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Abstract 1 

A knowledge graph represents real-world 2 

concepts as interconnected nodes, with 3 

widely recognized examples like WikiData, 4 

DBPedia, and YAGO. However, these 5 

graphs remain incomplete, and knowledge 6 

evolves over time. Constructing knowledge 7 

graphs involves extracting information 8 

from various sources, including text, 9 

images, and videos. Language models store 10 

knowledge in their parameters, and the 11 

ISWC has introduced a competition, LM-12 

KBC, to extract this knowledge for 13 

enhancing knowledge graphs. Previous 14 

research has focused on hard prompting 15 

and few-shot methods, leaving an 16 

unexplored opportunity for soft prompts. 17 

This study proposes Knowledge Graph as 18 

Tokens (KGAT), inspired by Frozen and 19 

Seq2Path, using a graph neural network 20 

(GNN) to incorporate graph context as a 21 

soft prompt in language models. 22 

Evaluations on ISWC datasets (2022–23 

2024) with Llama 3.1 8B show that KGAT 24 

outperforms the baseline, albeit with a 25 

minor improvement. 26 

1 Introduction 27 

A knowledge graph is a representation of 28 

knowledge that uses a graph data structure to store 29 

information about the real world. In a knowledge 30 

graph, the graph consists of a collection of entities 31 

represented by nodes, which are interconnected 32 

through specific relationships (Hogan et al., 2022). 33 

Although knowledge graphs have been developed 34 

for a long time, current knowledge graphs are still 35 

considered to lack complete information (Demir et 36 

al., 2023; Singhania et al., 2022; Kalo et al., 2023; 37 

Ré et al., 2014). To construct and enhance existing 38 

knowledge graphs, a variety of information and 39 

data is required, which can be obtained from text 40 

documents, images, audio, video, and other diverse 41 

sources of information (Zhong et al., 2024). In the 42 

field of natural language processing, it has been 43 

discovered that language models can store 44 

knowledge within their parameters, acquired 45 

through training. This indicates that language 46 

models could serve as a potential new source of 47 

data for constructing knowledge bases 48 

(AlKhamissi et al., 2022; Petroni et al., 2019; 49 

Roberts et al., 2020). This motivated the 50 

International Semantic Web Conference (ISWC) to 51 

organize the Knowledge Base Construction from 52 

Pre-trained Language Models (LM-KBC) 53 

competition (Singhania et al., 2022; Kalo et al., 54 

2023). 55 

In the LM-KBC task, the language model 56 

receives input in the form of a subject entity s and 57 

a relation (or predicate) r. The model is then 58 

expected to output a set of relevant object entities 59 

[o1, o2, …, ok]. There are three possible outcomes: 60 

no matching object entities, exactly one matching 61 

object entity, or multiple matching object entities. 62 

The LM-KBC competition features two tracks: the 63 

small-model track and the open track. The small-64 

model track limits participants to using language 65 

models with a maximum of 1 billion parameters 66 

(including the BERT track in 2022), while the open 67 

track allows contestants to use any type of language 68 

model and incorporate additional context to 69 

achieve the best results. In this paper, we focus on 70 

the open track. 71 

In previous research, most approaches focused 72 

on variations of prompting using hard prompts, 73 

particularly few-shot prompting (Alivanistos et al., 74 

2022; Biester et al., 2023; Li et al., 2023; Nayak 75 

and Timmapathini, 2023; Zhang et al., 2023). In 76 

addition to using few-shot prompting, there are also 77 

approaches that utilize zero-shot prompting to test 78 

the zero-shot capabilities of language models in the 79 

context of LM-KBC (Ghosh, 2023). In applying 80 

few-shot prompting, the "shots" used are generally 81 

derived from the provided training and validation 82 
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data. Given that the training and validation data 83 

consist of triples, this means that the provided data 84 

essentially represents the knowledge graph itself. 85 

Unfortunately, previous research has treated these 86 

data as text formatted for few-shot prompting, 87 

thereby neglecting the inherent graph structure of 88 

the training and validation data. To incorporate the 89 

graph data characteristics present in the training 90 

data, we propose a new approach that processes 91 

reference triples using a graph neural network and 92 

utilizes them as soft prompts for the language 93 

model. This approach, called Knowledge Graph as 94 

Tokens (KGAT), involves representing the context 95 

of the knowledge graph as a virtual token (soft 96 

prompt) that can be processed by the language 97 

model. 98 

2 Methodology 99 

We are inspired by Frozen (Tsimpoukelli et al., 100 

2021), which transforms image representations 101 

into virtual tokens. In contrast, our approach 102 

involves converting the knowledge graph into 103 

virtual tokens. There are several issues that we 104 

believe need to be analyzed, particularly 105 

concerning irrelevant context (or shots) and the 106 

output length from the language model. Some 107 

approaches use rules to select the shots to be 108 

embedded in the context. However, the presence of 109 

shots does not always positively impact the 110 

language model's output. This is because shot 111 

selection is often performed automatically and can 112 

be stochastic (random), leading to potentially 113 

irrelevant shots that degrade the model's 114 

performance (Cattan et al., 2024). 115 

Our proposed solution processes the knowledge 116 

graph using a GNN encoder. This encoder employs 117 

TransformerConv (or UniMP) (Shi et al., 2021) to 118 

handle the knowledge graph, utilizing its’ attention 119 

mechanism. We designed the GNN encoder block 120 

based on the architecture of the encoder block in 121 

the vanilla Transformer (Vaswani et al., 2017). This 122 

approach assumes that if the design of the encoder 123 

block mimics that of the Transformer, the output 124 

from the GNN encoder block will be able to 125 

preserve the semantic information related to the 126 

knowledge graph. 127 

Since GNNs treat nodes and edges as vectors, a 128 

technique is needed to convert entity names and 129 

relations into a single vector. It's important to note 130 

that the tokenization mechanism in transformers 131 

allows a single word to be split into multiple 132 

tokens. To convert entity names and relations into 133 

a single vector (or token), techniques such as EOL, 134 

PCOT, and KE (Zhang et al., 2024) are used to 135 

transform the sequence of tokens into a single 136 

vector. The resulting vectors then will be processed 137 

by KGAT module that outputs virtual tokens. We 138 

are also inspired by the Visual Prefix in Frozen for 139 

creating virtual tokens, which we name Graph 140 

Prefix. 141 

 

Figure 1: Overview of the KGAT process. The method takes two inputs: a prompt containing a subject and relation, 

and a knowledge graph. Both inputs are encoded using EOL/PCOT/KE and a language model to obtain vector 

representations. The KGAT module then generates knowledge graph (KG) tokens, with the number determined 

by the user, representing relevant parts of the knowledge graph. These KG tokens are prepended to the prompt as 

a form of soft prompting and fed back into the language model. Finally, the model generates object entity 

candidates via beam search, followed by post-processing to retrieve the corresponding entity IDs. 
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3 Experimental Setup 142 

3.1 Training and Inference 143 

In our proposed approach, there are two 144 

phases of training: one for the retrieval task and one 145 

for the LM-KBC task. The retrieval training phase 146 

involves modules such as the GNN Encoder and 147 

several feedforward networks (θt and θq) within the 148 

KGAT model. The retrieval problem is formulated 149 

as a task where the model is given a query and 150 

several triples (knowledge graph). The model must 151 

score the relevance of triples that are related to the 152 

query. To ensure that triples provide information 153 

related to the answer to the given query and not the 154 

query itself, an answer vector is provided during 155 

retrieval training. Feedforward network θq will 156 

map the query to closely match the semantics of the 157 

answer vector, so the retrieval results involve the 158 

triple vectors, and the query vector will indirectly 159 

represent their proximity to the answer vector for 160 

the given query. For the first phase of training, the 161 

objective function will follow the criteria outlined 162 

below: 163 

𝐿 = 𝐵𝐶𝐸 (𝜎 (𝜃𝑡(𝑇𝑛) ∙ 𝜃𝑞(𝑄))) + 𝐵𝐶𝐸(𝜎(𝜃𝑡(𝑇𝑛) ∙ �̅�))

+ 𝐵𝐶𝐸 (𝜎(𝜃𝑞(𝑄) ∙ �̅�)) 

(1) 

with, �̅� =
1

𝑛
∑ 𝑉𝑖
𝑛
𝑖  

In the LM-KBC training phase, we address 164 

challenges related to output length, entity ordering, 165 

and hallucination issues, particularly in 166 

autoregressive. Since these models generate 167 

outputs sequentially, longer outputs affect context 168 

length and may disrupt performance. To mitigate 169 

this, we reformulate LM-KBC as a single-tuple 170 

generation task, inspired by Seq2Path (Mao et al., 171 

2022) from aspect-based sentiment analysis. The 172 

tuple consists of the subject entity, relation, object 173 

entity, and a discriminative token. During 174 

inference, the model receives a prompt with the 175 

subject entity and relation but must predict the 176 

object entity and discriminative token ("true" or 177 

"false") using beam search, outputting "NONE" if 178 

no relevant entity exists. Our training strategy 179 

follows Seq2Path’s approach, incorporating 180 

augmentation techniques, loss masking, loss 181 

computation, and pruning to enhance model 182 

accuracy and robustness. 183 

3.2 Dataset 184 

In the retrieval training phase, we train the 185 

model using the GraphExtQA (Shen et al., 2023) 186 

dataset, while the LM-KBC training phase utilizes 187 

data provided by ISWC, specifically LM-KBC 188 

2022, 2023, and 2024. 189 

3.3 Metrics 190 

We use the same metrics defined by ISWC for 191 

the LM-KBC competition. The three main metrics 192 

are precision, recall, and F1-score. Each metric is 193 

defined as follows: 194 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

=
𝑃 ∩ 𝐺𝑇

|𝑃|
 

𝑅𝑒𝑐𝑎𝑙𝑙

=
𝑃 ∩ 𝐺𝑇

|𝐺𝑇|
 

𝑓1 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (2) 

4 Results and Analysis 195 

4.1 Hyperparameter Tuning 196 

We performed hyperparameter tuning to 197 

obtain the most optimal solution candidates. We 198 

 

Figure 2: The KGAT flow begins by encoding inputs 

with EOL/PCOT/KE, followed by processing 

through a GNN encoder to extract node features. 

Transformed subject, object, and relation vectors are 

concatenated and passed through a feedforward 

network θt. Retrieval is performed via the dot product 

between triple vectors and a query vector, which is 

obtained by encoding the input sequence through 

another feedforward network θq. The resulting 

relevance scores determine which triples are selected, 

and the readout module aggregates the retrieved 

triple vectors. 
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acquired the value 2 for the number of GNN 199 

Encoder blocks and 8 for the number of attention 200 

heads. For the dimensions of the feed-forward 201 

network in the GNN Encoder, we obtain D/2, 202 

where D represents the embedding size of the 203 

language model. The batch size was 8, with each 204 

batch containing 50 reference triples. The choice of 205 

50 was due to computational constraints. For the 206 

learning rate, we get 1e-5 for the retrieval training 207 

process and 1e-6 for the LM-KBC training, using 208 

the Adam optimizer. 209 

4.2 Evaluation Result 210 

We conducted several evaluation scenarios, 211 

including cross-evaluation where the training and 212 

testing data come from different datasets (e.g., 213 

training data from LM-KBC 2022 and testing data 214 

from LM-KBC 2023). 215 

 216 

Train 

Data 

Test Data 

LM-KBC 

2022 

LM-KBC 

2023 

LM-KBC 

2024 

P R F1 P R F1 P R F1 
LM-KBC 

2022 

0.55 0.70 0.52 0.32 0.52 0.31 0.27 0.60 0.24 

LM-KBC 

2023 

0.49 0.71 0.47 0.41 0.63 0.43 0.26 0.66 0.27 

LM-KBC 

2024 

0.60 0.55 0.44 0.51 0.42 0.32 0.35 0.56 0.28 

ALL 0.48 0.68 0.46 0.21 0.29 0.16 0.57 0.40 0.26 

Table 1:  Evaluation result. 217 

 218 

To measure the success of our proposed 219 

approach, we compared it with a baseline method. 220 

The baseline method employs few-shot prompting 221 

with 5 shots. The results indicate that, overall, 222 

KGAT performs better than the baseline method. 223 

 224 

Model Test Data 

LM-KBC 

2022 

LM-KBC 

2023 

LM-KBC 

2024 

P R F1 P R F1 P R F1 
Baseline 0.60 0.60 0.47 0.51 0.46 0.38 0.50 0.50 0.33 

KGAT 0.60 0.71 0.52 0.51 0.63 0.43 0.57 0.66 0.28 

Table 2:  Comparison with baseline. 225 

4.3 Error Analysis 226 

To ensure an objective and fair comparison, we 227 

conducted statistical testing between the results of 228 

KGAT and the baseline method. We utilized a one-229 

tailed paired t-test for this purpose. The results 230 

indicate that, overall, KGAT performs better than 231 

the baseline method. However, using t-test with a 232 

confidence level of 5%, KGAT has not yet 233 

demonstrated a statistically significant advantage 234 

over the baseline method. Several potential reasons 235 

for this result include: 236 

• Beam Value The beam value forces the 237 

language model to predict at least as many 238 

objects as the beam size. This can be 239 

problematic because the number of objects 240 

for each subject-entity pair and relation 241 

varies (ranging from zero to infinity). This 242 

implies that for subject-entity and relation 243 

pairs with fewer objects than the beam size, 244 

the model may predict incorrect objects 245 

(false positives), leading to a lower precision 246 

score. The beam size proposed by Seq2Path, 247 

set at 6, proves to be ineffective in the 248 

context of the data used in this study. An 249 

investigation into the average number of 250 

objects in the training and validation data 251 

reveals that the average number of objects 252 

per subject-entity and relation pair falls 253 

within the range of 2-4 objects. 254 

• Empty Object Case In cases where no 255 

objects are expected, the model is anticipated 256 

to have a high precision by avoiding 257 

incorrect predictions (false positives). 258 

However, due to the use of beam search, the 259 

model often attempts to provide predictions 260 

even when they are incorrect. This issue 261 

arises partly because of the relatively low 262 

ratio of empty cases, with the proportion of 263 

such cases being less than 25%. 264 

• Effect of Data Augmentation The data 265 

augmentation process introduced an 266 

additional problem by reducing the ratio of 267 

empty cases. As a result, the model became 268 

more inclined to predict object entities and 269 

less likely to output "NONE" as the 270 

prediction in empty cases. 271 

5 Conclusion 272 

Based on the results obtained, it was found that 273 

KGAT is better than the baseline method. However, 274 

the improvement is not considered as a significant 275 

improvement. This is attributed to the effects of 276 

beam search, data augmentation, and imperfect 277 

retrieval mechanism. Although KGAT has not yet 278 

demonstrated significantly superior performance, 279 

there are areas for improvement. These include 280 

refining the beam search mechanism, enhancing 281 

data augmentation, and replacing the objective 282 

function in subgraph generation training to achieve 283 

a better retrieval mechanism. 284 
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Limitations 285 

This study is limited to using a moderate-sized 286 

LLM, LLaMA 3.1 8B. To ensure fair evaluation, 287 

we use the same base model for the baseline 288 

method as well. 289 
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