
SWBT: Similarity Weighted Behavior Transformer with the Imperfect
Demonstration for Robotic Manipulation

Kun Wu1, Ning Liu2, Zhen Zhao2, Di Qiu3, Jinming Li4,
Zhengping Che2, Zhiyuan Xu2, Qinru Qiu1, and Jian Tang2,†

Abstract— Imitation learning (IL), aiming to learn optimal
control policies from expert demonstrations, has been an effec-
tive method for robot manipulation tasks. However, previous
IL methods either only use expensive expert demonstrations
and omit imperfect demonstrations or rely on interacting with
the environment and learning from online experiences. In
the context of robotic manipulation, we aim to conquer the
above two challenges and propose a novel framework named
Similarity Weighted Behavior Transformer (SWBT). SWBT
effectively learn from both expert and imperfect demonstrations
without interaction with environments. We reveal that the
easy-to-get imperfect demonstrations, such as forward and
inverse dynamics, significantly enhance the network by learning
fruitful information. To the best of our knowledge, we are the
first to attempt to integrate imperfect demonstrations into the
offline imitation learning setting for robot manipulation tasks.
Extensive experiments on the ManiSkill2 benchmark built
on the high-fidelity Sapien simulator and real-world robotic
manipulation tasks demonstrated that the proposed method
can extract better features and improve the success rates for all
tasks. Our code will be released upon acceptance of the paper.

I. INTRODUCTION

Reinforcement learning (RL) and Imitation Learning (IL)
techniques have been extensively researched and applied
in the context of robotic manipulation tasks [1], [2], [3],
[4], [5], [6] in recent years. RL requires an explicit reward
function elaborately pre-defined to guide the agent’s action.
Nonetheless, many real-world tasks are intrinsically com-
plicated, making the design of an effective reward function
challenging [7], [8]. Imitation learning (IL) aims to directly
learn from the demonstrations without designing an explicit
reward function and thus is more practical to be applied to
real-world applications [9], [10], [11]. Many works of IL
require online interactions, which are costly or dangerous,
such as robotic manipulation and autonomous driving. On
the other hand, offline IL enables data collection in advance,
thus independent of online training. Meanwhile, early works
of IL normally assume the demonstration is optimal, such as
behavioral cloning [12]. The assumption of ideal demonstra-
tions is infeasible or extensively costly since collecting high-
quality demonstrations by human labor sometimes would
make mistakes. For instance, SayCan [13] collected 276k
episodes of data and only retained 12k successful episodes

1Syracuse University, NY, USA {kwu102, qiqiu}@syr.edu
2Midea Group, China {liuning22, zhaozhen8, chezp,

xuzy70, tangjian22}@midea.com
3Peking University, China qiudi@stu.pku.edu.cn
4Shanghai University, China ljm2022@shu.edu.cn
This work was done during Di Qiu’s and Jinming Li’s internship at

Midea Group. †Corresponding author: Jian Tang.

after applying stringent filtering criteria, resulting in more
than 90% of the data being wasted.

To address this challenge, recent research in offline
IL [14], [15], [16] has emerged, aiming to utilize imperfect
demonstrations for agent training. For instance, 2IWIL [14]
introduced confidence scores that assess the likelihood of a
trajectory being optimal. However, these scores still require
manual labeling by human experts for each transition in
the imperfect demonstration. DemoDICE [15] formulates
an offline IL objective to utilize imperfect demonstrations
and mitigate distribution shift from the expert demonstration
distribution. However, in the context of robotic manipu-
lation, where data dimensionality is significantly higher,
DemoDICE may struggle to accurately align with the data
distribution. Another approach, DWBC [17], introduces an
additional discriminator to distinguish expert and non-expert
demonstrations to mitigate the reward learning as well as
leverage imperfect demonstrations. Nonetheless, training the
discriminator necessitates costly hyperparameter tuning and
struggle with high-dimensional data. Consequently, there is
a need for effective offline IL methods capable of leveraging
imperfect demonstrations without manual labeling in the
context of robotic manipulation with high-dimensional input.

Moreover, recent works [5], [18], [19] have demonstrated
that transformers are a suitable option for handling sequential
decision-making problems. Recent work Decision Trans-
former [20] seeks to unify ideas in language modeling and
RL by employing the GPT architecture to autoregressively
model trajectories and output actions directly. In the context
of robotic manipulation settings, we integrate the potent
transformer architecture to extract the features of sequential
visual-based frames within our proposed framework.

To this end, we propose a novel offline IL-based frame-
work for robotic manipulation, which leveraging imper-
fect demonstrations, named Similarity Weighted Behavior
Transformer (SWBT). Specifically, SWBT contains three
main steps. In step 1, we pre-train a multi-modality trans-
former network using the mixed demonstrations in a self-
supervised manner to extract representative features. Since
the imperfect demonstrations are readily collected, the mixed
demonstrations contain a large amount of fruitful imper-
fect demonstrations, enabling the transformer to learn large
action space knowledge. Inspired by pretraning in Natu-
ral Language Processing such as BERT [21], we propose
three self-supervised approaches to enhance the pre-trained
transformer, including 1) Masked Transition Prediction, 2)
Transition Reconstruction, and 3) Action Autoregression.

ar
X

iv
:2

40
1.

08
95

7v
1

 [
cs

.R
O

]
 1

7
Ja

n
20

24

These approaches enable the transformer to take on different
roles like a forward dynamic model, inverse dynamic model,
and behavior cloning model and thus enhance its ability to
extract effective features. In step 2, we aim to identify the
useful imperfect demonstrations for training the transformer.
Thus, we leverage the pre-trained transformer in step 1 to
extract the features and then generate the quality scores
by calculating the similarity between the extracted features
of the imperfect and expert demonstrations for each state-
action pair in the imperfect demonstrations. By doing so, no
extra modules, such as discriminator in [17] are introduced,
and the quality scores indicate the quality of the imperfect
demonstrations. The simplicity also makes the performance
more robust since it does not require much hyper-tuning.
In step 3, we perform end-to-end fine-tuning process on the
transformer using both expert and imperfect demonstrations.
To differentiate the quality of imperfect demonstrations and
ensure their beneficial contribution to the transformer, we
propose the quality scores calculated in step 2 as weights
for the behavior cloning loss. Our contributions as follows.

• We introduce the Similarity Weighted Behavior Trans-
former (SWBT). To the best of our knowledge, SWBT
is the first work to simultaneously utilize both expert
and imperfect demonstrations for training robot manipu-
lation policies within offline imitation learning settings.

• The robust transformer architecture is leveraged to
pre-train an effective feature extractor and introduced
quality scores to identify beneficial imperfect demon-
strations and eventually improve the success rates of
robotic manipulation tasks.

• Extensive experiments on the ManiSkill2 benchmark
demonstrated that SWBT can effectively utilize imper-
fect demonstrations to improve performance. In addi-
tion, our real-world experiments verified that SWBT can
be successfully applied to real-world applications.

II. RELATED WORK

A. Offline Imitation Learning with Imperfect Demonstrations

Offline IL has enormous potential to meet critical safety
and cost desiderata for real-world applications. Earlier IL
method Behavior Cloning (BC) [12] can be used in the
offline setting seamlessly and gain comparable performance
compared to GAIL methods [22]. IBC [23] and Diffusion
Policy [6] further enhance BC by introducing the energy-
based models and diffusion models [24]. Another category
method, offline inverse reinforcement learning (Offline IRL),
focuses on training a discriminator in an adversarial man-
ner [25], [26], [27], [28] or learning a reward function [29]
to match the distribution of the expert demonstrations. How-
ever, most of these works are based on the assumption that all
demonstrations are optimal, thus dropping their performance
with imperfect demonstrations.

To mitigate the problem induced by imperfect demonstra-
tions, many imitation learning from imperfect demonstrations
methods [14], [30], [31], [32], [29], [33], [34], [35] are pro-
posed. 2IWIL [14] leverages the confidence score to weight

the imperfect demonstrations but requires extra human expert
annotations. More recently, several works [15], [16], [17]
have been proposed to solve the more challenging problem
of offline imitation learning with imperfect demonstrations.
DWBC [17] combines the above two algorithms by training
a discriminator to learn the weights for BC objectives.

B. Transformers for Robotic Manipulation

Transformers have become the prevalent architecture in
various domains. Starting from NLP [36], [37], transform-
ers architectures recently successfully enter the field of
vision [38], [39], [40] and achieve impressive results in
robot learning [10], [41], [42], [43], [44], [45]. [20], [43],
[44], [45] adopt the characteristics of the structure of the
transformer to use multi-modality data, such as images and
robot states, for policy improvement. Therefore, we leverage
the sequential modeling ability of the transformer to improve
the performance of the robotic manipulation tasks.

III. METHODOLOGY

A. Preliminary on Imitation Learning

We consider a standard fully observed Markov decision
process (MDP) [46] to model the environment. The MDP
M = (S,A,P, r, ρ0, γ) contains the state space S, action
space A, reward function r : S × A × S → R, state
transition function P : S × A × S → [0, 1], the initial
state distribution ρ0(s), and discount factor γ ∈ (0, 1). In
our offline IL setting with imperfect demonstrations, the
reward function r is unavailable. Instead, we have a static
expert demonstration dataset De = {(s, a, s′)} and a static
imperfect demonstration dataset Di = {(s, a, s′)}. Our goal
is to maximize the success rates for the tasks using both the
expert dataset and imperfect dataset Du = De ∪ Di without
any online interaction with the environments.

B. Similarity Weighted Behavior Transformer

The overview of the proposed method Similarity Weighted
Behavior Transformer (SWBT) is depicted in Figure 1.
Specifically, SWBT comprises three main steps. Section III-
C details step 1: pre-training a multi-modality transformer
network using mixed demonstrations in a self-supervised
fashion. Section III-D covers step 2: calculating quality
scores based on the similarity between the output features
of imperfect and expert demonstrations. Lastly, Section III-
E presents step 3: the end-to-end fine-tuning process of the
transformer network using weighted behavior cloning.

C. Transformer Pretraining via Self-Supervised Learning

We leverage the transformer as our base model since
it is suitable for modeling long dependencies. To pre-
train the model, we propose three self-supervised ap-
proaches to pre-train the transformer using the union dataset
Du = De ∪ Di. As shown in Figure 2, the three tasks
are 1) Masked Transition Prediction, 2) Transition Re-
construction, and 3) Action Autoregression. For all tasks,
the multi-modality transformer network T (·) takes a tra-
jectory segment τin = (oi,mi, ai), · · · , (oi+l,mi+l, ai+l)

Fig. 1: Overview of SWBT. SWBT contains three steps: 1) Transformer Pretraining via Self-Supervised Learning, 2)
Calculation of Quality Score by Similarity Metric, and 3) End-to-End Weighted Behavior Cloning Training. We provide
an example of the StackCube task, which aims to stack the red cube on the green one. In step 1, we use both expert and
imperfect demonstrations to pretrain the transformer. In step 2, we calculate the quality scores for all imperfect segments
(e.g., segment τ imp

1 and τ imp
2 have quality scores of 0.23 and 0.96 respectively. Then, in step 3, the imperfect segment τ imp

1

is discarded and the imperfect segment τ imp
2 is used for weighted behavior cloning.

as input and outs the corresponding features τout =
(zoi , z

m
i , zai), · · · , (zoi+l, z

m
i+l, z

a
i+l) for all input elements,

where i is the start index of the time step, l is the segment
length, ot is the RGBD images given from the depth cameras,
mt is the robot proprioceptive states and necessary informa-
tion like goal position, at is the action. Then we have three
separate decoder heads Ho(·), Hm(·), Ha(·) for the above
three kinds of modalities, which takes the corresponding
features zoi , z

m
i , zai as input and outputs the reconstruction

or prediction results ôi, m̂i, âi.
For Masked Transition Prediction (MTP) tasks, we ran-

domly mask a part of the input trajectory segment with a pre-
defined probability (randomly chosen from 0.4, 0.3, 0.2, 0.1
in our implementation), which is denoted as M(τ). We
denote the optimized parameters in the transformer network
T (·) and the decoder heads Ho(·), Hm(·), Ha(·) as θ. And
the goal is given by:

LMTP = max
θ

Eτ

i+l∑
t=i

I(et)logPθ(et|M(τ)), (1)

where et ∈ {ot,mt, at} is the input element of the three
modalities, I(et) is an indicator function showing the input
element is masked (i.e., 1) or not (i.e., 0). By randomly
masking input elements and predicting them, we encourage
the transformer network to learn various roles, including
forward dynamic model, inverse dynamic model, and data
generating policy that boost the ability of feature extraction.

For Transition Reconstruction (TR) tasks, we randomly
mask a part of the input trajectory segment and reconstruct
the unmasked elements. The goal is given by:

LTR = max
θ

Eτ

i+l∑
t=i

(1− I(et))logPθ(et|M(τ)). (2)

By reconstructing the unmasked input elements, the trans-
former network would learn to compress the key information

and extract more representative latent features.
To be consistent with the final objective of the robotic

manipulation, which is to output action, we propose the
Action Autoregression (AA) task that forces the transformer
network to predict the next action based on the history
transitions. The goal is given by:

LAA = max
θ

Eτ

i+l∑
t=i

logPθ(at|his(at)). (3)

where his(at) = (oi,mi, ai), · · · , (oi+t,mi+t) is the history
transitions (i.e., we use causal mask in our implementations).

By combining the above three self-supervised tasks, the
final pre-training step objective is as follows:

Lpretrain = LMTP + LTR + LAA. (4)

D. Calculation of Quality Score by Similarity Metric

To better leverage the high-quality part in the imperfect
demonstrations, how to filter them out is a crucial prob-
lem. Since the expert demonstrations have high quality,
we believe that the imperfect demonstrations that is more
similar to expert demonstrations is of higher quality. After
pre-training the transformer network in a self-supervised
manner, the transformer network now has an enhanced ability
to extract expressive and representative features zoi , z

m
i , zai

for the input elements. Thus we choose to use the output
features of the expert demonstrations and the imperfect
demonstrations to calculate the similarities and final quality
scores. More specifically, for each trajectory segment τ imp in
the imperfect demonstrations, we extract the output features
zo,imp
i+l , zm,imp

i+l , za,imp
i+l at the last time step. We also ex-

tract the output features zo,expi+l , zm,exp
i+l , za,expi+l of each expert

trajectory segment τexp in the same way. The similarity
between the imperfect features and the expert features are

Fig. 2: The transformer pre-training process includes three
tasks: 1) Masked Transition Prediction (MTP), 2) Transition
Reconstruction (TR), and 3) Action Autoregression (AA).
Here is an example of the pre-training process with three
time-step inputs. Colored lines link the input and output.

defined as the negative L2 distance:

sim(τ imp, τexp) = −||zo,imp
i+l − zo,expi+l ||2

−||zm,imp
i+l − zm,exp

i+l ||2 − ||za,imp
i+l − za,expi+l ||2. (5)

The reason why we choose the features of the last time
step zi+l of the trajectory segment is that generally the
last time step is the most important step for predicting the
next action, and the attention mechanism in the transformer
has extracted the historical information. For each imperfect
trajectory segment, we need to calculate the similarities with
all other expert trajectory segments and the similarity result
w(τ imp) is the highest one, which is as follows:

w(τ imp) = max sim(τ imp, τexp), ∀τexp ∈ De. (6)

Once we get similarities of all imperfect segments, we obtain
the quality scores by normalizing them:

q(τ imp) = norm(w(τ imp)), q(τ imp) ∈ [0, 1] (7)

E. End-to-End Weighted Behavior Cloning Training

After calculating the quality scores for all imperfect tra-
jectory segments τ imp, we can rank them and filter the
high-quality part out for learning the optimal policy. In
order to prevent low-quality imperfect demonstrations from
interfering with policy learning, we define a threshold β and
choose the imperfect segments τ imp as follows:

Df = {τ imp|q(τ imp) > β} (8)

For the reserved high-quality segments Df , we use their
quality scores as the weights for behavior cloning. Combined
with the expert demonstrations De, the final objective for
fine-tuning is given by:

Lfull = max
θ

Eτ∼De
[logPθ(ai+l|τ)] (9)

+λEτ∼Df
[q(τ) · logPθ(ai+l|τ)],

where λ is a hyperparameter to balance the training of the
expert demonstrations and imperfect demonstrations. We can
count the distribution of quality scores q(τ) offline and then
adjust the value of β accordingly. We set l = 6, λ = 0.1, β =
0.9 in our implementation.

IV. EXPERIMENTS

We systematically evaluate the Similarity Weighted Be-
havior Transformer (SWBT) in both simulated and real-
world environments. For simulated environments, we built
experiments on 5 different tasks on the ManiSkill2 bench-
mark [47] varying from manipulating rigid and fluid objects,
and provided a comprehensive analysis for each component
of SWBT with an extensive ablation study. To verify the
effectiveness of our algorithm in real-world applications, we
built a digital twin system [48] and followed the same setting
in the ManiSkill2 benchmark for real-world experiments.

A. Simulation Environments and Datasets

Our simulation experiments are based on the ManiSkill2
benchmark [47], which is built on the high-fidelity Sapien
simulator [49] and allows agents to be trained using static
demonstrations. The tasks include three rigid object manip-
ulation tasks and two soft-body tasks. For data collection,
we trained different level behavior agents using the online
DAPG+PPO [50], [51] method provided in the ManiSkill2.
PickCube-v0 is to pick up a red cube and move it to a
specified endpoint. We collected 300 expert trajectories and
900 imperfect trajectories consisting of three groups of 300
trajectories, which are collected by three level agents with
success rates of 0.0, 0.46, and 0.91, respectively.
StackCube-v0 is to pick up a red cube and place it onto
the green one. We collected 300 expert trajectories and
900 imperfect trajectories consisting of three groups of 300
trajectories, which are generated by three level agents with
success rates of 0.0, 0.60, and 0.86, respectively.
PickYCB-v0 is to pick up a YCB object [52] and move
it to a specified endpoint. We selected 10 objects from all
objects that are relatively easy to pick up. We collected 300
expert trajectories and 300 other imperfect trajectories from
an imperfect agent with success rates of 0.41.
Fill-v0 is to fill the target beaker with clay in a bucket.
400 expert trajectories and 400 imperfect trajectories are
collected from an imperfect agent with success rates of 0.35.
Hang-v0 is to hang a noodle on a specified stick. We col-
lected 400 expert trajectories and 400 imperfect trajectories
from an agent with success rates of 0.14.

For the PickYCB, Fill and Hang tasks, we only collected
one level of imperfect demonstrations because the behavior
policies with high success rates are not available. For all
tasks, the robot initialization pose, object position, and goal
position are randomly generated for each episode. The robot
is a 7-DoF Franka Panda robot with a parallel-jaw gripper.
The input RGBD images o ∈ R2∗128∗128∗4 are from two
cameras, including a hand-eye camera and a top fixed
camera. The input robot proprioceptive states m ∈ R38

include joint positions, joint velocities, robot base position,

(a) PickCube (b) StackCube (c) PickYCB (d) Fill (e) Hang

Fig. 3: We conducted experiments on five tasks on the ManiSkill2 benchmark including three rigid-body tasks and two
soft-body tasks. The rigid-body tasks include a) PickCube, b) StackCube, and c) PickYCB. The soft-body tasks include d)
Fill and e) Hang. The green circles in PickCube and PickYCB represent the goal position.

TABLE I: Comparisons in terms of success rates of the
five tasks on ManiSkill2 benchmark. BC and TF-BC are the
baselines that can only use expert demonstrations.

Method PickCube StackCube PickYCB Fill Hang

BC [12] 82.6 80.0 43.6 24.8 14.4
TF-BC [36] 82.2 81.6 42.4 25.2 16.0
SWBT-base 83.6 84.0 44.4 26.0 16.0

SWBT 85.6 88.0 50.4 29.6 28.4

TABLE II: Comparisons in terms of success rates of the five
tasks on ManiSkill2 benchmark. All baselines are proposed
for the offline IL setting with imperfect demonstrations.

Method PickCube StackCube PickYCB Fill Hang

DT [20] 30.8 78.8 36.8 4.4 6.0
DemoDICE [15] 76.4 78.8 39.6 16.0 8.8
DWBC [17] 32.8 64.0 26.8 10.4 4.0

SWBT 85.6 88.0 50.4 29.6 28.4

goal position, and end-effector position. The output action
a ∈ R7 is the delta target end-effector pose. We use the
success rate to measure the performance of an algorithm.
Please refer to the Maniskill2 [47] for more details.

B. Evaluation Results in Simulation

We comprehensively compared SWBT to many state-
of-the-art offline imitation learning algorithms including
Behavior Cloning (BC) [12], Transformer-based Behavior
Cloning (TF-BC) [36], Decision Transformer (DT) [20],
DemoDICE [15], and Discriminator-Weighted Behavioral
Cloning (DWBC) [17]. When training the DT, we set the
goal as 1 for expert demonstrations and 0 for imperfect
demonstrations and hope this signal can help the transformer
network distinguish the behavior mode. We trained all meth-
ods for 100k gradient steps and evaluated 50 episodes every
5k steps. The final results are calculated as the average
success rates of the last 5 checkpoints over 3 random seeds.

In Table I, we compared SWBT with methods BC and TF-
BC that can only use expert demonstrations. To verify the
effectiveness of the pre-training process, we trained SWBT-
base that only leverages the imperfect demonstrations in the
pre-training process. Table I shows that SWBT outperformed
all baselines consistently on all 5 tasks by a large margin.
These results suggest that the high-quality imperfect demon-

Fig. 4: Comparisons of different quantity and quality of the
imperfect demonstrations. The x-axis represents the success
rates of the behavior policies that collect the imperfect
demonstrations. The y-axis shows the success rates of SWBT.
The green and red lines represent the ratios of the expert and
imperfect demonstrations are 1:1 and 1:3, respectively.

strations can significantly help improve the final success rate.
In addition, the SWBT-base also improved performance on
all tasks compared to BC and TF-BC, which shows that the
pre-training process can learn expressive features by combin-
ing the powerful transformer and imperfect demonstrations.

Table II compared SWBT with methods DT, DemonDICE,
and DWBC that simultaneously use both the expert and
imperfect demonstration. We can observe that SWBT still
surpassed all baseline methods a lot. It is difficult for
DemoDICE and DWBC to assign accurate weights for each
imperfect high-dimensional transition without a pertaining
process. We also found that the training process of DWBC
is very unstable without careful hyperparameter tuning. All
of the above reasons lead to a decrease in the success rates of
these algorithms, even compared to BC. In contrast, SWBT
can improve performance by accurately calculating the qual-
ity scores and filtering out high-quality demonstrations.

C. Ablation Study in Simulation

Impact of the imperfect demonstration quantity and
quality. To verify how the imperfect demonstration quantity
and quality influence the final performance of our method,
we conducted extensive experiments on the StackCube task.
We collected five different level imperfect demonstrations

TABLE III: Comparisons of different quality score threshold
β on the StackCube task.

Threshold β 0.0 0.50 0.70 0.80 0.90 0.95 0.99

success rate 17.2 21.6 43.8 66.4 88.0 84.4 83.6

reserved data 180k 57k 35k 16k 8.8k 3.2k 0.3k

TABLE IV: Comparisons of different similarity functions on
the StackCube task.

Seg.+Cosine Last+Cosine Seg.+L2 Last+L2

success rate 77.2 83.2 82.0 88.0

using different behavior policies with success rates of 0.00,
0.23, 0.44, 0.60, and 0.86, respectively. For each level, we
collected imperfect demonstrations in two ratios, 1:1 and 1:3,
where the former 1 represents the 300 expert demonstrations
(i.e., 300 and 900 imperfect demonstrations).

Figure 4 shows the success rates with different imperfect
demonstration quantities and qualities on the StackCube task.
An interesting finding is that those low-quality and high-
quality imperfect demonstrations can benefit the performance
compared to the medium-quality imperfect demonstrations.
We believe that low-quality demonstrations contain rich
explorations of the environment and therefore can help
extract more informative features in the pre-training process.
Then they are discarded in the fine-tuning stage and do not
interfere with the results. In contrast, high-quality imperfect
demonstrations directly help the process of the fine-tuning
stage. The medium-quality demonstrations neither provide
rich environmental information nor directly enhance policy
learning, so they achieve the most minor improvement.

Impact of quality score threshold β. We evaluated
the impact of various quality score thresholds β on the
StackCube task. We collected 300 expert trajectories and
900 imperfect trajectories (i.e., 180k transitions) consisting
of three groups of 300 trajectories, collected by three level
agents with success rates of 0.0, 0.60, and 0.86, respectively.

As shown in Table III, we can observe that as the quality
score threshold value β increases, the reserved demonstra-
tions become less and less. The highest success rate on the
StackCube task is with β as 0.90. When β is less than 0.90,
the performance increases as β increases because more and
more low-quality demonstrations are discarded. When β is
larger than 0.90, we argue that the performance drops as
β increases because more high-quality demonstrations are
discarded, degrading the task performance.

Impact of different similarity calculation functions. We
evaluated different combinations for the calculation of the
similarity distance. We examined L2 distance and Cosine
similarity distance with the whole segment features denoted
as “Seg.” and the last time step feature denoted as “Last”
on the StackCube task. As shown in Table IV, “Last+L2”
achieved the highest performance, while the results of using
cosine similarity are relatively lower. We argue that the last
time step of the trajectory segment is the most important step

(a) PickCube (b) StackCube

(c) PickYCB (lemon) (d) PickYCB (tennis ball)

Fig. 5: We conducted a digital twin system [48] following
the ManiSkill2 for real-world experiments on the PickCube,
StackCube, and PickYCB tasks. Experiments show that
SWBT can be applied to real-world applications successfully.

for predicting the next action, and the attention mechanism
in the transformer has extracted the historical information.

D. Real-World Experiments
We applied SWBT to real-world applications by following

the setting in ManiSkill2 benchmark and conducting a digital
twin system [48]. We trained the policy in the simulation and
deployed the model on the real Franka Panda robot. The in-
put of the model includes 2 RGBD images from the simulator
and robot proprioceptive states from the real robot. Then the
generated actions were applied to both the simulated and
real-world robot arms. As shown in Figure 5, we conducted
experiments on three rigid body tasks including PickCube,
StackCube, and PickYCB. Experiments demonstrate that
SWBT can be applied to real-world applications successfully.
Please refer to the supplementary video for the manipulation
process and more details.

V. CONCLUSION AND LIMITATION

To the best of our knowledge, we are the first to use
both expert and imperfect demonstrations simultaneously to
train the robot manipulation policy in an offline imitation
learning setting. Concretely, we propose a novel framework,
named Similarity Weighted Behavior Transformer (SWBT),
that calculates accurate quality scores using a pre-trained
transformer and then does weighted behavior cloning with
the high-quality imperfect demonstrations. The experiments
on the ManiSkill2 benchmark and real-world applications
demonstrated that SWBT can efficiently and correctly lever-
age imperfect demonstrations to boost the final performance.

Although SWBT can effectively utilize imperfect demon-
strations, it still has a potential limitation. SWBT is ex-
tremely data-intensive due to the transformer architecture,
and thus it is challenging to apply SWBT to tasks with sparse
data, e.g., few-shot learning.

REFERENCES

[1] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learn-
ing for robotic manipulation with asynchronous off-policy updates,”
in 2017 IEEE international conference on robotics and automation
(ICRA). IEEE, 2017.

[2] T. Zhang, Z. McCarthy, O. Jow, D. Lee, X. Chen, K. Goldberg,
and P. Abbeel, “Deep imitation learning for complex manipulation
tasks from virtual reality teleoperation,” in 2018 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2018.

[3] E. Johns, “Coarse-to-fine imitation learning: Robot manipulation from
a single demonstration,” in 2021 IEEE international conference on
robotics and automation (ICRA). IEEE, 2021.

[4] J. Thumm and M. Althoff, “Provably safe deep reinforcement learning
for robotic manipulation in human environments,” in 2022 Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 2022.

[5] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn,
K. Gopalakrishnan, K. Hausman, A. Herzog, J. Hsu et al., “Rt-1:
Robotics transformer for real-world control at scale,” arXiv preprint
arXiv:2212.06817, 2022.

[6] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song,
“Diffusion policy: Visuomotor policy learning via action diffusion,” in
Proceedings of Robotics: Science and Systems (RSS), 2023.

[7] A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under reward
transformations: Theory and application to reward shaping,” in Icml.
Citeseer, 1999.

[8] M. Kwon, S. M. Xie, K. Bullard, and D. Sadigh, “Reward design
with language models,” in The Eleventh International Conference on
Learning Representations, 2023.

[9] R. Rahmatizadeh, P. Abolghasemi, L. Bölöni, and S. Levine, “Vision-
based multi-task manipulation for inexpensive robots using end-to-end
learning from demonstration,” in 2018 IEEE international conference
on robotics and automation (ICRA). IEEE, 2018.

[10] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch,
S. Levine, and C. Finn, “Bc-z: Zero-shot task generalization with
robotic imitation learning,” in Conference on Robot Learning. PMLR,
2022.

[11] B. Zitkovich, T. Yu, S. Xu, P. Xu, T. Xiao, F. Xia, J. Wu, P. Wohlhart,
S. Welker, A. Wahid, quan vuong, V. Vanhoucke, H. Tran, R. Soricut,
A. Singh, J. Singh, P. Sermanet, P. R. Sanketi, G. Salazar, M. S. Ryoo,
K. Reymann, K. Rao, K. Pertsch, I. Mordatch, H. Michalewski, Y. Lu,
S. Levine, L. Lee, T.-W. E. Lee, I. Leal, Y. Kuang, D. Kalashnikov,
R. Julian, N. J. Joshi, A. Irpan, brian ichter, J. Hsu, A. Herzog,
K. Hausman, K. Gopalakrishnan, C. Fu, P. Florence, C. Finn, K. A.
Dubey, D. Driess, T. Ding, K. M. Choromanski, X. Chen, Y. Chebotar,
J. Carbajal, N. Brown, A. Brohan, M. G. Arenas, and K. Han, “RT-
2: Vision-language-action models transfer web knowledge to robotic
control,” in 7th Annual Conference on Robot Learning, 2023.

[12] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural
network,” Advances in neural information processing systems, 1988.

[13] A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Herzog, D. Ho,
J. Ibarz, A. Irpan, E. Jang, R. Julian et al., “Do as i can, not as i say:
Grounding language in robotic affordances,” in Conference on Robot
Learning. PMLR, 2023.

[14] Y.-H. Wu, N. Charoenphakdee, H. Bao, V. Tangkaratt, and
M. Sugiyama, “Imitation learning from imperfect demonstration,” in
International Conference on Machine Learning. PMLR, 2019.

[15] G.-H. Kim, S. Seo, J. Lee, W. Jeon, H. Hwang, H. Yang, and K.-
E. Kim, “Demodice: Offline imitation learning with supplementary
imperfect demonstrations,” in International Conference on Learning
Representations, 2021.

[16] L. Yu, T. Yu, J. Song, W. Neiswanger, and S. Ermon, “Offline
imitation learning with suboptimal demonstrations via relaxed distri-
bution matching,” in Proceedings of the AAAI conference on artificial
intelligence, 2023.

[17] H. Xu, X. Zhan, H. Yin, and H. Qin, “Discriminator-weighted offline
imitation learning from suboptimal demonstrations,” in International
Conference on Machine Learning. PMLR, 2022.

[18] P. Wu, A. Majumdar, K. Stone, Y. Lin, I. Mordatch, P. Abbeel, and
A. Rajeswaran, “Masked trajectory models for prediction, representa-
tion, and control,” arXiv preprint arXiv:2305.02968, 2023.

[19] Y. Sun, S. Ma, R. Madaan, R. Bonatti, F. Huang, and A. Kapoor,
“SMART: Self-supervised multi-task pretraining with control trans-
formers,” in International Conference on Learning Representations,
2023.

[20] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin,
P. Abbeel, A. Srinivas, and I. Mordatch, “Decision transformer:
Reinforcement learning via sequence modeling,” Advances in neural
information processing systems, 2021.

[21] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[22] J. Ho and S. Ermon, “Generative adversarial imitation learning,”
Advances in neural information processing systems, 2016.

[23] P. Florence, C. Lynch, A. Zeng, O. A. Ramirez, A. Wahid, L. Downs,
A. Wong, J. Lee, I. Mordatch, and J. Tompson, “Implicit behavioral
cloning,” in Conference on Robot Learning. PMLR, 2022.

[24] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic
models,” Advances in neural information processing systems, vol. 33,
pp. 6840–6851, 2020.

[25] I. Kostrikov, O. Nachum, and J. Tompson, “Imitation learning via off-
policy distribution matching,” in International Conference on Learning
Representations, 2020.

[26] M. Sun, A. Mahajan, K. Hofmann, and S. Whiteson, “Softdice for
imitation learning: Rethinking off-policy distribution matching,” arXiv
preprint arXiv:2106.03155, 2021.

[27] G. Swamy, S. Choudhury, Z. S. Wu, and J. A. Bagnell, “Of moments
and matching: Trade-offs and treatments in imitation learning,” arXiv
preprint arXiv:2103.03236, 2021.

[28] F. Jarboui and V. Perchet, “Offline inverse reinforcement learning,”
arXiv preprint arXiv:2106.05068, 2021.

[29] K. Zolna, A. Novikov, K. Konyushkova, C. Gulcehre, Z. Wang,
Y. Aytar, M. Denil, N. de Freitas, and S. Reed, “Offline learn-
ing from demonstrations and unlabeled experience,” arXiv preprint
arXiv:2011.13885, 2020.

[30] L. Wang, W. Zhang, X. He, and H. Zha, “Supervised reinforcement
learning with recurrent neural network for dynamic treatment recom-
mendation,” in Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining, 2018.

[31] K. Brantley, W. Sun, and M. Henaff, “Disagreement-regularized im-
itation learning,” in International Conference on Learning Represen-
tations, 2019.

[32] D. Brown, W. Goo, P. Nagarajan, and S. Niekum, “Extrapolating
beyond suboptimal demonstrations via inverse reinforcement learning
from observations,” in International conference on machine learning.
PMLR, 2019.

[33] D. S. Brown, W. Goo, and S. Niekum, “Better-than-demonstrator
imitation learning via automatically-ranked demonstrations,” in Con-
ference on robot learning. PMLR, 2020.

[34] V. Tangkaratt, B. Han, M. E. Khan, and M. Sugiyama, “Variational im-
itation learning with diverse-quality demonstrations,” in Proceedings
of the 37th International Conference on Machine Learning, 2020.

[35] M. Du, S. Nair, D. Sadigh, and C. Finn, “Behavior retrieval: Few-
shot imitation learning by querying unlabeled datasets,” arXiv preprint
arXiv:2304.08742, 2023.

[36] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, 2017.

[37] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, 2020.

[38] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using
shifted windows,” in Proceedings of the IEEE/CVF international
conference on computer vision, 2021.

[39] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson,
T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo et al., “Segment
anything,” arXiv preprint arXiv:2304.02643, 2023.

[40] Z. Wang, Y. Li, X. Chen, S.-N. Lim, A. Torralba, H. Zhao, and
S. Wang, “Detecting everything in the open world: Towards universal
object detection,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2023.

[41] S. Stepputtis, J. Campbell, M. Phielipp, S. Lee, C. Baral, and
H. Ben Amor, “Language-conditioned imitation learning for robot ma-
nipulation tasks,” Advances in Neural Information Processing Systems,
2020.

[42] C. Lynch and P. Sermanet, “Language conditioned imitation learning
over unstructured data,” arXiv preprint arXiv:2005.07648, 2020.

[43] H. Kim, Y. Ohmura, and Y. Kuniyoshi, “Transformer-based deep
imitation learning for dual-arm robot manipulation,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2021.

[44] W. Liu, C. Paxton, T. Hermans, and D. Fox, “Structformer: Learning
spatial structure for language-guided semantic rearrangement of novel
objects,” in 2022 International Conference on Robotics and Automa-
tion (ICRA). IEEE, 2022.

[45] H. Bharadhwaj, J. Vakil, M. Sharma, A. Gupta, S. Tulsiani, and
V. Kumar, “Roboagent: Generalization and efficiency in robot ma-
nipulation via semantic augmentations and action chunking,” arXiv
preprint arXiv:2309.01918, 2023.

[46] R. S. Sutton, A. G. Barto et al., Introduction to reinforcement learning.
MIT press Cambridge, 1998.

[47] J. Gu, F. Xiang, X. Li, Z. Ling, X. Liu, T. Mu, Y. Tang, S. Tao, X. Wei,
Y. Yao, X. Yuan, P. Xie, Z. Huang, R. Chen, and H. Su, “Maniskill2:
A unified benchmark for generalizable manipulation skills,” in Inter-
national Conference on Learning Representations, 2023.

[48] K. Xia, C. Sacco, M. Kirkpatrick, C. Saidy, L. Nguyen, A. Kircaliali,
and R. Harik, “A digital twin to train deep reinforcement learning
agent for smart manufacturing plants: Environment, interfaces and
intelligence,” Journal of Manufacturing Systems, 2021.

[49] F. Xiang, Y. Qin, K. Mo, Y. Xia, H. Zhu, F. Liu, M. Liu, H. Jiang,
Y. Yuan, H. Wang, L. Yi, A. X. Chang, L. J. Guibas, and H. Su,
“SAPIEN: A simulated part-based interactive environment,” in The
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

[50] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman,
E. Todorov, and S. Levine, “Learning Complex Dexterous Manip-
ulation with Deep Reinforcement Learning and Demonstrations,” in
Proceedings of Robotics: Science and Systems (RSS), 2018.

[51] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[52] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M.
Dollar, “The ycb object and model set: Towards common benchmarks
for manipulation research,” in 2015 International Conference on
Advanced Robotics (ICAR), 2015.

	Introduction
	Related Work
	Offline Imitation Learning with Imperfect Demonstrations
	Transformers for Robotic Manipulation

	Methodology
	Preliminary on Imitation Learning
	Similarity Weighted Behavior Transformer
	Transformer Pretraining via Self-Supervised Learning
	Calculation of Quality Score by Similarity Metric
	End-to-End Weighted Behavior Cloning Training

	Experiments
	Simulation Environments and Datasets
	Evaluation Results in Simulation
	Ablation Study in Simulation
	Real-World Experiments

	Conclusion and Limitation
	References

