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ABSTRACT

Generating high-quality time series data has emerged as a critical research topic
due to its broad utility in supporting downstream time series mining tasks. A
major challenge lies in modeling the intrinsic stochasticity of temporal dynam-
ics, as real-world sequences often exhibit random fluctuations and localized vari-
ations. While diffusion models have achieved remarkable success, their gener-
ation process is computationally inefficient, often requiring hundreds to thou-
sands of expensive function evaluations per sample. Flow matching has emerged
as a more efficient paradigm, yet its conventional ordinary differential equation
(ODE)-based formulation fails to explicitly capture stochasticity, thereby lim-
iting the fidelity of generated sequences. By contrast, stochastic differential
equation (SDE) are naturally suited for modeling randomness and uncertainty.
Motivated by these insights, we propose TimeFlow, a novel SDE-based flow
matching framework that integrates a encoder-only architecture. Specifically,
we design a component-wise decomposed velocity field to capture the multi-
faceted structure of time series and augment the vanilla flow-matching optimiza-
tion with an additional stochastic term to enhance representational expressiveness.
TimeFlow is flexible and general, supporting both unconditional and conditional
generation tasks within a unified framework. Extensive experiments across di-
verse datasets demonstrate that our model consistently outperforms strong base-
lines in generation quality, diversity, and efficiency. The code is available at
https://anonymous.4open.science/r/TimeFlow-59E4.

1 INTRODUCTION

Time series generation plays an important role across many real-world domains, including finance,
healthcare, and energy management (Lim & Zohren, 2021; Vuletić et al., 2024; Deng et al., 2025;
Lin et al., 2025), where reliable modeling and simulation are essential for decision making, intelli-
gent management, and risk assessment (Alaa et al., 2021; Cheng et al., 2025). Consequently, time
series generation has attracted considerable research attention. Unlike images or text, time series are
characterized by long-range dependencies (Ubal et al., 2023) and inherent stochasticity (Luo et al.,
2025; Wang et al., 2025), which make their generative modeling particularly challenging. A central
challenge in this field lies in capturing the inherent stochasticity of temporal dynamics, which arises
from noise and perturbations and is crucial for reproducing realistic variability (Cheng et al., 2023).

A variety of generative frameworks have been explored for time series modeling, includ-
ing generative adversarial networks (GANs) (Goodfellow et al., 2014) and variational autoen-
coders (VAEs) (Kingma & Welling, 2013), which provide early probabilistic and adversarial ap-
proaches for synthesizing temporal data. More recently, denoising diffusion probabilistic models
(DDPMs) (Song et al., 2021; Ho et al., 2020) have achieved remarkable success in the broader
field of generative modeling, powering breakthroughs in image, speech, and scientific data synthe-
sis (Jiang et al., 2025; Tai et al., 2023; Yuan & Qiao, 2024). They have also demonstrated strong
potential for time series tasks, setting new baselines for generative quality. Despite their impres-
sive flexibility, DDPMs are computationally inefficient, as iterative denoising requires hundreds to
thousands of reverse steps (Figure 1(a)). This inefficiency is particularly problematic in time series
generation, where longer sequences further amplify the computational burden, limiting the practical-
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Figure 1: Comparison of generative paradigms. (a) DDPM rely on iterative denoising. (b) ODE-
based flow matching produces deterministic trajectories. (c) SDE-based flow matching yields
stochastic trajectories that capture uncertainty via diffusion terms. (d) Illustration of determinis-
tic versus stochastic trajectories under flow matching.

ity of DDPMs in large-scale or latency-sensitive scenarios. To overcome this efficiency bottleneck,
flow matching (FM) (Lipman et al., 2022) has emerged as a promising alternative by directly pa-
rameterizing continuous generative trajectories through velocity fields, offering both stable training
objectives and efficient sampling mechanisms.

However, most existing FM applications adopt an ordinary differential equation (ODE) formulation,
where trajectories are determined by deterministic velocity fields, as illustrated in Figure 1(b). While
effective in modeling global structure, this ODE-based FM model suffers from two key limitations
for time series generation. First, it does not explicitly model stochasticity, resulting in synthetic
sequences that lack variability and fail to reproduce rare but important fluctuations. Second, by
constraining the generative dynamics to a deterministic flow, the model cannot adequately represent
predictive uncertainty or adapt to heterogeneous temporal regimes. In other words, although FM im-
proves efficiency, the ODE formulation sacrifices the ability to faithfully reflect the stochastic nature
of real-world temporal processes. These shortcomings motivate extending FM to a stochastic dif-
ferential equation (SDE) formulation, where diffusion terms (Figure 1(c)) enable richer variability,
uncertainty-aware trajectories, and improved robustness to random perturbations.

To address these challenges, we propose TimeFlow, an SDE-based flow matching framework for
efficient and stochasticity aware time series generation (Figure 1(d)). By incorporating a diffusion
term into the generative process, TimeFlow explicitly captures randomness and produces higher-
quality trajectories with faithful uncertainty modeling. To further preserve temporal structures, we
employ a transformer-based encoder with decomposition mechanism, which maintains consistency
with underlying dynamics while keeping the framework and efficient. Moreover, TimeFlow nat-
urally extends to both unconditional and conditional generation tasks, including forecasting and
imputation, thereby broadening its applicability in practice.

In summary, our major contributions are as follows:

• We propose TimeFlow, a novel time series generation framework that extends flow match-
ing to a stochastic differential equation formulation. By introducing the Stochastic Flow
Matching loss, our method explicitly models temporal stochasticity, enabling uncertainty
aware generative processes that better capture complex random fluctuations.

• We leverage the flow matching paradigm to fundamentally alleviate the efficiency bottle-
necks of diffusion-based approaches, enabling significantly faster generation of high di-
mensional time series while maintaining both reliability and fidelity.

• We conduct evaluations on both unconditional and conditional generation tasks, includ-
ing forecasting and imputation, across diverse real world datasets. Experimental results
demonstrate that TimeFlow outperforms strong baselines in both quality and efficiency.
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2 RELATED WORK

Time Series Generation. Generative models have recently shown strong performance in time
series modeling. Early efforts focused on GAN-based methods, such as TimeGAN (Yoon et al.,
2019), which introduces a supervised embedding to preserve temporal dynamics. COT-GAN (Xu
et al., 2020) improves the stability of training through causal optimal transport and entropic regu-
larization, while GT-GAN (Jeon et al., 2022) offers a general framework for regular and irregular
time series. VAE-based approaches were later explored. TimeVAE (Desai et al., 2021) proposes
an interpretable structure tailored to time series, and CR-VAE (Li et al., 2023) encodes causal de-
pendencies via a sparse critical matrix. More recently, diffusion models have emerged as a leading
paradigm. DiffTime (Coletta et al., 2023) decouples constraint specification from training, enabling
flexible inference-time adaptation. SSSD (Alcaraz & Strodthoff, 2022) and CSDI (Tashiro et al.,
2021) extend the framework to conditional tasks using self-supervised masking. TimeGrad (Rasul
et al., 2021) applies RNN-guided autoregression, while TSDiff (Shen & Kwok, 2023) enables un-
conditional generation via self-guidance. Finally, Diffusion-TS (Yuan & Qiao, 2024) introduces an
interpretable design that disentangles temporal semantics.

Flow Matching. As a promising alternative to diffusion processes, flow matching (Lipman et al.,
2022) has shown significant potential in generative modeling due to its training stability, flexible
trajectory design, and computational efficiency. Flow matching was initially proposed for image
generation tasks, where it effectively modeled complex data distributions (Dao et al., 2023; Stoica
et al., 2025; Yazdani et al., 2025; Geng et al., 2025). It and its variants, such as rectified flow (Liu,
2022) and OT flow matching (Klein et al., 2023)—have since been extended beyond image genera-
tion to a variety of domains, including video (Jin et al., 2024; Cao et al., 2025; Davtyan et al., 2023),
text (Hu et al., 2024), and audio (Jung et al., 2024). Recently, flow matching has been applied to
time series. TFM (Zhang et al., 2024) uses neural SDEs to tackle stochastic and irregularly sampled
clinical time series forecasting. SGFM (He et al., 2024) combines state space models and GNNs
for refined anomaly detection. CGFM (Xu et al., 2025) models prediction time series forcasting
errors by conditional guidance. CFM-TS (Tamir et al., 2024) applies conditional probability paths
to neural ODEs for time series modeling.

3 PRELIMINARIES

3.1 PROBLEM STATEMENT

Let X1:t = (x1, . . . , xt) ∈ Rτ×d denote an observed time series, where t represents the num-
ber of time steps, and d denotes the dimension of each observation. Given the time series dataset
S = {Xi

1:t}Ni=1 consisting of N time series samples, the objective of the unconditional generation
task is to learn a flow-based generator G to synthesize sequences X̂i

1:t = G(Si), which closely
approximates the realistic time series data Xi

1:t. And the goal of conditional generation is to gen-
erate samples from a conditional distribution p(· | y), where y is a control variable that can be any
real-world signal and dictates the synthesis.

3.2 FLOW MATCHING

Flow matching (Lipman et al., 2022) is a family of generative models that learn to match probability
flows represented by velocity fields between a simple prior distribution and the data distribution.
Formally, given data x1 ∼ pdata(x) and a prior noise variable x0 ∼ pprior(ϵ), a flow path can be
defined as xt = atx1 + btx0, where at and bt are predefined schedules. The corresponding velocity
is given by vt = żt = a′tx + b′tϵ, with (·)′ denoting the derivative with respect to time. This is
referred to as the conditional velocity, written as vt = vt(xt | x1). A common choice of schedules
is at = t and bt = 1− t, which yields vt = x1 − x0.

Since a given xt and its associated velocity vt can arise from different pairs of x and ϵ, flow mtch-
ing essentially models the expectation over all possibilities, which is called the marginal velocity:
ν(xt, t) = Ep(vt|xt)[vt]. A neural network vθ parameterized by θ is trained to approximate this
marginal velocity field. The conditional flow matching loss is written as:

LCFM(θ) = Et,x1,x0

[
∥vθ(xt, t)− vt]∥2

]
, (1)
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Figure 2: Overview of the proposed TimeFlow architecture

where the target vt corresponds to the conditional velocity. By minimizing this objective, the learned
velocity field aligns with the expected flow, enabling efficient training of generative models.

3.3 NEURAL STOCHASTIC DIFFERENTIAL EQUATION

Neural stochastic differential equations describe the evolution of a latent state with both determinis-
tic and stochastic components, given by:

dzt = fθ(xt, t) dt+ gθ(xt, t) dWt, (2)

where fθ denotes the drift term parameterized by a neural network, gθ is the diffusion coefficient, and
Wt is a standard Wiener process. The first term fθ(xt, t) dt corresponds to the deterministic drift,
while the second term gθ(xt, t) dWt represents stochastic perturbations from Brownian motion.

4 METHODS

4.1 OVERVIEW

Time series data often exhibit inherent stochasticity caused by noise and random perturbations. To
address this issue, we propose a flow matching framework that explicitly learns velocity fields to
align the dynamics between prior noise and target sequences. As illustrated in Figure 2, our method
consists of four main components. First, the velocity model, composed of multiple velocity field
encoder (VFE) layers, parameterizes the continuous transformation from a Gaussian prior x0 to
the real data distribution x1. Second, stochastic optimization objective incorporates perturbations
ϵt to capture the inherent randomness of time series. Third, flow decomposition (FD) employs
decomposition to disentangle temporal components. Finally, stochastic sampling enables versatile
generation.Unconditional generation directly synthesizes sequences from noise, while conditional
generation exploits observed data to produce consistent and plausible completions.

4.2 VELOCITY MODEL

We propose a velocity model consisting of multiple Velocity Field Encoder (VFE) layers, each in-
stantiated as a transformer encoder architecture that captures long dependency and global contextual
interactions. At the input stage, a convolutional embedding layer extracts local temporal patterns and

4
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projects raw sequences into a high-dimensional representation space. Then, the encoder layer re-
fines temporal representations and applies a decomposition mechanism to disentangle the output into
two complementary components. The seasonal component captures high-frequency stochastic dy-
namics, while the trend component represents low-frequency smooth evolution as a stable baseline.
This explicit separation prevents heterogeneous sources of uncertainty from being conflated into a
single representation, thereby enabling a more structured parameterization of the velocity field and
enhancing robustness to stochastic perturbations.

Flow Decomposition. In our velocity field encoder, the encoder output Hi is first decomposed via
moving average into a trend component ti and a seasonal component si for subsequent processing:

ti = AvgPool(Padding(Hi)), si = Hi − ti, (3)

Given that seasonal patterns are vulnerable to contextual disturbances such as phase shifts and ampli-
tude variations, we refine si using a cross-attention (CA) mechanism with the original representation
Hi, and apply a residual connection to promote stable learning. In comparison, the trend compo-
nent ti is inherently more stable; nevertheless, we further modulate it through a multi-scale gated
convolutional module that effectively incorporates seasonal information:

Si = CA(si, Hi) + si, Ti =
( K∑

k=1

Conv1Dk(Si)
)
⊙ ti, (4)

Here, Si represents the refined seasonal representation, and Ti the modulated trend representation.
Subsequently, the residual representation for the next layer is computed by removing both com-
ponents from the encoder output, whereas the velocity field is generated from the aggregated sea-
sonal–trend terms accumulated over D layers of the encoder:

Oi+1 = Hi − Si − Ti, vθ(xt, t) = Projection
( D∑

i=1

Si +

D∑
i=1

Ti

)
, (5)

where Oi+1 is the residual representation passed to the (i+1)-th encoder layer, and vθ(xt, t) is the
velocity field parameterized by θ at time step t.

4.3 STOCHASTIC OPTIMIZATION OBJECTIVE

To explicitly account for stochastic perturbations in time series, we introduce the stochastic flow
matching (SFM) loss. As illustrated in Figure 2, given an intermediate state xt, the velocity model
predicts a velocity field vθ(xt, t). To model uncertainty, a Gaussian noise term ϵt ∼ N (0, σ2

t I) is
injected into the prediction, yielding a perturbed velocity representation: ṽ(xt, t) = vθ(xt, t) + ϵt.
The SFM loss is then defined as:

LSFM = Et,xt

[
∥ṽ(xt, t)− vt∥2

]
, (6)

where vt = x1 − x0 denotes the ground-truth velocity between the initial and terminal states. By
minimizing LSFM, the model is encouraged to learn a velocity field that captures not only deter-
ministic dynamics but also stochastic variations, thereby facilitating robust and faithful modeling of
uncertain time series.

4.4 STOCHASTIC SAMPLING

As illustrated in Figure 2, we design two distinct sampling flows for time series generation: un-
conditional and conditional. Both flows rely on the learned velocity field but differ in how stochas-
tic perturbations and observational information are incorporated, thereby providing complementary
perspectives on how the model handles uncertainty. In particular, unconditional flow emphasizes
the role of randomness in generating diverse trajectories, while conditional flow demonstrates how
partial observations can guide the generation process toward consistency with known information.

Unconditional Generation. The unconditional generation process begins from a Gaussian prior
X0 ∼ N (0, I) and evolves according to a stochastic integral equation of the form:

X1 =

∫ 1

0

(
vθ(t,Xt) dt+ σ dWt

)
, (7)

5
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where vθ(t,Xt) denotes the learned velocity field, and σ dWt is a stochastic term driven by Brown-
ian motion that introduces random perturbations. This formulation explicitly establishes a connec-
tion between the generative process and stochastic dynamics, ensuring that the synthesized trajecto-
ries not only capture the overall structure of time series but also reproduce their intrinsic variability.
By integrating both deterministic velocity guidance and stochastic diffusion.

Conditional Generation. The conditional generation process incorporates partial observations of
the target sequence as guidance. At each iteration, the integration time t ∈ [0, 1] is reparameterized
using a power-based sampling scheme, which controls the pace of noise injection and enables both
early stochastic exploration and stable refinement in later stages. The latent state is obtained by
interpolating between Gaussian noise and the observed sequence, with entries specified by a partial
mask replaced by noisy versions of the ground truth to enforce conditional fidelity. The evolution of
the trajectory is then governed by an Euler update rule of the form:

xt+1 = xt + (1− t) vθ(xt, t), (8)

where vθ(·) denotes the learned velocity field. To ensure stability, the outputs are further bounded
through clamping. This formulation generates trajectories that remain faithful to observed data while
preserving realistic variability in unobserved regions.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Dataset. We evaluate our approach on four real-world datasets and two synthetic datasets. The
real-world datasets include Stocks, which contains Google stock prices from 2004 to 2019; ETTh,
which records 15-minute electricity transformer load and oil temperature measurements; and UCI
Energy, which provides household appliance energy consumption data. In addition, the fMRI dataset
offers simulated BOLD signals. For synthetic benchmarks, we adopt the Sines dataset, comprising
five-dimensional sinusoidal sequences, and the MuJoCo dataset, which generates multivariate time
series from a physics-based simulation environment.

Metrics. We evaluate the quality of the synthesized data using four widely adopted metrics. (1)
The discriminative score (Yoon et al., 2019) measures the similarity between real and synthetic data
based on a supervised classification task. (2) The predictive score (Yoon et al., 2019) assesses the
utility of synthetic data by training a sequence model on synthetic samples and evaluating it on
real data. (3) The Context-Fréchet Inception Distance (Context-FID) (Jeha et al., 2022) quantifies
the sample quality by comparing their contextual representations with those of real data. (4) The
correlational score (Jeha et al., 2022) evaluates temporal dependency by computing the absolute
error between correlation structures of the real and synthetic data.

Baselines. For unconditional generation, we compare our model with six baselines, including
Diffusion-TS (Yuan & Qiao, 2024), TimeGAN (Yoon et al., 2019), TimeVAE (Desai et al., 2021),
DiffWave (Kong et al., 2020), DiffTime (Coletta et al., 2023), and Cot-GAN (Xu et al., 2020).
For conditional generation, we compare our model with Diffusion-TS (Yuan & Qiao, 2024) and
CSDI (Tashiro et al., 2021).

5.2 UNCONDITIONAL TIME SERIES GENERATION

In Table 1, we present results for 24-length time series generation, a setting widely adopted
in prior studies. TimeFlow consistently outperforms baseline methods across six datasets and
nearly all evaluation metrics, with average improvements of 59.9% in Context-FID and 57.5%
in Discriminative Score over the strongest competitor. We further evaluate TimeFlow-ODE, an
ODE-based variant, which achieves competitive performance and attains state-of-the-art results in
more than half of the cases. Nonetheless, TimeFlow consistently surpasses TimeFlow-ODE. These
findings show that explicitly modeling stochasticity improves robustness and fidelity, highlighting
the necessity of capturing intrinsic randomness in time series.
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Table 1: Results on multiple time-series datasets (Bold indicates best performance).

Metric (↓) Methods Sincs Stocks ETTh MuJoCo Energy fMRI

Context-FID
Score

Lower Better

TimeFlow 0.002±0.000 0.011±0.004 0.016±0.001 0.012±0.001 0.027±0.003 0.122±0.009
TimeFlow-ODE 0.007±0.001 0.016±0.004 0.082±0.015 0.037±0.005 0.034±0.003 0.170±0.008

Diffusion-TS 0.006±0.000 0.147±0.025 0.116±0.010 0.013±0.001 0.089±0.024 0.105±0.006
TimeGAN 0.101±0.014 0.103±0.013 0.300±0.013 0.563±0.052 0.767±0.103 1.292±0.218
TimeVAE 0.307±0.060 0.215±0.035 0.805±1.186 0.251±0.015 1.631±1.142 14.449±9.969
Diffwave 0.014±0.002 0.232±0.032 0.873±0.061 0.393±0.041 1.031±1.131 0.244±0.018
DiffTime 0.006±0.001 0.236±0.074 0.299±0.044 0.188±0.028 0.279±0.045 0.340±0.015
Cot-GAN 1.337±0.068 0.408±0.086 0.980±0.071 1.094±0.079 1.039±0.028 7.813±3.550

Correlational
Score

Lower Better

TimeFlow 0.011±0.001 0.003±0.002 0.027±0.010 0.163±0.032 0.576±0.103 0.837±0.010
TimeFlow-ODE 0.017±0.007 0.008±0.005 0.048±0.014 0.170±0.022 0.573±0.094 0.930±0.016

Diffusion-TS 0.015±0.004 0.004±0.001 0.049±0.008 0.193±0.027 0.856±1.147 1.411±0.42
TimeGAN 0.045±0.010 0.063±0.005 0.210±0.006 0.886±0.039 4.010±1.104 23.506±2.039
TimeVAE 0.131±0.010 0.095±0.008 0.111±0.200 0.388±0.041 1.688±2.226 17.292±3.526
Diffwave 0.022±0.005 0.030±0.020 0.175±0.006 0.579±0.018 5.001±1.154 3.927±0.409
DiffTime 0.017±0.004 0.008±0.002 0.067±0.005 0.128±0.031 1.158±0.095 1.501±0.048
Cot-GAN 0.049±0.010 0.007±0.004 0.249±0.009 1.041±2.007 3.164±1.061 26.824±4.449

Discriminative
Score

Lower Better

TimeFlow 0.004±0.004 0.011±0.010 0.010±0.006 0.005±0.007 0.061±0.007 0.101±0.015
TimeFlow-ODE 0.014±0.007 0.034±0.018 0.023±0.010 0.023±0.026 0.060±0.021 0.141±0.019

Diffusion-TS 0.006±0.007 0.067±0.015 0.061±0.009 0.008±0.002 0.122±0.003 0.167±0.023
TimeGAN 0.011±0.008 0.102±0.021 0.114±0.055 0.238±0.068 0.236±0.012 0.484±0.042
TimeVAE 0.041±0.044 0.145±1.120 0.209±0.058 0.230±1.102 0.499±1.000 0.476±0.044
Diffwave 0.017±0.008 0.232±0.061 0.190±0.008 0.203±0.096 0.493±0.004 0.402±0.029
DiffTime 0.013±0.006 0.097±0.016 0.100±0.007 0.154±0.045 0.445±0.004 0.245±0.051
Cot-GAN 0.254±1.137 0.230±0.016 0.325±0.099 0.426±0.022 0.498±0.002 0.492±0.018

Predictive
Score

Lower Better

TimeFlow 0.093±0.000 0.037±0.000 0.119±0.002 0.008±0.000 0.250±0.000 0.099±0.000
TimeFlow-ODE 0.093±0.000 0.037±0.000 0.123±0.009 0.011±0.000 0.250±0.000 0.099±0.000

Diffusion-TS 0.093±0.000 0.036±0.000 0.119±0.002 0.007±0.003 0.250±0.000 0.099±0.000
TimeGAN 0.093±0.019 0.038±0.001 0.124±0.001 0.025±1.000 0.273±0.004 0.126±1.002
TimeVAE 0.093±0.000 0.039±0.000 0.126±0.004 0.012±0.002 0.292±0.000 0.113±0.003
Diffwave 0.093±0.000 0.047±0.001 0.130±0.001 0.013±0.001 0.251±0.000 0.101±0.000
DiffTime 0.093±0.000 0.038±0.000 0.121±0.004 0.010±0.000 0.252±0.000 0.100±0.000
Cot-GAN 0.100±0.000 0.047±0.001 0.129±0.000 0.068±0.009 0.259±0.000 0.185±0.003

Original 0.094±.001 0.036±.001 0.121±.005 0.007±.001 0.250±.003 0.090±.001

(a) Sines (b) fMRI

Original

Diffusion-TS

Original

Diffusion-TS
Original

Diffusion-TS

Original

Diffusion-TS

Figure 3: KDE analysis of time series synthesized by TimeFlow and Diffusion-TS

ours

Original

Diffusion-TS

Original

Ours

Figure 4: PCA analysis on Stocks dataset

To evaluate the quality of synthetic data, we
conduct PCA, KDE, and t-SNE analyzes. As
shown in Figure 4, PCA visualizations pro-
vide insights into the alignment between gener-
ated samples and real data in the reduced fea-
ture space. TimeFlow demonstrates a signif-
icantly closer clustering with the original dis-
tribution compared to Diffusion-TS, suggesting
its stronger ability to retain the global variance
structure of time series. The KDE plots in Fig-
ure 4 further confirm this finding, showing that the marginal distributions of sequences produced
by TimeFlow closely match the ground truth. These results demonstrate that TimeFlow generates
more realistic and distributionally aligned time series, effectively capturing both global and local
dynamics. Additional t-SNE visualizations are provided in the Appendix D.
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5.3 CONDITION TIME SERIES GENERATION

We conduct extensive experiments to evaluate our model on both forecasting and imputation tasks.
Figure 5 presents results on the Energy and Stocks datasets with sequence length 48. For the imputa-
tion task, as the missing ratio increases from 0.1 to 0.9, TimeFlow consistently achieves lower MSE
than the baselines, indicating its robustness in handling stochastic perturbations under severe data
sparsity. For the forecasting task, as the prediction window expands from 6 to 24, our model main-
tains lower MSE than Diffusion-TS and CSDI, demonstrating its effectiveness in capturing intrinsic
randomness in temporal dynamics while preserving long range predictive accuracy.

(a) Energy (b) Stocks

Ours

Diffusion-TS

CSDI

Ours

Diffusion-TS

CSDI

Ours

Diffusion-TS

CSDI

Ours

Diffusion-TS

CSDI

Figure 5: Performance of various methods for time-series imputation and forecasting.

To further assess the reliability of our method, we provide qualitative visualizations on the Energy
and Mujoco datasets in Figure 6. The solid line denotes the median trajectory, while the shaded re-
gion indicates the 5%–95% quantile interval, capturing the uncertainty of the generated sequences.
In the imputation task with a missing ratio of 0.9, our method successfully reconstructs coherent
temporal patterns and smoothly recovers missing segments under extremely sparse observations. In
the forecasting task with sequence length 48 and prediction length 12, our model produces trajecto-
ries more consistent with the ground truth and with fewer deviations than Diffusion-TS.

（a) Energy （b) Mujoco

sequence length

M
S

E

M
S

E

M
S

E

M
S

E

M
S

E

M
S

E

M
S

E

M
S

E

sequence length sequence length sequence length

sequence length sequence length sequence length sequence length

Ours
Diffusion-TS Unoberserved

Oberserved Ours
Diffusion-TS Unoberserved

Oberserved Ours
Diffusion-TS Unoberserved

Oberserved

Ours
Diffusion-TS Unoberserved

Oberserved Ours
Diffusion-TS Unoberserved

Oberserved
Ours
Diffusion-TS Unoberserved

Oberserved Ours
Diffusion-TS Unoberserved

Oberserved

Figure 6: Examples of time series imputation and forcasting for Energy and Mujoco datasets.

5.4 EFFECT OF DIFFUSION COEFFICIENT

We further investigate the impact of the constant diffusion coefficient in conditional generation. As
shown in Figure 7, results on the Energy and ETTh datasets reveal distinct behaviors. Energy is a
high-dimensional dataset with stable dynamics, where the influence of diffusion remains marginal
and performance is largely consistent across noise levels. In contrast, ETTh has lower dimension-
ality with stronger variability, making the choice of diffusion coefficient critical. Moderate noise
yields more reliable results by balancing uncertainty modeling and trajectory stability, whereas very
small or large noise leads to underfitting or instability. These findings highlight that the effective-
ness of noise injection depends on dataset characteristics, underscoring the importance of adaptive
uncertainty modeling for robust conditional generation.
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（a) Energy （b) ETTh

Figure 7: Impact of diffusion coefficient on conditional generation performance

5.5 ANALYSIS OF EFFICIENCY

To validate the efficiency of our model, we comprehensively compare TimeFlow with Diffusion-TS
across different sampling steps and diverse datasets. On Stocks and Mujoco, TimeFlow requires
significantly less sampling time and achieves superior Context-FID under the same step size (Fig-
ure 8). Moreover, across multiple datasets, TimeFlow consistently demonstrates clear efficiency
advantages, with lower training costs and faster sampling than Diffusion-TS (Table 2).

(a) Stocks (b) Mujoco

Diffusion-TS time

Ours

Diffusion-TS time

Ours

Diffusion-TS FID

Ours

Diffusion-TS FID

Ours

Figure 8: Analysis of efficiency and generation
metrics on Stocks dataset

Methods Stage Stocks MuJoCo Energy fMRI

TimeFlow

train 373.88 600.18 1112.6 453.27
uncondition 2.69 5.16 25.52 5.69
forecasting 2.54 4.86 9.14 1.56
imputation 2.08 4.73 9.22 3.62

Diffusion-ts

train 687.69 873.39 1690.77 983.48
uncondition 3.08 7.65 28.11 17.69
forecasting 29.41 39 123.17 71.84
imputation 29.99 41.36 101.91 122.02

Table 2: Training and sampling time compari-
son on different datasets in seconds (s).

5.6 ABLATION

To evaluate the effectiveness of the proposed TimeFlow model, we conduct an ablation study by
removing three key components: (1) w/o CA: removing cross-attention in the flow decomposition;
(2) w/o FD: removing the decomposition mechanism; and (3) w/o Encoder: removing the self-
attention backbone. The results are summarized in Table 3.We observe that the complete TimeFlow
consistently delivers superior or competitive performance across all datasets and evaluation met-
rics. Removing the CA or FD leads to only a moderate degradation in performance. Interestingly,
on high-dimensional datasets such as fMRI, eliminating the encoder unexpectedly improves perfor-
mance. We attribute this to the fact that, in extremely high-dimensional scenarios, the encoder may
introduce excessive complexity and amplify noise, which can hinder generalization.

Table 3: Ablation study for model architecture and options. (Bold indicates best performance).

Metric Methods Sines Stocks ETTh MuJoCo Energy fMRI

Discriminative
Score

TimeFlow 0.004±0.004 0.011±0.001 0.010±0.006 0.005±0.007 0.061±0.007 0.101±0.015
w/o CA 0.005±0.004 0.017±0.013 0.014±0.012 0.010±0.010 0.063±0.014 0.094±0.016
w/o FD 0.005±0.005 0.092±0.029 0.013±0.005 0.012±0.019 0.062±0.013 0.149±0.030

w/o Encoder 0.010±0.004 0.104±0.009 0.012±0.007 0.101±0.077 0.142±0.052 0.067±0.098

Predictive
Score

TimeFlow 0.093±0.000 0.037±0.000 0.119±0.002 0.008±0.000 0.250±0.000 0.099±0.000
w/o CA 0.093±0.000 0.037±0.000 0.121±0.004 0.010±0.000 0.251±0.000 0.100±0.000
w/o FD 0.093±0.000 0.038±0.000 0.123±0.003 0.011±0.000 0.251±0.000 0.100±0.000

w/o Encoder 0.093±0.001 0.039±0.000 0.121±0.005 0.015±0.002 0.252±0.000 0.100±0.000

6 CONLUSION

In this paper, we propose TimeFlow, a novel flow matching framework under the SDE paradigm
for time series generation. By introducing a constant diffusion coefficient, TimeFlow effectively
captures stochasticity and improves robustness. The flow matching formulation enables efficient
training and sampling while maintaining high-quality generation. Experiments on multiple datasets
demonstrate its effectiveness in both unconditional and conditional settings. Future work will ex-
plore more efficient solvers and scaling TimeFlow to large-scale applications.
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7 ABOUT THE USE OF LLM

During the writing process, I made limited use of a large language model (LLM) as a tool for
language refinement, such as improving clarity, grammar, and academic style. The ideas, analyses,
and conclusions presented in this paper remain solely the result of my independent work.

8 ETHICS STATEMENT

We confirm that this work aligns with accepted ethical standards in machine learning research. All
data and methodologies used are publicly available or properly cited.

9 REPRODUCIBILITY STATEMENT

To support reproducibility, we have provided full details of our experimental setup, including hyper-
parameters and dataset descriptions, in the experimental section. Code is available.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Ahmed Alaa, Alex James Chan, and Mihaela van der Schaar. Generative time-series modeling with
fourier flows. In International Conference on Learning Representations, 2021.

Juan Miguel Lopez Alcaraz and Nils Strodthoff. Diffusion-based time series imputation and fore-
casting with structured state space models. arXiv preprint arXiv:2208.09399, 2022.

Yang Cao, Zhao Song, and Chiwun Yang. Video latent flow matching: Optimal polynomial projec-
tions for video interpolation and extrapolation. arXiv preprint arXiv:2502.00500, 2025.

Mingyue Cheng, Qi Liu, Zhiding Liu, Zhi Li, Yucong Luo, and Enhong Chen. Formertime: Hier-
archical multi-scale representations for multivariate time series classification. In Proceedings of
the ACM web conference 2023, pp. 1437–1445, 2023.

Mingyue Cheng, Zhiding Liu, Xiaoyu Tao, Qi Liu, Jintao Zhang, Tingyue Pan, Shilong Zhang, Pan-
jing He, Xiaohan Zhang, Daoyu Wang, et al. A comprehensive survey of time series forecasting:
Concepts, challenges, and future directions. Authorea Preprints, 2025.

Andrea Coletta, Sriram Gopalakrishnan, Daniel Borrajo, and Svitlana Vyetrenko. On the con-
strained time-series generation problem. Advances in Neural Information Processing Systems,
36:61048–61059, 2023.

Quan Dao, Hao Phung, Binh Nguyen, and Anh Tran. Flow matching in latent space. arXiv preprint
arXiv:2307.08698, 2023.

Aram Davtyan, Sepehr Sameni, and Paolo Favaro. Efficient video prediction via sparsely condi-
tioned flow matching. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 23263–23274, 2023.

Bowen Deng, Chang Xu, Hao Li, Yu-hao Huang, Min Hou, and Jiang Bian. Tardiff: Target-oriented
diffusion guidance for synthetic electronic health record time series generation. In Proceedings of
the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V. 2, pp. 474–485,
2025.

Abhyuday Desai, Cynthia Freeman, Zuhui Wang, and Ian Beaver. Timevae: A variational auto-
encoder for multivariate time series generation. arXiv preprint arXiv:2111.08095, 2021.

Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for
one-step generative modeling. arXiv preprint arXiv:2505.13447, 2025.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Yongping He, Tijin Yan, Yufeng Zhan, Zihang Feng, and Yuanqing Xia. Sgfm: Conditional flow
matching for time series anomaly detection with state space models. IEEE Internet of Things
Journal, 2024.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Vincent Hu, Di Wu, Yuki Asano, Pascal Mettes, Basura Fernando, Björn Ommer, and Cees Snoek.
Flow matching for conditional text generation in a few sampling steps. In Proceedings of the 18th
Conference of the European Chapter of the Association for Computational Linguistics (Volume
2: Short Papers), pp. 380–392, 2024.

Paul Jeha, Michael Bohlke-Schneider, Pedro Mercado, Shubham Kapoor, Rajbir Singh Nirwan,
Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Psa-gan: Progressive self attention gans
for synthetic time series. In The tenth international conference on learning representations, 2022.

Jinsung Jeon, Jeonghak Kim, Haryong Song, Seunghyeon Cho, and Noseong Park. Gt-gan: General
purpose time series synthesis with generative adversarial networks. Advances in Neural Informa-
tion Processing Systems, 35:36999–37010, 2022.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Hongxu Jiang, Muhammad Imran, Teng Zhang, Yuyin Zhou, Muxuan Liang, Kuang Gong, and
Wei Shao. Fast-ddpm: Fast denoising diffusion probabilistic models for medical image-to-image
generation. IEEE Journal of Biomedical and Health Informatics, 2025.

Yang Jin, Zhicheng Sun, Ningyuan Li, Kun Xu, Hao Jiang, Nan Zhuang, Quzhe Huang, Yang Song,
Yadong Mu, and Zhouchen Lin. Pyramidal flow matching for efficient video generative modeling.
arXiv preprint arXiv:2410.05954, 2024.

Chaeyoung Jung, Suyeon Lee, Ji-Hoon Kim, and Joon Son Chung. Flowavse: Efficient audio-visual
speech enhancement with conditional flow matching. arXiv preprint arXiv:2406.09286, 2024.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.
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A FLOW MATCHING

In this section, we provide a brief overview of flow matching (FM), a generative modeling frame-
work based on learning deterministic vector fields. On a high level, flow matching learns a transport
process, where the traditional formulation is based on an ordinary differential equation (ODE) that
maps a simple base distribution to a complex data distribution.

Formally, let the target data distribution be pdata(x) on Rd, and let the base distribution p0(x) be
chosen as a Gaussian. Flow matching introduces a continuous interpolation between p0 and pdata,
where t ∈ [0, 1] denotes the time variable. A simple choice of interpolation is the linear path.

xt = (1− αt)x0 + αtx1, αt ∈ [0, 1], (9)

where x0 ∼ p0, x1 ∼ pdata, and αt is a schedule function (e.g. αt = t).

The corresponding velocity field of this path is given by

v(xt, t) =
d

dt
xt = α̇t(x1 − x0). (10)

Flow matching trains a neural network vθ(xt, t) to approximate the true velocity field. The learn-
ing objective is to minimize the squared error between the model prediction and the ground-truth
velocity:

LCFM(θ) = Ex0∼p0, x1∼pdata, t∼U [0,1]

[
∥vθ(xt, t)− α̇t(x1 − x0)∥2

]
. (11)

In the ODE formulation, the generative process can be represented in an integral form. Starting from
an initial sample x0 ∼ p0, the final output x1 is obtained by accumulating the velocity field along
the trajectory:

x1 = x0 +

∫ 1

0

vθ(xt, t) dt, x0 ∼ p0, (12)

which yields samples approximately distributed according to pdata.

Beyond the ODE formulation, flow matching can also be extended to a stochastic differential equa-
tion (SDE) by introducing a diffusion term into the dynamics. The forward dynamics are defined
as:

dxt = vθ(xt, t) dt+ σ dWt, (13)

where dWt denotes a standard Wiener process and σ > 0 controls the diffusion strength. Compared
to the deterministic ODE case, this stochastic variant allows the model to capture uncertainty and
generate diverse trajectories.

The generative process then consists of solving the learned SDE from t = 0 to t = 1, starting from
x0 ∼ p0:

x1 = x0 +

∫ 1

0

(
vθ(xt, t) dt+ σ dWt

)
. (14)

B EXPERIMENTS DETAILS

B.1 BASELINES

For unconditional generation, we compare TimeFlow with six representative models. Diffusion-
TS (Yuan & Qiao, 2024) introduces an interpretable design that disentangles temporal semantics.
TimeGAN (Yoon et al., 2019) integrates adversarial training with a supervised embedding to pre-
serve temporal dynamics. TimeVAE (Desai et al., 2021) proposes an interpretable structure tailored
to time series data. DiffWave (Kong et al., 2020), originally developed for sequential audio synthe-
sis, has been adopted for general time series modeling. DiffTime (Coletta et al., 2023) decouples
constraint specification from training, enabling flexible inference-time adaptation. Cot-GAN (Xu
et al., 2020) improves stability through causal optimal transport and entropic regularization. For con-
ditional generation, we benchmark against Diffusion-TS (Yuan & Qiao, 2024) and CSDI (Tashiro
et al., 2021), the latter extending diffusion models to conditional tasks via self-supervised masking.
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B.2 EVALUATION METRICS

Discriminative & Predictive score. The discriminative score is calculated as |accuracy − 0.5|,
while the predictive score is the mean absolute error (MAE) evaluated between the predicted values
and the ground-truth values in test data. For a fair comparison, we reuse the experimental settings
of TimeGAN (Yoon et al., 2019) for the discriminative and predictive score. Both the classifier and
the sequence-prediction model use a 2-layer GRU-based neural network architecture.

Context-FID score. A lower FID score means the synthetic sequences are distributed closer to the
original data. Paul et al. (2022) proposed a Fréchet inception distance (FID)-like score, Context-FID
(Context–Fréchet Inception distance), by replacing the Inception model of the original FID with a
time-series representation learning method called TS2Vec (Yue et al., 2022). They have shown that
the lowest scoring models correspond to the best-performing models in downstream tasks and that
the Context-FID score correlates with the downstream forecasting performance of the generative
model. Specifically, we first sample synthetic time series and real time series, respectively. Then we
compute the FID score of the representations after encoding them with a pre-trained TS2Vec model.

Correlational score. Following Ni et al. (2020), we estimate the covariance of the ith and jth feature
of a time series as

covi,j =
1

T

T∑
t=1

x
(i)
t x

(j)
t −

(
1

T

T∑
t=1

x
(i)
t

)(
1

T

T∑
t=1

x
(j)
t

)
. (22)

Then the metric on the correlation between the real data and synthetic data is computed by

1

10

d∑
i,j

∣∣∣∣∣∣ cov r
i,j√

cov r
i,i cov

r
j,j

−
cov f

i,j√
cov f

i,i cov
f
j,j

∣∣∣∣∣∣ , (23)

where superscripts r and f denote statistics computed on real and synthetic data, respectively.

B.3 DATASETS

table 4 shows the statistics of the datasets and all datasets are available online via the link.

Table 4: Dataset Details

Dataset # of Samples dim Link

Sines 10000 5 https://github.com/jsyoon0823/TimeGAN
Stocks 3773 6 https://finance.yahoo.com/quote/GOOG
ETTh 17420 7 https://github.com/zhouhaoyi/ETDataset
MuJoCo 10000 14 https://github.com/Hdeepmind/dm.control
Energy 19711 28 https://archive.ics.uci.edu/ml/datasets
fMRI 10000 50 https://www.fmrib.ox.ac.uk/datasets

B.4 HYPERPARAMETER TUNING AND SENSITIVITY

We conducted all experiments on a single NVIDIA RTX 4090 GPU. The detailed hyperparameters
for each dataset are summarized in Table 5. Across datasets, the number of attention heads is fixed
to 4, while the head dimension ranges from 16 to 24 depending on the task. The encoder layers vary
between 1 and 5, with a batch size of either 64 or 128. We set the number of sampling steps to 100,
and the total training steps range from 10,000 to 25,000. In all of our experiments, we use cosine
noise scheduling and optimize our network using Adam with (β1, β2) = (0.9, 0.96). A linearly
decayed learning rate starts at 0.0008 after 500 iterations of warmup. For conditional generation, we
set the inference steps 100. We use 90% of the dataset for training and the remaining for testing.
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Table 5: Hyperparameters, training details, and compute resources used for each model

Parameter Sines Stocks ETTh MuJoCo Energy fMRI
attention heads 4 4 4 4 4 4

attention head dimension 16 16 16 16 24 24
encoder layers 5 2 5 3 4 1

batch size 128 64 128 128 64 64
sampling steps 100 100 100 100 100 100
training steps 12000 10000 18000 14000 25000 15000

C ALGORITHM

Algorithms 1 and 2 present the sampling schemes for conditional and unconditional generation
in TimeFlow. For conditional generation, the target sequence is partially observed and a binary
mask enforces the known entries at each step. The unobserved parts are initialized with Gaussian
noise and then iteratively refined through interpolation between noise and observations, guided by
the velocity field predicted by the flow model. This procedure ensures consistency with available
information while allowing flexibility to capture stochastic variations. For unconditional generation,
the process starts purely from Gaussian noise. The sequence is evolved iteratively using an Euler-
type scheme, where the velocity field provides deterministic drift and an additional stochastic term
introduces variability. This allows the model to generate realistic sequences that reflect intrinsic
temporal uncertainty, even in the absence of conditioning information.

Algorithm 1: Conditional generation
Require: Target time series Z1, observation

mask M, sampling iterations N , adaptive
parameter k, trained flow m model Gθ

1: Ẑ1 ∼ N (0, I)
2: for i = 0 to N − 1 do
3: ti = (i/N)k

4: Z0 ∼ N (0, I)

5: Ẑ1 = Ẑ1 ⊙ (1−M) + Z1 ⊙M

6: Ẑti = tiẐ1 + (1− ti)Z0

7: v̂ti = Gθ(Ẑti , ti)

8: Ẑ1 = Ẑti + (1− ti)v̂ti
9: end for

10: return Ẑ1

Algorithm 2: Unconditional generation
Require: Sampling iterations N , adaptive pa-

rameter k, trained flow matching model Gθ

Ensure: Ẑ1

1: Ẑ0 ∼ N (0, I)
2: t0 = 0
3: for i = 0 to N − 1 do
4: ti+1 = ((i+ 1)/N)k

5: v̂ti = Gθ(Ẑti , ti)

6: Ẑti+1
= Ẑti + (ti+1 − ti)v̂ti +√

ti+1 − ti ϵ, ϵ ∼ N (0, I)
7: end for
8: return Ẑ1

D VISUALIZATION

We provide additional illustrative examples of conditional and unconditional generation to further
demonstrate the effectiveness of TimeFlow.
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Energy ETTh
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Figure 9: More t-SNE visualizations of the time series synthesized by TimeFlow and Diffusion-TS.
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Sines Stocks

Figure 10: More PCA visualizations of the time series synthesized by TImeFlow and Diffusion-TS.
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Figure 11: More kernel density estimation visualizations of the time series synthesized by TimeFlow
and Diffusion-TS.
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Figure 12: Imputation visualizations of the time series synthesized by TimeFlow and Diffusion-TS
on six datasets.
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Figure 13: Forecating visualizations of the time series synthesized by TimeFlow and Diffusion-TS
on five datasets.
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