wider range of novel solutions. A consequence is that these solutions
are expected to have a higher novelty compared to the factual operator.

All the operators have a hyperparameter called novelty index, η ∈ [0; 1], that regulates the novelty of
a solution; factual and hypothetical cause have one more hyperparameter, the change index γ > 0:
the number of add/modify/delete to apply is selected randomly in [1; γ]. Details are in Appendix A.

5 EXPERIMENTS: DATASETS, METRICS, BASELINE, FACTORS

Datasets. Primary Tumor dataset. This dataset is provided by the Ljubljana Oncology Institute
(UCI, a). Here, the effect to predict is the type of tumor. The number of variables is 18 (17 causes
plus the effect), with information potentially related to the type of tumor (e.g., age, sex, histological
information). There are 339 entries; these are split (randomly at every repetition) in two sets: the
former used asKB, the latter as test set.1 A separate set of entries is used as analogicalKB (KBA).

1Note that this is not like a training set in machine learning, since EVA does not learn a “model” from the
set, it just uses it as base for assessing plausibility and novelty of generated solutions
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The sizes are: |KB| = 10% of the dataset, thus |KB| = 34, and |KBA| = 2.5% = |KBA| = 8.
The size of the decision space is |Ω| = 59 (in the average, 3 values per variable).
ASRS dataset. In safety engineering, a hazard analysis is the activity aimed at hypothesizing pos-
sible hazards that can occur in operation. It requires a systematic generation of new hypotheses.
The ASRS (Aviation Safety Reporting System) maintains a DB with thousands of accident reports
(ASR, a). The events regarding the aircraft components, the weather conditions, the personnel, and
many other potential causes are recorded for each accident, which is the final effect. As this is a new
dataset built from the ASRS DB, details about its structure are in Appendix G. A subset of 4,470
reports is used. As above, |KB| = 10% = 447, and |KBA| = 2.5% = 112. The variables are 28
(27 causes, 1 effect); the decision space size is |Ω| = 676 (24 values per variable, in the average).
Diabetes dataset. This is a known dataset with information pertaining to blood glucose levels, in-
sulin dosage, eating and exercise patterns of 70 diabetes patients (Frank & Asuncion, 2010). The
variables are formatted as in (Acharya, 2014); a record contains the events occurring in one day to
one patient. The effect of interest is the presence of Hypoglycemic symptoms. The whole dataset
consists of 28,265 events: the formatted dataset contains 3,640 entries. The sizes are: |KB| = 364,
|KBA| = 91, which are 10% and 2.5% of dataset size as above.The number of variables is 14 (13
causes and 1 effect); the size of Ω is 70 (5 values per variable, in the average).
Nursery dataset. This was derived from a decision model to rank applications for nursery schools
(UCI, b)(M. Olave, 1989). The effect variable is the decision on acceptance or rejection of an appli-
cation (split in 5 classes, from “not recommended” to “special priority”); the potential explanatory
causes are variables depending on the occupation of parents and child’s nursery, the social and health
picture of the family. The dataset has 12,960 entries (thus |KB|=1, 296, |KB|A=324) and 9 vari-
ables; |Ω| = 31 (3 values per variable, in the average). The datasets, along with EVA implementation
and results, are at http://github.com/eva-iclr-2021/EVA

Metrics. The generated solutions are compared against the test set Z. The aim for the agent is to
generate hypotheses as close as possible to real ones, namely, plausible with respect to its knowledge
represented by KB, but also sufficiently novel. Let us denote the set of generated solutions as
Q. These are compared to each z ∈ Z to assess how much they are close to at least one real
occurrence, according to a distance d. For each solution q ∈ Q, we take the minimum distance:
dmin(q) = minz∈Z(d(q, z)). A small dmin suggests that the agent builds, based on its restricted
knowledge, solutions that are similar to a real occurrence.2 As distance metric, the Jaccard distance
is taken between q ∈ Q and z ∈ Z. Given a set of solutions Q, we take the average of dmin(q),
with q ∈ Q, and the minimum of dmin(q), i.e., the smallest distance between q ∈ Q and a solution
z ∈ Z. The latter is the distance to a real solution of the best solution of the population.

Baselines. As baselines, we use a random generation strategy (RAN), for validation purpose, and
three graph-based strategies (GB). RAN randomly selects values from the effect and cause variables
to build hypotheses. GB strategies represent the probabilistic alternative to our plausibility-based
approach. To implement them, we exploit causal structure discovery (CSD) algorithms to first learn
a causal structure from the KB, represented as a directed acyclic graph (DAG)(Pearl, 2009). The
learned structure is then used to generate hypotheses: fixing the effect, what are the most probable
causes for it. Three state-of-the art CSD algorithms are used: FGES (Ramsey, 2015), which is a
score-based strategy, RFCI (Colombo et al., 2012), a constraint-based one, and GFCI, a hybrid
strategy (Ogarrio et al., 2016). These are run with bootsrtapping, giving weights W = {wi} on the
arcs representing probabilities for the arc presence. Our generator then selects a variable vi with
probability wi as part of the solution, and takes a value for vi proportionally to the estimate of its
probability of occurrence – estimated as its relative frequency within KB. Details in Appendix B.

Setting. We run a sensitivity analysis (via 3 × 3 grid search) on 3 configurations of EVA hyperpa-
rameters (< η·, γ· >= (< 0.1, 3 >,< 0.5, 5 >,< 0.9, 7 >), representing Low, Medium and High
novelty, and 3 sizes of the population, |P | = (15, 30, 60). A best (B) and worst (W) configuration
for EVA are identified, for each datasets (results in Appendix C). The results obtained with these two
settings (B/W) and varying the minimum novelty constraint as ν0 = (0.1, 0.4, 0.7) (10 repetitions)
are reported hereafter. All the experiments have a fixed budget: y = 6, 000 evaluations (i.e., solution
computations) for each technique. The number of generations g depends on the population size |P |,
which in turn depends on the configuration (B or W), and derives from: y = 6, 000 = |P | × g.

2Note that this is a conservative metric: If dmin is large, the generated solution may either represent a non-
plausible solution or it is a new plausible solution but far from the solutions in Z, namely it is new even with
respect to the test set – in fact, Z is just a subset of all plausible solutions.
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(a) TUMOR problem

0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1

0 100 200 300 400
0

0.25

0.5

0.75

1

0 25 50 75 100
Generation

D
is
ta
n
ce

(b) ASRS problem
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(c) MEDICAL problem
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(d) NURSERY problem
EVA FGES GFCI RFCI RAN

Figure 1: Distance by generation.

6 RESULTS

Results by generation. Figure 1 reports the average distance d of the population’s solutions from
the test set vs. generations (median and IQR over 10 repetitions). For all the datasets, EVA, has a
decreasing trend, which is more pronounced in about the first 25% of the generations.

Impact of novelty constraint. The gain achieved by EVA is greater when ν > 0.1, as there is more
margin for improving the initial random solutions. Clearly, the stricter the constraint (i.e., bigger
ν), the more difficult is to get solutions close to the test set. When ν > 0.7 case, there are several
generations in which the GB-based strategies do not manage to produce a population (a population
requires at least one solution satisfying the constraint) – a problem that EVA does not have.
Impact of dataset. The different absolute values between the datasets is related to the features of the
problem, i.e., to the decision space (number of variables and possible values per variable) and size
of the dataset.The gain of EVA is more pronounced in more complex problems (ASRS, TUMOR)
and with bigger datasets (NURSERY)while it is marginal with MEDICAL. Appendix D analyzes
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Table 1: Best distance (d∗) of solutions of the best population – mean over 10 repetitions

TUMOR ASRS MEDICAL NURSERY
B W B W B W B W

EVA
ν0 = 0.1
ν0 = 0.4
ν0 = 0.7

0.1097
0.2414
0.4679

0.0850
0.1955
0.3254

0.2271
0.3313
0.6060

0.2722
0.3217
0.6132

0.0
0.1166
0.4671

0.0
0.1333
0.3683

0.0
0.1377
0.1955

0.1466
0.2066
0.2066

FGES
ν0 = 0.1
ν0 = 0.4
ν0 = 0.7

0.1413
0.2210
0.5436

0.7749
0.7749
0.7749

0.0
0.0
0.4404

0.5000
0.5000
0.5999

GFCI
ν0 = 0.1
ν0 = 0.4
ν0 = 0.7

0.1413
0.2210
0.5436

0.8342
0.8342
0.8342

0.0
0.0
0.4304

0.5000
0.5000
0.5999

RFCI
ν0 = 0.1
ν0 = 0.4
ν0 = 0.7

0.1413
0.2210
0.5436

0.7181
0.6342
0.7181

0.0
0.0
0.4317

0.3750
0.4166
0.5999

RANDOM
ν0 = 0.1
ν0 = 0.4
ν0 = 0.7

0.1499
0.1782
0.4571

0.6221
0.6221
0.6431

0.0
0.0
0.3485

0.0
0.0555
0.6066

the results of EVA by operator, showing which operator is affected more by the problem’s features.
Impact of B/W configuration. The results show no noticeable difference between the two cases in
terms of relative gain of EVA. Note that, for a given dataset, the single solutions of the baselines in
the two cases (B/W) are the same: in fact, the different hyperparameters in B and W affect only EVA,
and the different size of the population in B and W affects just the average (i.e., the same solutions
are averaged every 15, 30 or 60 solutions). In all the cases, the evolution across generations almost
cancels the impact of the configuration, as the final results are very close to each other.
Appendix E gives details about the solutions of the last generation (i.e., the final solutions).

Best solutions. If one is interested more in getting a single best hypothesis for an effect to explain
rather than on a set of good hypothesis, s/he can look at the best solution (rather than the average) of
the population. Table 1 reports the distances of the best solutions of the last generation.3 Note that in
some cases (e.g., TUMOR), the results of FGES, GFCI and RFCI are the same, because the weights
inferred by these algorithms were exactly the same. The best achieved distances highlight the ability
to find solutions very close to (and often exactly matching) real occurred events, even for complex
problems with many multiple potential causes – see Appendix F, Figure 7. For instance, in the
NURSERY problem (with ν0 = 0.1), which has 9 variables, 136/150 (B) and 399/600 (W) solutions
have 0 distance, i.e., cause-effect events are predicted exactly (42/300 and 73/600 for MEDICAL;
12/150 and 41/600 for TUMOR). In ASRS, it is much more difficult: in this case, EVA does not
manage to generate matching solutions, but very close ones – e.g., several severe accidents, with, 27
co-occurring causes are predicted almost exactly (up to 24 out of 27 co-occurring causes).

Relative distance. A further metric of interest is the relative distance, drel. In fact, for complex
problems like ASRS, one could be interested in assessing to what extent the hypothesized solution
of a certain size k is at least partly “contained” in the solutions z ∈ Z. Given q= q1, q2, . . . qk, drel
is the Jaccard distance d(q, z′) between q and the same subset of k variables of z. Table 2 reports the
results. Again, the gain of EVA is more evident for more complex problems.4. In some cases, the
solutions with ν0 = 0.7 generated by the baselines have better relative distance; the main reason is
that, with such a strict constraint, only few solutions survive, and these are typically small solutions,
with few causes. This determines a small relative distance, but not a small absolute distance. The
relative distance distribution of final solutions is in Appendix E.

7 RELATED WORK

Causal structure discovery (CSD) Causal inference is usually supported by graphical models, like
causal networks. In this regard, CSD solutions are the closest to our approach. They infer possi-
ble cause-effect relations between sets of variables, typically associating a weight to the relations.

3For the baselines, since there is no notion of “evolution” and the single generations are independent of each
other, we select the generation with the best population (best average distance) rather than the last one.

4Note that the objective is not to generate solutions with small relative distance, in which case it would
be enough to generate small solutions, e.g., with one single cause. The objective is to generate solutions with
small distance; the Table shows how often the so-generated solutions have small relative distance.
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Table 2: Average relative distance of solutions of the best population – mean over 10 repetitions

TUMOR ASRS MEDICAL NURSERY
B W B W B W B W

EVA
ν0 = 0.1
ν0 = 0.4
ν0 = 0.7

0.1070
0.2711
0.3972

0.1206
0.2844
0.4438

0.1956
0.2590
0.5667

0.3079
0.3382
0.5781

0.0
0.0
0.01555

0.0
0.0
0.0343

0.0053
0.2627
0.4838

0.0517
0.2964
0.4862

FGES
ν0 = 0.1
ν0 = 0.4
ν0 = 0.7

0.2309
0.2294
0.1337

0.5363
0.5363
0.5363

0.0066
0.0067
0.0278

0.4754
0.4754
0.4641

GFCI
ν0 = 0.1
ν0 = 0.4
ν0 = 0.7

0.2309
0.2294
0.1337

0.5413
0.5413
0.5413

0.0120
0.0125
0.1473

0.4754
0.4754
0.4641

RFCI
ν0 = 0.1
ν0 = 0.4
ν0 = 0.7

0.2309
0.2294
0.1337

0.6151
0.6151
0.6151

0.0068
0.0071
0.1112

0.4664
0.4665
0.4556

RANDOM
ν0 = 0.1
ν0 = 0.4
ν0 = 0.7

0.3520
0.3528
0.3042

0.6789
0.6789
0.6790

0.1047
0.1066
0.1324

0.0967
0.1054
0.1050

Algorithms are score-based, constraint-based or hybrid ((Glymour et al., 2019) for details) – for
comparison, we took one representative algorithm per strategy to create a hypothesis generator,
hence exploiting them for abduction as described in Section 5. Other interesting CSD strategies can
be investigated, such as NoTEARS (Zheng et al., 2018), or CSD with reinforcement learning (Zhu
et al., 2020), which however need to be adapted to make them able to cope with a CCOP.
Logic-based strategies. Abduction is usually dealt with logic-based approaches, like in the works
cited in the introduction (Douven, 2017), (Crowder & Carbone, 2017), (Spohn, 2012); (Woods,
2013), (Walton, 2001), (Crowder et al., 2020), (Eshghi, 1988), (Ma, 2012)). Abductive logic pro-
gramming (ALP) is one way to automate abduction; it combines logic programming and abduction
to solve problems declaratively, given a background knowledge (P , i.e., logic program) and integrity
constraints (IC) Kakas et al. (1992). An abductive explanation is derived as a set of hypotheses on
abducible predicates (A) that satisfy the IC. Other approaches combine logic with probabilistic
frameworks, such as abduction reasoning combined with Markov Logic Networks Schoenfisch et al.
(2016), or Bayesian networks Raghavan & Mooney (2010). These find little applications in the real
world, as they suffer from severe limitations: i) an excessive effort (and knowledge of the problem
at hand) is required to write a sufficiently detailed model (i.e., list of known cause-effect clauses) –
in EVA, the model is the ontology, hence just the list of cause and effect variables (i.e., the literals)
possibly involved in the inference; ii) the computational explosion caused by large or over-specified
models makes them inapplicable for large (and with few constraints) problems – e.g., in ASRS,
where the space of cause-effect combinations is ≈ 2427.
Evolutionary strategies. EVA can be viewed from the side of evolutionary algorithms (EA). EAs
are inspired by biological evolution to search for solutions optimization problems. The closest ones
are human-inspired algorithms. Examples include: the human-inspired algorithm (HIA) (Zhang
et al., 2009), the human strategy algorithm (HS) (Soltani-Sarvestani et al., 2018), the cultural algo-
rithms (CA) (Reynolds, 1994). Such algorithms use a metaphor of a human-like behaviour. Beside
the specific metaphor, the most important difference is that, in order to solve a CCOP, one needs
to cope with an unknown admissible solution space to search for, which makes EVA a strategy to
generate (rather than search) solutions in those problems where solutions can only be hypothesised
and assessed afterwards (like in uncertain causal inference).

8 CONCLUSION

We introduced EVA, a new algorithm for automated abductive inference based on evolutionary com-
putation. EVA is a first step toward a better understanding of how the potential of abduction can be
exploited for problem solving. Such a form of reasoning, if empowered by automated computa-
tion, can boost the human ability to generate explanations/predictions in complex causal problems.
Improvements and variants are possible along different ways (e.g., the operators, the plausibility
function). At higher level, a natural direction is to integrate EVA with ML algorithms, which are
massively based on induction on multiple observations: abduction can complement it just like in
human reasoning, namely with the ability to go well beyond what observed, enabling a form of
learning that can be more fallible but much quicker.

9
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10 REPRODUCIBILITY STATEMENT

The material reported in this paper, including:

• The datasets used for the experimentation;
• The source code (and the executable .jar) of the proposed algorithm and of the imple-

mented baselines; the experimental code;
• The results reported in the main text as well as in the appendixes;

is available at http://github.com/eva-iclr-2021/EVA.

Instructions are provided in the repository to reproduce the same results of the paper, as well as to
replicate the study with other datasets. Textual configuration files allow to select the datasets, to
set EVA hyperparameters and experimental parameters (e.g., population size, novelty constraint), to
set the initial seed (leaving the default and specifying 10 runs will reproduce the same result of the
paper), to set the split (knowledge base and test set, leaving the default will will reproduce the same
result of the paper). Bash scripts named run.sh expedite the process of reproducing the results of
the paper, with one script in each dataset’s folder for both EVA and for the baselines.
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SUPPLEMENTARY MATERIAL

The supplementary material for the paper entitled “Automated Hypotheses Generation via Evolu-
tionary Abduction” includes textual material and artifacts. Textual material is in the following
Appendixes A-G. Artifacts includes the source code (and the executable .jar) of the proposed
algorithm and of all the implemented baselines, the experimental code, the datasets used for the
experimentation, and the results reported in the main text and in the following appendixes. These
are available at: http://github.com/eva-iclr-2021/EVA.

The following textual supplementary material is organized as follows. First, the algorithms of the
three abduction operators are described (Appendix A). Appendix B describes the baseline strategies
we have implemented to solve the causal problem by causal structure discovery algorithms followed
by sampling. Appendix C reports the results of the tuning of the parameters used in the experimen-
tation. These refer to both the EVA hyperparameters and to the size of the population used in the
experimental study. A best and worst case for EVA are derived, then used in the final experimen-
tation reported in the main text. Appendix D reports the results achieved by the three abductive
operators of EVA, which together contribute to the overall performance of EVA. Appendix E reports
the distribution of the distances of the last generation’s solutions, namely of the final solutions. In
particular, the distributions of the average and of the best distance (over the distances of the final
population’s solutions) are shown, as well as for the relative distance. Appendix F shows the best
solution (namely, the solution with the best distance) of the populations at every generation, aver-
aged over the 10 repetitions. Finally, Appendix G details the ASRS dataset, which, unlike the other
datasets, is prepared from scratch starting from the ASRS database.

A THE EVOLUTIONARY ABDUCTION OPERATORS

Algorithms 2-4 are the factual, analogical and hypothetical cause operators of EVA described in
Section 3.

Algorithm 2 is the factual operator. It takes, as input, a solution x, chosen by the selection operator
(select_factual), all the different sources and targets (i.e., causes and effects) that are in the
current population (S and T ), and considers the KB to build a new solution. To build the new
solution x’, first, a target t is selected from the list of all the targets in the current population (line 1).
Selection of the target is done taking two targets randomly, measuring their “support” (number of
occurrences in KB) and taking the one with greater support or choosing randomly (with probability
0.5) one of the two if they have equal support. In essence, it is a binary tournament applied to
single elements rather than to the whole solution. As for the sources, the same sources of x are
used (line 2). The operator applies three types of modifications: add, modify or delete actions.
It considers two parameters to regulate the extent of changes and the desired novelty: an integer
called factual change index γF > 0 and a double called factual novelty index, ηF ∈ [0; 1]. The
number of changes c to apply are selected randomly, with c ∈ [1; γF ] (line 3). The type of change
(add, modify or delete) is also selected randomly with equal chance for the three actions (line 5).
In case of add or modify (which is a replacement of a source), the new source is selected from the
set S with probability ηF or from the KB with probability 1 − ηF . Selection of the sources to
add, replace or remove (lines 7, 11, 14, respectively) is done by a variable-level binary tournament
like the above-mentioned target selection, so as to favour the sources/targets contributing more to
plausibility.

Algorithm 3 presents the analogical operator. To build the new solution x’, the operator first selects
a target from T , just like the factual operator algorithm (i.e., via a variable-level binary tourna-
ment). Then, it builds the set of sources, coupled with the chosen target, by extracting and repro-
ducing structural features of the sources in x (extractConstraint, line 2). Three source-level
constraints are defined currently in EVA, which require the new solution x’ to have progressively
stronger similarities with x:

• Cardinality constraint: the number of sources of x’ is required to be the same as x. The
cardinality is a “proxy” indicator for the complexity of a solution, since more sources means
co-occurrences of more causes together for an effect. The selection of the sources for x’ is
done by considering an analogical novelty index: ηA ∈ [0; 1]. The source to be added is
selected from the set S with probability ηA, or from the ontology Ω with probability 1−ηA

13
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Algorithm 2: factual operator(x, S, T )
Input : x, the selected solution; S/T , all different sources/targets in the current population; ηF , Factual

novelty index; γF , Factual change index
1 t← selectTarget(T );
2 x’ = {x, t}; . initialize x’ with the same sources as x, and target t
3 c← Rand(1, ηF ); . Number of changes
4 for i=1 to c do
5 a← Rand(add, modify, delete) . Action to apply
6 if a=add then
7 s← selectSource(ηF ); . ηF : Prob. to select from S or from M
8 addSource(x’, s);

9 if a=modify then
10 removeSource(x’);
11 s← selectSource(ηF );
12 addSource(x’, s); . with s different from removed source

13 if a=delete then
14 removeSource(x’);

15 return x’;

Algorithm 3: analogical operator(x, P, S, T )
Input : x, the selected solution (from ME), P , population; S/T , all different sources/targets in the current

population; ηF , Analogical novelty index
1 ; t← selectTarget(T );
2 [p, vg , σMg ] = extractConstraints(); . Extract #sources (p), #sources per group (vg), σMg per group
3 for i=1 to p do
4 s← selectSource(ηA); . ηA: Prob. to select from S or from Ω
5 addSource(x’, s);

6 while (vg and σMg constraints are not satisfied) do
7 replaceSource(x’); . Adjust the solution to meet constraints

8 return x’;

Algorithm 4: hypothetical operator(x, S, T )
Input : x, the selected solution; S/T , all different sources/targets in the current population; ηH , Hypothetical

cause novelty index; γH , Hypothetical cause change index
1 t← selectTarget(T );
2 x’ = {x, t}; . initialize x’ with the same sources as x, and target t
3 c← Rand(1, ηH ); . Number of changes
4 for i=1 to c do
5 a← Rand(add, modify, delete) . Action to apply
6 if a=add then
7 s← selectSource(ηH ); . ηH : Prob. to select from S or from Ω
8 addSource(x’, s);

9 if a=modify then
10 removeSource(x’);
11 s← selectSource(ηH );
12 addSource(x’, s); . with s different from removed source

13 if a=delete then
14 removeSource(x’);

15 return x’;

14
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(line 4). Selecting from the ontology rather than from the current population means that
the agent intends to exploit new concepts not previously observed, taking from the entire
knowledge about the domain of interest.
• Group membership constraint: in many causal problems, the joint causes available to ex-

plain an effect can be grouped in homogenous subsets (e.g.: all stress-related causes in
medical diagnosis to explain a disease; or, in hazard analysis, all the environment-related
events possibly causing an accident). In such cases, this constraint requires the new solu-
tion x’ to have the same structure as x, namely the same number of subsets with the same
cardinalities. For each group in x’ there must be one distinct group in x with the same
cardinality and viceversa.
• Ordinal constraint, uses the notion of support referred to subsets of s (rather than to entire

solutions as in Def. 4):
Definition 7 (Support of order k and maximum support). The support of order k, σk(q),
of a subset of sources q⊆ s, with k ≤ |q|, is the number of distinct k-tuples of q that occurr
at least once in the solutions of the memory M . The maximum degree of support, σM (q),
of q ⊆ s is the maximum value of k such that σk(q) > 0.

The ordinal constraint requires x’ to have the same number of subsets with the same σM
values of the subsets of x. For each pair of groups g′i, g

′
j in x’ with σM (gi) > σM (gj),

there must be a distinct pair of group in x, gi, gj with the same relation, σM (gi) > σM (gj)
and viceversa. For implementing constraint 2 and 3, the sources added to match constraint
1 (line 4 of the Algorithm) are replaced in those (pairs of) groups that violate constraint 2
and/or 3 (line 6-7), until the constraint is met or a maximum number of attempts is reached.

Algorithm 4 is the hypothetical-cause abduction operator. This operator mimics the creative ab-
duction allowing a human to advance hypotheses exploiting just his knowledge about the domain
of interest (i.e., the ontology Ω). The initial solution x’ is build like in the factual abduction. The
operator also applies the same actions as the factual operator: add, modify or delete, again exploiting
parameters to regulate the extent of changes and novelty (hypothetical change index γH and factual
novelty index, ηH ∈ [0; 1]). The main difference lies in considering Ω in lieu of KB as set from
which a source can be selected, thus opening to a wider range of novel solutions.

A consequence is that these solutions are expected to have higher novelty compared to the factual
operator, contrasted by a lower plausibility. And this is what actually happens by adopting such
two types of reasoning: while factual abduction supports more plausible but less original inference,
hypothetical abduction, by its nature, is open to completely new scenarios but whose plausibility
can be low. Analogical abduction lies in between; in fact, it is also called a partially ampliative
inference. Although one can focus on just one of these operators in custom implementations of
EVA, the suggestion is to exploit all the three operators for their complementarity.

B GRAPH-BASED BASELINE STRATEGIES

The graph-based (GB) strategies have been implemented as follows. A Causal Structure Discovery
(CSD) algorithm is used to learn the causal structure from the knowledge base KB; the output is
directed acyclic graph (DAG) with nodes being the variable and arcs being dependency relation
between them (Pearl, 2009). This is exploited to generate solutions proportional to cause-effect
strength as described hereafter.

The CSD algorithms, namely FGES (Ramsey, 2015), RFCI (Colombo et al., 2012), and GFCI (Og-
arrio et al., 2016), are all present in the py causal repository (Vowels et al., 2021)(PYC)ZEN,
which exploits the Tetrad toolbox Ramsey et al. (2018)tet. The parameters setting to derive
the DAG and the corresponding arc weights are in Table 3 – the default parameters are kept,
except the number of bootstraps (i.e., number of resampling) raised to 50 to improve the ac-
curacy. The data type is always “discrete”. The description of each field can be found at
http://cmu-phil.github.io/tetrad/manual/:

As prior knowledge, we specified (by the priorKnowledge parameter) that arcs between causes
should be forbidden, as we are interested in arcs between causes and effects. The weights be-
tween arcs from causes to the effect obtained for the four datasets (values in the repository,
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Table 3: ...

FGES GFCI RFCI
scoreId bdeu-score bdeu-score –
testId – disc-bic-test bdeu-test
maxDegree/depth 3 3 3
faithfulnessAssumed True True –
numberResampling 50 50 50
resamplingEnsemble 1 1 1
maxPathLength – -1 -1
completeRuleSetUsed – False False
addOriginalDataset True True True

19/05/21, 11:26

Pagina 1 di 1https://ht7x40t8kql-496ff2e9c6d22116-0-colab.googleusercontent.com/outputframe.html?vrz=colab-20210517-060154-RC00_374160454

HS

NPHID

HS - NPHID
[<-o]:0.48514851485148514
[o-o]:0.19801980198019803

[no edge]:0.31683168316831684

ULID

HS - ULID
[o-o]:0.04950495049504951

[--> dd nl]:0.04950495049504951
[no edge]:0.900990099009901

USE

HS - USE
[o-o]:0.24752475247524752
[<-o]:0.4158415841584158

[no edge]:0.33663366336633666

MTUMI

HS - MTUMI
[<-o]:0.0297029702970297

[no edge]:0.9702970297029703

RID

HS - RID
[o-o]:0.4752475247524752

[--> dd nl]:0.0891089108910891
[<-o]:0.0297029702970297

[no edge]:0.40594059405940597

BGMD

BGMD - HS
[o->]:0.009900990099009901

[no edge]:0.9900990099009901

BGM_UNK

BGM_UNK - HS
[o->]:0.0594059405940594

[no edge]:0.9405940594059405

Figure 2: Example of DAG used for the RFCI GB strategy

http://github.com/eva-iclr-2021/EVA), which represent the probability that a poten-
tial cause node is causally related to the effect node, are used to generate the solution. An example
of so-obtained DAG is in Figure 2, wherein HS is the effect (Hypoglycemic symptoms) and all the
other variables are potential causes such as “More-than-usual meal ingestion” (MTUMI), “Blood
Glucose Measurement Decrease” (BGMD). This is obtained by the RFCI algorithm.

Given the graph and their cause-effect weights W = {wi}, i = 1, . . . , n and n being the number
of (source) variables, the implemented generator acts as follows: for each instance to generate i)
includes variable vi ( i = 1, . . . , n) with probability wi as part of the solution, and then ii) selects
a value j of the variable vi, say hi,j , proportionally to the estimate of its probability of occurrence
pi,j within the KB – obtained as (normalized) relative frequency of that value within KB.

The random strategy just the variables vi ( i = 1, . . . , n) with equal probability of selection, and
then the values hi,j of vi with equal probability of selection.

C PARAMETERS TUNING

A grid search approach is adopted for parameters tuning. The EVA hyperparameters are the novelty
indexes, ηF , ηA and ηH , and the change indexes γF and γH of the abduction operators. Both
regulate the extent to which solutions are required to be diverse (hence novel) with respect to the
KB and to the current population: the higher the η· values, the higher the probability of selecting
new unseen sources, and the higher the γ· the higher the number of modifications that are done
to build a (factual or hypothetical-cause) solution. The following configurations are considered:
< η·, γ· >= (< 0.1, 3 >,< 0.5, 5 >,< 0.9, 7 >, representing, respectively, a Low novelty degree
in the solution, a Medium novelty and a High novelty.

Additionally, due to its evolutionary nature, EVA exploits the notion of population of solutions,
whose size can impact the final results. Three values are considered for the population size:|P | =
(15, 30, 60).

We ran 10 repetitions for each of the 3 × 3 = 9 configurations, each one for 600 evaluations, for
the four datasets. Table 4 reports the average distance of the final population’s solution (averaged
over the 10 repetitions) from the test set. The best (B) and worst (W) configurations for EVA are
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Table 4: Average distance (standard deviation) of solutions of the best population – mean over 10
repetitions

|P | = 15 |P | = 30 |P | = 60

TUMOR
Low
Medium
High

0.16800.0238
0.16480.0240
0.16200.0252

0.18210.0221
0.17550.0154
0.16520.0335

0.21180.0155
0.20990.0205
0.20340.0332

ASRS
Low
Medium
High

0.54070.0259
0.48030.0203
0.51620.0178

0.58330.0118
0.52040.0181
0.49710.0314

0.63760.0185
0.59610.0191
0.55600.0196

MEDICAL
Low
Medium
High

0.35840.0209
0.36290.0212
0.35570.0341

0.36510.0197
0.34210.0169
0.35820.0179

0.36310.0175
0.36770.0134
0.36150.0108

NURSERY
Low
Medium
High

0.07420.0479
0.08500.0270
0.12530.0187

0.08060.0306
0.11010.0309
0.13360.0300

0.12920.0193
0.15170.0297
0.17230.0196

highlighted (green and red, respectively). These two configurations are used to compare EVA with
the baselines (over 6,000 evaluations) (cf. with Section 6), considering both the best and the worst
case.

D RESULTS BY EVA OPERATOR

Figure 3 reports the average distance of the final solutions computed by each of the three operators
of EVA (i.e.: Factual, Analogical, Hypothetical-cause), in every run and experimental scenario (10
runs per scenario) for every dataset.

Two main observations arise: i) the Factual and Hypothetical-cause abduction operators give similar
distance values for all scenarios and datasets. These, in fact, have the same structure, the main
difference is in the source of knowledge used (the former relies on the KB, while the latter on
the ontology Ω); ii) the Analogical operator works better (i.e., small distances) than the others for
small problems, namely when few multiple causes are involved, which is the case of the MEDICAL
and NURSERY datasets; in contrast Factual and Hypothetical-cause outperform the Analogical
operator for ASRS and TUMOR. The impact of the Best/Worst configuration is negligible, as it
does not change the relative results. A higher novelty constraint up to ν0 = 0.7 causes the operators’
results to flatten on values above 0.6, as it becomes difficult for all the operators to find close-to-real
solutions that are also very different from the KB. The only exception is the case of NURSERY,
where the analogical operator still manage to give solutions with distance around 0.5 even with such
a strict constraint on the novelty.

Although in one specific problem one operator may provide better solutions, for EVA to work rea-
sonably well with various problems of different size, the suggested strategy is to always exploit the
contribution of all the three operators. This also ensures a better diversity of the obtained solutions.

E DISTRIBUTION OF SOLUTIONS

Figure 4 reports the percentage of solutions of the final generation’s population with average distance
less than or equal to a given value – the average over 10 repetitions is reported. For the baseline
strategies, since there is no notion of “evolution” and runs (i.e., generations) are independent of each
other, we do not consider the final generation, but select the generation with the best population (i.e.,
having solutions with the best average distance). Results are broken down by novelty constraint and
by configuration (best: B, worst: W).

EVA generates considerably more solutions in the left side of the histogram (i.e., closer to 0) for
all the cases. In terms of datasets, the gain is more evident for more complex problems (ASRS,
TUMOR), but also for problems with a may instances in the test set (NURSERY), while it becomes
less evident for MEDICAL. Again, the Best/Worst configuration makes no relevant difference. With
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Figure 3: Results by operators

the increase of the novelty constraint the gain of course reduces, as there is less margin for improving
over a random or graph-based strategy.

Figure 6 reports the same results but for the relative distance (cf. with Section 6). There are many
cases in which solutions with relative distance equal to 0 are generated, namely solutions in which
the set of causes is entirely contained in the se of causes of a real occurred event (an entry in the test
set). For instance, in the MEDICAL dataset, many of the generated solutions (by all the techniques)
have relative distance equal to 05. For what said in Section 6, the gain of EVA in terms of relative
distance is when the novelty constraint is at 0.1 and 0.4, not at 0.7.

5Note that the objective is not to generate solutions with small relative distance, in which case would be
enough to generate small solutions, e.g., with one single cause. The objective is to generate solutions with
small absolute distance; this graph shows how often the so-generated solutions have small relative distance.
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(a) TUMOR problem

(b) ASRS problem

(c) MEDICAL problem

(d) NURSERY problem

Figure 4: Distribution of solution’s distance

19



Under review as a conference paper at ICLR 2022

(a) TUMOR problem

(b) ASRS problem

(c) MEDICAL problem

(d) NURSERY problem

Figure 5: Distribution of solution’s best distance
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(a) TUMOR problem

(b) ASRS problem

(c) MEDICAL problem

(d) NURSERY problem

Figure 6: Distribution of solution’s relative distance
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(a) TUMOR problem

0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1

0 100 200 300 400
0

0.25

0.5

0.75

1

0 25 50 75 100
Generation

D
is
ta
n
ce

(b) ASRS problem
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(c) MEDICAL problem
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(d) NURSERY problem
EVA FGES GFCI RFCI RAN

Figure 7: Best distance by generation.

F BEST SOLUTIONS BY GENERATION

Figures 7 reports the best distance of the population’s solutions vs. generations (median and IQR
over 10). These are the same type of graph as Figure 1 in Section 6, but here the best solution of
the population at every generation is considered. The evolution across generations leads to the final
results summarized in Table 1 in Section 6. The distances are of course smaller than the average
distances of Figure 1. In the case of ASRS, EVA gives distances that still decrease after 6,000
evaluations – it can still improve in that case, while in other cases it converged. When EVA is not
visible in the graph (e.g., MEDICAL and NURSERY) it means the distances are 0. Finally, in the
case of ν0 = 0.7, it often happens that the baselines do not provide solutions for some generations.
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Table 5: ASRS. Environment entity.

Environment

Flight Weather Elements/ Work Env. Light Ceiling
conditions Visibility Factors

VMC Cloudy Poor lighting Dawn CLR
IMC Fog Glare Daylight Single value

Mixed Hail Temperature extreme Dusk
Marginal Haze-Smoke Excessive humidity Night

Icing
Rain

Snow
Thunderstorm

Turbolence
Windshear

Other

Table 6: ASRS. Aircraft entity.

Aircraft

Flight Flight Route Navigation Cabin Maintenance Mission
plan Phase in use in use Lighting status & items

VFR Taxi Direct FMS/FMC High Deferred Aerobatics
IFR Parked Oceanic GPS Medium Records Agricolture

SVFR Takeoff VFR Route INS Low complete Ambulance
DVFR Initial Vectors Localizer/ Off Released Banner tow
None climb Visual appr. Gideslop/ILS for serv. Ferry

Climb None NDB Required Cargo/Freight
Cruise Airway VOR/VORTAC Scheduled Passenger

Descent STAR Unscheduled Photo shoot
Initial Appr. SID Personal
Final Appr. Other Maintenance items Refueling

Landing Inspection Skydiving
Other Installation Tactical

Repair Test Flight
Testing Traffic watch

Work cards Training
Utility
Other

G THE ASRS DATASET

While the TUMOR, MEDICAL and NURSERY datasets were already publicly available and ex-
plained, the ASRS dataset is new. Here we briefly describe the source of information from which
the dataset is derived.

The Aviation Safety Reporting System (ASRS) database is the world’s largest repository of volun-
tary, confidential safety information provided by aviation personnel, including pilots, controllers,
mechanics, flight attendants and dispatchers ASR (a).

It contains more than 1 million of entries reported since 1988. It is a structured database used for data
retrieval and analysis, with all the accidents stored in a cause-effect style: the events regarding the
aircraft components, the weather conditions, the human personnel involved, the airport, and many
other potential causes recorded for each accident as a categorised set of values (i.e., enumerative),
along with the resulting accident (also categorised). The main entities are reported in the following:

• Environment, with information regarding the flight conditions when accident occurred,
visibility, working environment factors such as lighting or temperature.
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Table 7: ASRS. Component entity

Component

Component Problem

Weather Radar Electrical Wiring & Connectors Design
DC Battery Autopilot Failed

Turbine Engine Landing Gear Improperly operated
Indicating and Warning - Landing Gear Malfunctioning

Nose Gear Yaw Control
Flap Vane Brake System

Powerplant Fire Extinguishing Wheels/Tires/Brakes
Cockpit Window Aircraft Cooling System

Turbine Assemb Blade Landing Gear Indicating System
Normal Brake System Tires

Gear Down Lock Fuel System
Engine Control Fire/Overheat Warning

Antiskid System Piston
Fuselage Skin Powerplant Fuel Control

External Power Flap Control
Supplemental Landing Gear FCC (Flight Control Computer)

Fuselage Panel (more than 350)
Engine ...

• Aircraft-related elements, e.g., the flight plan, the route, the flight phase, the maintenance
status, the mission.
• Component, with information about all the components of the aircraft and their status (e.g.,

design problem, failed, malfunctioning).
• Person, reporting the information about the persons involved, such as the flight crew, the

air traffic control, or people working in maintenance, information about the human factors
that could cause mistakes such as distraction, confusion, stress, etc.
• Events, including anomalies such as airspace violation, deviation of altitude, procedural

errors, airbone or ground conflict, fire, as well as the event describing the final result, such
as the type of accident and its consequences (which correspond to our target variables).

An excerpt of the main information is reported in the Tables 5-9. A glossary of terms is available on
the website ASR (b). For illustrative purpose, a solution looks like follows:

Environment.Weather = Fog
Environment.Weather = Windshear
Environment.Weather = Turbulence
Environment.FlighConditions = IMC
Environment.Light = Night
Aircraft.Mission = Cargo/Freight
FlightAircraft.Phase = Final Approach
Anomaly.Inflight Event = Object encountered
Result.Flight Crew = Landed in
Emergency Condition
Result.Aircraft = Aircraft Damaged

This describes an accident in which the pilot, while descending to approach for landing
(Final Approach) during the night and under bad weather conditions (IMC stands for Instru-
ment Meteorological Conditions as opposed to Visual Meteorological Conditions), struck a tree
branch (Object encountered) and damaged the wing. Hence, he diverted to another airport,
landing there in emergency conditions. This type combination is what EVA aims to construct by its
operators as described in the main article. The dataset is made publicly available in our repository,
http://github.com/eva-iclr-2021/EVA.
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Table 8: ASRS. Person entity

Person

Function Qualification Experience Human Factors

Flight crew
Captain Student Total Communication breakdown

Check Pilot Sport Last 90 days Confusion
First Officer Private Distraction

Flight Engineer Commercial Fatigue
Instructor Air Transport Pilot Human-Machine Interaction

Pilot Flying Flight Instructor Physiological
Pilot not Flying Multiengine Situational Awareness

Relief Pilot Instrument Time Pressure
Single Pilot Flight Engineer Training/Qualification

Trainee Rotorcraft Workload
Other Lighter-Than-Air Other

Sea
Glider Location in aircraft

Air Traffic Control Flight deck
Approach Fully certified Radar Cabin Jumpseat

Coordinator Developmental Non-radar Crew Rest Area
Departure Military Dooe Area

Enroute Supervisory Galley
Flight data General Searing Area

Flight service Lavatory
Ground Other

Handoff
Instructor

Trainee
Local

Oceanic
Supervisor

Traffic Management
Other

Maintenance
Inspector Airframe Avionics
Instructor Powerplant Inspector

Lead Technician Appentice Lead Technician
Parts/Stores Personnel Avionics Repairman

Quality Assurance Inspection Authority Technician
Technician Nondestructive Testing

Trainee Repairman
Other
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Table 9: ASRS. Events entity

Events

Anomalies Assessment Results
Primary or

Contributory factor

Aircraft Equipment General
Critical Aircraft Declared Emergency

Less severe Airport Evacuated
Airspace structure Flight Cancelled/Delayed

Airspace Violation ATC Equip Maintenance Action
All types /Nav Facility/Buildings Physical Injury/Incapacitation

ATC Issues Chart or Publication Police/Security Involved
All types Company Policy Release Refused/Aircraft not Accepted

Flight Deck/Cabin/Aircraft Equipment/Tooling Work Refused
Illness Env. non-weather related None

Passenger Electronic Device Human Factors Flight crew
Passenger Misconduct Incorrect/Not Instal. Reoriented

Smoke/Fire/Fumes/Odor /Unav. Part Diverted
Other Logbook Entry FLC Overrode Automation

Conflict Manuals FLC Complied
NMAC MEL Executed Go Around/Missed Approach

Airbone conflict Procedure Exited Penetrated Airspace
Ground Conflict, critical Staffing Inflight Shutdown

Ground Conflict, less severe Weather Landed as Precaution
Deviation - Altitude Overcame Equipment Problem

Crossing Restriction Not Met Regained Aircraft Control
Excursion from Assigned Altitude Rejected Takeoff

Overshoot Requested ATC Assistance/Clarification
Undershoot Returned to Clearance

Deviation - Speed or Track/Healing Returned to Departure Airport
All types Returned to Gate

Deviation - Procedural Took Evasive Action
Clearance Air Traffic Control

FAR Provided Assistance
Hazardous Material Violation Issued Advisory/Alert

Landing without Clearance Issued New Clearance
Maintenance Separated Traffic

MEL Aircraft
Published Material/Policy 5205 - Security Aircraft Damaged

Weight and Balance Automation Overrode Flight Crew
Other/Unknown Equipment Problem Dissipated

Ground Excursion/Incursion
Ramp

Runaway
Taxiway

Ground Event/Encounter
Aircraft

FOD
Gear Up Landing

Ground Strike Aircraf
Loss of Aircraft Control

Object
Person/Animal/Bird

Vehicle
Other

Inflight Event/Encounter
CFTT/CFIT

Fuel Issue
Loss of Aircraft Control 5215 - Object

Bird/Animal
Unstabilized Approach

VFR in IMC
Wake Vortex Encounter

Weather/Turbulence
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