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Abstract
In recent years, deep learning-based sequence
modelings, such as language models, have re-
ceived much attention and success, which pushes
researchers to explore the possibility of transform-
ing non-sequential problems into a sequential
form. Following this thought, deep neural net-
works can be represented as composite functions
of a sequence of mappings, linear or nonlinear,
where each composition can be viewed as a word.
However, the weights of linear mappings are unde-
termined and hence require an infinite number of
words. In this article, we investigate the finite case
and constructively prove the existence of a finite
vocabulary V = {ϕi : Rd → Rd | i = 1, ..., n}
with n = O(d2) for the universal approximation.
That is, for any continuous mapping f : Rd →
Rd, compact domain Ω and ε > 0, there is a se-
quence of mappings ϕi1 , ..., ϕim ∈ V,m ∈ Z+,
such that the composition ϕim ◦ ... ◦ ϕi1 approxi-
mates f on Ω with an error less than ε. Our results
demonstrate an unusual approximation power of
mapping compositions and motivate a novel com-
positional model for regular languages.

1. Introduction
Cognitive psychologists and linguisticians have long recog-
nized the importance of languages (Pinker, 2003), which
has been further highlighted by the popularity of language
models such as BERT (Devlin et al., 2018) and GPT (Brown
et al., 2020). These models, based on RNNs or Transform-
ers, have revolutionized natural language processing by
transforming it into a sequence learning problem. They
can handle the long-term dependencies in text and gener-
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ate coherent text based on the previous content, making
them invaluable tools in language understanding and gener-
ation (Vaswani et al., 2017). The success of these models
has also led to a new approach to solving non-sequential
problems by transforming them into sequential ones. For
instance, image processing can be turned into a sequence
learning problem by segmenting an image into small blocks,
arranging them in a certain order, and then processing the
resulting sequence using sequence learning algorithms to
achieve image recognition (Dosovitskiy et al., 2021). The
use of sequence learning algorithms has also been extended
to reinforcement learning (Chen et al., 2021), such as the
decision transformer which outputs the optimal actions by
leveraging a causally masked transformer and exceeds the
state-of-the-art performance.

Sequence modeling has opened up new possibilities for solv-
ing a wide range of problems, and this trend seems to hold
in the field of theoretical research. As is well known, artifi-
cial neural networks have universal approximation capabili-
ties, and wide or deep feedforward networks can approxi-
mate continuous functions on a compact domain arbitrarily
well (Cybenko, 1989; Hornik et al., 1989; Leshno et al.,
1993). However, in practical applications such as AlphaFold
(Jumper et al., 2021), BERT (Devlin et al., 2018) and GPT
(Brown et al., 2020), the residual network structures (He
et al., 2016a;b) are more preferred than the feedforward
structures. It is observed that residual networks (ResNets)
are forward Euler discretizations of dynamical systems (E,
2017; Sander et al., 2022), and this relationship has spawned
a series of dynamical system-based neural network struc-
tures such as the neural ODE (Chen et al., 2018). The
dynamical system-based neural network structures are ex-
pected to play an important role in various fields.

Notably, both the language models and the dynamical sys-
tems are linked to time series modeling and have been effec-
tively applied to non-sequential problems. This observation
naturally leads us to question: is there an intrinsic relation-
ship between their individual successes? This article aims
to ponder upon the question. Through a comparative study,
we obtain some initial results from the perspective of univer-
sal approximation. Specifically, we demonstrate that there
exists a finite set of mappings, referred to as the vocabulary
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V , chosen as flow maps of some autonomous dynamical
system x′(t) = f(x(t)), such that any continuous mapping
can be approximated by composing a sequence of mappings
in the vocabulary V . This bears a resemblance to the way
complex information is conveyed in language through con-
structing phrases, sentences, and ultimately paragraphs and
compositions. Table 1 provides an intuitive representation
of this similarity.

1.1. Contributions

1. We proved that it is possible to achieve the universal
approximation property by composing a sequence of
mappings in a finite set V . (Theorem 2.2 and Corollary
2.3).

2. Our proof is constructive as we designed such a V that
contains a finite number of flow maps of dynamical
systems. (Theorem 2.6)

3. We observed a similarity between composite continu-
ous mappings and words in languages (Table 1). Fur-
thermore, we proved that embedding words as con-
tinuous mappings could serve as a model of regular
languages (Theorem 5.2).

1.2. Related works

Universal approximation. The approximation properties
of neural networks have been extensively studied, with pre-
vious studies focusing on the approximation properties of
network structures such as feedforward neural networks
(Cybenko, 1989; Hornik et al., 1989; Leshno et al., 1993)
and residual networks (He et al., 2016a;b). In these net-
works, the structure is fixed and the weights are adjusted
to approximate target functions. Although this paper also
considers universal approximation properties, we use a com-
pletely different way. We use a finite set of mappings, and
the universal approximation is achieved by composing se-
quences of these mappings. The length of the mapping
sequence is variable, which is similar to networks with a
fixed width and variable depth (Lu et al., 2017; Johnson,
2019; Kidger & Lyons, 2020; Park et al., 2021; Beise &
Da Cruz, 2020; Cai, 2022; Li et al., 2023). However, in our
study, we do not consider learnable weights; instead, we
consider the composition sequence, which is different from
previous research.

Residual network, neural ODE, and control theory. The
word mapping constructed in this paper is partially based
on the numerical discretization of dynamical systems and
therefore has a relationship with residual networks and neu-
ral ODEs. Residual networks (He et al., 2016a;b) are cur-
rently one of the most popular network structures and can
be viewed as a forward Euler discretization of neural ODEs
(Chen et al., 2018). Recently, Li et al. (2022) and Tabuada

& Gharesifard (2022) studied the approximation properties
of neural ODEs. Their basic idea is employing controllabil-
ity results in control theory to construct source terms that
approximate a given finite number of input-output pairs,
thus obtaining the approximation properties of functions
in the Lp norm or continuous norm sense. Additionally,
Duan et al. (2022) proposed an operator splitting format that
discretizes neural ODEs into leaky-ReLU fully connected
networks. Partially inspired by Duan et al.’s construction,
we designed a special splitting method to finish one part of
our construction.

It’s worth noting that all neural networks mentioned above
can be represented as compositions of mapping sequences.
However, the networks involve an infinite number of map-
pings, which is different from our construction which only
requires a finite number of mappings.

Compositionality. Our results demonstrate that the compo-
sition is a powerful operator that allows us to achieve the
universal approximation property on compact domains by
using a finite number of mappings. This is a little similar to
the concept of compositionality in linguistics, especially in
the Montagovian framing (Montague, 1970; Kracht, 2012),
which is the idea that a finite vocabulary of basic elements
can be combined via a grammar to express an infinite range
of meanings. Recently, researchers have explored the capa-
bilities of neural models to acquire compositionality while
learning from data (Dankers et al., 2022; Valvoda et al.,
2022). However, they focused on algebraic relations rather
than approximations. It’s interesting to think whether these
studies and ours can be connected.

Word embeding. The finite mapping vocabulary might be
related to the word embedding in natural language process-
ing. The most basic model involves embedding words as
vectors and then summing these word vectors to obtain the
sentence vector (Mikolov et al., 2013). However, the sum-
mation operator is commutative, and thus vector embedding
models fail to capture any notion of word order. To address
this limitation, Rudolph & Giesbrecht (2010) proposed mod-
eling words as matrices rather than vectors and composing
sentence embeddings through matrix multiplication instead
of addition. For recent advancements in this direction, we
refer to Mai et al. (2018); Asaadi et al. (2023). To the best
of our knowledge, prior research in this domain has not
delved into the approximation properties. Leveraging the
techniques presented in this paper, we can readily establish
the existence of a finite vocabulary for both vector embed-
ding and matrix embedding (see Appendix D). Furthermore,
embedding words as matrices offers a compositional model
for regular languages (Rudolph & Giesbrecht, 2010), which
can be generalized to continuous mapping embeddings (see
Section 5). It is important to note that vector space and
matrix space are finite-dimensional, while the continuous
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Table 1. Comparison of languages and dynamical systems in dimension d

English Flow map of dynamical systems ‡

Vocabulary ∼140,000† O(d2)

Word I, you, am, is, are, apple, banana, car, buy, do, have,
blue, red,...

ϕτ
±e1 , ϕτ

±e2 , ..., ϕτ
±ed

, ϕτ
±E11x

, ϕτ
±E12x

, ϕτ
±E21x

, ...,
ϕτ
±Eddx

, ϕτ
±ReLU(x), ...

Phrase A big deal, easier said than done, time waits for no
man, ...

ϕτ
e1 • ϕ

τ
−e2 , ϕτ

e1 • ϕ
τ
E11x

• ϕτ
ReLU(x), ...

Sentence It was the best of times, it was the worst of times, it
was the age of wisdom, it was the age of foolishness,
...

ϕτ
e3 •ϕ

τ
ReLU(x) •ϕ

τ
−E21x

•ϕτ
ReLU(x) •ϕ

τ
E23x

• ϕτ
−e2 •

ϕτ
ReLU(x) • ϕ

τ
E11x

• ϕτ
e1 • . . .

† The number of words, phrases, and meanings in Cambridge Advanced Learner’s Dictionary.
‡ Notations are provided in Section 2.

function space is infinite-dimensional. This suggests that
embedding words as nonlinear mappings could enhance
the expressiveness of sentences. However, there is limited
exploration in this direction.

For embedding words as functions, there is a related work
named Word2Fun (Wang et al., 2021) which aims to model
time in word representation for some diachronic tasks. Note
that the Word2Fun model does not involve the mapping
compositions and hence is very different from the setting in
this paper.

1.3. Outline

We state the main result for universal approximation in Sec-
tion 2, which includes notations, main theorems, and ideas
for construction and proof. Before providing the detailed
construction in Section 4, we add a Section 3 to introduce
flow maps and the techniques we used. The linguistic impli-
cation of our results is given in Section 5. Finally, in Section
6 we discuss the result of this paper. All formal proof of the
theorems is provided in the Appendix.

2. Notations and main results
2.1. Preliminaries

The statement and the proof of our main results contain
some concepts in mathematics. Here we provide a brief
introduction for them, which is enough to understand most
parts of this paper.

One concept is the orientation-preserving (OP) diffeomor-
phisms of Rd. A differentiable map f : Rd → Rd is called
a diffeomorphism if it is a bijection and its inverse f−1 is
differentiable as well. In addition, a diffeomorphism f of
Rd is called orientation-preserving if the Jacobian of f is
positive everywhere. A simple example of OP diffeomor-
phisms is the linear map f : x → Px where x ∈ Rd and P

is a square matrix with positive determinant.

Another concept is the flow map of dynamical systems.
Here the dynamical system is characterized by the following
ordinary differential equation (ODE) in dimension d,{

ẋ(t) = v(x(t), t), t ∈ (0, τ),

x(0) = x0 ∈ Rd,
(1)

where v : Rd → Rd is the velocity field and x0 is the
initial value. When the field v satisfies some conditions,
such as Lipschitz continuous, the ODE (1) has a unique
solution x(t), t ∈ [0, τ ]. Then the map from the initial
state x0 to x(τ), the state of the system after time τ , is
called the flow map and denoted by ϕτ

v(x,t)(x0), where x0

is allowed to vary. A basic property is that the flow maps
are naturally orientation-preserving. For example, let A
be a square matrix and v(x, t) = Ax, then the flow map
ϕτ
v(x,t)(x0) is a linear map ϕτ

Ax(x0) = eAτx0, where eAτ

is the matrix exponential of Aτ . A deeper introduction and
understanding of flows and dynamical systems can be found
in Chapter 1 of Arrowsmith & Place (1990).

2.2. Notations

For a (vector valued) function class F , the vocabulary V is
defined as a finite subset of F , i.e.,

V = {ϕ1, ϕ2, ..., ϕn} ⊂ F , n ∈ Z+. (2)

Each ϕi ∈ V is called a word. We will consider a sequence
of functions, ϕi1 , ϕi2 , ..., ϕim ∈ V , and their composition,
called as a sentence, to generate the hypothesis function
space,

HV = {ϕi1 • ... • ϕim |ϕi1 , ..., ϕim ∈ V,m ∈ Z+}. (3)

Particularly, some (short) sentences are called phrases for
some purpose. Here the operator • is defined as function
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composition from left to right, which aligns the composition
order to the writing order, i.e.

ϕi1 • ϕi2 • ... • ϕim = ϕim ◦ ... ◦ ϕi2 ◦ ϕi1

= ϕim(...(ϕi2(ϕi1(·)))...).

In additional, we use ϕ•m, to denote the mapping that com-
posites ϕ m times.

In this paper, we consider two function classes: (1)
C(Rd,Rd), continuous functions from Rd to Rd, (2)
Diff0(Rd), OP diffeomorphisms of Rd, whose closure in
C(Rd,Rd) is denoted as Diff0(Rd). Particularly, we will
restrict the functions on a compact domain Ω ⊂ Rd and
define the universal approximation property as below.

Definition 2.1 (Universal approximation property, UAP).
For the compact domain Ω in dimension d, the target func-
tion space F and the hypothesis space H, we say

1. H has C-UAP for F , if for any f ∈ F and ε > 0, there
is a function h ∈ H such that

∥f(x)− h(x)∥ < ε, ∀x ∈ Ω.

2. H has Lp-UAP, p ∈ [1,+∞), for F , if for any f ∈ F
and ε > 0, there is a function h ∈ H such that

∥f − h∥Lp(Ω) =
(∫

Ω

∥f(x)− h(x)∥pdx
)1/p

< ε.

Remark that here we use the term C-UAP instead of L∞-
UAP for two reasons: (1) C and Lp represent both norms
and function spaces; The norms L∞ and C have subtle dif-
ferences and the space L∞(Ω,Rd) is significantly different
from C(Ω,Rd). (2) L∞-UAP is stronger than Lp-UAP; Not
using L∞ is to avoid having to specifically emphasize that
p does not include ∞ when referring to Lp.

2.3. Main theorem

Our main result is Theorem 2.2 and its Corollary 2.3 which
show the existence of a finite function vocabulary V for the
universal approximation property.

Theorem 2.2. Let Ω ⊂ Rd be a compact domain. Then,
there is a finite set V ⊂ Diff0(Rd) such that the hypothesis
space HV in Eq. (3) has C-UAP for Diff0(Rd).

Corollary 2.3. Let Ω ⊂ Rd be a compact domain, d ≥ 2
and p ∈ [1,+∞). Then, there is a finite set V ⊂ C(Rd,Rd)
such that the hypothesis space HV in Eq. (3) has Lp-UAP
for C(Rd,Rd).

The Corollary 2.3 is based on the fact that OP diffeomor-
phisms can approximate continuous functions under the Lp

norm provided the dimension is larger than two (Brenier &
Gangbo, 2003) . Next, we only need to prove Theorem 2.2.

Remark 2.4. We are considering functions to have the same
dimension of the input and output, for simplicity. Our results
can be directly extended to the case of different input and
output dimensions. In fact, for f ∈ C(Rdx ,Rdy ), one
can lift it as a function f̃ ∈ C(Rd,Rd) with some d ≥
max(dx, dy). For example, let f = Ain • f̃ • Aout where
Ain ∈ C(Rdx ,Rd) and Aout ∈ C(Rd,Rdy ) are two fixed
affine mappings.

2.4. Sketch of the proof

Our proof for Theorem 2.2 is constructive, by considering
the flow maps of ODEs. In particular, our construction will
use the following two classes of candidate flow maps in
dimension d,

H1 =
{
ϕτ
Ax+b | A ∈ Rd×d, b ∈ Rd, τ ≥ 0

}
≡

{
ϕ : x → eÃx+ b̃ | Ã ∈ Rd×d, b̃ ∈ Rd

}
,

H2 =
{
ϕτ
Σα,β(x) | α,β ∈ Rd, τ ≥ 0

}
≡

{
ϕ : x → Σα̃,β̃(x) | α̃, β̃ ∈ (0,+∞)d

}
,

where Σα,β is the generalized leaky-ReLU functions de-
fined as below. We say H1 the affine flows and H2 the
leaky-ReLU flows.

Definition 2.5 (Generalized leaky-ReLU). Define the gen-
eralized leaky-ReLU function as σα,β : R → R and
Σα,β : Rd → Rd, with α, β ∈ R, α = (α1, ..., αd) ∈ Rd,
β = (β1, ..., βd) ∈ Rd,

σα,β(x) =

{
αx, x < 0,

βx, x ≥ 0,
(4)

Σα,β(x) =
(
σα1,β1

(x1), ..., σαd,βd
(xd)

)
. (5)

Generalized leaky-ReLU functions are piecewise linear
functions. Using this notation, the traditional ReLU and
leaky-ReLU functions are ReLU(x) ≡ σ0(x) ≡ σ0,1(x)
and σα(x) ≡ σα,1(x) with α ∈ (0, 1), respectively. For
vector input x, we use σα,β as an equivilant notation of
Σα1,β1.

We will show that the following set V meets our requirement
for universal approximations,

V =
{
ϕτ
±ei , ϕ

τ
±Eijx, ϕ

τ
±Σei,0

(x), ϕ
τ
±Σ0,ei

(x) |

i, j ∈ {1, 2, ..., d}, τ ∈ {1,
√
2}
}
, (6)

where ei ∈ Rd is the i-th unit coordinate vector, Eij is the
d× d matrix that has zeros in all entries except for a 1 at the
index (i, j). Obviously, V ⊂ Diff0(Rd) is a finite set with
O(d2) functions.
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Theorem 2.6. Let Ψ ∈ Diff0(Ω) be an orientation pre-
serving diffeomorphism, Ω be a compact domain Ω ⊂ Rd.
Then, for any ε > 0, there is a sequence of flow maps,
ϕ1, ϕ2, ..., ϕn ∈ V, n ∈ Z+, such that

∥Ψ(x)− (ϕ1 • ϕ2 • ... • ϕn)(x)∥ ≤ ε, ∀x ∈ Ω. (7)

Theorem 2.6 provides a constructive proof for Theorem
2.3. The proof of Theorem 2.6 can be separated into the
following two parts.

Part 1: Approximate each flow map in H1 and H2 by
composing a sequence of flow maps in V .

Part 2: Approximate Ψ ∈ Diff0(Rd) by composing a
sequence of flow maps in H1 ∪H2. Particularly, we
approximate Ψ by gL of the form

gL = h0 • h∗
1 • h1 • h∗

2 • h2 • ... • h∗
L • hL, (8)

where hi ∈ H1, h
∗
i ∈ H2, L ∈ Z+.

The validation of such constructed V is technical and will
be proved in Section 3 and Section 4. Here we only explain
the main ideas. First of all, we note that to approximate a
composition map T , we only need to approximate each com-
ponent in T , which is detailed in the following Lemma 2.7.

Lemma 2.7. Let map T = F1 • ... • Fn be a composition
of n continuous functions Fi defined on an open domain Di,
and let F be a continuous function class that can uniformly
approximate 1 each Fi on any compact domain Ki ⊂ Di.
Then, for any compact domain K ⊂ D1 and ε > 0, there
are n functions F̃1, ..., F̃n in F such that

∥T (x)− F̃1 • ... • F̃n(x)∥ ≤ ε, ∀x ∈ K. (9)

For Part 1, the validation involves three techniques in math:
the Lie product formula (Hall, 2015), the splitting method
(Holden et al., 2010) and the Kronecker’s theorem (Apostol,
1990). We take ϕ1

b ∈ H1, b =
∑d

i=1 βiei, βi ≥ 0, as an
example to illustrate the main idea. Firstly, motivated by
the Lie product formula or the splitting method, we can
approximate ϕ1

b by

ϕ1
b ≈

(
ϕβ1/n
e1 • ϕβ2/n

e2 • ... • ϕβd/n
ed

)•n
, n ∈ Z+, (10)

with n large enough. Secondly, each ϕ
βi/n
ei can be approxi-

mated by

ϕβi/n
ei ≈ (ϕ1

ei)
•pi • (ϕ

√
2

−ei)
•qi ∈ HV , pi, qi ∈ Z+ (11)

where pi and qi are non-negative integers such that |pi −
qi
√
2− βi/n| is small enough according to the Kronecker’s

1‘Uniformly approximate’ means the approximation under the
uniform/continuous norm.

theorem (Apostol, 1990) as
√
2 is an irrational number. Fi-

nally, ϕ1
b can be approximated by composing a sequence of

flow maps in V . The case for ϕτ
Ax+b and ϕτ

Σα,β(x) in H1

and H2 can be done in the same spirit.

Then for Part 2, we note that the gL we constructed in
Eq. (8) is similar to a feedforward neural network gL with
width d and depth L. The form of gL is motivated by a
recent work of Duan et al. (2022) which proved that vanilla
feedforward leaky-ReLU networks with width d can be a
discretization of dynamic systems in dimension d. However,
affine transformations in general networks are not neces-
sarily OP diffeomorphisms, and one novelty of this paper
is improving the technique to construct Pi as flow maps.
Importantly, making them flow maps helps with employing
the construction in Part 1.

Remark that our theorems focused on the theory of function
composition. If the functions are limited to linear functions,
the composition is equivalent to matrix multiplication, and
the corresponding UAP results remain. See Appendix D for
the detailed statement for this linear case. The proof is going
to be easy to follow, which only requires basic knowledge
of linear algebra and Kronecker’s approximation theorem
in elementary number theory. We hope it eases the reader’s
burden of understanding our theorems and proofs.

3. Proof of the construction Part 1
To warm up, we show some flow maps of autonomous ODEs
below, with initial value x(0) = x0,

ẋ(t) = b ⇒ x(t) = ϕt
b(x0) = x0 + bt,

ẋ(t) = Ax(t) ⇒ x(t) = ϕt
Ax(x0) = eAtx0,

ẋ(t) = aσ0(x(t)) ⇒ x(t) = ϕt
aσ0(x)

(x0) = eatσe−at(x0),

ẋ(t) = aσ0(−x(t)) ⇒ x(t) = ϕt
aσ0(−x)(x0) = σe−at(x0).

Here σ0 and σe−at are ReLU and leaky-ReLU functions,
respectively. Next, we provide some properties to verify a
given map to be an affine flow map in H1 or a leaky-ReLU
flow map in H2.

3.1. Affine flows and leaky-ReLU flows

Consider the affine transformation P : x → Wx + b and
examine conditions of P to be a flow map. Generally, if
W is nonsingular and has real matrix logarithm ln(W ),
then P is an affine flow map, as we can represent P as
P (x) = Wx + b = ϕ1

Ax+b̃
where A = ln(W ) and b̃ =∫ 1

0
eA(τ−1)bdτ . As it is hard to verify ln(W ) is a real matrix

(Culver, 1966), we are happy to construct some special
matrix W . The following properties are useful.

Proposition 3.1. (1) Let Q be a nonsingular matrix. If x →
Wx is an affine flow map then the map x → QWQ−1x,
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x → WTx and x → W−1x also are. (2) Let U be the
upper triangular matrix below with λ > 0, then the map
x → Ux is an affine flow map for arbitrary vector w2:d,

U =

(
λ w2:d

0 Id−1

)
. (12)

Here Id−1 is the (d − 1)th order identity matrix. The
property (1) is because ln(QWQ−1) = Q ln(W )Q−1 and
ln(WT ) = ln(W )T . The property (2) can be obtained by
employing the formula,

ln

(
λ w2:d

0 Id−1

)
=

(
ln(λ) ln(λ)

λ−1 w2:d

0 0

)
, λ ̸= 1. (13)

When λ = 1, the formula is simplified as ln(U) = U − Id.

Next, we consider the leaky-ReLU flow maps.

By directly calculate the flow map ϕτ
Σα,β(x) with α,β ∈ Rd,

we have

ϕτ
Σα,β(x)(x) = Σα̃,β̃(x), (14)

where α̃ = (eτα1 , ..., eταd) and β̃ = (eτβ1 , ..., eτβd). The
following property is implied.
Proposition 3.2. If α̃, β̃ ∈ (0,∞)d, then the map Σα̃,β̃ is
a leaky-ReLU flow map.

3.2. Application of Lie product formula

Theorem 3.3 (Lie product formula). For all matrix A,B ∈
Rd×d, we have

eA+B = lim
n→∞

(
eA/neB/n

)n

= lim
n→∞

(
ϕ
1/n
Ax • ϕ1/n

Bx

)•n

Here eA denotes the matrix exponential of A, which is
also the flow map ϕ1

Ax of the autonomous system x′(t) =
Ax(t). The proof can be found in Hall (2015) for example
and the formula can be extended to multi-component cases.
The formula can also be derived from the operator splitting
approach (Holden et al., 2010), which allows us to obtain
the following result.
Lemma 3.4. Let vi : Rd → Rd, i = 1, 2, ...,m be Lipschitz
continuous funcitons, v =

∑m
i=1 vi, Ω be a compact domain.

For any t > 0 and ε > 0, there is a positive integer n, such
that the flow map ϕt

v can be approximated by composition
of flow maps ϕt/n

vi , i.e.

∥ϕt
v(x)−

(
ϕt/n
v1 • ϕt/n

v2 • ... • ϕt/n
vm

)•n
(x)∥ < ε, ∀x ∈ Ω.

3.3. Application of Kronecker’s theorem

Theorem 3.5 (Kronecker’s approximation theorem (Apos-
tol, 1990)). Let γ ∈ R be an irrational number, then for
any t ∈ R and ε > 0, there exist two integers p and q with
q > 0, such that |γq + p− t| < ε.

Although Kronecker’s Theorem 3.5 is proposed for approx-
imating real numbers, we can employ it in the scenario of
approximating the flow map ϕt

v as it contains a real time pa-
rameter t. Choosing γ = −

√
2, approximating t by p−q

√
2,

then we can approximate ϕt
v by ϕp−q

√
2

v . Considering pos-
itive t, we have p is positive as q is. Then the property of
flow maps,

ϕp−q
√
2

v = ϕp
v • ϕ−q

√
2

v = ϕp
v • ϕ

q
√
2

−v = (ϕ1
v)

•p • (ϕ
√
2

−v)
•q,

allow us to prove the following result.

Lemma 3.6. Let v : Rd → Rd be a Lipschitz continuous
function, Ω be a compact domain. For any t > 0 and ε > 0,
there exist two positive integers p and q, such that the flow
map ϕt

v can be approximated by (ϕ1
v)

•p • (ϕ
√
2

−v)
•q , i.e.

∥ϕt
v(x)− (ϕ1

v)
•p • (ϕ

√
2

−v)
•q(x)∥ < ε, ∀x ∈ Ω. (15)

Corollary 3.7. For any flow maps h in H1 ∪H2, ε > 0 and
compact domain Ω ⊂ Rd, there is a sequence ϕ1, ϕ2, ..., ϕm

in V (Eq. 6) such that

∥h(x)− (ϕ1 • ϕ2 . . . • ϕm)(x)∥ < ε, ∀x ∈ Ω. (16)

The result is obtained by directly employing Lemma 3.4 and
Lemma 3.6 with the following splittings,

Ax+ b =

d∑
i=1

d∑
j=1

aijEijx+

d∑
i=1

biei, (17)

Σα,β(x) =

d∑
i=1

αiΣei,0(x) +

d∑
i=1

βiΣ0,ei(x). (18)

4. Proof of the construction Part 2
This section provides the construction that OP diffeomor-
phisms can be approximated by composing a sequence of
flow maps in H1 ∪ H2. The construction contains three
steps: (1) approximate OP diffeomorphisms by deep com-
positions using the splitting approach, (2) approximate each
splitting component by composing flow maps in H1 ∪H2,
(3) combine results to finish the construction.

4.1. Approximate the OP diffeomorphism by deep
compositions

Employing results of Agrachev & Caponigro (2010) and
Caponigro (2011), any OP diffeomorphism Ψ can be ap-
proximated by flow maps of ODEs. Particularly, we can
choose the ODEs as neural ODEs of the form

ẋ(t) = v(x(t), t) =

N∑
i=1

si(t)σ(wi(t) · x(t) + bi(t)),

(19)
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where the field function v is a neural network with N hidden
neurons, the activation is chosen as the leaky-ReLU function
σ = σα for some α ∈ (0, 1), si ∈ Rd, wi ∈ Rd and
bi ∈ R are piecewise smooth functions of t. The universal
approximation property of neural networks (Cybenko, 1989)
implies that Ψ can be approximated by the flow map ϕτ

v of
Eq. (19) for some τ > 0 and N ∈ Z+ big enough.

Following the approach of Duan et al. (2022), we employ a
proper splitting numerical scheme to discretize the neural
ODE (19). Split the field v as a summation of Nd functions,
v(x, t) =

∑N
i=1

∑d
j=1 vij(x, t)ej , where ej is the j-th axis

unit vector and vij(x, t) = sij(t)σ(wi(t) · x + bi(t)) are
scalar functions. Then the numerical analysis theory of
splitting methods (Holden et al., 2010) ensures that the
following composition Φ can approximate ϕτ provided the
time step ∆t := τ/n is sufficiently small,

Φ =T1 • T2 • · · · • Tn

≡(T
(1,1)
1 • T (1,2)

1 • . . . • T (1,d)
1 • T (2,1)

1 • . . . • T (N,d)
1 )•

(T
(1,1)
2 • T (1,2)

2 • . . . • T (1,d)
2 • T (2,1)

2 • . . . • T (N,d)
2 )•

. . .

• (T (1,1)
n • T (1,2)

n • . . . • T (1,d)
n • T (2,1)

n • . . . • T (N,d)
n ),

where the map T
(i,j)
k : x → y in each split step is

{
y(l) = x(l), l ̸= j,

y(j) = x(j) +∆tvij(x, k∆t).
(20)

Here, the superscript in x(l) indicates the l-th coordinate of
x. The map T i,j

k is given by the forward Euler discretization
of x′(t) = vi,j(x(t), t)ej in the interval (k∆t, (k + 1)∆t).
Note that vij is Lipschitz continuous on Rd, hence the map
T i,j
k also is.

Below is the formal statement of the approximation in this
step.

Theorem 4.1. Let Ψ ∈ Diff0(Ω) be an orientation preserv-
ing diffeomorphism, Ω be a compact domain Ω ⊂ Rd. Then,
for any ε > 0, there is a sequence of transformations, T (i,j)

k ,
is of the form Eq. (20) such that

∥Ψ(x)− (T
(1,1)
1 • T (1,2)

1 • . . . • T (N,d)
n )(x)∥ ≤ ε, ∀x ∈ Ω.

4.2. Approximate each composition component by flow
maps in H1 and H2

Now we examine the map T
(i,j)
k in each splitting step. Since

all T (i,j)
k have the same structure (over a permutation), we

only need to consider the case of T (N,d)
k , which we simply

denote as T : x → y of the form

T :

{
y(i) = x(i), i = 1, · · · , d− 1,

y(d) = x(d) + aσ(w1x
(1) + · · ·+ wdx

(d) + b).

(21)

where σ = σα, α ∈ (0, 1), is the leaky-ReLU funciton,
a, b, w1, ..., wd ∈ R are parameters. Since the time step ∆t

in T
(i,j)
k are small, we can assume the parameters satisfing

max(1/α, α)|awd| < 1.

Lemma 4.2. Let α > 0 and max(1/α, α)|awd| < 1, then
the map T in Eq. (21) is a composition of at most six flow
maps in H1 ∪H2.

Noting that the case of w1 = ... = wd−1 = 0 is trivial, we
can assume w1 ̸= 0 without loss of generality. Then, the
bias parameter b can be absorbed in x(1) using an affine
flow map; hence we only need to consider the case of b = 0.
In addition, using the property of leaky-ReLU, σα(x) =
−ασ1/α(−x), we can further assume w1 > 0. As a result,
the map T can be represented by the following composition,

T (x) = F0 • F1 • · · · • F5(x), (22)

where each composition step is as follows, x(1)

x(2:d−1)

x(d)

F0−→

 ν
x(2:d−1)

x(d)

F1−→

 σ(ν)
x(2:d−1)

x(d)


F2−→

 σ(ν)
x(2:d−1)

x(d) + aσ(ν)

F3−→

 ν
x(2:d−1)

x(d) + aσ(ν)


F4−→

ν + wdaσ(ν)
x(2:d−1)

x(d) + aσ(ν)

F5−→

 x(1)

x(2:d−1)

x(d) + aσ(ν)

 .

Here, ν := w1x
(1) + · · · + wdx

(d) and x(2:d−1) represent
the elements x(2), ..., x(d−1).

We clarify that each component Fi, i = 0, · · · , 5, are flow
maps in H1 ∪ H2. In fact, F0, F2, F5 = F−1

0 are affine
mappings,

F0(x) =

(
w1 w2:d

0 Id−1

)
x, (23)

F2(x) =

(
Id−1 0

(a, 02:d−1) 1

)
x, (24)

F5(x) =

(
1/w1 −w2:d/w1

0 Id−1

)
x, (25)

where Id−1 is the identity matrix, (a, 02:d−1) = (a, 0, ..., 0)
with d − 2 zeros. According to Proposition 3.1, they are
flow maps in H1. In addition, according to Proposition 3.2,

7
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F1, F3 and F4 are leaky-ReLU flow maps in H2 as

F1 = Σ(α,12:d),11:d , (26)
F3 = Σ(1/α,12:d),11:d , (27)
F4 = Σ(1+wdaα,12:d),(1+wda,12:d). (28)

Here, the condition max(1/α, α)|awd| < 1 is used to en-
sure 1 + wdaα > 0 and 1 + wda > 0.

4.3. Finish the construction

Combining Theorem 4.1 and Lemma 4.2 above, and using
the fact in Lemma 2.7, we have the following result.

Theorem 4.3. Let Ψ ∈ Diff0(Ω) be an orientation pre-
serving diffeomorphism, Ω be a compact domain Ω ⊂ Rd.
Then, for any ε > 0, there is a sequence of flow maps,
h1, h2, ..., hm,m ∈ Z+, in H = H1 ∪H2 such that

∥Ψ(x)− (h1 • h2 • ... • hm)(x)∥ ≤ ε, ∀x ∈ Ω. (29)

Then we can finish the construction for Theorem 2.6 by
combining Corollary 3.7 and Theorem 4.3.

5. Compositional model for regular languages
Regular languages constitute a basic type of language char-
acterized by a symbolic formalism. Following the definition
of matrix grammars and compositional matrix-space mod-
els (CMSM) of language in (Rudolph & Giesbrecht, 2010),
here we define the flow grammars which serve as an alter-
native compositional model, we call it the compositional
flow-space model (CFSM), for regular languages.

It is well-known that deterministic finite automatons recog-
nize exactly the set of regular languages (see Chapter 3.2 of
(Hopcroft et al., 2006) for example). A deterministic finite
automaton (DFA) M is a 5-tuple, M = (Q,Σ, δ, q0, F ),
consisting of a finite set of states Q = {q0, ..., qn−1}, a
finite set of input symbols called the alphabet Σ, a transition
function δ : Q × Σ → Q, an initial or start state q0 and
a set of accept states F ⊆ Q. Let w = s1s2 · · · sm be a
string over the alphabet Σ. The automaton M accepts the
string w if a sequence of states, r0, r1, · · · rn, exists in Q
such that r0 = q0, ri+1 = δ(ri, si+1) for i = 0, · · ·m − 1
and rm ∈ F . Otherwise, it is said that the automaton rejects
the string. The set of strings that M accepts is the language
recognized by M and this language is denoted by L(M).

Definition 5.1. Let Ω = [0, 1]d, d ≥ 2, p ∈ [1,∞), and Σ
be an alphabet. A flow grammar M is defined as the pair
(⟨·⟩ , A) where ⟨·⟩ is a mapping from Σ to C(Ω,Ω) and A =
(g(·), ρ(·), ϵ) ∈ C(Ω,Rd)×C(Ω,R+)×R+ characterizes
the acceptance condition. The language generated by M,
denoted by L(M), contains a string w = s1s2...sm ∈ Σ∗

exactly if

I(w) =

∫
Ω

ρ(x)
∥∥g(x)− ⟨w⟩ (x)

∥∥pdx < ϵ, (30)

where ⟨w⟩ is defined as the composition ⟨s1⟩ • · · · • ⟨sm⟩.
We will call a language L flowable if L = L(M) for some
flow grammar M.

Remark that here we don’t enforce the embedding ⟨si⟩ as a
flow map in the definition because it can be approximated
by flow maps according to the result of (Brenier & Gangbo,
2003). In addition, the density function ρ(·) can be general-
ized to more general functions. For example, choose ρ(·) as
a Dirac measure at a point x∗, then the acceptance condition
becomes I(w) = ∥g(x∗) − ⟨w⟩ (x∗)

∥∥p < ϵ which avoids
calculating integral values. Furthermore, similar to the ma-
trix grammar defined in (Rudolph & Giesbrecht, 2010), one
can also consider the acceptance condition such as the inner
products gj(x∗

j ) · ⟨w⟩ (x∗
j ) ≥ γj for some given functions

gj ∈ C(Ω,Rd), points x∗
j ∈ Rd and numbers γj ∈ R.

The following theorem indicates that regular languages are
flowable.

Theorem 5.2. Let Ω = [0, 1]d, d ≥ 2, p ∈ [1,∞) be fixed.
For any DFA M , there is a flow grammar M such that
L(M) = L(M).

The proof is constructive and here we use an example
to show the main idea. The language recognized by the
DFA M = ({S1, S2}, {0, 1}, δ, S1, {S1}) in Figure 1(a)
is the regular language given by the regular expression
(1*)(0(1*)0(1*))*, where * is the Kleene star, e.g., 1* de-
notes any number (possibly zero) of consecutive ones. To
construct the flow grammar M, we choose two discon-
nected small cubes, Ω1 and Ω2, in Ω. Then choose ⟨1⟩ be
the indentity map and let ⟨0⟩ be a flow map which moves Ωi

to Ωj , i ̸= j. The image ⟨0⟩ (x) for x in Ω \ (Ω1 ∪ Ω2)
is defined via mapping extention. It is obvious that a
string w = s1s2 · · · sm belongs to L(M) if and only if
⟨w⟩ = ⟨s1⟩ • · · · • ⟨sm⟩ keeps Ω1 unchanged. As a con-
sequence, we can design g(·) as the identity map, ρ(·) as
a continuous approximation of the characteristic function
χΩ1

for Ω1 and ϵ as a positive number small enough. The
language generated by this flow grammar M satisfies the
requirement that L(M) = L(M).

Note that both the matrix grammars in (Rudolph & Gies-
brecht, 2010) and our constructed flow grammars are compo-
sitional models cover the regular languages. CMSM embed-
ded symbols as linear mappings while CFSM allows us to
use nonlinear mappings. Therefore, CFSM can be regarded
as a natural generalization of CMSM. Here we address their
differences as well. Since the mapping space is significantly
larger than the matrix space, CFSM is expected to have
more powerful expressivity than CMSM. Noted that every
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regular language has a minimum number of required states
(precisely the size n of state set Q, which is not always easy
to obtain), which must be explicitly involved in the DFA
and CFSM models. For example, in CMSM, the order of
the embedded matrix must be greater than the number of
states, otherwise, it might be impossible to recognize the
regular language. On the contrary, in CFSM, the required
dimension d (greater than or equal to 2) is independent of
the number of required states. This is a benefit because
the continuous function space is rich enough to capture any
finite number of states.

Ω!

Ω"

Ω!

Ω"

0

1

(a) (b)

Figure 1. Example of (a) DFA and (b) flow grammar.

6. Conclusion
This paper examined the approximation property of map-
ping composition from a sequential perspective. We proved,
for the first time, that the universal approximation for diffeo-
morphisms and high-dimensional continuous functions can
be achieved by using a finite number of sequential mappings.
Our result implies that the universal approximations can be
easily achieved. Importantly, the mappings used in our com-
position are flow maps of dynamical systems and do not
increase the dimensions. However, our result is restricted
to mappings on a compact domain. It is interesting to study
whether it is possible to generalize this result to the case of
mappings on unbounded domains.

Our Theorem 2.2 was inspired by the fact of finite vocab-
ulary in natural languages, where V can be mimicked to
a “vocabulary”, H1 and H2 to “phrases”, and HV to “sen-
tences”. Our results provide a novel aspect for composite
mappings, and we hope our findings could in turn inspire re-
lated research for the algorithm and modeling communities.
For example, one can embed words as nonlinear mappings
instead of vectors or matrices in traditional models. We
think there are at least three benefits of such embedding,
i.e., the compositional flow-space model: (1) CFSM can
capture the order of words. The compositional matrix-space
model also has this property, but the classical vector embed-
ding models do not. (2) CFSM has rich expression ability.
The reason is that the continuous function space is infinite-
dimensional, while the vector space and matrix space are
finite-dimensional. (3) CFSM has the ability to cover regu-
lar grammars. Different with CFSM where the embedding
dimension should be adaptive to the target languages, the

dimension d in our CFSM can be fixed as any integer d ≥ 2
where the complexity of the languages is captured by the
complexity of embedded mappings.

Regular language is the simplest formal language in the
Chomsky grammar system. For the CFSM considered in
this paper, it is not difficult to imagine that it can represent
many complex languages. However, it is very difficult to
characterize the expressive range of a language model. In
fact, even the matrix grammar can represent some special
complex languages, and it is open whether the matrix gram-
mar covers context-free languages (Rudolph & Giesbrecht,
2010). For this reason, this paper only discusses the regular
languages and leaves the topic on more complex languages
as future works. In addition, it’s interesting to construct
CFSM embedding in practice. Potential insights for build-
ing models for natural language processing are discussed in
Appendix F.

It should be noted that we use the terms of vocabulary,
words, phrases, and sentences in this paper because they are
the source of inspiration for proposing our main theorems
in Section 2. In addition, using these terms could help
readers to understand our theorems and proofs more quickly.
However, these terms can also be used in any compositional
system, and the correspondence has a very loose connection
to linguistics. It is interesting to explore whether are there
any further similarities between mapping composition and
linguistics.

It should be also noted that this paper focuses on the exis-
tence of a finite vocabulary and the constructed V in Eq. (6)
is not optimal. If a sequential composition of mappings in
such V is used to approximate functions in practical applica-
tions, the required sequence length may be extremely large.
However, in practical applications, it is often only necessary
to approximate a certain small set of continuous functions,
hence designing an efficient vocabulary for them would be
a fascinating future direction.
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A. Additional lemmas
It is well known that an ODE system can be approximated by many numerical methods. Particularly, we use the splitting
approach (Holden et al., 2010). Let v(x, t) be the summation of several functions,

v(x, t) =

J∑
j=1

vj(x, t), J ∈ Z+. (31)

For a given time step ∆t, we define the iteration as

xk+1 = Tkxk = T
(J)
k ◦ · · · ◦ T (2)

k ◦ T (1)
k xk, (32)

where the map T
(j)
k : x → y is

y ≡ T
(j)
k (x) = x+∆tvj(x, tk) tk = k∆t. (33)

Lemma A.1. Let all vj(x, t), j = 1, 2, ..., J, and v(x, t), (x, t) ∈ Rd×[0, τ ], be piecewise constant (w.r.t. t) and L-Lipschitz
(L > 0). Then, for any τ > 0, ε > 0 and x0 in a compact domain Ω, there exist a positive integer n and ∆t = τ/n < 1
such that ∥x(τ)− xn∥ ≤ ε.

Proof. Without loss of generality, we only consider J = 2. (The general J case can be proven accordingly.) In addition, we
assume vj are constant w.r.t. t in each interval [tk, tk+1) the time step, i.e. v(x, t) = v(x, tk), t ∈ [tk, tk+1). This can be
arrived at by choosing small enough ∆t and adjusting the time step to match the piecewise points of vj . Thus, we have

xk+1 = T
(2)
k (xk +∆tv1(xk, tk))

= xk +∆tv1(xk, tk) + ∆tv2(xk +∆tv1(xk, tk), tk)

= xk +∆t(v1(xk, tk) + v2(xk, tk)) + ∆t2Rk.

Since vi(x, t) are Lipschitz, the residual term Rk is bounded by a constant R that is independent of k. In fact, we have

∥Rk∥ = ∥v2(xk +∆tv1(xk, tk), tk)− v2(xk, tk)∥/∆t

≤ L∥v1(xk, tk)∥ ≤ L(∥v1(0, tk)∥+ L∥xk∥).

Let V := sup{∥vj∥|t ∈ (0, τ)}, X := sup{∥x0∥|x0 ∈ Ω}, then we have

∥xk+1∥ ≤ (1 + L∆t)∥xk∥+∆t2L(V + L∥xk∥). (34)

As a result, ∥xk∥ is bounded by B := (X + V∆t
1+L )e

L(1+L)τ and ∥Rk∥ is bounded by R := L(V + LB).

Using the integral form of the ODE and defining the error as ek := xk − x(tk), we have the following estimation:

∥ek+1∥ = ∥ek +

∫ tk+1

tk

(v(xk, tk)− v(x(t), t))dt+Rk∆t2∥

≤ ∥ek∥+
∫ tk+1

tk

∥v(x(t), tk)− v(xk, tk)∥dt+ ∥Rk∥∆t2

≤ (1 + L∆t)∥ek∥+R∆t2.

Employing the inequality (1 + L∆t)k ≤ eLk∆t ≤ eLτ and the initial error e0 = 0, we have

∥ek∥ ≤ (1 + L∆t)k∥e0∥+
R∆t2

L∆t
[(1 + L∆t)k − 1] ≤ R∆t(eLτ − 1)/L. (35)

For any ε > 0, let n ≥ [RτeLτ

Lε ], then we have ∥x(tk)− xk∥ ≤ ε, which finishes the proof.

12
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B. Proofs of lemmas and propositions
B.1. Proof of Lemma 2.7

Lemma 2.7. Let map T = F1 • ... • Fn be a composition of n continuous functions Fi defined on an open domain Di, and
let F be a continuous function class that can uniformly approximate each Fi on any compact domain Ki ⊂ Di. Then, for
any compact domain K ⊂ D1 and ε > 0, there are n functions F̃1, ..., F̃n in F such that

∥T (x)− F̃1 • ... • F̃n(x)∥ ≤ ε, ∀x ∈ K. (36)

Proof. It is enough to prove the case of n = 2. (The case of n > 2 can be proven by the method of induction, as T
can be expressed as the composition of two functions, T = Fn ◦ Tn−1, with Tn−1 = Fn−1 ◦ ... ◦ F1.) According to the
definition, we have F1(D1) ⊂ D2. Since D2 is open and F1(K) is compact, we can choose a compact set K2 ⊂ D2 such
that K2 ⊃ {F1(x) + δ0y : x ∈ K, ∥y∥ < 1} for some δ0 > 0 that is sufficiently small.

According to the continuity of F2, there is a δ ∈ (0, δ0) such that

∥F2(y)− F2(y
′)∥ ≤ ε/2,∀y, y′ ∈ K2,

provided ∥y − y′∥ ≤ δ. The approximation property of F allows us to choose F̃1, F̃2 ∈ F such that

∥F̃1(x)− F1(x)∥ ≤ δ < δ0, ∀x ∈ K,

∥F̃2(y)− F2(y)∥ ≤ ε/2, ∀y ∈ K2.

As a consequence, for any x ∈ K, we have F1(x), F̃1(x) ∈ K2 and

∥F2 ◦ F1(x)− F̃2 ◦ F̃1(x)∥ ≤ ∥F2 ◦ F1(x)− F2 ◦ F̃1(x)∥+ ∥F2 ◦ F̃1(x)− F̃2 ◦ F̃1(x)∥
≤ ε/2 + ε/2 = ε.

B.2. Proof of Proposition 3.1

Proposition 3.1. (1) Let Q be a nonsingular matrix. If x → Wx is an affine flow map then the map x → QWQ−1x,
x → WTx and x → W−1x also are. (2) Let U be an upper triangular matrix below with λ > 0, then the map x → Ux is
an affine flow map for arbitrary vector w2:d,

U =

(
λ w2:d

0 Id−1

)
. (37)

Proof. (1) It is because ln(QWQ−1) = Q ln(W )Q−1, ln(WT ) = ln(W )T and ln(W−1) = − ln(W ) are real as ln(W ) is
real. (2) It can be obtained by employing the formula,

ln

(
λ w2:d

0 Id−1

)
=

(
ln(λ) ln(λ)

λ−1 w2:d

0 0

)
, λ ̸= 1. (38)

When λ = 1, the formula is simplified as ln(U) = U − Id.

B.3. Proof of Proposition 3.2

Proposition 3.2. If α̃, β̃ ∈ (0,∞)d, then the map Σα̃,β̃ is a leaky-ReLU flow map.

Proof. By directly calculate the flow map ϕτ
Σα,β(x) with α,β ∈ Rd, we have

ϕτ
Σα,β(x)(x) = Σα̃,β̃(x), (39)

where α̃ = (eτα1 , ..., eταd) and β̃ = (eτβ1 , ..., eτβd). Choosing αi = ln(α̃i), βi = ln(β̃i) and τ = 1, we can finish the
proof.

13
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B.4. Proof of Lemma 3.4

Theorem 3.3. (Lie product formula) For all matrix A,B ∈ Rd×d, we have

eA+B = lim
n→∞

(
eA/neB/n

)n

= lim
n→∞

(
ϕ
1/n
Ax • ϕ1/n

Bx

)•n
(40)

Proof. The proof can be found in (Hall, 2015).

Lemma 3.4.Let vi : Rd → Rd, i = 1, 2, ...,m be Lipschitz continuous funcitons, v =
∑m

i=1 vi, Ω be a compact domain. For
any t > 0 and ε > 0, there is a positive integers n, such that the flow map ϕt

v can be approximated by composition of flow
maps ϕt/n

vi , i.e.

∥ϕt
v(x)−

(
ϕt/n
v1 • ϕt/n

v2 • ... • ϕt/n
vm

)•n
(x)∥ < ε, ∀x ∈ Ω. (41)

Proof. It’s a special case of Lemma A.1 with a velocity field vi independent on t.

B.5. Proof of Lemma 3.6

Theorem 3.5. (Kronecker’s approximation theorem) Let γ ∈ R be an irrational number, then for any t ∈ R and ε > 0,
there exist two integers p and q with q > 0, such that |γq + p− t| < ε.

Proof. The proof can be found in (Apostol, 1990).

Lemma 3.6. Let v : Rd → Rd be a Lipschitz continuous function, Ω be a compact domain. For any t > 0 and ε > 0, there
exist two positive integers p and q, such that the flow map ϕt

v can be approximated by (ϕ1
v)

•p • (ϕ
√
2

−v)
•q , i.e.

∥ϕt
v(x)− (ϕ1

v)
•p • (ϕ

√
2

−v)
•q(x)∥ < ε, ∀x ∈ Ω. (42)

Proof. Since the field v is Lipschitz and the domain Ω is compact, there exist a constant C > 0 such that

∥ϕt2
v (x0)− ϕt1

v (x0)∥ ≤
∫ t2

t1

∥v(x(t))∥dt < C|t2 − t1|, ∀x0 ∈ Ω. (43)

Employing the Kronecker’s Theorem 3.5 with γ = −
√
2, approximating t by p− q

√
2 such that

|p− q
√
2− t| < ε/C, (44)

then we have

∥ϕt
v(x)− ϕp−q

√
2

v (x)∥ < ε, ∀x ∈ Ω. (45)

As t is positive, we have p is positive as q is. The following representation of the flow maps finishes the proof,

ϕp−q
√
2

v = ϕp
v • ϕ−q

√
2

v = ϕp
v • ϕ

q
√
2

−v = (ϕ1
v)

•p • (ϕ
√
2

−v)
•q. (46)

Corollary 3.7. For any flow maps h in H1 ∪H2, ε > 0 and compact domain Ω ⊂ Rd, there is a sequence ϕ1, ϕ2, ..., ϕm in
V (Eq. 6) such that

∥h(x)− (ϕ1 • ϕ2 . . . • ϕm)(x)∥ < ε, ∀x ∈ Ω. (47)

Proof. The proof is finished by directly employing Lemma 3.4 and Lemma 3.6 with the following splittings,

Ax+ b =

d∑
i=1

d∑
j=1

aijEijx+

d∑
i=1

biei, Σα,β(x) =

d∑
i=1

αiΣei,0(x) +

d∑
i=1

βiΣ0,ei(x). (48)
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B.6. Proof of Lemma 4.2

Lemma 4.2. Let α > 0 and max(1/α, α)|awd| < 1, then the map T in Eq. (21) is a composition of at most six flow maps in
H1 ∪H2.

Proof. Recall the map T : x → y is of the form

T :

{
y(i) = x(i), i = 1, · · · , d− 1,

y(d) = x(d) + aσ(w1x
(1) + · · ·+ wdx

(d) + b).
(49)

where σ = σα is the leaky-ReLU funciton, a, b, w1, ..., wd ∈ R are parameters. We construct the composition flow maps in
three cases.

(1) The case of w1 = ... = wd = 0. In this case, T is already an affine flow map in H1.

(2) The case of w1 = ... = wd−1 = 0, wd ̸= 0. In this case, we only need to consider the last coordinate as the first d− 1
coordinates are kept. According to

y(d) = x(d) + aσα(wdx
(d) + b) = (x(d) + b

wd
) + aσα(wd(x

(d) + b
wd

))− b
wd

, (50)

we can assume b = 0 as it can be absorbed in an affine flow map. Let α̃ = 1 + αawd > 0, β̃ = 1 + awd > 0, as
max(1/α, α)|awd| < 1, we have the following representation,

x(d) + aσα(wdx
(d)) =

{
σα̃,β̃(x

(d)), wd < 0,

σβ̃,α̃(x
(d)), wd > 0,

(51)

which is a leaky-ReLU flow map in H3 either wd > 0 or wd < 0.

(3) The case of wi ̸= 0 for some i = 1, ..., d− 1. We only show the case of w1 ̸= 0 without loss of generality. Same with
(1), we can absorb b in x(1) using an affine flow map; hence we only need to consider the case of b = 0. In addition, using
the property of leaky-ReLU,

σα(x) = −ασ1/α(−x) (52)

σα(x) = −ασ1/α(−x), we can further assume w1 > 0. (If w1 < 0, we change w to −w, α to 1/α, a to aα, which does
not change the map T ). As a result, the map T can be represented by the following composition,

T (x) = F0 • F1 • · · · • F5(x), (53)

where each composition step is as follows, x(1)

x(2:d−1)

x(d)

F0−→

 ν
x(2:d−1)

x(d)

F1−→

 σ(ν)
x(2:d−1)

x(d)

F2−→

 σ(ν)
x(2:d−1)

x(d) + aσ(ν)

F3−→

 ν
x(2:d−1)

x(d) + aσ(ν)


F4−→

ν + wdaσ(ν)
x(2:d−1)

x(d) + aσ(ν)

F5−→

 x(1)

x(2:d−1)

x(d) + aσ(ν)

 .

Here, ν := w1x
(1) + · · · + wdx

(d) and x(2:d−1) represent the elements x(2), ..., x(d−1). We clarify that each component
Fi, i = 0, · · · , 5, are flow maps in H1 ∪H2.

In fact, F0, F2, F5 = F−1
0 are affine transformations,

F0(x) =

(
w1 w2:d

0 Id−1

)
x, F2(x) =

(
Id−1 0

(a, 02:d−1) 1

)
x, F5(x) =

(
1/w1 −w2:d/w1

0 Id−1

)
x,

where Id−1 is the identity matrix, (a, 02:d−1) = (a, 0, ..., 0) with d− 2 zeros. According to Proposition 3.1, they are flow
maps in H1. In addition, F1, F3 and F4 are leaky-ReLU flow maps in H2 as

F1 = Σ(α,12:d),11:d , F3 = Σ(1/α,12:d),11:d , F4 = Σ(1+wdaα,12:d),(1+wda,12:d). (54)
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Here, the condition max(1/α, α)|awd| < 1 is used to ensure 1 + wdaα > 0 and 1 + wda > 0, no matter whether Eq. (52)
is uesd.

C. Proof of the main theorems
C.1. Proof of Theorem 4.1

Theorem 4.1. Let Ψ ∈ Diff0(Ω) be an orientation preserving diffeomorphism, Ω be a compact domain Ω ⊂ Rd. Then, for
any ε > 0, there is a sequence of transformations, T (i,j)

k , is of the form Eq. (20) such that

∥Ψ(x)− (T
(1,1)
1 • T (1,2)

1 • . . . • T (N,d)
1 • . . . • T (1,1)

n • T (1,2)
n • . . . • T (N,d)

n )(x)∥ ≤ ε, ∀x ∈ Ω.

Proof. (1) Firstly, employed results of Agrachev & Caponigro (2010) and Caponigro (2011), any OP diffeomorphism Ψ can
be approximated by flow map of ODEs. Particularly, we can choose the ODEs as neural ODEs are of the form

x′(t) = v(x(t), t) =
N∑
i=1

si(t)σ(wi(t) · x(t) + bi(t)), (55)

where the field function v is a neural network with N hidden neurons, the activation is chosen as the leaky-ReLU
function σ = σα for some α ∈ (0, 1), si ∈ Rd, wi ∈ Rd and bi ∈ R are piecewise constant functions of t. The
universal approximation property of neural networks (Cybenko, 1989) implies that, for any ε > 0, there exist si ∈ Rd,
wi ∈ Rd, bi ∈ R, τ > 0 and N ∈ Z+, such that

∥Ψ(x)− ϕτ
v(x)∥ < ε/2, ∀x ∈ Ω, (56)

where ϕτ
v is the flow map of Eq. (19).

(2) Following the approach of (Duan et al., 2022), we employ a proper splitting numerical scheme to discretize the neural
ODE (19). Split the field v as a summation of Nd functions, v(x, t) =

∑N
i=1

∑d
j=1 vij(x, t)ej , where ej is the j-th axis

unit vector and vij(x, t) = sij(t)σ(wi(t) · x+ bi(t)) are scalar Lipschitz functions. Then Lemma A.1 implies that there is a
n ∈ Z+ big enough such that

∥ϕτ
v(x)− Φ(x)∥ < ε/2, ∀x ∈ Ω, (57)

where

Φ = T1 • T2 • · · · • Tn

≡ (T
(1,1)
1 • T (1,2)

1 • . . . • T (N,d)
1 ) • (T (1,1)

2 • T (1,2)
2 • . . . • T (N,d)

2 ) • . . . • (T (1,1)
n • T (1,2)

n • . . . • T (N,d)
n ),

and the map T
(i,j)
k : x → y is of the form {

y(l) = x(l), l ̸= j,

y(j) = x(j) +∆tvij(x, k∆t).
(58)

Here, the superscript in x(l) indicates the l-th coordinate of x.

(3) Combining the above two parts, we finish the proof.

C.2. Proof of Theorem 4.3

Theorem 4.3. Let Ψ ∈ Diff0(Ω) be an orientation preserving diffeomorphism, Ω be a compact domain Ω ⊂ Rd. Then, for
any ε > 0, there is a sequence of flow maps, h1, h2, ..., hm,m ∈ Z+, in H = H1 ∪H2 such that

∥Ψ(x)− (h1 • h2 • ... • hm)(x)∥ ≤ ε, ∀x ∈ Ω. (59)
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Proof. According to Theorem 4.1, there is a sequence of transformations, T (i,j)
k , is of the form Eq. (20) such that

∥Ψ(x)− (T
(1,1)
1 • T (1,2)

1 • . . . • T (N,d)
1 • . . . • T (1,1)

n • T (1,2)
n • . . . • T (N,d)

n )(x)∥ ≤ ε, ∀x ∈ Ω.

Here n can be choosed large enough such that max(1/α, α)C2∆t < 1,∆t = τ/n, where

C = max
t∈[0,τ ]

{
|sij(t)|, |wij(t)| | i, j = 1, 2, ..., d

}
. (60)

Since si, wi are piecewise constant functions, the constant C is finite. Then according to Lemma 4.2, each T
(i,j)
k is a

composition of at most six flow maps in H1 ∪H2. As a consequence, we finish the proof by relabelling the index of the
used flow maps.

C.3. Proof of Theorem 2.6

Theorem 2.6. Let Ψ ∈ Diff0(Ω) be an orientation preserving diffeomorphism, Ω be a compact domain Ω ⊂ Rd. Then, for
any ε > 0, there is a sequence of flow maps, ϕ1, ϕ2, ..., ϕn ∈ V, n ∈ Z+, such that

∥Ψ(x)− (ϕ1 • ϕ2 • ... • ϕn)(x)∥ ≤ ε, ∀x ∈ Ω. (61)

Proof. (1) According to Theorem 4.3, there is a sequence of flow maps, h1, h2, ..., hm,m ∈ Z+, in H = H1 ∪H2 such that

∥Ψ(x)− (h1 • h2 • ... • hm)(x)∥ ≤ ε/2, ∀x ∈ Ω. (62)

(2) According to Corollary 3.7, each hi can be universal approximation by HV , i.e., for any εi > 0 and compact domain Ωi,
there is a sequence of flow maps, ϕi,1, ..., ϕi,ni ∈ V , such that

∥hi(x)− (ϕi,1 • ϕi,2 • ... • ϕi,ni
)(x)∥ ≤ εi, ∀x ∈ Ωi. (63)

(3) According to Lemma 2.7, we can choose ϕi,j ∈ V and reindex them as ϕ1, ϕ2, ..., .ϕn such that

∥(h1 • h2 • ... • hm)(x)− (ϕ1 • ϕ2 • ... • ϕn)(x)∥ ≤ ε/2, ∀x ∈ Ω. (64)

(4) Combining (1) and (3), we finish the proof.

C.4. Proof of Theorem 2.2

Theorem 2.2. Let Ω ⊂ Rd be a compact domain. Then, there is a finite set V ⊂ Diff0(Rd) such that the hypothesis space
HV in Eq. (3) has C-UAP for Diff0(Rd).

Proof. The Theorem 2.6 provides constructive proof for the existence of V in Eq. (6).

Corollary 2.3. Let Ω ⊂ Rd be a compact domain, d ≥ 2 and p ∈ [1,+∞). Then, there is a finite set V ⊂ C(Rd,Rd) such
that the hypothesis space HV in Eq. (3) has Lp-UAP for C(Rd,Rd).

Proof. We can use the same V in Theorem 2.2 as V ⊂ Diff0(Rd) ⊂ C(Rd,Rd).

(1) Let f ∈ C(Rd,Rd), d ≥ 2, then the result of (Brenier & Gangbo, 2003) indicates that for any ε > 0, there is a OP
diffeomorphism Ψ ∈ Diff0(Rd) such that

∥f −Ψ∥Lp(Ω) < ε/2. (65)
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(2) The Theorem 2.2 indicates that, there is mapping Φ ∈ HV such that

∥Ψ(x)− Φ(x)∥ < ε′ = ε
2|Ω| , ∀x ∈ Ω. (66)

(3) Combining (1) and (2), we have

∥f − Φ∥Lp(Ω) < ε. (67)

which finishes the proof.

D. Vocabulary for linear spaces
Here we provide similar results for both the vector space and the linear mapping space. Note that linear mappings can be
characterized as matrics and the construction here is much simpler than what we do in the main body of this paper for the
continuous function space.

Theorem D.1. There is a finite set V0 ⊂ Rd, such that for any vector v∗ ∈ Rd and ε > 0, there is a sequence, vi1 , vi2 , ..., vin ,
in V0, n ∈ Z+, such that

∥vi1 + vi2 + ...+ vin − v∗∥ < ε.

Proof. Directly employing Kronecker’s Theorem 3.5, it is easy to see the following set satisfies the requirement,

V0 = {λei|λ ∈ {±1,±
√
2}, i = 1, 2, ..., d}, (68)

where ei is the axis vector in the i-th coordinate.

Lemma D.2. Let V1 = {0,±1, 10±1, 10±
√
2}, then for any number λ ∈ R and ε > 0, there is a sequence, vi1 , vi2 , ..., vin ,

in V1, n ∈ Z+, such that
|vi1vi2 ...vin − λ| < ε.

Proof. It is enough to consider the case of λ > 0. According to Theorem D.1 with d = 1, we can finish the proof by
approximating v∗ = log10 (λ).

Theorem D.3. There is a finite set V2 ⊂ Rd×d, such that for any matrix A∗ ∈ Rd×d and ε > 0, there is a sequence,
Ai1 , Ai2 , ..., Ain , in V2, n ∈ Z+, such that

∥Ai1Ai2 ...Ain −A∗∥ < ε.

Proof. For simplicity, we only consider the case of d = 2 as the general cases can be proved in the same way. Since any
singular matrix can be approximated by nonsingular matrixes, we only need to consider A∗ as a nonsingular matrix. In
addition, every nonsingular matrix can be represented as a product of elementary matrices. Hence we can further assume A∗

to be an elementary matrix. Note that the elementary matrices are of the following,(
λ 0
0 1

)
,

(
1 0
λ 1

)
,

(
0 1
1 0

)
, λ ̸= 0.

Therefore, we can finish the proof by considering the following set V2,

V2 =
{(

λ 0
0 1

)
,

(
1 0
1 1

)
,

(
0 1
1 0

) ∣∣∣λ ∈ {±1, 10±1, 10±
√
2}
}
. (69)

The validation of this V2 can be verified by using Lemma D.2 and the following relations,(
1 0
λ 1

)
=

(
1/λ 0
0 1

)(
1 0
1 1

)(
λ 0
0 1

)
, λ ̸= 0,(

λ1 0
0 1

)(
λ2 0
0 1

)
=

(
λ1λ2 0
0 1

)
, λ1, λ ∈ R.
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E. Proof of Theorem 5.2
Theorem 5.2. Let Ω = [0, 1]d, d ≥ 2, p ∈ [1,∞) be fixed. For any DFA M , there is a flow grammar M such that
L(M) = L(M).

Proof. For any DFA M = (Q,Σ, δ, q0, F ) with Q = {q0, ..., qn−1}, we will construct the flow grammar M. Let’s begin
with the case that F contains only one accept state. For this case, the construction is as follows.

(1) Choosing a small number γ ∈ (0, 1/4) and n different points r0, r1, · · · , rn−1 in (2γ, 1−2γ)d such that ∥ri−rj∥1 > 3γ
for i ̸= j. For each point ri, define its correspoding cubic as Ωi = {ri + x | ∥x∥1 < γ}. It is obvious that all cubes Ωi are
disjoint, and the L1 distance between each pair of cubes is greater than γ.

(2) Construct the embedding mappings. For each s ∈ Σ, we define its embedding mapping ⟨s⟩ as the following,

⟨s⟩ : x 7→

{
x− ri + rj , x ∈ Ωi, qj = δ(qi, s),

∆s(x), x /∈ ∪n
i=1Ωi,

(70)

where ∆s is a funciton which makes ⟨s⟩ as a continuous mapping in C(Ω,Ω). In other words, we extend the domain of
definition from ∪n

i=1Ωi to the whole domain Ω. This is guaranteed by the well-known Tietze extension theorem.

(3) Construct the acceptance condition. Suppose the set of accept state is F = {qk}, then the acceptance condition
A = (g(·), ρ(·), ϵ) for M is designed as the following. Let g(·) = rk be a constant function, ρ(x) = ReLU(γ − ∥x− r0∥1)
be a piecewise linear function which vanishes outside Ω0, and ϵ = minj ̸=k

Ik+Ij
2 where I(j) is defined as the following,

Ij :=

∫
Ω

ρ(x)∥g(x)− (x− r0 + rj)∥pdx =

∫
Ω0

ρ(x)∥rk − (x− r0 + rj)∥pdx, j = 0, 1, · · · , n− 1. (71)

Note that Ij > Ik > 0 for any j ̸= k and hence the ϵ above is well defined.

(4) Verify L(M) = L(M). The definition of the embedding in Eq. (70) indicates that ⟨s⟩ moves cubic Ωi to Ωj when
qj = δ(qi, s). As a consequence, for a string w = s1s2 · · · sm in Σ∗, we have ⟨w⟩ = ⟨s1⟩ • · · · • ⟨sm⟩ moves Ωi to
Ωj′ where j′ = im is the index satisfing qi0 = qi, qij+1

= δ(qij , sj+1) for j = 0, · · ·m − 1. If w is accept by M , i.e.
w ∈ L(M), i0 = 0 and qim = qk, then ⟨w⟩ moves Ω0 to Ωk. Consequently, we have

I(w) =

∫
Ω

ρ(x)
∥∥g(x)− ⟨s1⟩ • · · · • ⟨sm⟩ (x)

∥∥pdx = Iim = Ik < ϵ,

which indicates that w is accepted by M, i.e., w ∈ L(M). On the other hand, if w /∈ L(M), then qim ̸= qk, I(w) = Iim >
Ik+Iim

2 ≥ ϵ and w /∈ L(M). Therefore we finish the verification.

Now we turn to the case that the set of accept state F contains multiple states. We assume F = {qk1 , ..., qkt} ⊂ Q contains
t states. For this case, we only need to modify the above construction slightly. In detail, we can replace the location of
cubices Ω0,Ω1, ...,Ωn to satisfy an additional requirement: the minimal cube containing Ωk1

∪ · · · ∪ Ωkt
has a L1 distance

larger than γ to any other cube Ωj . This can be done by choosing a smaller number γ. Denote the minimal cube as Ω̂k

which is centered at r̂k. The construction of the embedding mappings and the acceptance condition is the same as before
except for modifying g(·) and ϵ to the following ones,

g(·) = r̂k, ϵ =
1

2

(
max

k∈{k1,...,kt}
Ik + min

j /∈{k1,...,kt}
Ij

)
. (72)

Note that the additional requirement on Ωi ensures that Ij > Ik > 0 for any k ∈ {k1, ..., kt} and j /∈ {k1, ..., kt}. As a
consequence, the equality L(M) = L(M) remains.
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F. Potential insights for building models for natural language processing
In natural language processing (NLP), it is important to accurately depict the meaning of words and sentences. The
well-known word vector embeddings provide a good baseline where words with similar semantics have similar word vectors.
However, since static word vectors cannot describe the different semantics of polysemous words and the influence of context,
people have developed dynamic word vector models and more complex large language models (LLM) such as BERT and
GPT. However, how to interpret the pre-trained language models is difficult.

The implicit conclusion of our theorems is that if the meanings of sentences can be embedded as continuous functions (which
is a much larger space than vector space), then we can express these meanings by the composition of a finite vocabulary
of functions. This is the compositional flow-space model (CFSM) we proposed in Section 5. In CFSM, the semantics of
polysemous words are judged by context, which is encoded in the input and output of the embedded functions.

Training such a CFSM from scratch is tricky and time-consuming. One alternative is to extract the embedded function
directly from an LLM such as LLaMa, and then observe to what extent CFSM can restore the LLM’s capabilities. Performing
such an experiment is beyond the skill set of the authors.

Recently, the Mamba model has been getting a lot of attention. Its basic component is the state space model (SSM), which
has a natural correlation with function composition. It’s not hard to see that the single-layer (linear) SSM can be regarded as
a function embedding of words. The Mamba model stacks multiple SSM layers and nonlinearity. It is worth thinking about
the difference and relation between CFSM and the embedding in Mamba.

Of course, we should be wary of the fact that human’s natural language is complex. Embedding words as functions is
certainly a limited idea, but it’s a good generalization compared to embedding words as vectors.
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