Reinforcement Learning for Multi-Agent Planning
in the League of Robot Runners

Anonymous submission

Abstract

Integrating planning and learning remains a central chal-
lenge in developing adaptive multi-agent systems. This work
investigates how reinforcement learning (RL) can enhance
multi-agent planning through experiments in the League of
Robot Runners (LoRR), a benchmark traditionally rooted in
classical planning. We reformulate LoRR in a multi-agent
RL environment and adapt the Monte Carlo Tree Search
(MCTS) algorithm for use in these settings. Because stan-
dard MCTS assumes a single agent and does not reuse expe-
rience, our approach introduces limited information sharing
across episodes to improve coordination and efficiency. Pre-
liminary results show that while the adapted method does not
yet match the performance of classical planners, it provides a
foundation for exploring how learning-based techniques can
enhance coordination and adaptability in structured planning
environments.

Introduction

Learning and automated planning represent two comple-
mentary yet traditionally distinct paradigms in artificial in-
telligence, differing in both objectives and underlying as-
sumptions. Classical planning aims to synthesize action se-
quences that achieve the desired goals at execution time.
It excels at explicit model-based reasoning, long-horizon
deliberation, and online adaptability but presumes access
to structured and accurate domain models. In contrast,
learning-based approaches, particularly those based on RL,
seek to derive policies that maximize expected returns under
uncertainty and partial observability. Such methods can gen-
eralize from experience but typically employ implicit repre-
sentations, which limit their ability to adapt rapidly to novel
conditions, or plan over extended temporal scales.

These methodological discrepancies have led to distinct
representations and algorithmic frameworks, often devel-
oped in isolation from one another (Silver et al. 2024; Lake
et al. 2017). The gap becomes even more pronounced in
multi-agent domains, where agents must reason not only
about their own states and objectives, but also about those
of others, and coordinate their behavior under decentralized
information and control. Bridging this divide calls for neu-
rosymbolic or hybrid approaches that integrate the struc-
tured reasoning capabilities of planning with the robustness
and flexibility of learning, enabling agents to operate effec-

tively in dynamic, uncertain, and socially interactive envi-
ronments (Anthony, Tian, and Barber 2017).

This work seeks to bridge the gap between learning-based
and planning-based approaches by applying RL techniques
to a benchmark grounded in automated multi-agent plan-
ning research: the League of Robot Runners (LoRR) (LoRR
Organizers 2024). LoRR is a multi-agent navigation envi-
ronment in which multiple robots must complete a con-
tinuous stream of spatially distributed tasks while avoid-
ing collisions with obstacles and one another. This setting
captures key aspects of real-world multi-robot coordination
problems, including those arising in warehouse automation,
fleet management, and agricultural robotics.

Although LoRR presents challenges that align naturally
with learning-based methods, submissions to the 2024 com-
petition relied exclusively on classical planning algorithms
(Jiang et al. 2024). This observation motivates the explo-
ration of hybrid approaches that integrate learning with plan-
ning: leveraging learned policies for efficiency while main-
taining the explicit safety and coordination guarantees char-
acteristic of model-based methods.

In this paper, we present an initial effort to adapt LoRR
for RL and demonstrate a hybrid algorithm that com-
bines Monte Carlo Tree Search (MCTS) with online pol-
icy distillation. Our contributions are threefold: (1) a Gym-
compatible implementation of the LoRR environment for
multi-agent RL experimentation; (2) a compound MCTS-
based algorithm that distills policies online from visit dis-
tributions during execution, enabling incremental improve-
ment in navigation efficiency; and (3) a preliminary empir-
ical analysis showing that the learned policy preserves de-
terministic collision-avoidance guarantees while improving
adaptability to novel task distributions. Unlike purely reac-
tive RL agents, our approach retains the capacity for down-
stream planning and search, supporting robust deployment
in dynamic, real-world environments.

Background and Motivation

The League of Robot Runners (LoRR) is a planning com-
petition benchmark in which agents navigate a discrete grid
world to perform a continuous stream of delivery-like tasks.
Agents must plan routes that minimize travel time and avoid
collisions with static obstacles and other moving agents. The
competition’s rules assume full knowledge of the environ-

ment and rely on centralized or decentralized planning algo-
rithms that compute feasible paths before execution. Multi-
agent pathfinding has been extensively studied in this con-
text, highlighting both the effectiveness of classical planners
and the growing interest in learning-based and hybrid ap-
proaches (Wang et al. 2025). While classical planning ap-
proaches can produce near-optimal paths, they typically re-
quire recomputation from scratch whenever the environment
changes (Li et al. 2021). This limits scalability in dynamic
or partially observable settings, where repeated planning can
become computationally expensive.

Sartoretti et al. (Sartoretti et al. 2019) introduced a hy-
brid learning approach that combines RL and imitation of
an expert multi-agent path finding planner to train decentral-
ized policies that scale to hundreds of agents in cluttered grid
worlds. A recent algorithm, WPPL, uses imitation learning
to scale to 10,000 agents and matches or exceeds search-
based methods from LoRR (Jiang et al. 2025). It shows how
learned policies can complement planning/search methods
in large-scale multi-agent path-finding, providing encourag-
ing evidence that LoRR can be solved using learning-based
augmentations.

Our work continues this thread of neurosymbolic research
with the aim of bridging the gap between offline learning
and online planning. We explore a hybrid approach that in-
tegrates Monte Carlo Tree Search (MCTS) (Browne et al.
2012) with RL. MCTS provides efficient planning, while
RL enables agents to learn reusable policies. Our motiva-
tion is that learned policies can capture structural regulari-
ties of the LoRR environment, potentially allowing agents
to generalize to unseen maps or task configurations without
full replanning. Unlike standard RL agents, which only react
based on their learned policy, combining learning with plan-
ning allows the agent to still perform short-term search and
adjust to new situations. We hypothesize that this integration
could yield agents that adapt more flexibly and transfer more
effectively across environments in the LoRR benchmark.

Approach and Contributions

We propose a practical combination of planning and RL for
multi-agent path planning that keeps the safety and structure
of a search-based planner while learning reusable policies
that can guide planning across different environments and
task configurations. The system decomposes the multi-agent
problem into per-agent planning under time-indexed occu-
pancy constraints, derived from the already-planned trajec-
tories of other agents. Each agent’s state is its grid coordinate
s = (x,y). Time acts as an external variable that limits valid
moves through standard vertex and edge collision checks.
Any action suggested by learning or search must still pass
the same collision filter.

To coordinate multiple agents planning simultaneously,
we employ a fair scheduling mechanism that alternates plan-
ning responsibility based on how much each agent has al-
ready committed. Specifically, at each iteration, the agent
with the fewest planned timesteps is selected to plan its next
task segment. This ensures balanced progress across agents
and prevents any single agent from consuming excessive

planning resources early in the process. When an agent com-
pletes planning for one subgoal, it immediately proceeds to
the next location in its multi-location task; if all locations
in its current task are complete, a new task is assigned from
the shared input list. This mechanism ensures agents visit all
errands within each task in the prescribed order.

At each decision step, an agent runs Monte Carlo Tree
Search (MCTS) from its current position toward its next
subgoal. The search respects time-indexed occupancy con-
straints: at timestep ¢, the agent may not move to a posi-
tion that will be occupied by another agent at timestep ¢ + 1
(vertex collision), nor may it swap positions with another
agent moving in the opposite direction (edge collision). For-
mally, let A = {1,..., N} denote the set of agents and
T = {0,...,T} the discrete time steps. We define a time-
indexed allocation tensor X & {0, 1}MIXITIXIG1 where
X+, = 1 indicates that agent ¢ occupies grid cell g at time
t. Feasibility requires that no two agents occupy the same
grid cell at the same time and that edge swaps between con-
secutive time steps are forbidden:

D Xitg <1 Xivg Xjtr10 =0 if g1 ¢ go.
[

During planning, agents update X incrementally, and the
scheduling mechanism selects the agent with the smallest
planned horizon 7; to extend its path. This produces a 3D
occupancy grid (x,y,t) that captures both spatial and tem-
poral coordination constraints.

Agent A (plans first) Agent B (plans second)

A 0 O 1 0 0
t=0 0 0 O 0 0 O
0 0 O 0 B 0
0 A O 0 1 0
t=1 0o 0 O 0 B 0
0o 0 O 0 0 O
0 0 A 0 B 1
t=2 0 0 O 0 0 0
0 0 O 0 0 O

Figure 1: Illustration of the time-indexed reservation pro-
cess. Agent A plans first and reserves its future positions.
When Agent B plans, the reserved cells marked with 1 are
treated as occupied at their respective timesteps, and Agent
B must avoid them when generating its own trajectory.

These constraints are enforced during both tree expansion
and action validation, ensuring all generated paths remain
collision-free. Let N (a) be the number of times action a was
visited at the root node during MCTS simulations. These
visit counts are normalized into a policy distribution:

muers(a|s) = N
SN ()’

where actions that led to more promising paths receive
higher exploration counts and thus higher probability. This

policy reflects the actions that are most successful given the
current agent’s position, goal position, and surrounding con-
straints.

When using the hybrid configuration, we compute a
lightweight observation o(s) as a three-channel grid (walls,
agent position, goal position) and evaluate a small pol-
icy—value network (7 (- | 0),Vy(0)). During action selec-
tion, the search policy and learned policy are blended:

Tptend(a | 0,8) = (1 — B) mmers(a | s) + Bmg(a | o),

and the chosen action is

a* =arg max Tpend(a | o,8).

a€Ayatia(s:t)
A small 5 (e.g., 0.15) keeps the system mostly search-
driven, with the learned prior providing a modest bias toward
actions it has learned to prefer. As the network improves
through training, this small contribution becomes more ef-
fective at guiding the search.

MCTS Search
Input: state, goal,
constraints
Qutput. m_MCTS

Compute Observation
> ofs) Grid Map >

(walls, agent, goal)

Policy Network
[Input: o(s)
(Output: suggested action

Current Agent State
(xy.8)

¥

Online Learning Execute Action in Policy Blending
k| Store (o_t, m_MCTS) (| Environment l¢—| _blend = (1-Bjm_MCTS
Update Policy & Update Agent State +pn_8

Action Selection
a* = argmax Ti_blend

Figure 2: Overview of the hybrid MCTS + RL system for
multi-agent planning in the League of Robot Runners. Each
agent’s state holds its « and y coordinates and its rotation 6.
The agent observes its environment to obtain an observation
o(s), runs Monte Carlo Tree Search (MCTS) using the cur-
rent state, goal, and multi-agent constraints, and combines
the resulting search policy my;ors with the learned policy
network 7y through a blending step. The selected action is
executed in the environment with rotation penalties. Obser-
vations and MCTS visit counts are stored for online policy
distillation.

The system also accounts for rotation penalties that arise
when agents change direction. Each agent maintains an ori-
entation (North, East, South, or West), and turns incur time
penalties: a 90° turn adds one timestep, while a 180° turn
adds two. These penalties are tracked globally and included
in the final time computation. This cost model encourages
the planner and learned policy to prefer forward motion and
minimize unnecessary rotations or waiting.

Learning happens online during normal execution. For
each task segment (the sequence of decisions to reach a
current goal), the system stores pairs (o;, Tarcrs,e) at the
root of each search. When a segment ends, a binary result
z € {0, 1} indicates whether the goal was reached. The net-
work parameters 6 are updated by minimizing:

L(0) = CE(myers, 7o) + MVy(o) — 2)2 — aH(m),

where C'E is cross-entropy and H is entropy. A few stochas-
tic gradient steps are applied after each segment, and the pa-
rameters are saved so later runs start from improved policies.

The policy distillation step converts the local search be-
havior of MCTS, which is already aware of moving agents
and obstacles, into a learned prior that can guide future plan-
ning. The learned policy suggests likely good actions, and
the value estimate helps the search allocate its effort more
efficiently. All actions remain subject to the planner’s colli-
sion checks, so the system maintains the same safety guar-
antees as the base method. By planning independently for
each agent and representing others through a time-indexed
occupancy grid, the approach avoids the full joint-state com-
plexity while still responding to multi-agent interactions.

Experiments and Preliminary Results

We conducted preliminary experiments using small grid en-
vironments adapted from the League of Robot Runners.
Each scenario consisted of agents navigating to assigned
goals while avoiding other agents. We evaluated our method
on two configurations:

1. Pure MCTS baseline: standard search-based planner
without learning.

2. Hybrid MCTS + RL: our proposed approach with a
small learned prior (8 = 0.15).

We focused on small-scale scenarios where both methods
could reliably complete all tasks within reasonable compu-
tational time. This enables us to assess the potential benefits
of learning while avoiding the computational overhead and
potential non-terminating behavior that can arise in larger-
scale scenarios.

Experimental Setup

We evaluated both methods on a 10 x 10 grid world with
4 agents, averaged over 10 independent runs. Each run con-
sisted of a continuous stream of tasks assigned to agents,
with the planner computing paths online. The pure MCTS
baseline uses standard UCB exploration without any learned
guidance. The hybrid MCTS+RL method starts with a ran-
domly initialized policy network and learns online during
execution, distilling the MCTS search policy after each com-
pleted task segment. Both methods use identical collision-
avoidance constraints and scheduling mechanisms to ensure
fair comparison.

Results

Table 1 summarizes the average performance across 10 runs.
Both methods achieved 100% task completion with zero col-
lisions, demonstrating that the hybrid approach maintains
the safety and reliability guarantees of pure MCTS while in-
troducing learning capabilities. The hybrid planner achieves
comparable path efficiency (21.44 steps vs. 22.69 steps),
showing that online policy learning does not degrade perfor-
mance even when starting from a randomly initialized net-
work.

This result establishes a crucial baseline: the hybrid sys-
tem successfully integrates learning without compromising
the planner’s effectiveness. While the immediate perfor-
mance gains are modest, the framework introduces capabili-
ties that pure MCTS alone cannot provide. The learned pol-
icy network, developed through online distillation of MCTS

Table 1: Preliminary performance comparison on a 10 x 10
grid with 4 agents (averaged over 10 runs). Both methods
achieved 100% success with zero collisions, demonstrating
that the hybrid approach maintains performance while en-
abling learning.

Agents Method Avg. Steps
4 MCTS 22.69
4 MCTS+RL 21.44

search behavior, potentially captures spatial navigation pat-
terns that could be reused across different task configura-
tions or map variations, which might reduce computational
overhead in future deployments. Additionally, by serving as
a compressed representation of effective navigation strate-
gies extracted from MCTS search distributions, the policy
network could facilitate transfer learning or provide warm-
start initialization for new environments. These prelimi-
nary results suggest that incremental policy improvement
through online distillation is feasible, offering a foundation
for exploring more sophisticated learning strategies in future
work.

We also tested a higher-density configuration with 15
agents on a 10 x 10 grid. The system remains collision-
free and the agents ultimately complete their assignments,
but paths are suboptimal, with unnecessary local loops and
occasional detours before converging to the goal. These re-
sults highlight emerging scalability limitations under higher
agent densities, motivating ongoing efforts to enhance coor-
dination efficiency in densely populated environments.

Discussion and Future Work

The preliminary results demonstrate that integrating learn-
ing into a search-based planner achieves comparable effi-
ciency while maintaining the safety and structure that make
classical methods reliable. While immediate performance
gains are modest, the hybrid approach successfully intro-
duces learning capabilities without degrading baseline per-
formance. Even with limited training, the learned policy net-
work begins to capture spatial navigation patterns that could
be reused across different task configurations or map varia-
tions.

One of the central challenges ahead is understanding how
the learned components generalize beyond the training envi-
ronments. Because LoRR involves repeated tasks in a shared
space, policies may capture environment-specific regulari-
ties that do not immediately transfer to new layouts or agent
densities. Systematically evaluating this transfer will be an
important next step to validate the reusability claims of our
framework. A critical direction for future work is scaling the
approach to handle more agents or more crowded spaces,
where coordination complexity increases significantly.

Another open question concerns the balance between
planning depth and learned guidance. Our current experi-
ments use a fixed blending parameter (8 = 0.15) that pro-
vides modest influence from the learned policy. Exploring
adaptive mechanisms for adjusting this balance based on
policy confidence or search efficiency could help amplify

the benefits of the hybrid approach in future work.

The primary value of this early work lies in creating an ex-
tensible framework that enables future capabilities, such as
policy reuse, transfer learning, and adaptive behavior. The
learned policy network, even when providing modest im-
mediate benefit, creates a reusable asset that can be refined
through additional training, applied to new environments, or
used to warm-start planning in novel scenarios.

This hybrid approach points toward a middle ground be-
tween pure search and pure learning. It preserves the in-
terpretability and guarantees of planning while gaining the
adaptability of RL. Continued experiments and ablations
will help clarify how these two processes can best support
each other in dynamic, multi-agent environments, particu-
larly as we scale to more agents and more crowded spaces
where coordination complexity increases significantly.

References

Anthony, T.; Tian, Z.; and Barber, D. 2017. Thinking fast
and slow with deep learning and tree search. In Advances in
Neural Information Processing Systems (NeurIPS), 5366—
5376.

Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A Survey of Monte
Carlo Tree Search Methods. IEEE Transactions on Compu-
tational Intelligence and Al in Games, 4(1): 1-43.

Jiang, H.; Wang, Y.; Veerapaneni, R.; Duhan, T.; Sartoretti,
G.; and Li, J. 2025. Deploying Ten Thousand Robots: Scal-
able Imitation Learning for Lifelong Multi-Agent Path Find-
ing. arXiv:2410.21415.

Jiang, H.; Zhang, Y.; Veerapaneni, R.; and Li, J. 2024.
Scaling lifelong multi-agent path finding to more realistic
settings: Research challenges and opportunities. In Pro-

ceedings of the International Symposium on Combinatorial
Search, volume 17, 234-242.

Lake, B. M.; Ullman, T. D.; Tenenbaum, J. B.; and Gersh-
man, S. J. 2017. Building machines that learn and think like
people. Behavioral and Brain Sciences, 40: €253.

Li, J.; Tinka, A.; Kiesel, S.; Durham, J. W.; Kumar, T. K. S.;
and Koenig, S. 2021. Lifelong Multi-Agent Path Finding in
Large-Scale Warehouses. In Proceedings of the 35th AAAI
Conference on Artificial Intelligence (AAAI ’21).

LoRR Organizers. 2024. League of Robot Runners (LoRR).
https://lorr-competition.org. Accessed: 2025-11-02.

Sartoretti, G.; Kerr, J.; Shi, Y.; Wagner, G.; Kumar, T. S.;
Koenig, S.; and Choset, H. 2019. Primal: Pathfinding via
reinforcement and imitation multi-agent learning. [EEE
Robotics and Automation Letters, 4(3): 2378-2385.

Silver, T.; Dan, S.; Srinivas, K.; Tenenbaum, J. B.; Kael-
bling, L.; and Katz, M. 2024. Generalized planning in pddl
domains with pretrained large language models. In Proceed-
ings of the AAAI conference on artificial intelligence, vol-
ume 38, 20256-20264.

Wang, S.; Xu, H.; Zhang, Y.; Lin, J.; Lu, C.; Wang, X.; and
Li, W. 2025. Where Paths Collide: A Comprehensive Sur-

vey of Classic and Learning-Based Multi-Agent Pathfind-
ing. arXiv preprint arXiv:2505.19219.

