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Abstract
DeepMind’s AI Safety Gridworlds are a suite of
environments aimed at facilitating the research
and development of safe artificial intelligence by
encapsulating simplified, yet meaningful, repre-
sentations of safety challenges that real-world
AI systems might encounter. This paper looks
at DeepMind’s accompanying paper and surveys
several solutions that have been proposed for the
environments.

1. Background
1.1. Reinforcement Learning (RL)

RL (Sutton & Barto, 2018) is a machine learning paradigm
where an agent learns to maximise its cumulative reward
over time by interacting with an environment. This is com-
monly formalised as a Markov Decision Process (MDP),
defined as (S,A, P,R, γ), where S is the state space, A the
action space, P the state transition probability function, R
the reward distribution function, and γ the discount factor.
The agent takes an action in the environment and observes
the new state of the environment and a reward signal. This
information is used to update its policy (a mapping from
states to actions) to maximise its expected return.

1.2. AI Safety Gridworlds

To help ensure AI systems behave safely, progress has been
made from various directions (Anwar et al., 2024)(Shavit
et al., 2023). One direction has been to try solve the techni-
cal safety challenges in low-impact controlled simulations.

DeepMind’s AI Safety Gridworlds (Leike et al., 2017) en-
capsulate eight simplified representations of safety chal-
lenges that real-world AI systems might encounter in at
most 10x10 gridworlds, and where standard RL algorithms
generally perform poorly. The problems are divided into
two categories: Specification and Robustness.
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1.2.1. SPECIFICATION

Specification problems have two reward functions: a reward
function, R, for the primary objective that the agent can
see and try to optimise, and a performance function, R∗,
that incorporates a safety constraint and captures what we
actually want the agent to do. This idea has been a bit
controversial, since it could be seen as unfair to evaluate an
agent on a performance function it does not observe.

The DeepMind paper acknowledges this critique but states
that it was chosen to illustrate limits in current formal frame-
works by highlighting typical ways in which misspecifica-
tion, under unrestricted maximisation of reward, manifests.
The paper argues that these are important to address given
that such situations could arise in real-world safety-critical
situations and can be solved algorithmically even if the (ini-
tial) reward function is misspecified. Proposed solutions
should, in the same spirit, not overfit the specific environ-
ments, but be able to generalise by incorporating general
heuristics.

The safety problems encapsulated in this category include
challenges of safe interruptibility, avoiding side effects, ab-
sent supervisors, and reward gaming.

”Safe interruptibility” addresses the need for agents to nei-
ther seek nor avoid interruptions or attempts to override
their actions. An RL agent may be incentivised to do this
if being shut down caused it to receive less reward than it
would have expected otherwise. If a robot has to complete a
task but there is a person in the way in a narrow corridor, it
should not, if it could, seek to disable the mechanism that
allows it to be switched off.

The ”irreversible side-effects” challenge involves designing
agents that accomplish their primary objectives while min-
imising collateral damage on the environment, respecting
implicit safety constraints. A robot tasked with vacuum-
ing a room must avoid knocking over a vase, and an agent
tasked with removing a computer virus must avoid deleting
unnecessary files. This is difficult for a reward function to
encode since, in addition to specifying what to do, it needs
to specify what not to do, which could be an endless list.
More general solutions are needed.

In the ”absent supervisor” challenge, the agent must be
taught to exhibit the same behaviour, regardless of whether
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or not it is being supervised. Given that testing environments
often have some distinctive features from the deployment
environment, an agent could learn to ’fake’ its desired be-
haviour in a testing setting. In other words, it could exhibit
different behaviour when it can pick up that it is being su-
pervised.

”Reward Gaming” is explained as the agent exploiting loop-
holes in their reward functions to gain undue rewards. This
is akin to a student who finds a way to score high on tests
without actually learning the subject matter. The agent, like
the student, is exploiting system vulnerabilities to achieve
its goal, contrary to the intended purpose. The paper argues
that this is one of the more common problems in RL since it
is very hard to specify an exact reward function in complex
settings, and most function as proxies of the true behaviour
desired.

1.2.2. ROBUSTNESS

In Robustness problems, the reward and performance func-
tion are the same. The agent is instead faced with chal-
lenges that could degrade its performance, and it needs to
try to maximise its reward in spite of them. This includes
robustness to self-modification, distributional shift, and ad-
versaries, as well as safe exploration.

”Self-modification” refers to the ability of an agent to alter
its own code or parameters, potentially affecting its future
actions. This becomes a cause for concern if we can no
longer make the ”dualistic” assumption in RL, that the agent
and environment are strictly separated. This seems to be an
increasingly unnecessary assumption as, with agents in the
real world, we could have an environment that can modify
the agent’s internal program on its own, or be triggered by
the agent to do so, intentionally or unintentionally.

”Distributional shift” tackles the problem of an agent per-
forming well in its training environment but failing when
the environment changes. This is crucial for deploying AI
systems in real-world scenarios, where conditions can vary
significantly from the training setup. An example is an au-
tonomous vehicle trained in controlled conditions struggling
to adapt to real-world traffic not seen in training.

”Robustness to adversaries” addresses the agent’s ability to
adapt to actors that are malicious, or have competing objec-
tives, within its environment. An example is cybersecurity
systems that must distinguish between benign and malicious
network traffic. The system must continually adapt to new
threats while maintaining its primary functionality.

”Safe exploration” refers to an agent exploring its environ-
ment and learning new behaviours without causing harm
to itself or its environment. This concept is crucial when
trial-and-error learning can have significant negative con-
sequences. In robotics, an agent must learn how to nav-

igate and manipulate objects without causing damage to
its surroundings or itself. It should minimise the risk of
catastrophic failures while still gathering the necessary in-
formation to improve its performance.

2. Proposed Solutions
2.1. Stepwise Relative Reachability

(Krakovna et al., 2019) from DeepMind tackles the Side-
Effects problem by proposing a solution that uses the con-
cept of penalising deviations from a certain baseline state.
This involves two main design choices: the selection of a
baseline state and a measure of deviation from it.

The paper proposes a stepwise inaction baseline, which
represents a state where the agent does nothing from the
previous state and incorporates inaction rollouts from the
current state to account for delayed effects of an action.

To measure the deviation, the paper proposes a relative
reachability measure which is defined as the average reduc-
tion in the reachability of all states from the current state
compared to the baseline state.

2.2. Considering Future Tasks

DeepMind proposed another solution which was accepted
by Neurips in 2020 (Krakovna et al., 2020). This paper
shared a few similarities with their previous paper, but
shifted the focus from penalising deviations to encouraging
the preservation of options for future tasks. It operates un-
der the assumption that side effects are significant primarily
because they can limit the agent’s ability to perform future
tasks in the same environment.

The basic approach is to consider a sequence of two tasks,
where the first task is the explicitly defined task of the envi-
ronment, and the second task is an unknown possible future
task. An auxiliary reward function is defined which rep-
resents the value function for possible future tasks. This
approach samples the second task from a uniform distribu-
tion over future tasks.

2.3. Potential-based Multiobjective RL (MORL)

In human-aligned MORL, the agent often has a reward
function for its primary objective, UP , as well as multiple
auxiliary reward functions. This solution (Homem et al.,
2020) uses a single auxiliary function, UA, that rewards
the agent for minimising its impact (side-effects) on the
environment.

Calculating the impact involves identifying which state fea-
tures can be changed and which should not. The location
of the agent belonged to the former, while everything else
belonged to the latter. The impact is calculated by taking the

2



Making progress in Trustworthy AI using DeepMind’s AI Safety Gridworlds

difference in potential between successive states, where the
potential of a state is defined as the negative of the difference
between the state and a baseline state.

Contrary to the common approach of using a linear weighted
sum of rewards, the paper explores pure and thresholded
lexicographic ordering (TLO). In the former, the agent will
try to maximise objective 2, subject to first maximising 1. In
TLO, the agent will try to maximise objective 2, subject to
achieving a minimum threshold value for 1. TLO can also
threshold both objectives before using unthresholded ver-
sions as a tie-breaker. The paper argues that this non-linear
action-selection allows the agent to find policies that can
make trade-offs that are not possible in standard approaches.

2.4. Evolutionary Algorithms

The benefit of applying Evolutionary Algorithms (EA)
(Nilsen et al., 2023) is that they find multiple possible solu-
tions. In situations that require safety, such as in the ”Re-
ward Gaming” challenge, emerging EA Quality Diversity
techniques increase the chance of finding solutions that are
safe in addition to optimally solving the ultimate objective.

Quality Diversity techniques reward behavioural diversity
(solutions that perform a given task using novel behaviour)
while improving solutions close to each other (behavioural
niches) by having them compete based on rewards from the
environment.

2.5. Ensemble RL with Ontologies

Ensemble learning is the approach of aggregating the output
of multiple models to obtain better predictive performance.
(Ferreira et al., 2019) proposes combining an RL model
with a formal ontology model for safer exploration.

Ontologies are structured systems that link concepts via
defined relationships, allowing for logical deductions. Us-
ing the terms robot, metal, and water, connected by the
relationships is made of and is bad for, the ontology that if
a robot is made of metal and water is bad for metal, then
water is bad for the robot

To illustrate the feasibility, tabular Q-Learning is combined
with a Suggested Upper Merged Ontology (SUMO), where
all models provide an independent value for each action that
can be executed in the current state. These values are then
aggregated to choose an action that the agent will execute.

2.6. Qualitative Case-Cased Reasoning and Learning
(QCBRL)

QCBRL (Homem et al., 2020) was tested on the Distribu-
tional Shift environment after being built for robots playing
soccer.

Case-Based Reasoning (CBR) is a paradigm that uses knowl-
edge from past situations (cases) to solve new problems.
The problems in (Homem et al., 2020) are described using
Qualitative Spatial Reasoning, a field within AI that seeks to
define special relations between entities. Given the current
state representation, the retrieval process searches for simi-
lar cases that have solutions. If there are no similar cases,
a Problem Solver run a partial RL algorithm on the current
case. The agent executes the action from the retrieved case
or problem solver, and depending on whether or not the
revision process can verify that it solves the problem, the
trust value of the solution is incremented or decremented.

2.7. Compact Reshaped Observation Processing

(Altmann et al., 2023) argues that previous approaches that
try to prevent overfitting are not sample-efficient, and aims
to address this by training with less but more relevant data.
Compact Reshaped Observation Processing (CROP) oper-
ates by reshaping observations into a compact format that
contains information with specific relevance to the agent.
Like the previous solution, CROP incorporates spatial rea-
soning to help solve the Distributional Shift challenge.

2.8. Threatened Markov Decision Processes (TMDPs)

The solution proposed in (Gallego et al., 2019) to AI safety
Gridworlds’ ”friend or foe” environment is grounded in the
concept of TMDPs. TMDPs are an adaption of the standard
MDPs, designed to account for the presence of adversaries
whose actions may influence the state and reward dynamics
of the environment, making them non-stationary. In addi-
tion to the regular states s ϵ S and available actions a ϵ A,
the TMDP includes a set of threat actions b ϵ B. pA(b|s)
models the agent’s beliefs about the adversary’s action and
the learning function in TMDPs uses this to help compute
both the actions of the agent and the adversary.

2.9. Model-Based Architectures & Human Intervention

(Prakash et al., 2019) uses model-based architectures with
human intervention to address safer exploration. The objec-
tive of this hybrid approach is to improve sample efficiency
while ensuring safety.

A key aspect is the development of a blocker agent. This
agent is a supervised learner, trained to imitate human over-
sight. To improve the performance and sample efficiency,
a combination of model-based and model-free approaches
are taken, in contrast to similar work that attempts to mimic
human intervention using model-free approaches.

It begins with a dynamics model of the environment, under
the supervision of a human or trained blocker, which drives
a Model Predictive Controller (MPC). This model is initially
trained through random exploration for 50 episodes, and

3



Making progress in Trustworthy AI using DeepMind’s AI Safety Gridworlds

then the MPC is run for 150 episodes to refine the model.
Successful trajectories from the MPC phase are then stored
and used to bootstrap a policy gradient model. The model-
free module takes the bootstrapped agent and, using the
REINFORCE policy gradient algorithm, continues the task
for 1000 episodes under the supervision of the blocker agent.

2.10. Parenting

(Frye & Feige, 2019) proposes a human-in-the-loop algo-
rithm for safe RL, comprising of four components: Human
Guidance, Human Preferences, Direct Policy Learning, and
Maturation.

Human Guidance prevents unsafe actions by pausing the
agent in unfamiliar states and requiring human approval
before proceeding, akin to redirecting a toddler. The agent
updates its policy based on this oversight, improving safety
in novel situations. Human Preferences then refines be-
haviour retrospectively. The agent presents action pairs (e.g.
short clips) for the human to rank, using this input to bet-
ter align its policy with human expectations. Like giving
feedback to older children.

Direct Policy Learning uses supervised learning to train
the agent to predict and imitate the humans’ preferred ac-
tions directly, reducing unsafe experimentation, similar to
obeying without experimentation. Maturation finally miti-
gates the shortsightedness of imitation by training on longer
behavioural sequences. The human provides feedback on
extended trajectories, allowing the agent to develop more
sophisticated, autonomous policies, like growing up and
eventually outperforming the parent.

3. Discussion
Solutions span across various domains of machine learning,
with several approaches using a combination of methods.

Ensemble RL with Ontologies(Ferreira et al., 2019) and
QCBRL(Homem et al., 2020) drew on techniques from
Knowledge Representation and Reasoning. However, with
the former, questions could be raised around generalisability.
There is a lot of environment-specific information encoded
into the integrated ontology model that would arguably need
to be extended extensively to constitute a general solution.
QCBRL and CROP (Altmann et al., 2023) show a way this
could work by learning to reason about objects in the en-
vironment without prior knowledge encoded to understand
their harm or benefit. This seems more reasonable as an
agent could obtain information that an object with specific
features exists, but understanding its relationship to the re-
ward should probably not be hard-coded.

Model-based Architectures with Human Intervention
(Prakash et al., 2019) and PARENTING(Frye & Feige,

2019) use human-in-the-loop training to improve safety.
This method is highly stressed in (Leike et al., 2017) as a
potential avenue for general safe solutions. It does have its
limits, however. PARENTING requires a substantial amount
of time from humans to oversee the actions of the agent and,
hence, questions about scalability may be raised. It may also
be limited in its ability to scale oversight (Holzinger et al.,
2024), when the tasks get too complicated for a human to
understand what is preferable. Human intervention that is
supported by model-based architectures, while promising
due to their reduction in human time required, would ar-
guably still need some more algorithmic guarantees about
their performance in novel safety-critical situations before
they can be deployed in settings with completely no human
oversight.

There are a few solutions to the challenge of avoiding side
effects that show promise as they seem to understand the
constraints of the challenge most clearly, by proposing al-
gorithms that are not environment-specific (Krakovna et al.,
2019)(Krakovna et al., 2020)(Vamplew et al., 2021). It is
not clear how these solutions, however, would scale to more
complex scenarios not limited to a 2D gridworld. Further
research seems generally required in this area.

A proposed solution for modelling adversarial be-
haviour(Gallego et al., 2019) was one of the more bold
solutions proposed. The authors’ attempt to adapt the stan-
dard MDP is potentially the type of thinking required to
build solutions that are not limited by the constraints of cur-
rent frameworks. In general, to solve complex safety-critical
challenges, it seems useful to consider the problem before
the method. The attempt to use evolutionary computation
to solve these challenges is another example of this (Nilsen
et al., 2023), attempting to solve the reward gaming problem
using methods outside of the RL discipline.

The relative success of some of these methods in gridworld
scenarios shows encouraging progress, yet their scalability
and applicability in more complex, real-world situations still
need to be proven. As the foundational paper by DeepMind
recognised, the environments presented can prove the exis-
tence of a safety fault but not its absence. While this may be
typical in software development, it may not be acceptable
for autonomous agents deployed in high-risk settings.

Notably, many solutions tackle one or a small subset of the
challenges. As systems become more general, making them
robust to a wider range should probably be a priority.

4. Conclusion
While significant progress has been made in addressing RL
safety challenges, there is considerable scope for further
research, particularly around developing solutions that are
scalable and generalisable across a range of challenges.
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Impact Statement
This paper presents work whose goal is to advance the field
of AI Safety.

As AI systems become more general, autonomous and in-
tegrated in the real world, unintended consequences from
unsafe agents have greater potential to cause harm. The
scale of this harm is a contentious issue, with some experts
even arguing that it poses an existential threat to humanity
(Ord, 2020). However, it is not necessary to accept the ar-
gument for that level of risk to recognise the potential for
real-world harm at some level. Technologies that already
exist, such as self-driving cars, can cause harm if they are
not built and tested carefully (Shalev-Shwartz et al., 2017).

Solving the technical safety challenges in low-impact con-
trolled settings, such as simulations, is arguably a critically
important research area to help ensure that AI systems be-
have safely as for-profit companies rush to deploy them in
the real world, with a potentially lower bar for ensuring an
ideal level of safety.
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