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Abstract

Recent work has shown that reinforcement learning agents can develop policies that exploit
spurious correlations between rewards and observations. This phenomenon, known as policy
confounding, arises because the agent’s policy influences both past and future observation
variables, creating a feedback loop that can hinder the agent’s ability to generalize beyond
its usual trajectories. In this paper, we show that the advantage function, commonly used
in policy gradient methods, not only reduces the variance of gradient estimates but also
mitigates the effects of policy confounding. By adjusting action values relative to the state
representation, the advantage function downweights state-action pairs that are more likely
under the current policy, breaking spurious correlations and encouraging the agent to focus
on causal factors. We provide both analytical and empirical evidence demonstrating that
training with the advantage function leads to improved out-of-trajectory performance.

1 Introduction

Imagine a robot trained to perform two tasks: first, navigate from your office to the coffee machine, retrieve
a cup of coffee, and return; second, go to the printer room, make copies, and return. There are two possible
routes to the coffee machine: one through the printer room and another through a direct corridor. Since
the corridor route is shorter, the robot typically avoids the printer room when fetching coffee. However, one
day, the corridor is blocked and the robot takes the path through the printer room, unexpectedly returning
with a copy of a paper titled Breaking Habits.

Why did this happen? After repeatedly performing these tasks, the robot incorrectly associated the printer
room with the need to make copies, turning this misassociation into a habit. While this habit works fine
under normal conditions, it fails when the robot is forced to deviate from its usual path. This failure
mode, referred to as out-of-trajectory generalization, was explored by |Suau et al.| (2024) in the context of
reinforcement learning (RL). The authors showed that such issues arise because the agent’s policy introduces
spurious correlations (Pearl et al.,|2016|) between rewards and observations, a phenomenon they termed policy
confounding.

Contributions In this paper, we observe that the advantage function, commonly used in many policy gra-
dient methods, not only reduces the variance of gradient updates but also plays a crucial role in mitigating
this issue. We demonstrate, both analytically and experimentally, that using the advantage function encour-
ages the agent to learn representations that rely more on the true causal factors. It achieves this by scaling
state-action pairs according to their probability under a given policy and state representation, effectively
breaking the spurious correlations introduced by the agent’s policy and enabling improved out-of-trajectory
generalization.

To support the theoretical findings, experiments are conducted in three simple environments. The results
indicate that agents trained with @-values fail to generalize beyond their usual trajectories, whereas agents
trained with the advantage function exhibit robustness to trajectory deviations. Furthermore, an analysis
of the learned state representations reveals that the latter focus on causal factors rather than exploiting
spurious correlations.
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Finally, we examine the impact of implementation choices, such as batch size and advantage normalization.
Through experiments, we show that these factors can significantly affect the learned state representations.

2 Example: Key2Door

We use the Key2Door environment throughout the paper to illustrate the ideas. Figure [I] depicts a simple
gridworld. The agent’s objective is to collect a key at the beginning of a corridor and then open the door at
the end.

The agent’s state is described by two variables: its current location L € {1,2,...,6}, and a binary variable
X € {0, 1} indicating whether the agent has collected the key. At each location, the agent can move left
(A =0) or right (A = 1).When the agent reaches the door, the episode terminates and it receives a reward of
+1 if it has collected the key, or 0 otherwise. The agent also receives a small per-timestep penalty of —0.01
to encourage shorter paths.

During training, the agent always starts at location
2. As a result, once the agent has collected the key

and is moving toward the door, it can disregard the L 2 3 4 5 6
key when it reaches location 3. The agent can learn KEY, | START START
to use its location as a proxy for whether it has the rain po— o

key. This approach works well only if the agent fol-
lows the optimal policy (purple arrow); under ran-
dom or suboptimal policies, location alone does not Figure 1: Key2Door environment.
reliably indicate key possession.

This environment highlights the risk of policy con-

founding. An agent that relies solely on its location will fail when evaluated in the same task, but starting,
for example, from location 6. The agent will attempt to move right to open the door immediately after the
episode starts, even though it has not collected the key.

3 Related work

The term policy confounding was introduced by [Suau et al.| (2024) to describe a phenomenon in which
policies, by influencing both past and future observation variables, induce spurious correlations. These
correlations can lead the agent to develop shortcuts, referred to as habits, that are effective only within
the trajectories the agent typically follows but fail to generalize out-of-trajectory. Out-of-trajectory (OOT)
generalization is a specific instance of the broader problem of out-of-distribution (OOD) generalization
et al, [2023)). Unlike OOD generalization, which focuses on adapting to environments with different rewards
Taylor & Parr, |2009), observations (Mandlekar et al. |2017; |Zhang et al., |2020a)), or transition dynamics
Higgins et al., 2017), OOT generalization seeks to enable agents to generalize across alternative trajectories
within the same environment. Empirical evidence of policy confounding has been reported in several studies
(Machado et al.l 2018} Song et al., 2020; Lan et al.,[2023; |He et al.,|2024; Weltevrede et al.,2024). Similarly,
prior work has examined confounding in the context of imitation learning (De Haan et al. 2019; Zhang et al.l
[2020b; [ Tennenholtz et al.l |2021} Ding et al., 2023). However, unlike policy confounding, these works focus
on cases where the agent does not actively contribute to the formation of spurious correlations.

The connection between the advantage function and causality has been explored in prior work.
use the advantage function to differentiate between agent-driven effects and external environ-
mental factors, constructing a hierarchy of transformations that the agent can perform on its environment.
[Pan et al. (2022)) argue that the advantage function can be interpreted as a measure of an action’s causal
effect on return and introduce a method for learning advantages directly from on-policy data without relying
on a value function. This approach was later extended to support off-policy data (Pan & Scholkopf, [2024]).
While not explicitly framing the advantage function in causal terms, Raileanu & Fergus| (2021)) describe it
as a measure of the expected additional return gained by selecting a particular action over following the
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current policy. Their experiments suggest that the advantage function is less prone to overfitting to certain
environment-specific idiosyncrasies.

Our work is strongly influenced by [Chung et al| (2021)), who showed that the choice of baseline in policy
gradient updates can sometimes lead to overly aggressive updates, causing what the authors term committal
behavior, which may result in suboptimal policies. further analyzed the theoretical proper-
ties of state-value baselines (i.e., advantages), demonstrating that they moderate update aggressiveness and
ensure convergence to the optimal policy. As we discuss in the following sections, these insights are closely
connected to the findings presented in this work.

4  Preliminaries

In this section, we define the notation, introduce the problem formulation, and review the necessary back-
ground, including the notions of state representation and policy confounding. For a more comprehensive
discussion of these concepts, we refer the reader to Suau et al. (2024).

4.1 Notation

Random variables are denoted by capital letters (e.g., S), their values by lowercase letters (e.g., s), and
their domains by calligraphic letters (e.g., S). For a set of random variables F = {F' ..., FIFI} with
corresponding domains F',..., FIFl we use xF = F' x ... x FIFl. This notation represents all possible
combinations of values for the variables in F'. A specific assignment of values to the variables in F' is denoted
by (f1,..., fIFly € xF.

4.2 Problem Formulation

We formalize the decision-making problem using the standard framework of Markov decision processes.
Definition 1 (MDP). A Markov decision process (MDP) is a tuple (S, A, T, R), where S is the set of states,
A is the set of actions, T': S x A — A(S) is the transition function, and R : § x A — R is the reward
function.

In this work, we focus on a subclass of MDPs in which states are represented by a set of observation variables,
or factors (Boutilier et all [1999). This representation is common in tasks that involve modeling policies and
value functions using function approximators (Francois-Lavet et al., [2018). These observation variables
typically describe features of the agent’s state in the environment.

Definition 2 (FMDP). A Factored Markov decision process (FMDP) is an MDP in which the state space
is defined by a set of state variables, F = {F! ..., F |7 ‘} . Each variable F? takes values its domain
Fi. Consequently, each state s € S corresponds to a unique combination of values for these variables,
s=(fY... fifexF=s.

4.3 State representations

The agent’s objective is to find a policy 7 : § — A(A) € II that maximizes the expected discounted sum of
rewards (Sutton & Barto| [2018). However, learning a policy that conditions on every observation variable
might be impractical, especially in scenarios with a large number of variables. Fortunately, in many problems,
not all variables are essential, and compact state representations can be found that are sufficient for solving
the task at hand (McCallum, [1995). This is where function approximators, such as neural networks, come
into play. When used to model policies and value functions, they may learn to ignore certain state variables
if they are deemed unnecessary for predicting rewards or transitions.

Definition 3 (State representation). A state representation is a function ® : S — S, where S = xF,
S=xF,and F C F.

Intuitively, a state representation ®(s;) is a projection of a state s € S onto a lower-dimensional space S,
defined by a subset of its variables. We use {s}® = {s’ € S : ®(s’) = ®(s)} to denote the equivalence class
of s under ®.



Under review as submission to TMLR

Throughout this paper, we use ® as a notational device to reason about the information retained by function
approximators. Rather than assuming an explicit abstraction step, ® represents the effective state infor-
mation on which a learned policy or value function conditions. In this sense, ® captures the implicit state
compression induced by function approximation, allowing us to analyze which variables are ignored and the
consequences of doing so.

In the Key2Door example a potential state representation could be ®(s;) = (I;) for all s, € S. This
representation retains only the agent’s current location, ignoring all other variables. Therefore, all states
that share the same location belong to the same equivalence class.

4.4 Reward and Transition Function under a State Representation

When multiple ground states map to the same state representation, rewards and transition dynamics must
be defined by aggregating over those states.

Definition 4 (Policy-induced reward and transition functions under ®). Let ® : S — S be a state repre-
sentation and let m be a policy inducing a stationary distribution d™ over S. The policy-induced reward and
transition function under ® are defined as

R3(®(st),ar) = Z P7(sy | ®(s¢)) R(s}, ar),

sp€{se}®

T3 (®(ser1) | ®(se)iar) = ) Y PT(st | @(s0)) T(sty | 81, ar),

spE{ser1} T sp€{s:} 7
where {s}? :={s' € S: ®(s') = ®(s)} and
d™(st)

P7(s} | ®(s¢)) := m.

4.5 Markov State Representations

Not all state representations are sufficient for solving the task. Some representations may exclude variables
that carry valuable information. For example, in the Key2Door example, knowing whether the key has been
collected is essential for selecting optimal actions.

Definition 5 (Markov state representation). A state representation ® is Markov if, for all s;,s.41 € S,
a; € A, and 7w € II,

R(sy,ar) = R (®(s¢),a¢) and Do Tt [ sia0) = Tg(@(sig1) | D(s1), ar)-

S£+1 E{st41}?

Note that although R and Tg are defined with respect to a policy m, Markov state representations require
the above equalities to hold for all policies.

The above definition is analogous to the notion of bisimulation (Dean & Givanl [1997; |Givan et al., |2003)
or model-irrelevance state abstraction (Li et al., [2006). Markov state representations are guaranteed to be
behaviorally equivalent to the original representation.

However, an agent following a fixed policy 7 may admit even more compact representations that are Markov
only over the states and actions encountered under that policy.

Definition 6 (w-Markov state representation). A state representation is w-Markov, denoted @7, if, for all
states visited under 7, s;, 5,41 € S™ and all a; € supp(7(- | s5¢)),

R(st,a) = Rg(®7 (s¢),a;) and D T(sh | sta) = Tg(@ (si41) | @7 (s1), ar),

si E{se11}2"
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4.6 Policy Confounding

The phenomenon of policy confounding plays a critical role in the emergence of simplified state representa-
tions. When learning from data generated by a fixed policy, a function approximator may exploit spurious
correlations induced by that policy, rather than relying on the true causal factors governing rewards and
transitions. As a result, the learned representation may appear sufficient under the policy being followed,
while failing to generalize to interventions or policy changes.

To formalize this notion, we adopt a causal perspective and use the do-operator (Pearl et al.l[2016)), which rep-
resents physical interventions that break policy-induced correlations. In our setting, do(®(s;)) corresponds
to intervening on the variables selected by the state representation ®, setting them to a particular value
while allowing the remaining state variables to vary according to the environment’s transition dynamics,
independently of the policy being followed.

Definition 7 (Policy confounding). A m-Markov state representation ®™ is said to be confounded by policy
7 if there exist s, s:11 € S and a; € A such that

Re(D7(s1),ar) # Rg(do(@7(st)), ar),

T3 (@7 (st41) | 7 (1), a1) # T (P (s¢41) [ do(R7(s¢)), ar)-

Intuitively, a representation is policy-confounded if the reward or transition dynamics depend on correlations
induced by the policy, rather than on the underlying causal factors. Under intervention, these correlations
are broken, revealing discrepancies in the induced rewards or transitions.

For example, in the Key2Door environment, when following the optimal policy 7* (purple path in Figure
, being at location L = 6 perfectly predicts that the agent has the key. Consequently, Rg* (L =6)=+1.
However, under the intervention do(L = 6), the agent may or may not have collected the key, yielding
RZ (do(L = 6)) € {—1,+1}.

Strictly speaking, the only representations that are guaranteed to be invariant to such interventions are
Markov state representations (Suau et al.| [2021, Theorem 1). These representations are independent of the
agent’s policy and necessarily include all causal factors governing rewards and transitions. In the remainder
of the paper, we therefore refer to Markov state representations as causal state representations.

4.7 Policy gradient and advantage function

[Suau et al.| (2024) demonstrated that the phenomenon of policy confounding is particularly problematic when
training agents with on-policy methods. This is because, when updating the policy, on-policy methods rely
solely on trajectories collected using the current policy. This contrasts with off-policy methods, where the
agent is trained on trajectories generated by multiple policies, thus broadening the trajectory distribution
and reducing the risk of the agent picking up on spurious correlations present in specific trajectories.

A popular family of on-policy methods includes those that directly optimize the policy by following the
gradient of the expected return with respect to the policy parameters, §. The policy gradient theorem
(Marbach & Tsitsiklis| [1999; |Sutton et al., [1999) formalizes this as:

Ve'ﬂ'e(at | St)
mo(at | st)

where Q7 (s¢, a;) is the action-value function under policy .

VQJ(TQ) = Esmat’\/ﬂ'e Qﬂ(sta at) s (1)

Following this gradient increases the likelihood of sampling actions that lead to high returns while reducing
the probability of actions leading to lower returns. However, in practice, computing the exact gradient is
infeasible. Instead, we approximate the gradient using sample estimates from trajectories collected by the
policy, which introduces high variance.

A common strategy to reduce variance is to subtract the state value function V™ (s;) from the Q-value (Baird
[1994} |Greensmith et al.l [2001)), leading to the definition of the advantage function:
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AW(Shat) = QT((St, at) — V”(st). (2)

This adjustment does not introduce bias, as the value function is independent of the action, but significantly
reduces the variance of the gradient estimation.

5 The role of the advantage in learning causal state representations

In this section, we show that beyond its well-known role in variance reduction, the advantage function im-
plicitly counteracts policy confounding by reweighting state—action samples within representation-induced
equivalence classes. This reweighting attenuates spurious correlations introduced by the policy, thus pre-
venting the agent from forming habits and biasing learning toward variables that are causally relevant for
rewards and transitions. All proofs for the theoretical results in this section can be found in Appendix [A]

5.1 Value and advantage function under a state representation

Computing the advantage typically involves fitting a model to approximate the value function. Conceptually,
the value function can be decomposed into a state representation function ®(s), which projects the states
into a lower-dimensional space defined by the subset of variables, and a function V7 (®(s)) that maps the
state representation to a scalar value.

Definition 8 (V™ and Q™ under ®). Let ® : S — S be a state representation (Definition [3) that induces
an equivalence class {s}® := {s’ € § : ®(s') = ®(s)}. Then the state value V : S — R and state-action
value QF : & x A — R under ® are defined as:

VE(®(si)) = Y PT(s) | @(s)) V7(s))

sipe{s}®

and

Q5(2(se) ) = Y P(si | @(s0)) Q7 (s, ),

s,E€{s¢}®
where P7(- | ®(s;)) denotes the on-policy distribution over ground states conditioned on the representation
value (Definition 4)).
These quantities should be understood as theoretical objects that characterize the information retained by

the representation under policy w. They are not assumed to be explicitly computed by the agent.

When the representation is causal (i.e., Markov), these conditional expectations collapse to the original value
functions.

Lemma 1. Let ® be a Causal (Markov) State Representation (Definition[5), then

Q" (st,ar) = Q"(sy, 1) = Q§(®(s1),ar)  and  V7(s) = V7(sy) = Vg (D(s1)) (3)
forallac€ A, s €S, and, s’ € {s}®.
Lemma [I] formalizes the defining property of causal state representations: all states within an equivalence

class are behaviorally indistinguishable with respect to rewards and transitions, rendering value functions
invariant within the class.

We now define the advantage function induced by a state representation ®.

Definition 9 (Advantage under ®). Given a state representation ®, the advantage function under & is
defined as

AT (s, a1) = Q™ (s¢,a4) — VT (D(s1)).
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Note that there is an inherent asymmetry in Deﬁnition@ the state-action value Q™ (s, a;) is defined at the
level of full states, while the baseline V™ (®(s;)) aggregates over the equivalence class induced by ®.

This asymmetry arises because in most policy gradient methods Q™ (s, a;) is estimated from Monte Carlo
rollouts for each ground state s; and action a;, making it independent of the representation ®(s;). In contrast,
V& (®(st)), modeled using a function approximator, aggregates values over all states in the equivalence class
{s:}®, effectively marginalizing out the variables not preserved by ®. As a result, AT quantifies the deviation
of a specific state-action pair from the expected value given the agent’s state representation.

5.2 The scaling effect of the advantage function

We now characterize how the advantage function reweights state-action pairs within a representation-induced
equivalence class.

Theorem 1. Let ® be an arbitrary state representation. The advantage function can be expressed as

Ag(sesar) = (1= P (5,0 | 0(s0))) (@7 (s1,01) = Q5 (s, a0)) ) (4)

where o o
Q”( <S a >) ._ Zsévaﬁ,#shat P (St7(lt | (I)(St)) Q7 (s}, a;) 5
' o 2327%7&5“% P7(sy,ap | ©(s1))

is the complementary baseline, and
PT(se,ar | ©(st)) := mo(ar | D(s)) PT(s¢ | (s1))
denotes the on-policy probability of observing the state-action pair (sy, a;) conditioned on P(sy).

Theorem [1| decomposes the advantage into two components:

1. Scaling term: 1 — P™(s¢,a; | ©(s¢)), which downweights the contribution of frequently observed
state-action pairs while amplifying rare ones. This reweighting mitigates biases introduced by the
policy and reduces the dominance of high-probability pairs, helping to break spurious correlations.

2. Contrastive term: Q™ (s, a;) — QF(—(ss,a;)) measures how much better or worse a state-action
pair is relative to the complementary set in the same equivalence class. The complementary baseline

Q7 is defined as the conditional expectation over all other pairs (s’,a’) # (s¢,a¢). While changing

Pr™(s¢, ar | ®(s¢)) renormalizes the remaining distribution, the effect on QF is not determined by
this change alone, as it depends on how probability mass is redistributed among the other pairs.

Corollary 1. Let @ be a Causal (Markov) State Representation. Then the advantage function can be written
as

Ag(s1,00) = (1= malar | (50)) (@7 (s1500) — Qo —ar) ) (6)

where Z (a} | ®(s¢)) Q™ (st,0a})
. Ve, (| (1)) Q7 (1,0
Qp (51, -ar) == Darsa, Tlay | B(se)) "

This follows directly from Theorem[[Jand Lemmal[l] In this case, all state-dependent scaling vanishes because
the representation ® already captures the true causal factors.

5.3 Impact on policy gradients

The considerations discussed above would be irrelevant if policy updates strictly followed the exact policy
gradient, since the advantage function does not change the expected gradient (Sutton & Barto, [2018]).
However, as discussed in Section[4.7] in practice policy gradients are estimated using sample-based stochastic
gradients.
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Consequently, for a given representation ®(s;), it is often the case that all samples in a mini-batch correspond
to a single ground state s;, rather than covering all states s, € {s}®. When updates rely directly on Q-values
instead of advantages AZJ, this can lead to overly aggressive gradient steps (Chung et al., 2021)), causing the
agent to reinforce spurious correlations and develop habits that fail to generalize. The effect compounds as
the policy reinforces frequently observed state-action pairs, creating a feedback loop . In the
extreme case of a near-deterministic policy, some state-action pairs may be visited so rarely that correcting
overestimation errors would require an infeasibly large number of samples.

In contrast, the advantage function A7 mitigates this problem by scaling gradients according to the prob-
ability of each state-action pair (Theorem . Gradients for frequently sampled pairs are moderated, while
gradients for less common but informative pairs are amplified. This mechanism helps the agent avoid over-
fitting to spurious correlations and encourages learning based on the causal factors relevant to the task.

5.4 Practical considerations

One alternative to using advantages is to increase the batch size, ensuring that each batch more fully covers
all states within an equivalence class. However, the batch size required to achieve this may be prohibitively
large, depending on the environment. Using advantage functions is generally a more practical and effective
solution.

It is also important to note that [Suau et al, (2024) report that PPO often struggles with out-of-trajectory
generalization, even though default implementations already use advantages. We hypothesize that this
limitation arises because, in most PPO implementations, advantages within each mini-batch are normalized
before the network update. This normalization removes the scaling effect described in Theorem [1} reducing
the ability of the advantage function to counteract policy confounding. Both aspects—batch coverage and
advantage normalization—are further analyzed in the experiments section.

5.5 Numerical Example: Key2Door

To illustrate the effect of the advantage function in mitigating policy confounding, we revisit the Key2Door
environment (Section Figure . Suppose the agent’s state representation includes only the location
variable, ®(s) = I.

Table |1| presents the @-values and corresponding advantages A7 when the agent is at location 6'E| both with
(X = 1) and without the key (X = 0), under five different policies. These policies differ in the probability
of selecting the optimal action, taking the values 0.5, 0.6, 0.7, 0.8, and 0.9. This allows us to isolate the
effect of increasing policy determinism on the distribution of visited state—action pairs. The last two columns
indicate the probability that the agent has P™(X = 1| L = 6) or does not have P™(X = 0| L = 6) the key
at location 6. Pl

As revealed by Theorem [} the magnitude of the advantage depends on the joint probability of visiting a
specific state-action pair. In particular:

o The advantage of moving right (A = 1) with the key decreases as the probability of having the
key increases. For example, when P™(X = 1| L = 6) = 0.832, the advantage is 0.305, but when
P™(X =1|L=06)=0.999, it drops to 0.006, even though the corresponding Q-value remains 1.

o Conversely, the advantage of moving right (A4 = 1) without the key increases in magnitude as the
probability of not having the key decreases. For instance, it is —0.695 when P™(X =0 | L = 6) =
0.168, but —0.994 when P™(X = 0| L = 6) = 0.000, while the Q-value remains 0.

1Policy confounding arises at multiple locations in this environment (specifically L € {3,4,5,6}) where the agent’s location
becomes correlated with having collected the key. We focus on L = 6 because it is closest to the door, which makes the
numerical analysis easiest to interpret and also makes confounding particularly pronounced. In fact, even under a fully random
policy, reaching L = 6 is already highly correlated with having collected the key.

2Q-values and advantages are computed using value iteration. P™(X | L = 6) is estimated by simulating the policy over
multiple episodes.
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Table 1: @-values, advantages, and probabilities of key and no key when the agent is at location 6 under
five different policies. The agent’s state representation consists solely of the location variable.

Q-value Advantage ®(s) =1 P™(X|L=6)
No Key Key No Key Key No Key Key
Left Right Left Right Left Right Left Right

m(a*|s)=0.5 0.038 0 0.662 1 -0.657 -0.695 -0.033  0.305 0.168 0.832
m(a*|s)=0.6 0.274 0 0.839 1 -0.608 -0.882 -0.043 0.118 0.069 0.931
m(a*|s)=0.7 0.504 0 0.905 1 -0.456  -0.960 -0.055 0.040 0.018 0.982
m(a* | s)=0.8 0.664 0 0.934 1 -0.321  -0.985 -0.051 0.015 0.003 0.997
m(a*|s)=0.9 0.759 0 0.950 1 -0.235 -0.994 -0.044 0.006 0.000 0.999

The above is important because, as the policy improves, high-probability state-action pairs such as (L =
6,X =1, A = 1) dominate the training batches, while less frequent but informative pairs, e.g., (L =6, X =
0, A = 1), are underrepresented. Training on raw @-values treats all observed pairs equally, which can lead
the agent to ignore the key variable X and exploit spurious correlations between location 6 and having the
key. Notably, even under a random policy (top row of Table , the probability of having the key at location
6 is already 0.832, so the agent often receives a reward of 1 simply by moving right, without explicitly
reasoning about whether it has the key.

In contrast, training with the advantage function A} counteracts this overrepresentation. For example, under
the random policy, the advantage of moving right without the key is strongly negative (—0.695), while moving
right with the key has a moderate positive advantage (0.305). These differences in magnitude effectively
reweight the gradient updates, emphasizing rare but informative state-action pairs and discouraging the
agent from developing habits that rely solely on location. As a result, the agent is more likely to attend to
the underlying causal factor, i.e., whether it has the key, rather than overfitting to the spurious correlation
with location.

6 Experiments

The experiments aim to verify whether the insights discussed in the previous section hold in practice.
Specifically, we seek to demonstrate that training on the advantage function, rather than raw Q-values, helps
agents develop state representations that better capture causal factors and thus generalize out-of-trajectory.
To test this, we conduct experiments on three gridworld environments: the Key2Door environment described
in Section [2} as well as the Frozen T-Maze and Diversion environments introduced by [Suau et al.| (2024)).

We evaluate the agent’s performance in both the training environments and in modified versions, referred
to as the evaluation environments, where, like in the Key2Door environment, the agent is forced to deviate
from its usual trajectory. Furthermore, we analyze the effects of advantage normalization and batch size,
which, as discussed in Section [5.4] can influence out-of-trajectory generalization. Finally, we inspect the
state representations learned by the agents by measuring the KL divergence of the policies between various
state observations. Details about the T-Maze and Diversion environments are provided in Appendix [C]

6.1 Experimental setup

Agents are trained using two different on-policy policy-gradient methods, REINFORCE (Williams, |1992)) and
PPO (Schulman et all 2017) to maximize either the advantage or the Q-value. We implement policies and
value functions as feedforward neural networks and use a stack of past observations as input in environments
that require memory. The results are averaged over 10 random seeds. We report the average return as a
function of the number of training steps. The shaded areas show the standard error of the mean. Training is
interleaved with periodic evaluations in the original environments and their variants. Further details about
the experimental setup are provided in Appendix



Under review as submission to TMLR

Key2Door

o
©

4
o

o
'S

-+- PPO advantage train
—— PPO advantage eval
--- PPO Q-value train
—e— PPO Q-value eval

Average Return

0.25 0.50

Steps

0.75

Diversion

Frozen T-Maze

c 06 c
=] =1

@ 04 2

o -4

o 0.2 [}

o ! o

© 0.0 f/ f © f

o | -=- PPO advantage train ] --- PPO advantage train
3: ~0.2 7 —— PPO advantage eval 3: —— PPO advantage eval »

--- PPO Q-value train
—e— PPO Q-value eval

--- PPO Q-value train
—e— PPO Q-value eval

0.25 0.50

Steps

0.75 0.0 0.5 1.0

Steps

1.5

Figure 2: Performance of PPO using Q-values and Advantages in both the training and evaluation variants
of the Key2Door (first plot), Frozen T-Maze (second plot), and Diversion (third plot).

6.2 Results

Figure[2]shows the performance curves in all three environments for PPO. Agents trained using the advantage
function (green) perform well in both the training and evaluation environments, indicating robust out-of-

trajectory generalization.

In contrast, agents trained on the @-value (magenta) perform poorly in the

evaluation environments, suggesting that they overfit to correlations present along the training trajectories
and fail when those correlations are broken. Similar results for REINFORCE are reported in Appendix [B.1]

The plot on the left of Fig-
ure [3] reveals how, as discussed
in Section [5.4] normalizing the
advantages removes their scal-
ing effect and results in agents
being unable to perform well
on the evaluation environment.
The plot on the right, on the
other hand, shows how the per-
formance of policies trained on
the @ value improves as we in-
crease the batch size, suggesting
that the problem of state-action
pair imbalance can sometimes be
partly mitigated by using larger
batch sizes. Results for the other
two environments are provided

in Appendices [B:2] and [B23]

The heatmaps in Figure [] show
the KL divergence between the
action distributions when the
agent has the key, n(- | L =
[,X = 1), and when the agent
does not have the key, w(- |
L =1,X = 0) at each location
l, measured at different training
steps. Because these two states
differ only in the key variable
X, the KL divergence isolates
the extent to which the policy’s
behavior depends on the key
rather than on location alone.
Higher KL divergence therefore
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Figure 3: Left: Performance of PPO with and without advantage normal-
ization in the Key2Door evaluation environment. Right: Performance of
PPO with different batch sizes in the Key2Door evaluation environment.
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Figure 4: KL divergence of action probabilities with and without the key,
measured at different training steps for agents trained on the @Q-value and
the Advantage function.
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indicates that the policy conditions its actions on the presence of the key, whereas low KL divergence sug-
gests that the policy largely ignores X and instead relies on spurious correlations induced by the training
trajectory.

The heatmap on the left corresponds to agents trained on the @-value, while the one on the right corresponds
to agents trained on the advantage function. The results show that policies trained on raw Q-values tend
to collapse to similar action distributions regardless of whether the agent has the key, indicating policy
confounding. In contrast, policies trained with advantages maintain distinct action distributions across key
and no-key states, suggesting that the key remains a behaviorally relevant variable throughout training.
Similar results for the Frozen T-Maze and Diversion environments are provided in Appendix [B-4]

7 Limitations

Our analysis assumes discrete state and action spaces, although the results could be extended to continuous
domains. In Section when defining the advantage function under a given state representation ® (Def-
inition E[), we assume that the value function Q7 (s;,a;) is estimated with respect to the full state, while
V7™ (®(s)) is defined for the specific state representation. This assumption is justified in settings where Q7 is
at least partly estimated from Monte Carlo rollouts, as is common in many actor-critic methods. However, if
@ were instead learned entirely via function approximation, then it too would be subject to ®, and Theorem
[[] would no longer hold in its current form.

The experiments were conducted in the same three environments introduced by |Suau et al. (2024), which
were specifically designed to expose the phenomenon of policy confounding. While these environments are
deliberately simple to facilitate analysis, this simplicity limits the generalizability of our findings. As such,
we draw no conclusions about the effectiveness of the advantage function for learning causal representations
in more complex or high-dimensional domains. Addressing this question would require further empirical
investigation and is left for future work. Nevertheless, we believe that the emergence of policy confounding
in such minimal settings suggests that the issue may be at least as severe in more complex environments,
and that the mechanism identified in this work, namely, the reweighting induced by the advantage function,
should transfer to richer domains where similar distributional biases arise.

Finally, throughout the paper, we have taken care not to make strong claims about the effectiveness of the
advantage function in learning causal state representations. Rather, we argue that the advantage function can
mitigate policy confounding and support the formation of more causally grounded representations. However,
its use provides no guarantees that the resulting representations will be truly causal.

8 Conclusion

In this paper, we analyzed the role of the advantage function in helping agents learn causal state represen-
tations. We showed that the advantage function scales the gradients by the complement of the probability
of the corresponding state-action pair. This increases the magnitude of the gradients for state-action pairs
that are less likely under the current policy while decreasing it for those that are more likely. As a result, it
downweights the impact of state-action pairs that are overrepresented in training batches while amplifying
the impact of those that are underrepresented. This helps break spurious correlations introduced by the
policy, allowing agents to focus on the true causal factors. Section [5.5| provides a detailed numerical example
illustrating this effect.

Our experiments on the Key2Door, Frozen T-Maze, and Diversion environments confirmed that training on
advantages leads to more robust agents that generalize better out-of-trajectory. Furthermore, as explained in
Section our empirical results reveal how implementation choices, such as batch size and advantage nor-
malization, affect the learned representations. Finally, the KL-divergence analysis of the action probabilities
further demonstrates that using the advantage function makes agents more reliant on causal factors.
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A Proofs

Theorem 1. Let ® be an arbitrary state representation. The advantage function can be expressed as

Ag(st,ar) = (1= P™(sg, a0 | B(s1))) (Q”(Stvat) - Qg(%st,at))), (4)

where

Qﬂ, ( < >) ng7aé¢st,at Pﬂ— (827 af‘, | ¢(St)) QW(S;? a;)
A St, Q¢ = -
Zs;,aﬁést,at P (82,(12 ‘ (P(St))

is the complementary baseline, and
PT(s¢,ar | ©(s1)) := o (ar | D(s¢)) P (s¢ | (s))

denotes the on-policy probability of observing the state-action pair (s¢, a;) conditioned on P(s¢).

Proof.
Ag(st,ar) = Q™ (s¢,a) — V™ (P(st))

= Q" (star) — Y PT(s}| B(s))V™(s})
spE{s¢}®

=Q"(s,ar) — Y, PT(s} [ ®(s1)) Y mla’ | $,)Q7 (s}, a)
spe{st}® a’eA

= Qﬂ-(stvat) - Z Pﬂ-(sévai ‘ @(St))QW(SQ,ag) (8)
sie{st}q),a;EA

= (1= P (s, a0 | D(s0)))Q (st,ar) — > P7(s},af | D(s))Q" (s}, af)

sy,a,Fs¢,a4
= (1= P (st a0 | D(50)))Q7 (51, a0) — (1= P (54,0 | ®(54)))Q" (= (s, a4)))
= (1= P (st,ar | D(50)))(Q" (51, a1) — Q™ (~(s1, 1))

5t o PS04 | B(50)Q7(54 )
> oo P70 | B(50)

5 o P50 | B(s0))Q7(5h )

B L — P7(s¢,at | D(st))

Q™ (~(st,ar))) =

B Experimental results

B.1 Results using REINFORCE

Figure [5| shows the performance using REINFORCE in the training and evaluation variants of the three
environments.
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Figure 5: Performance of REINFORCE using Q-values and Advantages in both the training and evaluation
variants of the Key2Door (first plot), Frozen T-Maze (second plot), and Diversion (third plot) environments.

B.2 Advantage normalization
Figure [6] compares the performance of PPO with and without advantage normalization in the evaluation

variants of the three environments.
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Figure 6: Performance of PPO with and without advantage normalization in the evaluation variants of the
Key2Door (first plot), Frozen T-Maze (second plot), and Diversion (third plot) environments.

B.3 Batch size

Figure [7] compares the performance of PPO with different batch sizes in the evaluation variants of the three
environments. While increasing the batch size seems to help in the Key2Door and Diversion environments,

it has little effect in the Frozen T-Maze environment.
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Figure 7: Performance of PPO with different batch sizes in the evaluation variants of the Key2Door (first
plot), Frozen T-Maze (second plot), and Diversion (third plot) environments.
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B.4 Policy KL divergence

Frozen T-Maze Figure [8 shows the KL divergence of action probabilities in the Frozen T-Maze envi-
ronment, produced by the policy when the signal is either purple or green, measured at different training
steps (top: 10k steps, middle: 50k steps, bottom: 100k steps). To compute these divergences, we take the
observation stack received by the agent and query the policy network twice: once with the original stack,
and once with the signal bit flipped to the opposite value. The KL divergence at each cell is the average
over 100 evaluation episodes.

The left heatmaps reveal that after 100k training steps, the agent trained on the @-value largely ignores the
signal, except at the starting location. In contrast, the agent trained on the advantage function conditions
its action choices on the signal value throughout the maze.

Interestingly, the left heatmaps also reveal that as training progresses, the trajectories followed by the Q-
value-trained agent become increasingly deterministic. By the end of training, the agent consistently chooses
the top path when the signal is green and the bottom path when the signal is purple. In contrast, the agent
trained on the advantage function continues to follow a diverse set of trajectories and does not exhibit a
strong preference for any particular path. Note that multiple optimal paths exist for each signal value.

o

Figure 8: KL divergence of action probabilities in the Frozen T-Maze environment at different training steps
(top 10k steps, middle 50k steps, and bottom 100k steps) for agents trained on the Q-value (left) and the
Advantage function (right).

Diversion Figure [0 shows the policy KL divergence across each column in the Diversion environment,
measured at different training steps (top: 3k steps, middle: 10k steps, bottom: 20k steps). For each
column, the divergence is computed by comparing the action probabilities output by the agent’s policy when
positioned in the top versus bottom row.
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The left heatmaps indicate that the agent trained on the Q-value learns to ignore the bit indicating the row
after 10k training steps. In contrast, the agent trained on the advantage function continues to use the row
information when deciding which action to take.

Figure 9: KL divergence of action probabilities in the Diversion environment measured at different training
steps (top 3k steps, middle 10k steps, and bottom 20k steps) for agents trained on the Q-value (left) and
the Advantage function (right).

C Environments
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Figure 10: Illustrations of the Frozen T-Maze (left) and Diversion (right) environments.

Frozen T-Maze This environment is a variant of the popular T-Maze setting . At the
starting location, the agent receives a binary signal: either green or purple. Its task is to navigate to the
right and reach the correct goal at the end of the maze. The agent receives a reward of +1 for reaching the
green (purple) goal when the green (purple) signal was observed, and a penalty of —1 otherwise. Additionally,
a time penalty of —0.01 is applied at each timestep to encourage the agent to take the most direct path to
the goal.

At every timestep, the agent observes its current location within the maze, represented by a one-hot-encoded
vector. However, the initial signal, represented by a binary variable, is only provided to the agent at the
starting location. Crucially, the agent is capable of remembering past observations. When moving randomly,
it must retain the initial signal throughout its trajectory. However, once it learns the shortest path to each
goal (illustrated by the green and purple arrows), the agent can safely disregard the initial signal. This is
because the agent can infer the signal based on its location: if it is on the green (purple) path, it must have
received the green (purple) signal. Note that the two paths highlighted in Figure are not the only optimal
ones. However, for the agent to disregard the initial signal, the paths must not overlap.
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We train agents in the original environment and evaluate them in a modified version where an icy surface
(shown in blue) is introduced in the middle of the maze. This ice causes the agent to slip between the upper
and lower cells.

Diversion In this environment, the agent must move from the start state to the goal state shown in
Figure (right). A reward of +1 is given for reaching the goal, and a penalty of —1 is incurred if the
agent reaches the red cell instead. As in the other environments, there is a per-timestep penalty of —0.01.
Observations are 8-dimensional binary vectors: the first 7 elements indicate the column where the agent is
located, and the last element indicates the row.

After the agent learns the optimal policy (shown by the green arrow), it can ignore the last element of the
observation vector. This is because the optimal policy never visits the bottom row. We train the agent in the
original environment and evaluate it in a modified version containing a yellow diversion sign in the middle
of the maze, which forces the agent to move to the bottom row.

D Experimental setup

The experiments were run on a laptop equipped with an Apple M2 Pro processor (12 cores) and 16 GB of
RAM. Each run took less than 5 minutes and used at most 2% of the total RAM.

Agents were trained using Stable Baselines3 (Raffin et al.,2021). The hyperparameters are listed in Tables
(PPO) and 3| (REINFORCE). For PPO, we adopted the hyperparameters used by [Schulman et al.| (2017) in
their Atari experiments, except for the learning rate, which we increased to 1.0e-3 to accelerate convergence.
We implemented a minimal version of the REINFORCE algorithm with only three hyperparameters (learning
rate, discount factor, and entropy coefficient), for which we used the same values as in PPO. For the Frozen
T-Maze, we used a stack of the past 30 observations as input, since solving the task requires memory.

Table 2: PPO hyperparameters.

Rollout steps 128
Batch size 32
Learning rate 1.0e-3
Number epoch 3
Discount ~y 0.99
GAE \ 0.95
Entropy coefficient 1.0e-2
Clip range 0.1
Value coefficient 1
Number Neurons 1st layer 128
Number Neurons 2nd layer 128

Table 3: REINFORCE hyperparameters.

Learning rate 1.0e-3
Discount ~y 0.99
Entropy coefficient 1.0e-2
Number Neurons 1st layer 128
Number Neurons 2nd layer 128
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