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Abstract. Deep clustering against self-supervised learning (SSL) is a
very important and promising direction for unsupervised visual repre-
sentation learning since it requires little domain knowledge to design
pretext tasks. However, the key component, embedding clustering, lim-
its its extension to the extremely large-scale dataset due to its prereq-
uisite to save the global latent embedding of the entire dataset. In this
work, we aim to make this framework more simple and elegant without
performance decline. We propose an unsupervised image classification
framework without using embedding clustering, which is very similar
to standard supervised training manner. For detailed interpretation, we
further analyze its relation with deep clustering and contrastive learn-
ing. Extensive experiments on ImageNet dataset have been conducted
to prove the effectiveness of our method. Furthermore, the experiments
on transfer learning benchmarks have verified its generalization to oth-
er downstream tasks, including multi-label image classification, object
detection, semantic segmentation and few-shot image classification.

Keywords: Unsupervised Learning, Representation Learning

1 Introduction

Deep convolutional neural networks (CNN) [16, 19, 5] had been applied to many
computer vision applications [14, 26, 25] due to their powerful representational
capacity. The normal working flow is to pretrain the networks on a very large-
scale dataset with annotations like ImageNet [31] and then transfer to a small
dataset via fine-tuning. However, the dataset collection with manually labelling
for pre-training is strongly resource-consuming, which draws lots of researchers’
attention to develop unsupervised representation learning approaches.

Among the existing unsupervised learning methods, self-supervision is high-
ly sound since it can directly generate supervisory signal from the input im-
ages, like image inpainting [8, 30] and jigsaw puzzle solving [28]. However, it
requires rich empirical domain knowledge to design pretext tasks and is not
well-transferred to downsteam tasks. Compared with this kind of self-supervised
approaches, DeepCluster is a simple yet effective method which involves litter
domain knowledge. It simply adopts embedding clustering to generate pseudo
labels by capturing the manifold and mining the relation of all data points in
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Fig. 1. The pipeline of unsupervised image classification learning. The black and red
arrows separately denote the processes of pseudo-label generation and representation
learning. These two processes are alternated iteratively. For efficient implementation,
the psuedo labels in current epoch are updated by the forward results from the previous
epoch which means our training framework is twice faster than DeepCluster.

the dataset. This process is iteratively alternated with an end-to-end represen-
tation learning which is exactly the same with supervised one. However, along
with the advantage brought by embedding clustering, an obvious defect natural-
ly appears that the latent embedding of each data point in the dataset should
be saved before clustering, which leads to extra memory consumption linearly
growing with the dataset size. It makes it difficult to scale to the very large-scale
datasets. Actually, this problem also happens in the work of DeeperCluster [3],
which uses distributed k-means to ease the problem. However, it still did not
solve the problem in essence. Also, the data points in most of datasets are usual-
ly independently identically distributed (i.i.d). Therefore, building a framework
analogous to DeepCluster, we wonder if we can directly generate pseudo class
ID for each image without explicitly seeing other images and take it as an image
classification task for representation learning.

The answer is excitedly YES! We integrate both the processes of pseudo la-
bel generation and representation learning into an unified framework of image
classification. Briefly speaking, during the pseudo label generation, we directly
feed each input image into the classification model with softmax output and
pick the class ID with highest softmax score as pseudo label. It is very simi-
lar to the inference phase in supervised image classification. After pseudo class
IDs are generated, the representation learning period is exactly the same with
supervised training manner. These two periods are iteratively alternated until
convergence. A strong concern is that if such unsupervised training method will
be easily trapped into a local optima and if it can be well-generalized to other
downstream tasks. In supervised training, this problem is usually solved by data
augmentation which can also be applied to our proposed framework. It is worth
noting that we not only adopt data augmentation in representation learning but
also in pseudo label generation. It can bring disturbance to label assignment and
make the task more challenging to learn data augmentation agnostic features.
The entire pipeline is shown in Fig.1. To the best of our knowledge, this unsuper-
vised framework is the closest to the supervised one compared with other existing
works. Since it is very similar to supervised image classification, we name our
method as Unsupervised Image Classification (UIC) correspondingly. For sim-
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plicity, without any specific instruction, clustering in this paper only refers to
embedding clustering via k-mean, and classification refers to CNN-based classi-
fication model with cross-entropy loss function.

To further explain why UIC works, we analyze its hidden relation with both
deep clustering and contrastive learning. We point out that UIC can be con-
sidered as a special variant of them. We hope our work can bring a deeper
understanding of deep clustering series work to the self-supervision community.

We empirically validate the effectiveness of UIC by extensive experiments
on ImageNet. The visualization of classification results shows that UIC can act
as clustering although lacking explicit clustering. We also validate its general-
ization ability by the experiments on transfer learning benchmarks. All these
experiments indicate that UIC can work comparable with deep clustering. To
summarize, our main contributions are listed as follows:

– A simple yet effective unsupervised image classification framework is pro-
posed for visual representation learning, which can be taken as a strong
prototype to develop more advanced unsupervised learning methods.

– Our framework simplifies DeepCluster by discarding embedding clustering
while keeping no performance degradation and surpassing most of other self-
supervised learning methods. We demonstrate that embedding clustering is
not the main reason why DeepCluster works.

– Our training framework is twice faster than DeepCluster since we do not
need an extra forward pass to generate pseudo labels.

– We connect our proposed unsupervised image classification with deep clus-
tering and contrastive learning for further interpretation.

2 Related Work

2.1 Self-supervised learning

Self-supervised learning is a major form of unsupervised learning, which defines
pretext tasks to train the neural networks without human-annotation, including
image inpainting [8, 30], automatic colorization [23, 39], rotation prediction [13],
cross-channel prediction [40], image patch order prediction [28], and so on. These
pretext tasks are designed by directly generating supervisory signals from the
raw images without manually labeling, and aim to learn well-pretrained repre-
sentations for downstream tasks, like image classification, object detection, and
semantic segmentation. Recently, contrastive learning [33, 15, 18, 29] is developed
to improve the performance of self-supervised learning. Its corresponding pretext
task is that the features encoded from multi-views of the same image are similar
to each others. The core insight behind these methods is to learn multi-views
invariant representations. This is also the essence of our proposed method.

2.2 Clustering-based methods

Clustering-based methods are mostly related to our proposed method. Coates
et al. [7] is the first to pretrain CNNs via clustering in a layer-by-layer manner.
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The following works [37, 36, 24, 2] are also motivated to jointly cluster images and
learn visual features. Among them, DeepCluster [2] is one of the most represen-
tative methods in recent years, which applies k-means clustering to the encoded
features of all data points and generates pseudo labels to drive an end-to-end
training of the target neural networks. The embedding clustering and represen-
tation learning are iterated by turns and contributed to each other along with
training. Compared with other SSL methods with fixed pseudo labels, this kind
of works not only learn good features but also learn meaningful pseudo labels.
However, as a prerequisite for embedding clustering, it has to save the latent
features of each sample in the entire dataset to depict the global data relation,
which leads to excessive memory consumption and constrains its extension to
the very large-scale datasets. Although another work DeeperCluster [3] propos-
es distributed k-means to ease this problem, it is still not efficient and elegant
enough. Another work SelfLabel [1] treats clustering as a complicated optimal
transport problem. It proposes label optimization as a regularized term to the
entire dataset to simulate clustering with the hypothesis that the generated pseu-
do labels should partition the dataset equally. However, it is hypothesized and
not an i.i.d solution. Interestingly, we find that our method can naturally divide
the dataset into nearly equal partitions without using label optimization.

3 Methods

3.1 Preliminary: Deep Clustering

Before introducing our proposed unsupervised image classification method, we
first review deep clustering to illustrate the process of pseudo label generation
and representation learning, from which we analyze the disadvantages of embed-
ding clustering and dig out more room for further improvement.

Pseudo Label Generation. Most self-supervised learning approaches focus on
how to generate pseudo labels to drive unsupervised training. In deep clustering,
this is achieved via k-means clustering on the embedding of all provided train-
ing images X = x1, x2, ..., xN . In this way, the images with similar embedding
representations can be assigned to the same label.

Commonly, the clustering problem can be defined as to optimize cluster cen-
troids and cluster assignments for all samples, which can be formulated as:

min
C∈Rd×k

1

N

N∑
n=1

min
yn∈{0,1}k s.t.yTn 1k=1

‖ Cyn − fθ(xn) ‖ (1)

where fθ(·) denotes the embedding mapping, and θ is the trainable weights of
the given neural network. C and yn separately denote cluster centroid matrix
with shape d × k and label assignment to nth image in the dataset, where d, k
and N separately denote the embedding dimension, cluster number and dataset
size. For simplicity in the following description, yn is presented as an one-hot
vector, where the non-zero entry denotes its corresponding cluster assignment.
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Representation Learning. After pseudo label generation, the representation
learning process is exactly the same with supervised manner. To this end, a
trainable linear classifier W is stacked on the top of main network and optimized
with θ together, which can be formulated as:

min
θ,W

1

N

N∑
n=1

l(yn,Wfθ(xn)) (2)

where l is the loss function.
Certainly, a correct label assignment is beneficial for representation learning,

even approaching the supervised one. Likewise, a disentangled embedding repre-
sentation will boost the clustering performance. These two steps are iteratively
alternated and contribute positively to each other during optimization.

Analysis. Actually, clustering is to capture the global data relation, which
requires to save the global latent embedding matrix E ∈ Rd×N of the given
dataset. Taking k-means as an example, it uses E to iteratively compute the
cluster centroids C. Here naturally comes a problem. It is difficult to scale to
the extremely large datasets especially for those with millions or even billions of
images since the memory of E is linearly related to the dataset size. Thus, an
existing question is, how can we group the images into several clusters without
explicitly using global relation? Also, another slight problem is, the classifier W
has to reinitialize after each clustering and train from scratch, since the cluster
IDs are changeable all the time, which makes the loss curve fluctuated all the
time even at the end of training.

3.2 Unsupervised Image Classification

From the above section, we can find that the two steps in deep clustering (Eq.1
and Eq.2) actually illustrate two different manners for images grouping, namely
clustering and classification. The former one groups images into clusters relying
on the similarities among them, which is usually used in unsupervised learning.
While the latter one learns a classification model and then directly classifies them
into one of pre-defined classes without seeing other images, which is usually used
in supervised learning. For the considerations discussed in the above section, we
can’t help to ask, why not directly use classification model to generate pseudo
labels to avoid clustering? In this way, it can integrate these two steps pseudo
label generation and representation learning into a more unified framework. Here
pseudo label generation is formulated as:

min
yn

1

N

N∑
n=1

l(yn, f
′

θ′
(xn)) s.t. yn ∈ {0, 1}k, yTn1k = 1 (3)

where f
′

θ′
(·) is the network composed by fθ(·) and W . Since cross-entropy with

softmax output is the most commonly-used loss function for image classification,
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Fig. 2. The difference and relation between embedding clustering and classification.

Eq.3 can be rewritten as:
yn = p(f

′

θ′
(xn)) (4)

where p(·) is an arg max function indicating the non-zero entry for yn. Iteratively
alternating Eq.4 and Eq.2 for pseudo label generation and representation learn-
ing, can it really learn a disentangled representation? Apparently, it will easily
fall in a local optima and learn less-representative features. The breaking point
is data augmentation which is the core of many supervised and unsupervised
learning algorithms. Normally, data augmentation is only adopted in represen-
tation learning process. However, this is not enough, which can not make this
task challenging. Here data augmentation is also adopted in pseudo label gen-
eration. It brings disturbance for pseudo label, and make the task challenging
enough to learn more robust features. Hence, Eq.4 and Eq.2 are rewritten as:

yn = p(f
′

θ′
(t1(xn))) (5)

min
θ′

1

N

N∑
n=1

l(yn, f
′

θ′
(t2(xn))) (6)

where t1(·) and t2(·) denote two different random transformations. For efficien-
cy, the forward pass of label generation can reuse the forward results of repre-
sentation learning in the previous epoch. The entire pipeline of our proposed
framework is illustrated in Fig.1. Since our proposed method is very similar
to the supervised image classification in format. Correspondingly, we name our
method as unsupervised image classification.

Compared with deep clustering, our method is more simple and elegant.
It can be easily scaled to large datasets, since it does not need global latent
embedding of the entire dataset for image grouping. Further, the classifier W
is optimized with the backbone network simultaneously instead of reinitializing
after each clustering. To some extent, our method makes it a real end-to-end
training framework.

3.3 Interpretation

The Relation with Embedding Clustering. Embedding clustering is the
key component in deep clustering, which mainly focuses on three aspects: 1)
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sample embedding generation, 2) distance metric, 3) grouping manner (or cluster
centroid generation). Actually, from these aspects, using image classification to
generate pseudo labels can be taken as a special variant of embedding clustering,
as visualized in Fig.2. Compared with embedding clustering, the embedding in
classification is the output of softmax layer and its dimension is exactly the class
number. Usually, we call it the probability assigned to each class. As for distance
metric, compared with the euclidean distance used in embedding clustering,
cross-entropy can also be considered as an distance metric used in classification.
The most significant point is the grouping manner. In k-means clustering, the
cluster centroids are dynamicly determined and iteratively updated to reduce
the intra-classes distance and enlarge the inter-classes distance. Conversely, the
class centroids for classification are predefined and fixed as k orthonormal one-
hot vectors, which helps directly classify images via cross-entropy.

Briefly speaking, the key difference between embedding clustering and classi-
fication is whether the class centroids are dynamicly determined or not. In Deep-
Cluster [2], 20-iterations k-means clustering is operated, while in DeeperCluster
[3], 10-iterations k-means clustering is enough. It means that clustering actual-
ly is not that important. Our method actually can be taken as an 1-iteration
variant with fixed class centroids. Considering the representations are still not
well-learnt at the beginning of training, both clustering and classification cannot
correctly partition the images into groups with the same semantic information.
During training, we claim that it is redundant to tune both the embedding fea-
tures and class centroids meanwhile. It is enough to fix the class centroids as
orthonormal vectors and only tune the embedding features. Along with repre-
sentation learning drived by learning data augmentation invariance, the images
with the same semantic information will get closer to the same class centroid.
What’s more, compared with deep clustering, the class centroids in UIC are
consistent in between pseudo label generation and representation learning.

The Relation with Contrastive Learning. Contrastive learning has become
a popular method for unsupervised learning recently. Implicitly, unsupervised
image classification can also be connected to contrastive learning to explain why
it works. Although Eq.5 for pseudo label generation and Eq.6 for representation
learning are operated by turns, we can merge Eq.5 into Eq.6 and get:

min
θ′

1

N

N∑
n=1

l(p(f
′

θ′
(t1(xn))), f

′

θ′
(t2(xn))) (7)

which is optimized to maximize the mutual information between the representa-
tions from different transformations of the same image and learn data augmenta-
tion agnostic features. This is a basic formula used in many contrastive learning
methods. More concretely, our method use a random view of the images to se-
lect their nearest class centroid, namely positive class, in a manner of taking the
argmax of the softmax scores. During optimization, we push the representation
of another random view of the images to get closer to their corresponding pos-
itive class. Implicitly, the remaining orthonormal k -1 classes will automatically
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turn into negative classes. Since we use cross-entropy with softmax as the loss
function, they will get farther to the negative classes during optimization. Intu-
itively, this may be a more proper way to generate negative samples. In normal
contrastive learning methods, given an image I in a (large) minibatch , they treat
the other images in the minibatch as the negative samples. But there exist the
risk that the negative samples may share the same semantic information with I.

4 Experimental Results

4.1 Dataset Benchmarks and Network Architectures

We mainly apply our proposed unsupervised image classification to ImageNet
dataset [31] without annotations, which is designed for 1000-categories image
classification consisting of 1.28 millions images. As for network architectures,
we select the most representative one in unsupervised representation learning,
AlexNet [22], as our baseline model for performance analysis and comparison. It
is composed by five convolutional layers for features extraction and three fully-
connected layers for classification. Note that the Local Response Normalization
layers are replaced by batch normalization layers. After unsupervised training,
the performance is mainly evaluated by

– linear probes;
– transfer learning on downstream tasks.

Linear probes [40] had been a standard metric followed by lots of related works. It
quantitatively evaluates the representation generated by different convolutional
layers through separately freezing the convolutional layers (and Batch Normal-
ization layers) from shallow layers to higher layers and training a linear classifier
on top of them using annotated labels. For evaluation by linear probing, we con-
duct experiments on ImageNet datasets with annotated labels. Linear probes is a
direct approach to evaluate the features learnt by unsupervised learning through
fixing the feature extractors. Compared with this approach, transfer learning on
downsteam tasks is closer to practical scenarios. Following the existing works,
we transfer the unsupervised pretrained model on ImageNet to PASCAL VOC
dataset [11] for multi-label image classification, object detection and semantic
segmentation via fine-tuning. To avoid the performance gap brought by hyperpa-
rameter difference during fine-tuning, we further evaluate the representations by
metric-based few-shot classification on miniImageNet [34] without fine-tuning.

4.2 Unsupervised Image Classification

Implementation Details. Similar to DeepCluster, two important implemen-
tation details during unsupervised image classification have to be highlighted:

– Avoid empty classes;
– Class balance sampling.
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Table 1. Ablation study on class number selec-
tion. Here we also report NMI t/labels, denoting
the NMI between pseudo labels and annotated la-
bels. FFT means further fine-tuning with fixed la-
bel assignments.

Methods
Top1 Accuracy

NMI t/labels
conv3 conv4 conv5

UIC 3k 41.2 41.0 38.1 38.5
UIC 5k 40.6 40.9 38.2 40.8
UIC 10k 40.6 40.8 37.9 42.6
UIC 3k (FFT) 41.6 41.5 39.0 -

Table 2. Ablation study on whether
data augmentation is adopted in
pseudo label generation.

Methods Aug
Top1 Accuracy

conv3 conv4 conv5

UIC 3k × 39.5 39.9 37.9
UIC 3k

√
41.6 41.5 39.0

Fig. 3. Nearly uniform distribution of image number assigned to each class.

At the beginning of training, due to randomly initialization for network pa-
rameters, some classes are unavoidable to assign zero samples. To avoid trivial
solution, we should avoid empty classes. When we catch one class with zero
samples, we split the class with maximum samples into two equal partitions and
assign one to the empty class. We observe that this situation of empty classes
only happens at the beginning of training. As for class balance sampling, this
technique is also used in supervised training to avoid the solution biasing to
those classes with maximum samples.

Optimization Settings. We optimize AlexNet for 500 epochs through SGD
optimizer with 256 batch size, 0.9 momentum, 1e-4 weight decay, 0.5 drop-out
ratio and 0.1 learning rate decaying linearly. Analogous to DeepCluster, we apply
Sobel filter to the input images to remove color information. During pseudo label
generation and representation learning, we both adopt randomly resized crop-
ping and horizontally flipping to augment input data. Compared with standard
supervised training, the optimization settings are exactly the same except one
extra hyperparameter, class number. Since over-clustering had been a consensus
for clustering-based methods, here we only conduct ablation study about class
number from 3k, 5k to 10k.

Evaluation via Normalized Mutual Information. Normalized mutual in-
formation (NMI) is the main metric to evaluate the classification results, which



405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

ECCV

#Anonymous
ECCV

#Anonymous

10 ECCV-20 submission ID Anonymous

Fig. 4. Visualization of the classification results with low entropy.

ranges in the interval between 0 and 1. If NMI is approaching 1, it means two
label assignments are strongly coherent. The annotated labels are unknown in
practical scenarios, so we did not use them to tune the hyperparameters. But
if the annotated labels are given, we can also use the NMI of label assignment
against annotated one (NMI t/labels) to evaluate the classification results after
training. As shown in the fifth column in Tab.1, when the class number is 10k,
the NMI t/labels is comparable with DeepCluster (refer to Fig.2(a) in the paper
[2]), which means the performance of our proposed unsupervised image classifica-
tion is approaching to DeepCluster even without explicitly embedding clustering.
However, the more class number will be easily to get higher NMI t/labels. So we
cannot directly use it to compare the performance among different class number.

Evaluation via Visualization. At the end of training, we take a census for the
image number assigned to each class. As shown in Fig.3, our classification model
nearly divides the images in the dataset into equal partitions. This is a interesting
finding. In the work of [1], this result is achieved via label optimization solved
by sinkhorn-Knopp algorithm. However, our method can achieve the same result
without label optimization. We infer that class balance sampling training manner
can implicitly bias to uniform distribution. Furthermore, we also visualize the
classification results in Fig.4. Our method can classify the images with similar
semantic information into one class.

4.3 Linear Classification on Activations

Optimization Settings. We use linear probes for more quantitative evaluation.
Following [40], we use max-pooling to separately reduce the activation dimen-
sions to 9600, 9216, 9600, 9600 and 9216 (conv1-conv5). Freezing the feature
extractors, we only train the inserted linear layers. We train the linear layers for
32 epochs with zero weight decay and 0.1 learning rate divided by ten at epochs
10, 20 and 30. The shorter size of the images in the dataset are resized to 256
pixels. And then we use 224×224 random crop as well as horizontal flipping to
train the linear layer. After training, the accuracy is determined with 10-crops
(center crop and four-corners crop as well as horizontal flipping).
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Table 3. Linear probing evaluation on ImageNet. We mainly compare the performance
of our method with DeepCluster. For reference, we also list the results of other methods.

Methods
ImageNet

conv1 conv2 conv3 conv4 conv5

ImageNet labels 19.3 36.3 44.2 48.3 50.5
Random 11.6 17.1 16.9 16.3 14.1

DeepCluster [2] 13.4 32.3 41.0 39.6 38.2
SelfLabel 3k × 1 [1] - - 43.0 44.7 40.9
SelfLabel 3k × 10 [1] 22.5 37.4 44.7 47.1 44.1
Ours 12.8 34.3 41.6 41.5 39.0

Take a look at other self-supervised learning methods

Contenxt [8] 16.2 23.3 30.2 31.7 29.6
BiGan [9] 17.7 24.5 31.0 29.9 28.0
Split-brain [40] 17.7 29.3 35.4 35.2 32.8
Jigsaw puzzle [28] 18.2 28.8 34.0 33.9 27.1
RotNet [13] 18.8 31.7 38.7 38.2 36.5
AND [20] 15.6 27.0 35.9 39.7 37.9
AET [38] 19.3 35.4 44.0 43.6 42.4
RotNet+retrieval [12] 22.2 38.2 45.7 48.7 48.3

Ablation Study on Class Number Selection. We conduct ablation study
on class number as shown in Tab.1. Different from DeepCluster, the performance
3k is slightly better than 5k and 10k, which is also confirmed by [1].

Further Fine-Tuning. During training, the label assignment is changed every
epoch. We fix the label assignment at last epoch with center crop inference in
pseudo label generation, and further fine-tune the network with 30 epochs. As
shown in Tab.1, the performance can be further improved.

Ablation Study on Data Augmentation. Data augmentation plays an im-
portant role in clustering-based self-supervised learning since the pseudo labels
are almost wrong at the beginning of training since the features are still not
well-learnt and the representation learning is mainly drived by learning data
augmentation invariance at the beginning of training. In this paper, we also use
data augmentation in pseudo label generation. As shown in Tab.2, it can im-
prove the performance. In this paper, we simply adopt randomly resized crop to
augment data in pseudo label generation and representation learning.

Comparison with Other State-of-The-Art Methods. Since our method
aims at simplifying DeepCluster by discarding clustering, we mainly compare
our results with DeepCluster. As shown in Fig.3, our performance is comparable
with DeepCluster, which validates that the clustering operation can be replaced
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Table 4. Transfer the pretrained model to downstream tasks on PASCAL VOC
dataset.

Methods
Classification Detection Segmentation

(%mAP) (%mAP) (%mIU)
FC6-8 ALL ALL ALL

ImageNet Labels 78.9 79.9 56.8 48.0
Random-RGB 33.2 57.0 44.5 30.1
Random-Sobel 29.0 61.9 47.9 32.0

DeepCluster [2] 72.0 73.7 55.4 45.1
SelfLabeling 3k × 10 [1] - 75.3 55.9 43.7
Ours 76.2 75.9 54.9 45.9

Take a look at other kinds of self-supervised methods

BiGan [9] 52.5 60.3 46.9 35.2
Contenxt [8] 55.1 63.1 51.1 -
Split-brain [40] 63.0 67.1 46.7 36.0
Jigsaw puzzle [28] - 67.6 53.2 37.6
RotNet [13] 70.87 72.97 54.4 39.1
RotNet+retrieval [12] - 74.7 58.0 45.9

by more challenging data augmentation. Note that it is also validated by the
NMI t/labels mentioned above. SelfLabel [3k × 1] simulates clustering via label
optimization which classifies datas into equal partitions. However, as discussed
above in Fig.3, our proposed framework also divides the dataset into nearly equal
partitions without the complicated label optimization term. Therefore, theoreti-
cally, our framework can also achieve comparable results with SelfLabel [3k×1],
and we impute the performance gap to their extra augmentation. With strong
augmentation, our can still surpass SelfLabel as shown in Tab.6. Compared with
other self-supervised learning methods, our method can surpass most of them
which only use a single type of supervisory signal. We believe our proposed
framework can be taken as strong baseline model for self-supervised learning
and make a further performance boost when combined with other supervisory
signals, which will be validated in our future work.

4.4 Transfer to Downstream Tasks

Evaluation via Fine-Tuning: Multi-label Image Classification, Object
Detection, Semantic Segmentation on Pascal-VOC. In practical scenar-
ios, self-supervised learning is usually used to provide a good pretrained model
to boost the representations for downstream tasks. Following other works, the
representation learnt by our proposed method is also evaluated by fine-tuning
the models on PASCAL VOC datasets. Specifically, we run the object detection
task using fast-rcnn [14] framework and run the semantic segmentation task us-
ing FCN [26] framework. As shown in Tab.4, our performance is comparable
with other clustering-based methods and surpass most of other SSL methods.
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Table 5. Evaluation via few-shot classification on the test set of miniImageNet.
Note that 224 resolution is center-cropped from 256 which is upsampled from 84 low-
resolutional images. It can be regarded as inserting a upsampling layer at the bottom of
the network while the input is still 84×84. MP is short for max-pooling. For reference,
the 5way-5shot accuracy of prototypical networks [32] via supervised manner is 68.2%.

Methods resolution
5way-5shot accuracy

conv3 conv4 conv5 conv5+MP

UIC 3k 224×224 48.79 53.03 62.46 65.05
DeepCluster 224×224 51.33 54.42 60.32 65.04
UIC 3k 84×84 52.43 54.76 54.40 52.85
DeepCluster 84×84 53.46 54.87 49.81 50.18

Evaluation without Fine-Tuning: Metric-based Few-shot Image Clas-
sification on miniImageNet. Few-shot classification [34, 32] is naturally a
protocol for representation evaluation, since it can directly use unsupervised pre-
trained models for feature extraction and use metric-based methods for few-shot
classification without any finetuning. It can avoid the performance gap brought
by fine-tuning tricks. In this paper, we use Prototypical Networks [32] for rep-
resentation evaluation on the test set of miniImageNet. As shown in Tab.5, our
method is comparable with DeepCluster overall. Specifically, our performances
in highest layers are better than DeepCluster.

5 More Experiments

In the above sections, we try to keep training settings the same with DeepCluster
for fair comparison. Although achieving SOTA results is not the main starting
point of this work, we would not mind to further improve our results through
combining the training tricks proposed by other methods.

5.1 More Data Augmentations

As discussed above, data augmentation used in the process of pseudo label
generation and network training plays a very important role for representation
learning. Recently, SimCLR[4] consumes lots of computational resources to do
a thorough ablation study about data augmentation. They used a strong color
jittering and random Gaussian blur to boost their performance. We find such
strong augmentation can also benefit our method as shown in Tab.6. Our result
in conv5 with a strong augmentation surpasses DeepCluster and SelfLabel by
a large margin and is comparable with SelfLabel with 10 heads. Note that the
results in this section do not use further fine-tuning.

5.2 More Network architectures

To further convince the readers, we supplement the experiments of ResNet50
(500epochs) with the strong data augmentation and an extra MLP-head pro-
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Table 6. More experimental results with more data augmentations.

Methods Arch
ImageNet

conv3 conv4 conv5 NMI t/labels

DeepCluster [2] AlexNet 41.0 39.6 38.2 -
SelfLabel 3k × 1 [1] AlexNet 43.0 44.7 40.9 -
SelfLabel 3k × 10 [1] AlexNet+10heads 44.7 47.1 44.1 -
UIC (Ours) AlexNet 41.6 41.5 39.0 38.5
UIC + strong aug (Ours) AlexNet 43.5 45.6 44.3 40.0

Table 7. More experimental results with more network architectures.

Methods Arch Top-1 NMI t/labels

Jigsaw [21] Res50 38.4 -
Rotation [21] Res50 43.8 -
InstDisc [35] Res50 54.0 -
BigBiGAN [10] Res50 56.6 -
Local Agg. [41] Res50 60.2 -
Moco [15] Res50 60.6 -
PIRL [27] Res50 63.6 -
CPCv2 [17] Res50 63.8 -
SimCLR [4] Res50 + MLP-head 69.3 -
Mocov2 [6] Res50 + MLP-head 71.1 -
SelfLabel 3k × 10 [1] Res50+10heads 61.5 -
UIC + strong aug (Ours) VGG16 57.7 46.9
UIC + strong aug (Ours) Res50 62.7 50.6
UIC + strong aug (Ours) Res50 + MLP-head 64.4 53.3

posed by SimCLR[4] (we fix and do not discard MLP-head when linear probing).
As shown in Tab.7, our method surpasses SelfLabel and achieves SOTA results
when compared with non-contrastive-learning methods. Although our method
still has a performance gap with SimCLR and MoCov2 (>>500epochs), our
method is the simplest one among them. We believe it can bring more improve-
ment by appling more useful tricks.

6 Conclusions

We always believe that the greatest truths are the simplest. Our method validates
that the embedding clustering is not the main reason why DeepCluster works.
Our method makes training a SSL model as easy as training a supervised image
classification model, which can be adopted as a strong prototype to further
develop more advanced unsupervised learning approaches. We make SSL more
accessible to the community which is very friendly to the academic development.
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