
LoQT: Low-Rank Adapters for Quantized Pretraining

Sebastian Loeschcke∗
University of Copenhagen

sbl@di.ku.dk

Mads Toftrup∗

Aarhus University
toftrup@cs.au.dk

Michael J. Kastoryano
University of Copenhagen

mika@di.ku.dk

Serge Belongie
University of Copenhagen
s.belongie@di.ku.dk

Vésteinn Snæbjarnarson
University of Copenhagen

vesn@di.ku.dk

Abstract

Despite advances using low-rank adapters and quantization, pretraining of large
models on consumer hardware has not been possible without model sharding, of-
floading during training, or per-layer gradient updates. To address these limitations,
we propose Low-Rank Adapters for Quantized Training (LoQT), a method for effi-
ciently training quantized models. LoQT uses gradient-based tensor factorization
to initialize low-rank trainable weight matrices that are periodically merged into
quantized full-rank weight matrices. Our approach is suitable for both pretraining
and fine-tuning models. We demonstrate this for language modeling and down-
stream task adaptation, finding that LoQT enables efficient training of models up
to 7B parameters on a 24GB GPU. We also demonstrate the feasibility of training
a 13B model using per-layer gradient updates on the same hardware.

https://github.com/sebulo/LoQT

1 Introduction

0 10 20 30 40 50 60 70 80
Memory Usage (GB)

Adam

GaLore

GaLore A8bit

GaLore A8bit LW

LoQT

LoQT A8bit

LoQT A8bit LW RTX 4090
Llama 13B

Memory Type
OOM
Optimizer
Model
Forward
Gradients
Unknown

Figure 1: Memory usage of Llama 13B, rank 1024.
LW: per-layer gradient updates. A8bit: Adam 8bit.

Training large neural networks requires substan-
tial hardware and energy resources. Reducing
these requirements is important for both cost ef-
ficiency and environmental reasons, while also
lowering the entry barrier for researchers and
practitioners in general. In this work, we target
the memory component—a key part of the hard-
ware requirements. Memory use during training
comes primarily from storing the weights of the
model, the optimizer states, and activations. To
target the memory footprint of the weights, vari-
ous applications of quantization [1, 2, 3, 4] have
been used. For targeting the optimizer states,
variations on low-rank adaptation (LoRA) [5, 6, 3, 7] have been suggested to decrease the number of
trainable parameters for fine-tuning, in combination with the use of low precision representations.
Low-rank approaches for projecting gradients to a lower rank have also been suggested [8]. In this
work, we combine these approaches to address the model size and optimizer states, resulting in a
highly memory-efficient configuration that is also suitable for pretraining.

∗Equal contribution.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

mailto:sebastianloeschcke@gmail.com
mailto:toftrup@cs.au.dk
mailto:mika@di.ku.dk
mailto:s.belongie@di.ku.dk
mailto:vesteinn.snaebjarnarson@gmail.com
https://github.com/sebulo/LoQT

Figure 2: Overview of LoQT. (1) Low-rank factors P and B are periodically initialized from the
gradient of the dequantized model weights∇W , (2) then only B is trained while Pq and Wq are kept
quantized and frozen, over an exponentially increasing interval until Ti, (3) the low-rank factors are
merged back into the quantized model. The process is repeated until training halts.

In typical training configurations, the optimizer states often take up more space than the model itself,
as methods such as Adam [9] keep track of two parameters for each parameter of the model. While
LoRA is memory efficient for parameter-efficient fine-tuning of pretrained models, it has not been
shown to work as a pretraining method by itself [7]. GaLore [8] significantly reduces the memory
needed for the optimizer parameters by storing the optimizer state in a low-rank projection, which
is then projected up when applied to the model weights. Combining this method with quantization
would further shrink the footprint of the model but this is not straightforward. Updating the weights of
a highly quantized model directly in low-precision space has not been shown to work. This is mainly
due to the higher-precision gradient updates having too small of an impact on the lower-precision
quantized states.

To address these shortcomings, we propose Low-Rank Adapters for Quantized Training (LoQT).
LoQT initializes two low-rank factors, P and B, for each weight matrix W . P is initialized using a
projection ofW ’s gradients into a low-rank subspace, andB is initialized to minimize the quantization
error. In our method, B is the only matrix being actively optimized. Only optimizing B means that
the size of the gradients and optimizer state shrinks significantly compared to full training or LoRA.
The product PB is periodically merged into the full rank matrix W with exponentially increasing
gaps to account for smaller updates as the model converges, ensuring we accumulate large enough
updates. AsW and P do not receive gradient updates, they can be kept quantized, optimizing memory
usage even further. It is the large accumulated updates that make it possible to update a quantized
model—as the addition of smaller changes would not register in the quantized state. A high-level
overview of our approach is given in Fig. 2.

We show that LoQT works well both with and without quantization, enabling not only a lower
memory footprint in the optimizer state but also over the model parameters. Our results show that we
get competitive performance to prior methods using significantly less memory, in particular when
quantizing the model weights in an application such as training a large language model (LLM). We
also demonstrate comparable performance in language adaption, which we demonstrate on a curated
Icelandic text dataset [10]. Finally, we show that LoQT also works for fine-tuning pretrained models
on down-stream tasks, by training and evaluating on the GLUE [11] benchmark for natural language
understanding and the GSM8K [12] dataset for mathematical reasoning. We ablate several properties
of the suggested approach, demonstrating the importance of each component of LoQT. For instance,
we find that an exponentially increasing projection gap is particularly crucial for the training of
quantized models. An overview of memory savings is given in Fig. 1. We find that LoQT enables
efficient training of 7B models on consumer-grade hardware with 24GB of memory, and makes it
feasible to train models with up to 13 billion parameters without model parallelization, by making
use of per-layer gradient updates [13].

2

2 Efficient Pretraining With LoQT

We now briefly introduce how LoQT works by initializing and training low-rank adapters. The
adapters are initialized by taking the singular value decomposition (SVD) of a given layer’s gradients.
We use W to indicate the full weight matrix of a given layer and P for the left factor constructed from
the SVD decomposition of the gradient matrix, ∇W = UΣV ⊤, such that P consists of the first r
columns of U—corresponding to the singular vectors with the r largest singular values of W , where
r is a given target rank. The update rule for a timestep Ti is then given by WTi

= WTi−1
+ PB.

For the steps between Ti and Ti+1 only the weights of B are updated, while P and WTi−1
remain

constant. We describe this in more detail below, followed by a discussion on periodic updating of the
factor P , enabling of quantized pretraining, error compensation, and exponential update intervals.
Pseudo-code for LoQT is shown in Fig. 3.

2.1 Background: GaLore

Zhao et al. [8] find that gradients exhibit a low-rank structure during training. They exploit this
insight by projecting the gradient to a low-rank subspace and applying the Adam optimizer before
projecting back to the original dimensions. By doing this, the memory-intensive optimizer states
required by Adam are shrunk significantly for low enough ranks.
Definition 2.1 (Gradient Low-rank Projection, def. 3.4 in [8]). Gradient low-rank projection
(GaLore) denotes the following gradient update rules, where η is the learning rate, ρ is the Adam
optimizer, W ∈ Rm×n is the weight matrix being trained, and T represents the total number of
training iterations until the recomputation of the projection matrix:

WT =W0 + η

T−1∑
t=0

G̃t, where G̃t = Ptρt(P
⊤
t GtQt)Q

⊤
t , (1)

where r is a given target rank and Pt ∈ Rm×r and Qt ∈ Rn×r are the top-r singular vectors from the
SVD decomposition of the gradient matrix at each iteration t. In practice, this can be approximated
by only applying a one-sided projection, as in

W ′
T =W0 + η

T−1∑
t=0

Ptρt(P
⊤
t Gt) or W ′

T =W0 + η

T−1∑
t=0

ρt(GtQt)Q
⊤
t . (2)

Additionally, Zhao et al. [8] empirically show that it is sufficient to keep the projection matrix fixed
and only update it once every T iteration.

2.2 Low-rank Gradients as Adapters

We now describe how we initialize the parameters we optimize with LoQT. We start with the GaLore
formulation from above and adopt the memory-performance trade-off of using only a one-sided
projection (eq. 2), we compute P⊤G if m ≤ n and GQ otherwise. Our goal is to separate trainable
weights and static weights, which we achieve by rewriting GaLore in terms of low-rank adaptors. We
assume that m ≤ n, if m > n the same reasoning holds for Q⊤

t . Using the fact that Pt is fixed on the
interval [0, T] we get

WT =W0 + η

T−1∑
t=0

Pρt(P
⊤Gt) (3)

=W0 + η P︸︷︷︸
∈Rm×r

T−1∑
t=0

ρ(P⊤Gt)︸ ︷︷ ︸
B∈Rr×n

. (4)

It is clear from (4) that we can keep track of low-rank updates using rank-r adaptors. We note that in
the interval [0, T] only B is updated, creating the desired separation. If implemented directly, we
would need to compute the gradient with respect to W and then project it down using P⊤Gt. We
find that this step is unnecessary; it is sufficient to train B using standard gradient descent.

3

Equivalence of Gradient Updates We point out that optimizing the low-rank matrix B via
gradient descent is equivalent to the projected gradient updates on Wt described in Definition 2.1. Let
GW = ∂L

∂W and GB = ∂L
∂B denote the loss gradients with respect to W and B, respectively. Consider

the forward pass y = xW + xPB, where W is the weight matrix, P is the projection matrix, and B
is the low-rank update matrix. By the chain rule:

GB = (xP)⊤
∂L
∂y

(5)

= P⊤x⊤
∂L
∂y

(6)

= P⊤GW (7)
This derivation establishes that computing gradients with respect to B is equivalent to projecting the
gradients with respect to W onto the low-rank subspace defined by P . Therefore, GaLore’s low-rank
gradient updates are identical to those obtained through backpropagation in LoRA.

2.3 Pretraining with LoRA

Previous work [5] has shown that training low-rank weight matrices works well for fine-tuning
pretrained weights. However, it has been shown that starting with randomly initialized weights,
training low-rank factors, and periodically merging them into a frozen weight matrix W , does not
work when starting with a randomly initialized matrix [7]. We now address this to enable full training
using low-rank weight matrices.

Inspired by prior work [7, 8], we periodically update a given layer WT+1 =WT + PTBT at fixed
steps T ∈ T . This approach allows W to evolve as a sum of low-rank matrices aligning with
GaLore’s strategy of updating the gradient subspace during training:

Wt =W0 +∆WT1 +∆WT2 + . . .+∆WTn , (8)

where t =
∑|T |

i=1 Ti and ∆WTi = PTiBTi represents the product of the learned matrix B over the
interval Ti − Ti−1 modulated by the gradient projection matrix PTi . After each periodic update at
iterations Ti ∈ T , we reinitialize the low-rank factors PT and BT . As in [8], we compute the gradient
of WT over a single batch, focusing only on ∇WT without storing optimizer states for it, reducing
the memory compared to full-rank training.

For each updated Wt and reinitialized Pt and Bt, a new gradient subspace is established for exploring
the next Ti+1 − Ti steps. Our method treats Wt as the full-rank repository of accumulated updates.
Although it is periodically updated, Wt is not part of the optimizer state computations, and the
gradients during the single forward pass are offloaded to CPU/RAM. Since the SVD calculations are
done layerwise, only the current layer needs to be on GPU, or the SVD can be calculated on CPU.
Pt defines the general gradient subspace and trajectory for the upcoming Ti+1 − Ti steps, and Bt is
adjusted to navigate within the direction set by Pt. As only Bt is trained, the number of parameters
requiring optimizer states is drastically reduced.

2.4 Quantized Training

Recall the update rule of our model, WTi
=WTi−1

+ PB, given that B is the only matrix accumu-
lating gradients and undergoing changes, the other matrices W and P can be kept quantized. This
approach allows storing the weights in NF4 precision [3] (see §5.1 for a detailed account) without
requiring high-precision gradients and weights to update W and P . To the best of our knowledge, we
are the first to enable efficient 4-bit quantized pretraining using gradient descent without storing the
weights in 16-bit precision.

We quantize the weights qNF4(W) = Wq and qNF4(P) = Pq as described in §5.1. During the
periodic updates at interval time steps (

∑n
i=1 Ti)

max
n=1, Pq and Wq are dequantized using the inverse

function, PBF16 = q−1
NF4(PNF4) and WBF16 = q−1

NF4(WNF4). After this, WTi =WTi−1 + PTi−1BTi−1

is computed and quantized. The quantization and dequantization processes are applied layer by
layer, ensuring that not all layers are simultaneously in a non-quantized state to reduce memory
usage. Moreover, the quantization state itself is re-quantized for further efficiency following [3]. We
implement LoQT using weight-only quantization, this means that the quantized weights are loaded
into memory and then dequantized before computing the matrix multiplications.

4

Algorithm 1 LoQT: Low Rank Adapters for
Quantized Training

Require: W : Weight, T : Update steps, η:
LR, r: rank, qN (·): N-bit quantization
function.

1: GW ← ∇WL(W)
2: WQ, PQ, B ← Initialize(W,GW)
3: for each t in training steps do
4: if t ∈ T then
5: W ←WQ + s · PQ ·Bt

6: GW ← ∇WL(W)
7: WQ, PQ, Bt ← Initialize(W,GW)
8: else
9: Bt+1 ← Bt − ρ(GB

t)
10: return θ

Algorithm 2 Initialization Procedure

1: Initialize(W,GW):
2: U, S, V T ← SVD(GW)
3: P ← U [:, : r] {First r singular vectors}
4: Pq ← qN (P)
5: B ← 0
6: Ŵ ←W
7: for each c in compensation steps C do
8: Qc ← qN (Ŵ)

9: B ← P+(Ŵ −Qc)

10: Ŵ ←W − PB
11: return Qc, B, Pq

Figure 3: Pseudo-code for LoQT.

2.5 Compensating for Quantization Errors

As the quantization process inevitably results in rounding errors there is a discrepancy between the non-
quantized and quantized versions ofW . We wish to reduce this effect as much as possible. While com-
pensating for quantization errors has been done before [14], we derive a tailored solution for LoQT.

During the merging update phase, we first dequantize to obtain WT−1 and PT−1, and then compute
the update WT = WT−1 + PT−1BT−1. This is immediately followed by re-quantizing to get
QT = qNF4(WT). Our goal is to minimize the quantization error ∥(QT + PTBT) −WT ∥. Recall
that PT is found based on the gradient and is not changed to compensate for the quantization error.
Instead, we solve for BT in the merging step, initializing BT as BT

def
= P+

T (QT −WT), where P+
T is

the Moore-Penrose pseudo-inverse. This approach avoids initializing BT as zeros, as is commonly
done [5], and instead uses it for minimizing the quantization error ∥QT −WT ∥. We then iteratively
refine BT over a maximum of five steps, by recomputing QT = qNF4(WT − PTBT), improving the
alignment between the full-precision W and its quantized state.

As training advances and the learning rate decays, the magnitude of the update BT−1 decreases. This
leads to negligible differences |q (Qt + PtBt)−Qt|, which results in the loss plateauing early, as
depicted in Fig. 4a. To address this, we implement an exponentially increasing scheduler for updating
W . Drawing from the observation that the gradient rank decays exponentially (Lemma 3.1 in [8]),
we start with an update interval τ and progressively increase the update intervals by a factor of ψ.
The sequence of updates is then given by (Ti)

∞
i=0 = (τ + ψi)∞i=0. Each Ti marks a training step t

when W is updated. This scheduling ensures more frequent updates earlier in training and more
well-spaced adjustments later, allowing for accumulation of sufficiently large gradients before each
progressive update.

3 Experiments

We evaluate LoQT on language model pretraining by training LLaMA-based [15] language models
on the C4 dataset [16], a collection of text in English that was extracted from the Common Crawl
web-scrapes [16]. We train models of sizes of 60M, 130M, 350M, and 1B parameters, adhering
to single-epoch training cycles determined by the Chinchilla Scaling Laws [17]. While LoQT is
capable of training models up to 13 billion parameters on consumer GPUs, compute limits prevent us
from training to convergence for sizes above 1B. We also benchmark LoQT on the GLUE test-suite
for natural language understanding [18], the GSM8K [12] dataset for arithmetic reasoning and an
Icelandic text dataset [10] to evaluate language adaptation via continued-pretraining. Runs were
conducted on up to 4x 40GB NVIDIA A100s 2x 80GB NVIDIA H100s, or a single 24GB NVIDIA
RTX 3090. The longest run was the training of the 1B models, taking approximately four days on the
four A100s. The RTX 3090 was used for throughput and to empirically verify memory claims.

5

Table 1: Comparison of low-rank pre-training methods for LLaMA2-style language models on the
C4 dataset. The table shows validation perplexity, memory estimates, and quantization states for
LoQT. The rank ratio r/dmodel is relative to the largest weight matrix dimension. Perplexity values
are averaged over three seeds showing mean and standard error. (*) Denotes results from GaLore [8].
Only one seed was used for the 1B experiment due to compute constraints.

60M 130M 350M 1B
Full 33.32 ± 0.22 (0.36G) 24.51 ± 0.03 (0.76G) 18.87 ± 0.18 (2.06G) 15.56 (7.80G)

LoQT (Ours) 33.98 ± 0.15 (0.23G) 24.57 ± 0.01 (0.49G) 19.12 ± 0.01 (0.98G) 15.55 (3.16G)
LoQT-nq (No quant.) 33.55 ± 0.03 (0.28G) 24.37 ± 0.02 (0.63G) 18.85 ± 0.01 (1.47G) 15.20 (5.11G)
GaLore 34.15 ± 0.24 (0.24G) 24.81 ± 0.04 (0.52G) 19.47 ± 0.01 (1.22G) 15.64* (4.38G)
LoRA 34.99* (0.36G) 33.92* (0.80G) 25.58* (1.76G) 19.21* (6.17G)
ReLoRA 37.04* (0.36G) 29.37* (0.80G) 29.08* (1.76G) 18.33* (6.17G)

r/dmodel 128 / 256 256 / 768 256 / 1024 512 / 2048
Training Tokens 1.1B 2.2B 6.4B 13.1B

We keep hyperparameters consistent across model sizes, with experiments conducted in BF16 format
for memory efficiency. All models are trained with a maximum sequence length of 256, a total
token batch size of 131K tokens, and a learning rate warmup for the first 10% of the training steps,
followed by cosine annealing to 10% of the initial learning rate. Full experimental details, including
the specific hyperparameters for each task, are provided in Appendix B.

Baselines For pretraining, we compare LoQT against LoRA [5], ReLoRA [7], GaLore [8], and a
non-quantized version of LoQT, LoQT-nq. In our experiments, we apply these parameter-efficient
training methods to the attention projection matrices and fully connected layers while maintaining full-
rank embeddings. For the fine-tuning experiments, we compare LoQT against GaLore, LoftQ [14],
LoRA, ApiQ [4], and LoQT-nq, or a subset thereof. All models that make use of update frequencies
are trained using the same intervals, these are GaLore, ReLoRA, LoQT-nq, and LoQT. We start
with an update interval of T = 100 and then exponentially increase the update frequency. This means
that we do more frequent updates early and fewer as the model stabilizes (see § 4b for more details).
A scaling parameter α = 0.5 is used for LoQT and GaLore across all models, except for the 1B
model where it is decreased to 0.25. The same rank r is used for all low-rank methods. All models
are trained using the Adam optimizer, except GaLore which uses their GaLoreAdam optimizer for
gradient projection. More details on hyperparameters are provided in the Appendix B.

3.1 Pretraining of Generative Language Models

Results and details of pretraining causal language models of sizes 60M, 130M, 350M, and 1B
parameters are shown in Tab. 1. Model sizes are calculated based on the full models without any
low-rank methods. We see that LoQT and LoQT-nq both perform very close to full rank pretraining
and GaLore while using significantly less memory by keeping most of the model weights in a
quantized state. For the 60M model, full training is only slightly better than LoQT, while we see
results improve or stay within the standard error for the other sizes. We also notice a slight drop in
performance from quantizing the original weight matrix, comparing LoQT and LoQT-nq. The key
difference between the approaches is the theoretical memory estimates, e.g. where LoQT uses 59%
less memory for the 1B model in full precision and 28% less memory than with GaLore.

Table 2: Results for LoQT, LoQT-nq, and GaLore using DeBERTaV3-base models on the GLUE
development set. We report mean and standard error over three seeds. The best mean results on each
dataset are shown in bold.

Rank Method MNLI QNLI RTE SST MRPC CoLA QQP STSB Average
Acc Acc Acc Acc f1 Matt f1 PCorr

32 LoQT-nq 90.0±0.10 94.2±0.06 84.8±0.75 95.9±0.06 94.1±0.25 72.5±0.41 90.0±0.06 91.5±0.07 89.1
32 LoQT 90.0±0.09 94.3±0.04 84.1±0.91 95.5±0.10 94.4±0.20 70.5±0.35 89.2±0.02 91.5±0.13 88.7

32 LoRA 89.9±0.03 94.0±0.09 83.6±0.12 95.7±0.15 93.5±0.26 69.3±0.47 89.8±0.11 90.7±0.22 88.3
32 LoftQ 90.4±0.09 93.2±0.02 83.8±0.63 95.6 ±0.07 93.2±0.14 71.1±0.28 89.6±0.12 91.0±0.09 88.4
32 GaLore 90.3±0.07 94.0±0.04 83.7±0.79 95.6±0.07 93.4±0.38 70.7±0.24 89.8±0.05 90.6±0.01 88.5

6

3.2 Memory-Efficient Finetuning

We fine-tune the pretrained DeBERTa-V3-base2 [19] model on the natural language understanding
GLUE [11] tasks using LoQT and compare its performance with full fine-tuning baselines, LoRA,
LoftQ, and GaLore. See Appendix 7 for details on hyperparameters. Results are given in Tab. 2.

We find that both LoQT-nq and LoQT perform well. And somewhat surprisingly, they sometimes
surpass GaLore, LoftQ, and LoRA. This may indicate that initializing the LoRA factors with
information about the gradient of W is a beneficial starting point compared to standard initialization
methods. Further experiments are needed to confirm and investigate these findings which we leave to
future work.

Arithmetic Reasoning on GSM8K We fine-tune quantized Llama-2 models (7B and 13B) on the
GSM8K dataset [12] for arithmetic reasoning. As shown in Tab. 3, LoQT achieves average test set
accuracies of 42.6% and 52.9% with the 7B and 13B models, respectively, performing comparably to
other quantized fine-tuning approaches. Detailed hyper-parameters are provided in Appendix Tab. 8.

Table 3: GSM8K LLaMA-2 7B and 13B test
accuracy with std. error. Best mean is in bold.

Method Bit LLaMA-2-7B LLaMA-2-13B

LoRA 16 41.7 ± 0.3 51.3 ± 0.86
QLoRA 4 41.9 ± 0.2 51.6 ± 0.29
LoftQ 4 41.9 ± 0.9 51.3 ± 0.96
ApiQ 4 42.1 ± 0.5 52.4 ± 0.46

LoQT 4 42.6 ± 0.4 52.9± 0.12

Table 4: Llama-7B fine-tuning on Icelandic.
We report test set perplexity.

Method Perplexity ↓
No training 4.90

Full 3.79
GaLore 3.96

LoQT-nq 3.61
LoQT 3.63

Continued Pretraining of Llama 7B We also evaluate LoQT on language adaptation of a large
language model. We continue pretraining of the Llama-2-7B model using a curated subset of a public
Icelandic text dataset extracted from [10] containing 770k documents. We compare LoQT with NF4
quantization, LoQT without quantization (LoQT-nq), regular training, and GaLore, using consistent
hyper-parameters across all methods, results are shown in Tab. 4. LoQT achieves test set perplexity
close to that of using full training or GaLore while reducing perplexity from 4.90 (non-trained model)
to 3.63. Additional details are provided in Appendix C.1.

3.3 Memory and Throughput

Memory Usage An overview of memory usage for GaLore, LoRA and LoQT is given in Tab. 5.
We see that LoQT has the same number of parameters as LoRA for a given rank while using less
memory for the optimizer states and gradients than in both LoRA and GaLore.

We compare LoQT to GaLore, the approach that gets closest in memory performance, for a model of
size 13B in Fig. 1, and for other model-sizes in Fig. 6. We compare three different use cases, applying
the methods on their own, combining them with an 8-bit Adam optimizer [20], and using per-layer
weight updates with offloading (while still using 8-bit Adam). We see that LoQT significantly
reduces the number of trainable parameters, and optimizer states, compared to GaLore.

Per-layer weight updates are essential for GaLore; without it, an additional ∼12 GB of VRAM is
needed for the gradients of a 7B model, making full-parameter fine-tuning impossible on a 24GB GPU.
Additionally, the per-layer gradient updates do not work with gradient accumulation. Using LoQT
results in lower memory use than GaLore, even with per-layer gradient updates. When not using per-
layer gradient updates, the difference becomes more pronounced as seen for the 7B model in Fig. 6.

LoQT enables training of 7B models without per-layer computations on a 24GB GPU, allowing for
gradient accumulation and higher effective batch sizes. Our memory advantage allows for a batch
size of 1280 tokens compared to GaLore’s 256 for the 7B model on the 24GB RTX 3090. Using

2From https://huggingface.co/microsoft/deberta-v3-base.

7

https://huggingface.co/microsoft/deberta-v3-base

Table 5: Comparison of memory usage for GaLore, LoRA, and LoQT. W ∈ Rm×n (m ≤ n), rank r.

GaLore LoRA LoQT (Ours)

Weights mn mn+mr + nr mn+mr + nr
Optimizer States mr + 2nr 2mr + 2nr 2nr
Gradients mn mr + nr nr
Pretraining Yes No Yes
Fine-Tuning Yes Yes Yes
Quantizeable No Yes Yes

per-layer gradient updates, LoQT can train a 13B model on a single GPU. We refer to Fig. 8 in the
Appendix for a comparison of how Adam, GaLore, and LoQT scale with increasing context length.

Throughput We evaluate the throughput with a sample batch size of 16, and a total batch size of
512 using gradient accumulation, which is the largest power of two that fits on the GPU. We update the
projection matrix P for every 200 iterations. We evaluate the throughput using a 1B parameter model
and rank 512 without per-layer gradient updates. We find that LoQT processes 16% fewer tokens per
second than training with only AdamW, at 3996 tokens/s compared to 4782 tokens/s on the RTX 3090.

4 Ablations

(a) EC: Error compensation, EF: Exp. increasing update
interval.

(b) Ablation of update intervals: comparing fixed inter-
vals to an exponentially increasing schedule.

Figure 4: Ablation results for update intervals, error-compensation, quantization using model size
130m, and rank 256. Wq: quantized W ; Pq: quantized P ; No Q: no quantization. The dynamic
update interval 100 + 1.2i grows exponentially for each step i ∈ N.

Quantization Error Compensation and Initialization We analyze the validation loss curves of
130 million parameter models to assess the impact of error quantization compensation. Fig. 4a shows
that quantizing W , or both W and P , without error compensation, or exponential interval updates
leads to early stagnation of the loss. We also note that quantizing P has a much smaller effect on the
loss compared to quantizing W . Error compensation significantly improves the model’s performance,
resulting in approximately 3.5 points better perplexity. Adding exponentially increasing update
intervals improves perplexity further by an additional 1.5 points, achieving performance close to that
of models without quantization.

Without the quantization error compensation, detailed in §2.5, LoQT’s performance stagnates earlier
and diverges more from the other models. This demonstrates the effectiveness of our compensation
approach in mitigating the quantization errors introduced during the update of W with PB and
subsequent quantization steps.

8

Projection Update Intervals Our scheduling approach ensures more frequent updates earlier on
in training when the weight adjustments are larger. As training progresses, the update intervals get
larger, allowing for accumulating more updates to compensate for smaller changes at each step that
might otherwise be canceled out by the quantization errors. Fig. 4b presents an ablation study of
progressively increasing update intervals starting at 100 and increasing by a factor of 1.2T up to 2500.
We show the validation loss curves for fixed update frequencies 200, 400, 500, and 1000.

The results show that exponentially increasing the update interval is particularly beneficial for models
employing quantization, enabling them to achieve the same perplexity as those without quantization.
Conversely, the performance gains are more subtle for models that do not use quantization. We
hypothesize that even these models might benefit from the larger projection interval intervals. This
could be due to the reduction in the accumulation of errors from frequent updates of the projection
factor P , as the influence of outdated optimizer statistics becomes less prevalent. Finally, an ablation
on the ranks used for P and B is given in Fig. 5 in the Appendix.

5 Related Work

We now provide an overview of related work on quantization, parameter-efficient fine-tuning methods,
and memory-efficient approaches.

5.1 Neural Network Quantization and NF4

Quantization compresses neural networks by converting high-precision values into lower-precision
formats, significantly reducing storage requirements [21, 22, 23, 20]. The process involves taking
a datatype of high precision, such as 32-bit, requiring 4 bytes of memory, and converting it into a
representation with increasing rounding errors but lower memory cost. In this work, we use NF4
quantization [3], since it is a 4-bit code it only contains 24 different values. NF4 works by first
normalizing values onto the interval [−1 : 1], these are then discretized onto quantiles of the normal
distribution, (qi)16i=1 (see [3] for details). The elements of a layer are divided into blocks of 64 weights.
Each block β has a scaling factorMβ = maxw∈β |w32|.

wNF4 = qNF4(w,Mβ) (9)
def
= argminqi

|w/Mβ − qi|, (10)

w = q−1
NF4(wNF4,Mβ) (11)

def
=Mβ · wNF4. (12)

We provide an overview of different categories of quantization techniques, and how they relate to
LoQT, in Appendix A. Compared to prior approaches, LoQT retains the benefits of reduced memory
usage while minimizing accuracy loss, using high-precision updates on a low-rank representation.
This allows for efficient model updates without the overhead of full matrix storage and re-quantization.

5.2 Adaptation of Pretrained Networks

Low-Rank Adaptation (LoRA) [5] enables fine-tuning of pretrained models using low-rank adaptors,
effectively reducing the memory footprint by only training weight adaptors for targeted layers.
However, simple low-rank training using LoRA factor matrices has not been shown to work for
pretraining [7].

LoRA employs trainable low-rank matrices A and B that are used to update W following Wt =
Wt−1+AB, whereWt−1 is frozen to enable precise adjustments within a low-rank framework. Since
LoRA only trains A and B and keeps W fixed, QLoRA [5] explore quantizing W . They fine-tune a
quantized model q(W) =Wq with 4-bit precision using randomly initialized 16-bit precision factors
A and B. To address quantization errors E = |Wq −W |, low-rank factors of the quantization error E
have been used [14].

LoQT extends LoRA to both pretraining and fine-tuning. Unlike traditional LoRA, LoQT uses A
and B to refine W throughout training, with A initialized from W ’s gradient projection and B trained
along this gradient path. LoQT also incorporates quantization and targeted optimization iterations

9

similar in spirit to LoftQ [14], correcting for quantization errors in Wq, thus better aligning it with
the original non-quantized W .

5.3 Memory Efficient Optimization

Optimizer memory consumption A significant portion of the memory needed to train neural
networks is typically consumed by optimizer states. Notably, Adam [9], one of the most widely
used optimizers, uses double the amount of memory as the gradient matrix to maintain first and
second-order gradient statistics. Efforts to reduce this overhead have led to the development of
adaptive optimization algorithms like Adafactor [24], which achieves sub-linear memory costs by
factorizing the second-order statistics into a row-column outer product. GaLore [8] expands on
this concept by using low-rank factorization and projecting low-rank gradients up to full size when
updating model weights.

Periodic updating of weight matrices ReLoRA [7] combines low-rank updates with initial full-
rank training. They find that doing one-third of the training in full-rank, and the subsequent two-thirds
in low-rank (see §5.2) results in comparable performance to standard training methods.

Low-rank Gradients GaLore [8], focuses on the structure of the gradients, projecting them
into a low-rank space using factors P and Q, which are derived from a truncated singular value
decomposition (SVD) of the weight matrix gradient, GW ≈ PrΣrQr. This reduces memory costs
associated with storing the optimizer states and aligns with findings from recent studies which suggest
that learning primarily occurs within a low-dimensional subspace at a given time [25, 26]. This
can be further combined with applying per-layer gradient updates, reducing the memory needed for
storing the gradients for the full model at once [13].

LoQT builds on GaLore’s gradient projection (§2.1) to initialize LoRA factors while updating the full
matrix following a schedule inspired by ReLora, while only training one low-rank matrix per layer.
We achieve comparable quality to GaLore and better performance than ReLoRA while reducing
tunable parameters and memory usage compared to both approaches.

6 Discussion and Conclusion

We have presented LoQT, a method for memory-efficient pretraining and adaptation of quantized
models. Key insights behind the approach are the benefits of initializing low-rank factors using the
gradient of the weight matrix and using exponentially increasing update gaps that make updating
of a quantized model feasible. While our initial goal was to lower memory usage, to facilitate the
training of models such as LLMs on consumer-grade hardware, we are also cautiously excited about
the results sometimes exceeding those of the baselines. We hope to see this explored in more detail in
future work.

Our method is general and has the potential to open up new ways of decreasing memory use and
improving training throughput through further optimization of our implementation. This could be
done by using other quantization methods such as NF2 [3] or quantization of activations, making it
possible to do the matrix multiplications using modern tensor core formats such as FP8 or INT4.

7 Impact and Limitations

The presented work has the potential to benefit those working in hardware-constrained settings by
enabling more efficient training on consumer-grade hardware. We are particularly excited to see the
method being applied in single GPU settings.

We have validated LoQT on several model sizes, by training over many steps, by fine-tuning on
a standard benchmark for natural language understanding, mathematical reasoning, and language
adaptation. While we are confident in our results, further exploration of training duration, data
diversity, and hyper-parameter tuning might lead to different results in those settings and we encourage
users to confirm the benefit of LoQT for their approach.

10

8 Acknowledgements

This work is supported by the Danish Data Science Academy, which is funded by the Novo Nordisk
Foundation (NNF21SA0069429) and VILLUM FONDEN (40516). Serge Belongie and Vésteinn
Snæbjarnarson are supported by the Pioneer Centre for AI, DNRF grant number P1. MJK acknowl-
edges support from the Carlsberg Foundation and the Novo Nordisk Foundation. Mads Toftrup
gratefully acknowledges the Data-Intensive Systems research group at Aarhus University for provid-
ing GPU access.

References
[1] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer.

A survey of quantization methods for efficient neural network inference. In Low-Power Com-
puter Vision, pages 291–326. Chapman and Hall/CRC, 2022.

[2] Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Li Dong,
Ruiping Wang, Jilong Xue, and Furu Wei. The era of 1-bit llms: All large language models are
in 1.58 bits, 2024. URL https://arxiv.org/abs/2402.17764.

[3] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetun-
ing of quantized llms. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine,
editors, Advances in Neural Information Processing Systems, volume 36, pages 10088–10115.
Curran Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/
paper/2023/file/1feb87871436031bdc0f2beaa62a049b-Paper-Conference.pdf.

[4] Baohao Liao, Christian Herold, Shahram Khadivi, and Christof Monz. Apiq: Finetuning of
2-bit quantized large language model, 2024. URL https://arxiv.org/abs/2402.05147.

[5] Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu
Chen, et al. Lora: Low-rank adaptation of large language models. In International Conference
on Learning Representations.

[6] Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large
models. In Forty-first International Conference on Machine Learning.

[7] Vladislav Lialin, Namrata Shivagunde, Sherin Muckatira, and Anna Rumshisky. Relora: High-
rank training through low-rank updates, 2023. URL https://arxiv.org/abs/2307.05695.

[8] Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. GaLore: Memory-efficient LLM training by gradient low-rank projection. In Ruslan
Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett,
and Felix Berkenkamp, editors, Proceedings of the 41st International Conference on Machine
Learning, volume 235 of Proceedings of Machine Learning Research, pages 61121–61143.
PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.press/v235/zhao24s.html.

[9] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.
arXiv:1412.6980.

[10] Starkaður Barkarson, Steinþór Steingrímsson, and Hildur Hafsteinsdóttir. Evolving large text
corpora: Four versions of the Icelandic Gigaword corpus. In Nicoletta Calzolari, Frédéric
Béchet, Philippe Blache, Khalid Choukri, Christopher Cieri, Thierry Declerck, Sara Goggi,
Hitoshi Isahara, Bente Maegaard, Joseph Mariani, Hélène Mazo, Jan Odijk, and Stelios Piperidis,
editors, Proceedings of the Thirteenth Language Resources and Evaluation Conference, pages
2371–2381, Marseille, France, June 2022. European Language Resources Association. URL
https://aclanthology.org/2022.lrec-1.254.

[11] Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao Tian, Hua Wu, and Haifeng Wang. Ernie
2.0: A continual pre-training framework for language understanding. In Proceedings of the
AAAI conference on artificial intelligence, volume 34, pages 8968–8975, 2020.

11

https://arxiv.org/abs/2402.17764
https://proceedings.neurips.cc/paper_files/paper/2023/file/1feb87871436031bdc0f2beaa62a049b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1feb87871436031bdc0f2beaa62a049b-Paper-Conference.pdf
https://arxiv.org/abs/2402.05147
https://arxiv.org/abs/2307.05695
https://proceedings.mlr.press/v235/zhao24s.html
https://aclanthology.org/2022.lrec-1.254

[12] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.org/
abs/2110.14168.

[13] Kai Lv, Yuqing Yang, Tengxiao Liu, Qinghui Gao, Qipeng Guo, and Xipeng Qiu. Full
parameter fine-tuning for large language models with limited resources, 2024. URL https:
//arxiv.org/abs/2306.09782.

[14] Yixiao Li, Yifan Yu, Chen Liang, Nikos Karampatziakis, Pengcheng He, Weizhu Chen, and Tuo
Zhao. Loftq: Lora-fine-tuning-aware quantization for large language models. In The Twelfth
International Conference on Learning Representations, .

[15] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian
Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,
Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiao-
qing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng
Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation
and fine-tuned chat models, 2023. arXiv:2307.09288.

[16] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of machine learning research, 21(140):1–67, 2020.

[17] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia
Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent
Sifre. Training compute-optimal large language models, 2022. arXiv:2203.15556.

[18] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding, 2019.
URL https://arxiv.org/abs/1804.07461.

[19] Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using electra-
style pre-training with gradient-disentangled embedding sharing. In The Eleventh International
Conference on Learning Representations.

[20] Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
quantization. In International Conference on Learning Representations, .

[21] Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. Q8bert: Quantized 8bit bert. In
2019 Fifth Workshop on Energy Efficient Machine Learning and Cognitive Computing-NeurIPS
Edition (EMC2-NIPS), pages 36–39. IEEE, 2019.

[22] Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael W
Mahoney, and Kurt Keutzer. Q-bert: Hessian based ultra low precision quantization of bert. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 8815–8821,
2020.

[23] Haoli Bai, Lu Hou, Lifeng Shang, Xin Jiang, Irwin King, and Michael R Lyu. Towards efficient
post-training quantization of pre-trained language models. Advances in neural information
processing systems, 35:1405–1418, 2022.

[24] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory
cost. In International Conference on Machine Learning, pages 4596–4604. PMLR, 2018.

12

https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2306.09782
https://arxiv.org/abs/2306.09782
https://arxiv.org/abs/1804.07461

[25] Brett W. Larsen, Stanislav Fort, Nic Becker, and Surya Ganguli. How many degrees of
freedom do we need to train deep networks: a loss landscape perspective, 2022. URL https:
//arxiv.org/abs/2107.05802.

[26] Guy Gur-Ari, Daniel A. Roberts, and Ethan Dyer. Gradient descent happens in a tiny subspace,
2018. URL https://arxiv.org/abs/1812.04754.

[27] Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad,
Yangyang Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantiza-
tion aware training for large language models, 2023. arXiv:2205.17888.

[28] Sangil Jung, Changyong Son, Seohyung Lee, Jinwoo Son, Jae-Joon Han, Youngjun Kwak,
Sung Ju Hwang, and Changkyu Choi. Learning to quantize deep networks by optimizing
quantization intervals with task loss. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 4350–4359, 2019.

[29] Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, Elias Frantar, Artem Babenko, and Dan
Alistarh. Extreme compression of large language models via additive quantization, 2024. URL
https://arxiv.org/abs/2401.06118.

[30] Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Huaijie Wang, Lingxiao Ma, Fan Yang,
Ruiping Wang, Yi Wu, and Furu Wei. Bitnet: Scaling 1-bit transformers for large language
models. arXiv e-prints, pages arXiv–2310, 2023.

[31] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers, 2023. URL https://arxiv.org/abs/
2210.17323.

[32] Tim Dettmers, Ruslan A Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar,
Saleh Ashkboos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-
quantized representation for near-lossless llm weight compression. In The Twelfth International
Conference on Learning Representations, .

[33] Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#:
Even better llm quantization with hadamard incoherence and lattice codebooks. In Forty-first
International Conference on Machine Learning.

[34] Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han.
Smoothquant: Accurate and efficient post-training quantization for large language models.
In International Conference on Machine Learning, pages 38087–38099. PMLR, 2023.

[35] Gunho Park, Minsub Kim, Sungjae Lee, Jeonghoon Kim, Beomseok Kwon, Se Jung Kwon,
Byeongwook Kim, Youngjoo Lee, Dongsoo Lee, et al. Lut-gemm: Quantized matrix multipli-
cation based on luts for efficient inference in large-scale generative language models. In The
Twelfth International Conference on Learning Representations.

[36] Jung Hyun Lee, Jeonghoon Kim, Se Jung Kwon, and Dongsoo Lee. Flexround: Learnable
rounding based on element-wise division for post-training quantization. In International
Conference on Machine Learning, pages 18913–18939. PMLR, 2023.

[37] Jung Hwan Heo, Jeonghoon Kim, Beomseok Kwon, Byeongwook Kim, Se Jung Kwon, and
Dongsoo Lee. Rethinking channel dimensions to isolate outliers for low-bit weight quantization
of large language models. In The Twelfth International Conference on Learning Representations.

[38] Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng
Zhang, Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quan-
tization for large language models. In The Twelfth International Conference on Learning
Representations.

[39] Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash Gopalakrishnan.
Training deep neural networks with 8-bit floating point numbers. Advances in neural information
processing systems, 31, 2018.

13

https://arxiv.org/abs/2107.05802
https://arxiv.org/abs/2107.05802
https://arxiv.org/abs/1812.04754
https://arxiv.org/abs/2401.06118
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2210.17323

[40] Brian Chmiel, Ron Banner, Elad Hoffer, Hilla Ben-Yaacov, and Daniel Soudry. Accurate neural
training with 4-bit matrix multiplications at standard formats. In The Eleventh International
Conference on Learning Representations, 2023.

[41] Ron Banner, Itay Hubara, Elad Hoffer, and Daniel Soudry. Scalable methods for 8-bit training
of neural networks. Advances in neural information processing systems, 31, 2018.

[42] Sergio P Perez, Yan Zhang, James Briggs, Charlie Blake, Josh Levy-Kramer, Paul Balanca,
Carlo Luschi, Stephen Barlow, and Andrew William Fitzgibbon. Training and inference of
large language models using 8-bit floating point. In Workshop on Advancing Neural Network
Training: Computational Efficiency, Scalability, and Resource Optimization (WANT@ NeurIPS
2023).

[43] Mitchell Wortsman, Tim Dettmers, Luke Zettlemoyer, Ari Morcos, Ali Farhadi, and Ludwig
Schmidt. Stable and low-precision training for large-scale vision-language models. Advances
in Neural Information Processing Systems, 36:10271–10298, 2023.

[44] Houwen Peng, Kan Wu, Yixuan Wei, Guoshuai Zhao, Yuxiang Yang, Ze Liu, Yifan Xiong,
Ziyue Yang, Bolin Ni, Jingcheng Hu, Ruihang Li, Miaosen Zhang, Chen Li, Jia Ning, Ruizhe
Wang, Zheng Zhang, Shuguang Liu, Joe Chau, Han Hu, and Peng Cheng. Fp8-lm: Training fp8
large language models, 2023. arXiv:2310.18313.

[45] Haocheng Xi, Yuxiang Chen, Kang Zhao, KAI JUN TEH, Jianfei Chen, and Jun Zhu. Jetfire:
Efficient and accurate transformer pretraining with int8 data flow and per-block quantization. In
Forty-first International Conference on Machine Learning.

[46] Yixiao Li, Yifan Yu, Chen Liang, Nikos Karampatziakis, Pengcheng He, Weizhu Chen, and Tuo
Zhao. Loftq: Lora-fine-tuning-aware quantization for large language models. In The Twelfth
International Conference on Learning Representations, .

[47] Han Guo, Philip Greengard, Eric Xing, and Yoon Kim. Lq-lora: Low-rank plus quantized
matrix decomposition for efficient language model finetuning. ICLR 2024, 2023.

[48] Jiawei Zhao, Yifei Zhang, Beidi Chen, Florian Schäfer, and Anima Anandkumar. Inrank:
Incremental low-rank learning, 2024. URL https://arxiv.org/abs/2306.11250.

14

https://arxiv.org/abs/2306.11250

A Quantization Methods

Quantization methods can be broadly categorized into Quantization-Aware Training (QAT), Post-
Training Quantization (PTQ), and Fully Quantized Training (FQT).

Quantization-Aware Training (QAT) QAT [27, 28, 29, 30, 2] integrates quantization in the
training process by emulating inference time quantization where the model weights are quantized.
By maintaining high precision gradients and optimizer states, QAT allows the model to adapt to
quantized weights while preserving accuracy. These methods predominantly focus on weight-only
quantization approaches, which involve converting weight matrices into low-precision formats and
then upcasting them just before computation [30, 2]. This allows the main computation to occur at
high precision, effectively preserving model accuracy while significantly compressing the model [31].
However, QAT can require significant computational resources due to the need for full precision
gradient calculations and large optimization states [3].

Post-Training Quantization (PTQ) PQT [31, 32, 33, 34, 35, 20, 36, 37, 38] involves converting a
pretrained high-precision model into a lower precision format. This can be done directly or by using
a subset of the training data to calibrate the quantization process or fine-tune the quantized weights to
adapt the model to the quantization. However, PTQ often results in reduced accuracy compared to
QAT because the model does not learn to adjust to quantized weights during training [31, 34].

Fully Quantized Training (FQT) FQT aims to minimize memory and accelerate the training
process by quantizing both forward and backward passes [39, 40, 41, 42, 43]. These methods often
require specialized hardware [44, 45] but are promising for efficient training, and current approaches
cannot maintain accuracy [45].

LoQT is a form of QAT that gets close to FQT. As we perform a variant of LoRA (see §5.2), we
factor the layers W into two matrices P and B. We quantize the W and P with NF4, but keep B
in 16-bit precision. We periodically update the W matrices using the product of the fixed P and
the updated Bs without ever dequantizing it all at once, only layerwise when merging in PB. This
approach retains the benefits of reduced memory usage while minimizing accuracy loss, focusing
high-precision updates on a low-rank representation, and allowing efficient model updates without
the overhead of full matrix re-quantization.

Choice of Quantization Method We chose NF4-quantization because it has been shown to work
well [46, 3]. Unlike other methods that adapt low-rank factors to quantization, such as LoftQ [14] and
LQLoRA [47], LoQT operates under different constraints. Specifically, we do not have the flexibility
to freely choose bothA andB factors because the matrixA is already fixed as the projection matrix P
containing gradient information. Both LoftQ [14] and LQLoRA [47] use the SVD of the quantization
error to initialize the low-rank factors A and B, aiming to minimize the difference between the
quantized W and Q+AB. The SVD gives the factorization UΣV T , where the top r singular vectors
in U and V are used to initialize the low-rank factors A and B, respectively.

In contrast, LoQT takes a different approach due to the fixed nature of our low-rank adapter P
(analogous to A in LoftQ and LQLoRA). Instead of applying SVD to the quantization error, we
aim to minimize an objective where W , Q, and P are fixed. We derive B using the formula
B = P+(W − Q), where P+ is the Moore-Penrose pseudo-inverse of P rather than the inverse.
Incorporating information about the diagonal approximation of the Fisher information matrix into our
objective could potentially reduce the error even further, a direction we are interested in exploring in
future work.

B Hyperparamters

We provide the hyperparameter configurations and setups used in our experiments to facilitate the
reproduction of all results presented in this paper.

15

B.1 Pretraining

For the pretraining results shown in Tab. 1, we adopted configurations from GaLore [8] and tested
pretraining methods on different LLaMA 2 model sizes using the C4 dataset. Training was conducted
with optimizer states in BF16 precision, and NF4 precision quantization was used for LoQT. The
model rank was adapted based on the largest layer with specific parameters.

Tab. 1 shows the ratio r/dmodel, which denotes the rank relative to the largest weight matrix dimension.
All experiments used a maximum sequence length of 256, learning rate warmup for the first 10% of
training steps, and cosine annealing for the learning rate schedule, decaying to 10% of the initial rate.
Galore, LoQT-nq, and LoQT used exponentially increasing update frequencies starting at 100 and
increasing by 100 + ψi, where ψ is 1.2 and i is the update counter (see Section C.1 for more details).

We tested learning rates of 0.01, 0.005, 0.001, and 0.0005 across different model sizes. For models
ranging from 60M to 350M parameters, a learning rate of 0.01 yielded the best performance. In
contrast, full-rank models required smaller learning rates: 0.001 for 60M to 350M models and 0.0005
for the 1B model. To scale the learning rates for LoQT, LoQT-nq, and Galore, we employed a scale
parameter s set to 0.5 and 0.25 for the 1B model. This parameter functions similarly to the LoRA
alpha parameter, determining the weight of the learned factors for LoQT and LoQT-nq. For Galore,
our experiments indicated that s = 0.5 was more effective than the 0.25 reported in [8]. This scaling
approach effectively adjusts the learning rate, resulting in an actual rate of 0.005 for the multi-head
attention and feed-forward layers in LLaMA models, which is relatively large compared to the 0.001
used for full-rank models. Higher learning rates led to spikes in the training loss for both full-rank
and LoQT models.

Table 6: Pretraining hyperparameters of LLaMA models for evaluation. (-) Indicates we did not train
such a model.

Model Size Hidden/Intermediate Attention Heads Layers Steps Data Amount Rank

60M 512 / 1376 8 8 10K 1.3B 128
130M 768 / 2048 12 12 20K 2.6B 256
350M 1024 / 2736 16 24 60K 7.8B 256

1B 2048 / 5461 24 32 100K 13.1B 512
7B 4096/11008 32 32 - - 1024

13B 5120/13824 40 40 - - 1536

B.2 Fine-tuning

We test learning rates in the range of 1 × 10−5 to 5 × 10−4. For LoQT and LoftQ, we employed
normal float NF4 quantization and performed five iterations of optimizing the error of quantization.
We used a batch size of 32 and a maximum sequence length of 256. Tab. 7 summarizes the detailed
hyperparameters for tasks in GLUE using the DeBERTaV3-base model. We use a fixed projection
gap of 2400 for all runs. Each of the parameter-efficient training methods is applied to all linear
layers of the network, including attention projection and feed-forward layers, while the embedding
layer is not trained.

Table 7: Hyperparameter setup for LoQT-nq, LoQT, LoftQ[14], LoRA[14], and Galore across
various tasks on the GLUE benchmark.

Method Hyper-parameter MNLI RTE QNLI MRPC QQP SST-2 CoLA STS-B

LoQT, LoFTQ # Epochs 5 20 10 60 10 10 20 60
Learning Rate 1× 10−4 5× 10−5 5× 10−5 1× 10−4 5× 10−5 5× 10−5 1× 10−4 5× 10−5

LoRA, Galore # Epochs 10 30 30 30 30 30 30 30
Learning Rate 1× 10−5 2× 10−5 1× 10−5 2× 10−5 1× 10−5 2× 10−5 2× 10−5 3× 10−5

16

C Rank Ablation

Fig. 5 shows the validation perplexity versus training steps for various ranks using LoQT-nq and
LoQT on a 130 million parameter model over 20,000 iterations. All models employ an exponentially
increasing update frequency starting at 100, with a factor of 1.2Ti . The results demonstrate that both
the quantized (LoQT) and non-quantized (LoQT-nq) models follow a similar trajectory for ranks
ranging from 64 to 512. However, for the smaller rank of 64, there is a slight divergence between
LoQT-nq and LoQT, indicating a limit to how low the rank can be while maintaining accuracy with
quantization. This plot highlights the tradeoff between rank and perplexity, suggesting that while
our method supports low-rank training, there is a minimum rank threshold needed to achieve results
comparable to regular pretraining.

Figure 5: Rank ablation for LoQT and LoQT-nq showing perplexity as a function of steps.

C.1 Memory Measurements

Fig. 6 demonstrates that LoQT requires less memory than GaLore and Adam, even without using
per-layer gradients [13] or Adam 8-bit [20]. The gap between LoQT and the baselines increases
with larger model sizes. The configurations and ranks for each model are shown in Tab. 6. With
LoQT and Adam 8-bit, it is possible to pretrain a 13B model with rank 1024 on a GPU with 24GB
of VRAM. This enables training with LoQT on consumer GPUs, such as the NVIDIA 4090, using a
small per-GPU token batch size of 256. Fig. 1 in the main text provides a detailed breakdown of each
memory component for the 13B model. Maximum memory allocated is measured using nvitop
(https://github.com/XuehaiPan/nvitop).

Finetuning without merging low-rank factors Tab. 9 shows how LoQT and LoQT-nq perform
when not using the merging of factors while training. We see that the results are slightly worse than
those where merging is performed; however, the results are still better than LoftQ, LoRA, and Galore,
showing that in the finetuning case, where we already have a pretrained model, we can omit to merge
low-rank factors into W, and still get good results. This would allow W to be kept fixed and quantized
while training only the adapters, which enables using LoQT like LoRA, where multiple adapters can
be trained for the same set of frozen weights.

Task adaptation for GSM8K on Llama 7B and 13B The GSM8K dataset [12] "is a dataset of
8.5K high-quality linguistically diverse grade school math word problems created by human problem
writers. The dataset is segmented into 7.5K training problems and 1K test problems". It has been used
extensively to benchmark LLMs and is a good candidate for evaluating LoQT. We experimented with
7B and 13B models, performing a hyperparameter search to find the optimal learning rate for each
method. Using the best learning rate, we trained each model over three seeds for three epochs with a
sequence length of 512, applying 4-bit quantization for fine-tuning Llama-2 models on the GSM8K
training set. We report the average test set accuracy and standard error in Tab. 3. LoQT achieves an
accuracy of 42.6 for Llama-7B and 52.9 for Llama-2 13B. Both results are average obtained over
three seeds without merging and with rank 64. Tab. 8 lists the hyper-parameters. We evaluate the
fine-tuned and quantized model on the validation set and report the best perplexity across learning
rates in Tab. 8. For each of the methods, only the attention projection matrices are trained.

17

https://github.com/XuehaiPan/nvitop

Figure 6: Memory usage for LoQT vs baselines for different model sizes. LW means per-layer
gradient updates as per [13], and A8bit means with Adam 8-bit. We evaluate using a token batch size
of 256.

Table 8: Hyper-parameters used for the GSM8K task.

Hyper-parameter Value
Optimizer AdamW
Weight decay 0.1
LR {0.1, 0.5, 0.7, 1, 3, 4} × 10−4

LR scheduler cosine
Warmup ratio 3%
Epochs 3
Batch size 16 (7B), 8 (13B)
Max sequence length 512

Continued pretraining of Llama 7B We run our pretraining experiments for models up to 1B
parameters. To demonstrate the feasibility of LoQT on a larger model size in a practical application,
we do continued pretraining for language adaptation. To this end, we start with the meta-llama
Llama-2-7b-hf from Hugging face and run 1500 updates (1 epoch) on the model using a batch size
of 512. We compare LoQT with NF4 quantization, LoQT-nq (no quantization), regular training, and
GaLore. We use rank 1024 for all models where applicable, adam8bit optimizer, and 150 warmup
steps. For LoQT and GaLore we use a learning rate of 0.0002 with a scale factor of 0.25 and
for the others a learning rate of 0.00005. The dataset we train on is a curated subset of a public
Icelandic text dataset [10] with 770k documents and a corresponding evaluation set. We released the
data splits at (https://huggingface.co/datasets/vesteinn/loqt_icelandic). We chose
Icelandic since the model has a limited performance on the language yet it was included to some
degree in the pretraining data, enabling a clear improvement trajectory. The results comparing Galore,
Regular training (Full), and LoQT are shown in Tab. 4. LoQT and LoQT-nq perform the best at
3.61 and 3.63 in perplexity, similar to full training at 3.79, while GaLore gets 3.96 and the original
model 4.90.

D Memory-Saving Ablations

To evaluate the differences between memory savings with layer-wise gradient computations and 8-bit
Adam, we conduct an ablation experiment using a 130M parameter model. We compare four settings:
regular training, 8-bit Adam, layer-wise gradient updates, and a combination of 8-bit Adam with
layer-wise updates, tested on Galore, LoQT, and regular FP16 training. Our results, illustrated in

18

https://huggingface.co/datasets/vesteinn/loqt_icelandic

Table 9: Results with LoQT, LoQT-nq, and GaLore of DeBERTaV3-base models on the GLUE
development set. We report mean and standard error over three seeds. The best results on each dataset
are shown in bold. "No-Merge" means we do not update the pretrained matrix W during training.

Rank Method MNLI QNLI RTE SST MRPC CoLA QQP STSB Average
Acc Acc Acc Acc f1 Matt f1 PCorr

32 LoQT-nq 90.0±0.10 94.2±0.06 84.8±0.75 95.9±0.06 94.1±0.25 72.5±0.41 90.0±0.06 91.5±0.07 89.1
32 LoQT 90.0±0.09 94.3±0.04 84.1±0.91 95.5±0.10 94.4±0.20 70.5±0.35 89.2±0.02 91.5±0.13 88.7

32 LoQT-nq - no Merge 90.0±0.10 94.1±0.01 84.5±0.01 95.6±0.03 93.8±0.01 72.0±0.01 89.8±0.01 91.6±0.01 89.0
32 LoQT- no Merge 90.0±0.12 94.1±0.01 86.1±0.15 95.7±0.02 94.2±0.01 71.4±0.20 89.6±0.01 90.8±0.01 88.9

32 LoRA 89.9±0.03 94.0±0.09 83.6±0.12 95.7±0.15 93.5±0.26 69.3±0.47 89.8±0.11 90.7±0.22 88.3
32 LoftQ 90.4±0.09 93.2±0.02 83.8±0.63 95.6 ±0.07 93.2±0.14 71.1±0.28 89.6±0.12 91.0±0.09 88.4
32 GaLore 90.3±0.07 94.0±0.04 83.7±0.79 95.6±0.07 93.4±0.38 70.7±0.24 89.8±0.05 90.6±0.01 88.5

Figure 7: Naive Quantization of W and P vs including Error Compensation(EC) and Exp. increasing
intervals(EI).

Fig. 9 show that adding these memory-saving components introduces a small decrease in performance.
Importantly, LoQT experiences a proportionally smaller decrease in performance compared to Galore
and full training when combining both 8-bit and layer-wise updates. These results demonstrate that
while memory savings come with some trade-offs, LoQT maintains good performance. In addition,
due to the lower memory requirements of LoQT, we enable training of larger models without using
layer-wise gradient computations and 8-bit Adam.

Memory savings with varying sequence lengths With larger contexts, the overall memory con-
sumption is increasingly influenced by activations. Following prior work [8, 48], our experimentation
has focused on the setting of shorter context lengths (256 tokens). But as demonstrated in Fig. 8, the
benefit of LoQT does transfer to longer context lengths, enabling training of Llama 7B on consumer
hardware with a context length of 2048 and 4096 on a 40GB A100 without activation checkpointing.

E Generalization to other architectures and models

LoQT should work with any type of deep neural network using linear layers, such as vision trans-
formers or state space models. To narrow the scope of our work and provide a more detailed analysis,
however, we choose to focus on a well-studied auto-regressive language model and a bi-directional
masked language model that has been commonly used as a basis in much of the related work. We
hope to see LoQT being used for other model architectures.

19

Figure 8: Memory usage for common context lengths (256 to 4096) for the LLaMA 7B model mea-
sured using torch.cuda.max_memory_allocated. We include lines representing 16GB, 24GB,
and 40GB VRAM limits to indicate which configurations fit within the VRAM capacities of standard
NVIDIA GPUs.

Figure 9: Validation perplexity with various optimization techniques: Adam 8bit, per-layer updates,
and their combinations, compared to baseline training without these optimizations. LW means
per-layer gradient updates as per [13], and Adam8bit means with Adam 8-bit.

20

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See §2 and §3.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See §6 and in particular the section on limitations §7.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

21

Justification: While theoretical results are limited, we provide pseudo-code and derivations
in §2.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide pseudo-code, hyperparameters in the Appendix, and an implemen-
tation is provided as supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

22

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide code and instructions for setting up and running an environment.
The code will be open-sourced after submission.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, see §2 and Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We run three different seeds for most runs, bar the more expensive 1B runs.
Our work is mainly claiming memory saving not claiming SOTA on any benchmarks, but
runs are provided to show competitive results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

23

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See a list of resources used in §3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We went over it and could not find any violations.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See §6 and in particular §7, the work enables more efficient model training in
a memory-constrained setting, a potential net benefit in many settings.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

24

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We reference and respect licenses of the code we build on.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

25

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The only new asset is the provided code, which is released with documentation,
support will be provided.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human subjects were involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No participants were involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

26

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

27

	Introduction
	Efficient Pretraining With LoQT
	Background: GaLore
	Low-rank Gradients as Adapters
	Pretraining with LoRA
	Quantized Training
	Compensating for Quantization Errors

	Experiments
	Pretraining of Generative Language Models
	Memory-Efficient Finetuning
	Memory and Throughput

	Ablations
	Related Work
	Neural Network Quantization and NF4
	Adaptation of Pretrained Networks
	Memory Efficient Optimization

	Discussion and Conclusion
	Impact and Limitations
	Acknowledgements
	Quantization Methods
	Hyperparamters
	Pretraining
	Fine-tuning

	Rank Ablation
	Memory Measurements

	Memory-Saving Ablations
	Generalization to other architectures and models

