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Voxel-based Multi-scale Transformer Network for
Event Stream Processing
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Abstract—Event cameras are bio-inspired dynamic vision sen-
sors that are superior to frame-based cameras in terms of low
power consumption, high dynamic range, and high temporal
resolution in computer vision tasks. Recent advances in voxel-
based representation learning have successfully exploited the
sparsity of events with low computational complexity, but face
challenges in extracting spatio-temporal features within voxels
and representative global dependencies between voxels, thus
limiting their representation power. In this work, towards a
better trade-off between accuracy and computation overhead,
we propose a novel voxel-based multi-scale transformer network
(VMST-Net) to process event streams. Specifically, VMST-Net
projects events within voxels into multi-channel frames along
the time axis, such that 2D convolutions could be leveraged
to encode spatio-temporal features in voxels. Then, VMST-Net
utilizes a novel multi-scale multi-head self-attention (MSMHSA)
mechanism with a multi-scale fusion (MSF) module that allows
different heads within each layer to attend different scale 3D
neighborhoods to adaptively aggregate the coarse-to-fine voxel
features with little computational costs and parameters. More-
over, to model effective global features while saving computations,
we aggregate features in a local-to-global manner by enlarging
the coverage of 3D neighborhoods as the network gets deeper.
Extensive experimental results on benchmark datasets demon-
strate that our model advances state-of-the-art accuracy with
low model complexity and computational complexity in all three
visual tasks, including object classification, action recognition,
and human pose estimation.

Index Terms—Event stream, voxelization, spatio-temporal fea-
ture extraction, multi-scale transformer, multi-scale feature fu-
sion.

I. INTRODUCTION

VENT cameras are bio-inspired dynamic vision sen-

sors (DVSs) [1] that pose a paradigm shift in the
way visual information is acquired. Instead of producing
frames at fixed rates, DVS measures asynchronous brightness
changes for each pixel independently and outputs a stream
of sparse and asynchronous “events” that encode the space-
time coordinates (x, y, t) and polarity (“ON” and “OFF”)
of the brightness changes. Compared to conventional frame-
based cameras, DVSs have low power consumption, high
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Fig. 1. Illustration of our voxel feature encoding methods in comparison with
current voxel-based methods. Voxel feature encoding in (a) EV-VGCNN [1 1],
(b) VMV-GCN [12], and (c) our STFE module. vh, vw, and vt are the size of
the event voxel, and D is the feature dimension of the encoded feature vector.

dynamic range, and low latency. These advantages make DVS
sensors particularly suitable for various vision tasks, including
object/gesture recognition [2, 3], object tracking [4, 5], optical
flow estimation [6—8], and Simultaneous Localization and
Mapping (SLAM) [9, 10]. Since event data is intrinsically
sparse and asynchronous, conventional frame-based learning
models, such as 2D convolutional neural networks (CNNs),
are no longer compatible. As a consequence, designing novel
learning-based models for event data receives a lot of attention
recently.

To take advantage of the sparsity and high temporal
resolution of the event data, some recent works turn to
graph convolutional networks (GCNs) by focusing on data
representation and neural network architecture design [l 1—

]. As for data representation, earlier work directly treats
the downsampled events of the raw events as graph ver-
tices, such as RG-CNN [13]. These point-wise representa-
tions suffer significant information loss due to the over-
sparsity of the downsampled events. Although increasing the
number of downsampled events could improve performance
to some extent, the computational complexity is increased
correspondingly. Toward a better trade-off between accuracy
and computation overhead, event representation is shifting
to voxel-based methods [11, 12], which voxelize raw events
and select representative voxels as vertices. To generate the
input features of vertices, EV-VGCNN [ 1] aggregates events
inside each voxel by accumulating events into a 2D patch
along the time dimension and feeding the flattened patch
into multi-layer perceptron layers (MLPs) (Fig. 1 (a)). The
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Fig. 2. Illustration of our multi-scale feature aggregation strategy in compar-
ison with feature aggregation methods in other networks. (a) Global aggrega-
tion, each layer of the network adopts a global receptive field. (b) and (c) Local
feature aggregation, where each layer of the network aggregates information
in the local receptive field. (d) Our multi-scale strategy aggregates local multi-
scale information at shallow layers and integrates global information and local
details at deep layers. Dots represent tokens in the transformer-based network
or vertices in the graph-based network. Yellow dots represent reference points,
dark green dots represent neighbor dots within the receptive field, and gray
dots represent dots outside the receptive field. In addition, large light green
circles indicate the range of receptive fields.

EV-VGCNN could preserve more local cues than point-wise
representations but ignores the temporal relations of events
within voxels. VMV-GCN [12] alleviates this issue by fusing
flattened multi-view 2D patches to encode the spatio-temporal
information(Fig. 1 (b)), while still suffering from insufficient
semantic and motion cues in voxels. To this end, we propose a
spatio-temporal feature extraction (STFE) module to preserve
rich semantic and motion cues inside each voxel. This is
achieved by projecting events within each voxel into a multi-
channel event frame with each channel representing one short
time span and subsequently processing the frame with 2D
convolutions (Fig. 1 (c¢)). Since 2D convolutions simultane-
ously mix information across both the spatial and channel
dimensions, STFE is capable of capturing detailed spatio-
temporal features. Particularly, in STFE the empty time bins
of the multi-channel frames could also provide chronological
information to perceive motion, thus enhancing motion cues
in voxels.

Concerning the network architecture, the two SOTA models,
VMV-GCN and EV-VGCNN, aggregate vertices information
at the local single scale and local multiple scales in each layer,
respectively (Fig. 2 (b)-(c)). However, they show a weak global
spatio-temporal feature modeling capability due to limited
receptive fields at different layers. More recently, multiple
transformer architectures are proposed to process event data
due to their strong power in global relation modeling [16, 17].
Nevertheless, these transformer-based methods share the same
receptive field across different layers (Fig. 2 (a)) and thus fail
to capture local multi-scale detailed features, limiting their
representation power to some extent. In this work, we pro-
pose a novel voxel-based multi-scale transformer architecture
(VMST-Net), as shown in Fig. 3, aiming to improve feature
representation power while maintaining low computational
complexity. It is demonstrated that an event stream mainly con-
tains semantic details and subtle motions within a small space-
time neighborhood, whereas obvious motions and coarse-

grained spatial messages within a large neighborhood [11]. To
fully exploit this variation, we introduce a multi-scale multi-
head self-attention (MSMHSA) layer within each transformer
block to capture both semantic and motion features for each
voxel. Specifically, the proposed MSMHSA allows different
self-attention heads within the same layer to respectively
attend different scale 3D neighborhoods. It introduces no
additional computations compared to regular MHSA. Note
that instead of sharing the multi-scale 3D neighborhoods
across all layers, we perform feature aggregation in a local-
to-global manner by enlarging the coverage of 3D neighbor-
hoods progressively (Fig. 2 (d)) to learn discriminative global
features while saving computational costs. This local-to-global
manner could be seen as another multi-scale strategy of our
network. The obtained features from different heads are further
adaptively weighted by the proposed multi-scale fusion (MSF)
module, thus avoiding the influence of sub-optimal scales. To
the best of our knowledge, this is the first attempt to apply a
multi-scale transformer with dynamic fusion to the event data.

We evaluate the proposed VMST-Net on three different
visual tasks, including object classification, action recognition,
and human pose estimation. Extensive experiment results on
benchmark datasets demonstrate that VMST-Net can effec-
tively process event streams in scenes that include static
objects as well as dynamic objects. The main contributions
of the work could be summarized as follows:

« We propose a novel voxel-based multi-scale transformer
architecture to learn discriminative feature representations
from event streams in a local-to-global manner, which can
effectively enhance representation power while maintain-
ing the sparsity of event data.

o We introduce a simple but effective STFE module to
encode the input features for voxels, which help retain
more spatial context as well as motion cues.

o By taking advantage of spatio-temporal dependencies
between voxels and their neighbors, we propose an
MSMHSA layer with an MSF module to aggregate voxel
information over different scale 3D neighborhoods in an
adaptive manner.

o Extensive experiments demonstrate that our model
achieves SOTA accuracy with low model and computa-
tional complexity on different tasks.

II. RELATED WORK
A. Event data representation

The descriptors of corner detection [18, 19] are the early
attempts of event cameras in traditional vision tasks but are
difficult to generalize to complex tasks. To apply frame-based
algorithms to event data, most studies preprocess event data
by converting events into dense frames or maps. Time surface
(TS) [20, 21] is a 2D map where each pixel stores a time value,
which asynchronously processes event data and explicitly pre-
serves spatio-temporal information. However, TSs are sensitive
to noise and can lead to performance degradation when events
spike frequently. Another commonly used representation is
event frames. Maqueda et al. [22] design a simple event frame
to address steering-angle prediction, where events of different
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polarities are accumulated in two channels of the event frame.
EV-FlowNet [7] integrates time and polarity information by
converting events into a four-dimensional grid to effectively
perform optical flow estimation. Considering the sacrifice of
temporal resolution in previous event frames, Zhu et al. [23]
convert events into a spatio-temporal voxel grid with more
temporal information. Uddin et al. [24] weighted and accu-
mulate the NV most recent events in each spatial location based
on their arrival time to capture rich spatio-temporal relations.
Furthermore, Deng et al. retain more motion information by
considering the multi-view 2D grid on event streams [25]. TBR
accumulates binarized frames into single-bin frames, leading
to high accuracy in action recognition [26]. Inspired by end-
to-end training in conventional vision, EST [27] and Matrix-
LSMT [28] attempt to design learning-based event represen-
tations, which can adaptively extract important information.
Although these frame-based representations can be processed
by conventional visual algorithms, they ignore sparsity, loss
a lot of time information, and has poor robustness. Addi-
tionally, dense frame-wise representations introduce spatial
redundancy, and applying CNNs on them greatly increases
the model complexity. Therefore, in our approach, we avoid
converting events into frames as well as utilizing CNNs to
introduce high model complexity.

Recent studies, instead, leveraging the sparsity nature of
event data, can retain higher time resolution and make the
model more efficient. These types of representations usu-
ally treat the event data as point clouds [14, , 30] or
graphs [11-13, 15, 31] with preprocessing. Specifically, RG-
CNN [13] and EV-Gait [15] construct spatio-temporal graphs
on downsampled events, resulting in spatio-temporal infor-
mation loss. AEGNN preserves more event information by
processing events asynchronously instead of downsampling
them [31]. RG-CNN, EV-Gait, AEGNN, and works [29, 30]
are point-wise representations, in which the raw event points
carry little information and are sensitive to noise. In [14], a
rasterized event representation is proposed to improve these
limitations that aggregate events on the same position of a
small time slice. Even so, point-wise inputs still lack local
semantic and motion information, thus voxel-wise representa-
tions are adopted in EV-VGCNN [11] and VMV-GCN [12].
EV-VGCNN preserves local spatial relations inside voxels by
flattening the 2D z-y vector. VMV-GCN further introduces
the local motion feature inside voxels by utilizing the multi-
view idea of [25]. In this way, more local semantic and motion
cues are retained in a voxel than in an individual event and
save more computational costs. However, simply flattening the
multi-view 2D vector cannot encode sufficient local spatio-
temporal dependencies within a voxel.

In this work, based on voxel-wise representation, the pro-
posed STFE module with 2D convolutions captures richer
local spatial relations as well as motions inside each voxel.
Our informative voxels allow us to set a smaller number of
voxels, maintaining the sparsity advantage while reducing a
lot of computational complexity.

B. Event-based processing framework

Given the success of deep learning in other vision sensor
algorithms, event-based vision tends to apply it to unlock
the advantages of event data. Early attempts are filtering-
based [2, 20, 32] or shallow learning [2!] methods. These
methods process the events asynchronously and, therefore,
preserve the properties of the event stream. However, since
they rely on complex descriptors, they are difficult to extend
to complex tasks. Models based on CNNs are gradually
developed and applied to event-based vision, such as opti-
cal flow estimation [7, 23], action recognition [3, 26], and
object classification [25, 27]. Though achieving SOTA results,
these CNN-based models neglect the sparse and asynchronous
nature of events, leading to redundant computation. On the
contrary, SNN-based models [6, 33] show an advantage in
this respect but are harder to train due to the lack of efficient
learning rules.

Recently, point cloud-based [30] and graph-based [|1—

, 15, 34] models are proposed and outperformed most
CNN- & SNN-based methods. In particular, RG-CNN [13]
achieves SOTA results on three visual tasks and reduces
model complexity, but ignores the detailed motion cues since
the network focuses on extracting spatial relations at the
shallow layers. The EV-VGCNN finds both adjacent and
distant neighborhoods for its voxel-wise graph vertices, and
then locally aggregates features within the neighborhoods
at each layer. While improving performance, the multi-scale
strategy introduces additional computational costs. The VMV-
GCN aggregates features and updates coordinates of voxel-
wise vertices dynamically layer by layer, which further obtains
significant improvements in object classification and action
recognition [12]. However, VMV-GCN does not allow for
hierarchical learning which weakens the modeling ability of
global information. Recently, some models introduce trans-
formers to event data such as [14, s s ]. Although
the introduction of the transformer enhances the modeling of
spatio-temporal information, there are still limitations, such as
the lack of modeling of local detailed information in EvT [17]
and [16]. The voxel-based transformer [36] and multi-scale
transformers [37, 38] in point clouds show great progress in
3D object detection, but further design of these frameworks is
required to shift to the event data.

To this end, this paper proposes the VMST-Net to aggregate
spatio-temporal dependencies within different receptive fields
at each layer of the network in a local-to-global manner,
and finally obtain effective global features. Consequently,
our model outperforms most other models with a significant
improvement in accuracy and computational complexity.

III. THE PROPOSED METHOD
A. Overview

The overall architecture of the proposed voxel-based multi-
scale transformer network (VMST-Net) is presented in Fig. 3.
It first transforms the input event stream into voxels by a voxel
token generation block. Each voxel is treated as a “token”.
These voxel tokens are processed by a transformer block
with a multi-scale multi-head self-attention (MSMHSA) layer
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Fig. 3. The architecture of voxel-based multi-scale transformer network. An event stream is first transformed to voxels by the voxel token generation block.
These voxels are further treated as tokens and processed by multi-scale transformer blocks and voxel merging blocks. The network can perform scenes that
include both static and dynamic object tasks, such as object classification, action recognition, and human pose estimation tasks.

to encode both semantic and motion cues. The transformer
block maintains the number of voxels and the number of
feature channels, and together with the voxel token generation
block is referred to as “Stage 1”. To produce a hierarchical
representation and save computations, the number of voxels is
reduced by voxel merging layers as the network gets deeper.
And the number of feature channels increases after the voxel
merging block. A multi-scale transformer block is applied
afterward for feature aggregation. This block of voxel merging
and feature aggregation is denoted as “Stage 2”. The procedure
is repeated twice, as “Stage 3” and “Stage 4”.

In this work, we consider three different visual tasks,
including object classification, action recognition, and human
pose estimation, and design a prediction head on top of the
backbone network for each task. Specifically, for object clas-
sification and action recognition tasks, the prediction head is
designed to first perform pooling operations to obtain a global
spatio-temporal feature vector. Then, three fully connected
(FC) layers are stacked as a classifier to map the feature
vector into the classification logits. Each of the first two FC
layers is followed by a Batch Normalization (BN) layer and a
LeakyReLU function. For human pose estimation, we follow
the design of the output layer in recent work [14], which first
applies the global average pooling to get the global features
and then introduces two FC layers with the ReLU function to
transform the global features for prediction. Here, we follow
SimDR [39] to output the x-axis vector z, and y-axis vector ¥,
in a decoupled manner. The argmax operation is further used
to decode x,, and y, into the joints location (pred_z, pred_y)
of the human body:

pred_x = argmaz(x,(j)),
jed

pred_y = argmax(y,(j)),
jed

6]

where J refers to the total number of joints.

B. Voxel Token Generation

Given an event camera with a pixel grid size of H x W, an
event stream with N, events could be denoted as the following
four-element tuple:

e ={ei}e, = {(@i,yir tispi) Y1, 2

where (z;,y;,1;) refers to the spatio-temporal coordinate of
the event e; with (z;,y;) € [0,W — 1] x [0,H —1]; p; €

{—=1,+1} can be seen as the polarity of the event e; with 1 and
—1 representing “ON” and “OFF” events, respectively. The
voxel token generation block, as shown in Fig. 4, is designed
to organize the input event stream into voxels and calculate
the input feature of each voxel.

Voxelization. Since there typically exists a large-scale dif-
ference between the spatial coordinate (z,y) and the temporal
coordinate ¢ of the event, we first normalize the timestamp ¢;
of each event ¢; into [0, B — 1] by the following equation:

tmaw

tr = x (B—1). 3)

- tmin
where t,,42 and t,,;, refer to the maximum and minimum
timestamps among N, events, respectively. After normaliza-
tion, the 3D space, ranging from [0, W—1], [0, H—1], [0, B—1]
along the z, y, and ¢ axes respectively, are divided into equally
distributed voxels with the size of each voxel as (vy, vp, V).
The resulting voxel grid is of size % X % X £~ Each event is
then grouped into these voxels based on its spatial coordinate
(x;,y;) and normalized timestamp t}. It’s worth noting that
the number of events in each voxel is different. We regard
the coordinates of each voxel within the 3D grid as voxel
locations, represented by u = (u®, u¥, u').

Voxel Selection. Some empty voxels will be produced from
the voxelization procedure due to the sparsity of events, as
shown in Fig. 4. We filter out these empty voxels and denote
the remaining number of nonempty voxels as N;. Moreover,
for the sake of optimizing the computational complexity,
similar to [12], the non-empty voxels are further reduced to
N, voxels by downsampling. Specifically, when N;>Nv, we
select top-NN,, non-empty voxels with the largest number of
events inside. For the event stream with N; < N,, we select
0.95N, voxels that include more events than others to filter
out the noisy events and then expand the filtered voxels to IV,
voxels by zero-padding.

Voxel Feature Encoding. As each voxel typically contains
multiple events, an effective method to aggregate these points
to derive the voxel’s input feature is required. Current works
calculate voxel features by projecting events within voxels into
2D image patches through contracting along single or multiple
dimensions and then flattening the resulting 2D features to
obtain feature vectors [11, 12], leading to the loss of spatio-
temporal information. To alleviate this issue, we propose a
simple but effective voxel feature encoding module, dubbed
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Fig. 4. The voxel token generation block. We first split the event stream into voxels in space-time 3D volume and select /N, voxels with dense internal
events. Each voxel is processed by a spatio-temporal feature extraction module (STFE) to obtain the feature. Finally, the voxels are treated as voxel tokens.

a spatio-temporal feature extraction (STFE) module, whose
detailed architecture is shown in Fig. 4. For each voxel v
at location (u®,uY,u?), STFE first reshapes the event stream
within the voxel into an event tensor E, of size v, X v, X d,
where d is the number of temporal bins. For each temporal bin
n € {0,1,---,d—1}, the value E, (x, y,n) at location (z,y) is
computed by accumulating the polarity values of events from
the specific location within the given time span. Specifically,
we follow [23] to populate the event tensor using temporal
bilinear interpolation, where each event e; = (:L'j,yj,t;f,pj)
in the voxel contributes its polarity to the two closest temporal
bins as follows:

Ev(xvyan) = ij*max(O, 1—\n—t§|)*]l(x; = mvy_;j = y)v
J
4)
where
. (5 —ulxuy)
tj:Tx(d—l), (5)
Ty =1Tj — U’ * vy, (6)
y; = y; —u’ x vy, (7

and I(-) refers to the indicator function whose value is equal
to 1 only when the condition is true, otherwise 0.

Once the event tensor E,, is available, we regard it as a dense
2D frame and pass it through two consecutive 2D convolution
layers to learn the spatial and channel dependencies, aiming
to capture the spatio-temporal dependencies between events.
Here, each of the convolutional layers is followed by a BN
layer and a GELU function. Then a pooling layer is introduced
after each convolution layer to reduce the size of the feature
maps. The output feature map of the STFE block is squeezed
into a feature vector of length D, which is viewed as the input
feature of the voxel. In summary, each representative voxel is
regarded as one token and is associated with two attributes,
namely, the coordinate u € R'*3 in the spatio-temporal 3D
space and the feature f € R All voxels share the STFE
module, resulting in features F' € RNv*D and coordinates
U € RNvx3,

C. Multi-scale Transformer Block

The proposed multi-scale transformer block consists of a
multi-scale multi-head self-attention (MSMHSA) layer and a
feed-forward network (FFN) layer, as shown in Fig. 5. Dif-
ferent from regular multi-head self-attention layer, MSMHSA
first performs multi-scale multi-head self-attention on input

Authorized licensed use limited to: Southeast University. Downloaded on
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features, which allows different heads to perform self-attention
over different scale 3D neighborhoods. Then, it aggregates the
obtained features from different heads through a multi-scale
fusion (MSF) module, which dynamically weights the coarse-
to-fine features from different heads.

Multi-scale Multi-head Self-attention. At each stage, it
takes the features F' € RV*Y and coordinates U € RV*3
of voxel tokens as inputs, where N and C refer to the
total number of voxel tokens and the number of feature
channels, respectively. The features are first processed by a
Layer Normalization (LN) layer and then projected into three
different feature spaces to generate query matrix @ € RV*¢,
key matrix K € RVXC and value matrix V € RVNXC as
follows:

Q=FWy, K = FWg,V = FWy, (8)

where Wq, Wi, Wy € RE*C are the learnable parameters of
the linear projection.

To extract distinguishable appearance and motion features
from voxels, we introduce the multi-scale strategy into the
regular multi-head self-attention layer. This is motivated by
the observation that adjacent 3D neighbors hold subtle mo-
tion and local details while distant neighbors carry obvious
changes and large-scale objects. To avoid introducing addi-
tional computations, instead of applying different receptive
field scales directly to the original input feature, we split @,
K, and V evenly along the channel dimension into two heads
{Q;, Ki, V;}2, with Q;, K;,V; € RN*% and perform self-
attention over different scale 3D neighborhoods at different
heads as described in Fig. 5 (a). Specifically, for the -
th head, we construct neighborhoods of size k; for each
voxel using the K-Nearest Neighbors (kNN) algorithm to
obtain the key and value matrices K,,V, € RV*%X% from
neighbors. Particularly, to capture the position relationships
between voxel tokens, we add the learnable relative position
bias term B, based on coordinates U defined by [40] to the
self-attention. The Q;, K ;, Vi,, and B; of i-th head are further
used to calculate the self-attention:

Qi(K)"

Vd
where d and out; are the scaling factor and the output of the
self-attention step, respectively; (-) denotes the sum function
used to squeeze the feature dimension.

The performance of the transformer- & graph-based mod-
els relies heavily on the quality of the 3D neighborhoods,

+O(B))(V, +By), 9

out; = Softmaz(
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(a) Multi-scale transformer block. This block applies the multi-scale multi-head self-attention mechanism (MSMHSA) on voxel tokens to capture

features in different receptive fields at different heads. For ease of representation, only a 2-head design is shown. (b) Multi-scale fusion module (MSF). This

module is introduced in the MSMHSA layer to fusion multi-scale features.

where the networks perform feature aggregation. In prior
works [12, 17], the 3D neighborhoods across all layers are
usually at the same scale, which induces a poor trade-off
between accuracy and computational overhead. To this end,
we aggregate features in a local-to-global manner by enlarging
enlarge the coverage of 3D neighborhoods as the network gets
deeper. Specifically, for the first two stages, we assign a local
k;-neighbor to each head, that is, kie{LQ} < N. Thus, the
local coarse-grained and fine-grained spatio-temporal features
are extracted while low computational costs are required. In
the last two stages, to provide the global information for visual
tasks, we fix k; = IV for one head, while the other head still
satisfies ko < .

Multi-scale Fusion Module. Recently, channel-wise con-
catenation [41, 42] or element-wise addition [11] are com-
monly used for multi-scale feature fusion. However, it is
difficult to determine the optimal receptive field scale in
different stages. Simple fusion may result in a sub-optimal
receptive field scale, which affects the performance of the
model. Therefore, we propose a powerful multi-scale fusion
(MSF) module to dynamically weight the diverse-grained
features from different heads, as shown in Fig. 5 (b).

The main idea of MSF is to first fuse multi-scale features
from different heads and then generate the weight vector based
on the integrated features. As for feature fusion, MSF first per-
forms channel-wise concatenation on features O € RV * % %2
from the two different heads to obtain the concatenated
feature O, € RY*C. Then the multi-scale features interact
by applying an FC layer followed by a GELU function to O..
Finally, the obtained feature Oy is fed into a global pooling
layer to derive the global feature O, € R'*C. The above
feature fusion procedure could be described as follows:

O; = GELU(FC(0,)), (10)

O4 = Pooling(Oy). (11)

After that, two FC layers with a GELU function between
them and a softmax function are performed sequentially on the

global feature O, to generate the weight vector W € R §x2
for each scale:
W = Softmax(FC(GELU(FC(Oy)))). (12)

To re-weight the original multi-scale features O, the weight
vector W is applied to them by the scaling operation as
the same in SE-layer [43], which refers to channel-wise
multiplication between attention weight W and features O
at each head. We concatenate the re-weighted multi-scale
features along the channel dimension, then pass them to an
FC layer to further fuse them to generate O,, as follows:

0,, = FC(Concat(Scale(W, 0))). (13)

Finally, a skip connection between O,, and O; is added to
obtain the output of the MSMHSA layer as follows:

Ormsmasa = Of + Oy. (14)

D. Voxel Merging

To produce a hierarchical representation while saving com-
putational costs, it is necessary to reduce the number of voxel
tokens in the network progressively. We borrow the idea of a
transition down module in Point Transformer [40] to perform
downsampling by the farthest point sampling (FPS) [44] in
the voxel merging block. Note that to reduce information
loss, we aggregate neighbor features to enhance the features
of sampled voxel tokens. Given a sampled voxel token with
coordinate u, its K neighbors are constructed according to the
distance of coordinates. For k-th neighbor with feature fj, and
coordinate ug, to preserve geometric distribution and semantic
information, the geometric context and feature context are
combined:

ACy = concat(fr,ur, —u), (15)

where u; — u denotes the geometric relationship between the
sampled token and the k-th neighbor; AC, € RI*(Cint3)
where Cj,, denotes the number of input feature channels.
Then {AC)}E | of all neighbors goes through an FC layer,
followed by an LN layer and max pooling operation to obtain
the feature f € R¥*Cout of the sampled voxel token, where
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Coyt 1s the number of output feature channels. The above
procedure can be expressed as:

f= maz(LN(FC(ACY))).

ke (16)

IV. EXPERIMENTS AND RESULTS

In this section, we evaluate our voxel-based multi-scale
transformer network in terms of accuracy and model com-
plexity on event data collected in static scenes as well as
dynamic scenes. Specifically, we focus on object classification
in static scenes and action recognition in dynamic scenes,
which require the network to provide representative semantic
information and more motion cues, respectively. In addition
to the classification task in dynamic scenes, we also evalu-
ate the performance on the regression problem human pose
estimation, which requires more detailed spatial and motion
information. Besides, the effectiveness of our methods is
further tested by ablation studies.

A. Datasets and Preprocessing

Object Classification. Several publicly available datasets,
including N-MNIST [45], N-Caltech101 [45], N-Cars [21],
CIFAR10-DVS [46], ASL-DVS [13], and N-ImageNet [47],
are used for object classification performance evaluation. Here,
N-MNIST and N-Caltech101 are converted from RGB images
by moving an event camera in front of a static monitor
displaying the original RGB images. N-ImageNet, the largest
event-based dataset for classification to date, is generated in
the same way. Instead, CIFAR10-DVS is recorded by moving
an RGB image in front of a fixed event camera. Both N-Cars
and ASL-DVS are directly recorded by the event camera in
the real-world. For the N-MNIST, N-ImageNet, and N-CARS
datasets, we use the officially split training set and testing
set. For the N-Caltech101, CIFAR10-DVS, and ASL-DVS, we
adopt the same split as in [13, 21], i.e., randomly select 20%
of the data for testing and the rest for training.

Action Recognition. DVS128 Gesture Dataset [3],
HMDBS51-DVS [13], and UCF101-DVS [13] are three datasets
of action recognition. DVS128 Gesture Dataset is a real-world
dataset that recorded 11 different hand and arm gestures under
different illumination conditions. We follow [12, 30] to use a
sliding time window to select the sub-sequence of the event
stream as inputs to the network. The window size is set to 0.5s
and the step size is half of the sliding window size. HMDBS51-
DVS and UCF101-DVS are two more challenging datasets.
Both of them are converted from APS-based sequences and
are generated by displaying video in front of an event camera.
These two datasets are the largest datasets for event-based
action recognition and have 51 categories and 101 categories,
respectively. Note that, similar to [13, 48], we do not perform
any data preprocessing before feeding them into the model.

Human Pose Estimation. The DHP19 dataset [49] is the
only real-world public dataset used for human pose estimation,
which consists of four event streams generated by event
cameras from four views. Similarly, we use the MeanLabel
described in [49] as 3D human pose labels. Then, the 3D labels
are transformed into 2D labels by projection matrices, and the

number of joints J is 13. The dataset contains 17 subjects
of which S1-S12 of them are used for training and S13-S17
for validation. We follow [14, 49] to use the event data from
the cameras fixed at two front views, and perform the same
denoising and filtering methods on these event streams.

B. Implementation Details

Voxel Token Generation Block. According to the duration
of the event streams, we set the normalization parameter
B = 9 in equation (3) for N-Caltech101, ASL-DVS, N-
MNIST, and DHP19 dataset, B = 6 for N-ImageNet and
N-Cars, B = 30 for CIFAR10-DVS, and B = 50 for all
action recognition datasets. The major difference within the
used datasets lies in their spatial resolutions and the spatio-
temporal distribution of events. On account of it, we set
different sizes and numbers of voxels for them. For simple
datasets, N-Cars and N-MNIST, we set (vp,, Vqy, 1) as (5,5, 3)
and (2,2, 3), respectively, and set N, as 256 and 512, respec-
tively. For ASL-DVS, N-Caltech101, CIFAR10-DVS, DHP19
dataset, and all action recognition datasets, the (v, vy, v¢)
is (10,10, 3), while (20, 20, 3) for N-ImageNet. Additionally,
we set N, = 1024 for N-Caltech101, CIFAR10-DVS, and
N-ImageNet, N, = 512 for ASL-DVS, DHP19 dataset, and
DVS128 Gesture dataset, and N,, = 2048 for HMDB51-DVS
and UCF101-DVS. In the STFE module, we set d = 3 of the
event tensor for all datasets and only use a 2D convolution
layer following a 2D pooling layer for N-MNIST and N-Cars.
Particularly, we set different parameters for the convolution
layer and the pooling layer according to the voxel size of
different datasets. Furthermore, we add an LN layer following
the 2D pooling to normalize the output of the STFE module
for all datasets and a dropout with a probability of 0.1.

Network Details. For all datasets, the number of input
feature channels for the four stages is 32,128,256, and 512.
We set the output number of the tokens for the three down-
sampling blocks as 128, 64, and 16 for N-Cars. For N-MNIST,
ASL-DVS, DHPI19 dataset, and DVS128 Gesture dataset,
the number of downsampling voxel tokens is 256, 64, and
16, respectively. The downsampling rates of the three voxel
merging blocks are [4,4,4] for the remaining datasets. We
aggregate information of K = 16 neighbors for each sampled
voxel token. We take [20,25] as the kNN-based multi-scale
size in the first two stages, using [20, N,3] and [8, N,4] for
stage 3 and stage 4, respectively. Note that, we don’t explore
the impact of different multi-scale sizes on performance, and
therefore a better combination of multiple scales may exist.
Moreover, for object classification and action recognition, to
alleviate the overfitting problem, we add dropout layers with
a probability of 0.5 following the first two FC layers.

Training Settings. For object classification and action
recognition, we train the network by optimizing the cross-
entropy loss for 250 epochs, except for the N-ImageNet which
uses 200 epochs. The SGD optimizer with momentum 0.9 and
weight decay le-4 is used in the training process. We use
0.05 as the initial learning rate and decay it to Se-4 by cosine
annealing scheduler. The batch size is 32 for N-Caltech101 and
CIFAR10-DVS, 256 for ImageNet, and 64 for other datasets.
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TABLE I
THE OBJECT CLASSIFICATION ACCURACY OF OUR METHOD AND OTHER METHODS.
Method Type  N-MNIST N-Caltechl01 =~ N-CARS CIFAR10-DVS  ASL-DVS  N-ImageNet

EST [27] Frame 0.99 0.753 0.919 0.634 0.979 0.489
MVF-NET [25] Frame 0.981 0.687 0.927 0.599 0.971 -

Matrix-LSTM [28] Frame 0.986 0.738 0.927 0.631 0.98 0.322

DisT [47] Frame - 0.681 0.908 0.626 - 0.484
AMAE [50] Frame 0.983 0.694 0.936 0.62 0.984 -
H-First [2] Point 0.712 0.054 0.561 0.077 - -
Gabor-SNN [33] Point 0.837 0.196 0.789 0.245 - -

HOTS [20] Point 0.808 0.21 0.624 0.271 - 0.443

HATS [21] Point 0.991 0.642 0.902 0.524 - 0.471
EventNet [29] Point 0.752 0.425 0.750 0.171 0.833 -
RG-CNNs [13] Point 0.99 0.657 0914 0.54 0.901 -
ECSNet [48] Point 0.992 0.693 0.946 0.727 0.997 -
EV-VGCNN [11] Voxel 0.994 0.748 0.953 0.651 0.983 -
VMV-GCN [12] Voxel 0.995 0.778 0.932 0.69 0.989 -
EVSTr [51] Voxel - 0.797 0.941 - 0.997 -
VMV-PointTrans [12, 40]  Voxel 0.995 0.773 0.931 0.75 0.999 -

VMST-Net (Ours) Voxel 0.995 0.822 0.944 0.753 0.998 0.603

TABLE II
THE COMPUTATIONAL COMPLEXITY (GMACS) AND MODEL SIZE (MB)
ON THE N-CALTECH101 DATASET.

Method Type GMACsT  Size (MB) Runtime (ms)¥
EST [27] Frame 4.28 21.38 10.8
MVE-NET [25] Frame 5.62 33.62 14.3
Matrix-LSTM [28] Frame 4.82 21.43 16.6
EventNet [29] Point 0.91 2.81 -
RG-CNNs [13] Point - 19.46 -
ECSNet [48] Point - 0.18 -
EV-VGCNN [11] Voxel 0.7 0.84 14.8
VMV-GCN [12] Voxel 1.3 0.86 11.6
EVSTr [51] Voxel 0.81 0.93 13.3
VMV-PointTrans [12, 40] Voxel 9.44 3.69 77.7
VMST-Net (Ours) Voxel 0.44 3.61 42.5

T 1 GMACs = 10° MACs. ¥ Runtime includes data loading and input
construction time on the CPU and inference time on the GPU.

For human pose estimation, we train our model every 30
epochs with the Kullback-Leibler divergence (KLD) loss, and
the batch size is set to 16. We use Adam optimizer with an
initial learning rate of 0.001 which is dropped by 2x at epochs
10 and 20.

C. Results

Object Classification. The classification accuracy of our
method and that of counterparts on six datasets is shown
in Table I. These methods are roughly divided into three
categories, i.e., frame-based [25, , s s ], point-
based [2, 13, 20, 21, 29, 33, 48], and voxel-based [11, 12, 51]
methods, according to how they process event data. The frame-
based methods are all trained from scratch. Additionally, we
construct a voxel-based transformer method for performance
comparison, dubbed VMV-PointTrans, by taking the voxels
of VMV-GCN [12] as inputs to the Point Transformer [40]
and training it from scratch. Similar to EV-VGCNN [11],
we report the model complexity in terms of the number of
parameters and multiply-accumulate operations (MACs) on
the N-Caltech101 dataset and the average inference time for
processing each sample on the N-Cars dataset in Table II. All
methods are implemented on a workstation with a CPU (Intel
Xeon E5-2640 v4), a GPU (NVIDIA TITAN Xp), and 251GB
of available RAM.

Results in Table I show that the proposed VMST-Net obvi-
ously outperforms those frame-based models on all datasets.
Meanwhile, it achieves superior performances on most of
the datasets compared to those point- & voxel-based models.
Specifically, on the simple datasets N-MNIST and ASL-DVS,
our network achieves comparable results with other counter-
parts in accuracy. However, on the more challenging datasets
N-Caltech101 and CIFAR10-DVS, VMST-Net shows signifi-
cant improvements in accuracy with only 1024 voxels. Similar
superiority of our model is found on N-ImageNet. We owe
the advantages of our network to the following four points:
(i) Compared with the frame-based methods, our VMST-
Net is capable of capturing and encoding motion information
with high temporal resolution between events by projecting
events within each voxel into a multi-channel frame along the
time dimension and subsequently processing it through 2D
convolutions. (i4) Compared with the point-based methods,
voxels carry more spatio-temporal information than raw event
points. In addition, voxel-based methods could filter out noisy
events during the voxel selection process. (iii) Compared with
the voxel-based methods, the voxel features encoded by the
STFE module not only preserve temporal information but
also model the relative spatial position information, which
retains more spatial information during voxelization. (iv) Our
transformer-based backbone with the multi-scale mechanism
captures coarse-to-fine features at each stage in a local-to-
global manner. In the MSMHSA layer, the proposed MSF
module can adaptively select useful information from multi-
scale features. Therefore, our network can model a variety
of local appearance information as well as global semantic
information.

As shown in Table II, our proposed VMST-Net significantly
outperforms the frame-based methods in both computational
costs and model size at the expense of a relatively low
inference efficiency. The relatively longer run time could be
mainly explained by the kNN-based neighbor searching for
feature aggregation and FPS-based voxel downsampling in the
voxel merging procedure. Compared to the point- & voxel-
based methods, the VMST-Net achieves better accuracy while
maintaining the lowest computational complexity (0.44 G).
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TABLE III
THE ACTION RECOGNITION ACCURACY, COMPUTATIONAL COMPLEXITY, AND MODEL SIZE OF OUR METHOD AND OTHER METHODS.
Method Type DVS128 Gesture  UCF101-DVS ~ HMDBS51-DVS  GMACs  Size (MB)
Event Frames + 13D [13] Frame 0.965 0.635 0.466 33.53 12.28
Event Frames + 3D-ResNet [13]  Frame 0.955 0.579 0.438 14.99 63.5
EvT [17] Frame 0.962 - - 0.1 0.48
PointNet++ [44] Point 0.941 - - 0.43 1.47
Wang WAC2019 [30] Point 0.953 - - - -
RG-CNNs + res3d [13] Point 0.972 0.673 0.497 - 12.43
ECSNet [48] Point 0.986 0.702 - - -
EV-VGCNN [ 1] Voxel 0.957 - - 0.46 0.82
VMV-GCN [12] Voxel 0.975 - - 0.33 0.84
EVSTr [51] Voxel 0.986 - - 1.1 2.88
VMV-PointTrans [12, 40] Voxel 0.956 - 0.461 2.34 343
VMST-Net (Ours) Voxel 0.978 0.787 0.595 0.31 3.61
TABLE IV
THE HUMAN POSE ESTIMATION ERROR AND MODEL COMPLEXITY OF OUR METHOD AND OTHER METHODS ON THE DHP19 DATASET.
Method Type MPIPE;p  MPIPE3gp  Size (MB)  GMACs

Pose-Res50 [52] Frame 5.28 59.83 34 1291

LeVit-128S [53] Frame 7.68 87.79 7.87 0.2

DHP19 [49] Frame 7.67 87.9 0.22 3.51

Ras-PointNet [14] Point 7.29 82.46 4.46 1.19

Ras-DGCNN [14] Point 6.83 77.32 4.51 491

Ras-PointTrans [14] Point 6.46 73.37 3.65 5.03

VMV-PointTrans [12, 40]  Voxel 9.13 103.23 3.67 5.98

VMST-Net (Ours) Voxel 6.45 73.07 3.59 0.38

The low computations of VMST-Net could be attributed to
the delicately designed STFE module and MSMHSA layer,
which allow us to preserve rich semantic and motion features
with fewer voxels. The computational costs are further reduced
as all transformer blocks have only one layer, and only a little
additional computation is introduced in the MSF module of the
MSMHSA layer. However, the VMST-Net shows limitations in
model size and inference efficiency compared to other voxel-
based models. Our parameters mainly come from the last
stage, where we set the length of the input vertex feature
vector to be 512, which is larger than 128 of EV-VGCNN,
VMV-GCN, and EVSTr, resulting in a larger model size. The
relatively lower inference efficiency could be mainly due to
the FPS-based voxel downsampling procedure. In comparison,
VMV-GCN does not perform any voxel merging, while EV-
VGCNN and EVSTr employ random sampling (RS) to merge
voxels. Although FPS requires longer processing times to
generate sampling points iteratively, it provides better spatial
coverage and uniformity than RS.

Action Recognition. We compare our model with several
existing frame-based [!17], point-based [13, 30, 44, 48], and
voxel-based [11, 12, 51] counterparts. In Table III, we list
the classification accuracy on three datasets as well as the
MACs and the parameters of all models on the DVS128
Gesture Dataset. As in object classification, we train the VM V-
PointTrans network from scratch on three datasets. Note that
since the VMV-PointTrans has a sharp drop in accuracy on
UCF101-DVS, we do not report its results in the table.

It is observed from Table III that on the simple gesture
dataset DVS128, both ECSNet and EVSTr achieve the best
performance, which could be explained by the fact that these
two methods design the specific long-term message encoding
modules tailored for this task to fully exploit the temporal

dependency. Although not the best, the proposed VMST-Net
still achieves impressive performance due to its strong power
in encoding spatial-temporal dependency between events. It is
worth noting that our proposed VMST-Net brings significant
improvements on the challenging datasets UCF101-DVS and
HMDB-DVS compared to all other baseline models. The
relatively poor performances of RG-CNN and ECSNet on
these two challenging datasets might be due to the fact that
their representations carry insufficient information to describe
the complex scenes. Specifically, RG-CNN fails to capture
detailed motion cues at shallow layers, while ECSNet shows
limitations in encoding multi-scale motion and semantic cues.
In contrast, our VMST-Net retains more local details inside
voxels due to the STFE module. Our hierarchical architecture
also extracts multi-scale appearance and motion features from
local to global. In addition, the results also show that our
method shows advantages in the computational complexity
(0.31G) and model complexity (3.61M) over all counterparts
except for EvT. The low model complexity of frame-based
EvT could be explained by the fact it processes event frames
asynchronously, but the focus on extracting global spatio-
temporal features results in low accuracy. In general, our
network is capable of capturing comprehensive local and
global spatial information as well as motion cues in dynamic
scenes with low computational complexity.

Human Pose Estimation. We employ the commonly used
Mean Per Joint Position Error (MPJPE) as the metric to evalu-
ate the performance of our model on human pose estimation in
both 2D and 3D space. The definition of MPJPE is described
by the following equation:

J
1
MPJPE = — Z | pred; — gti |2, (17)
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Fig. 6. Visualization of human pose estimation results of the proposed VMST-Net and Ras-PointTrans on the DHP19 dataset. The first column is the event
stream visualized in 2D. The second to fourth columns are Ras-PointTrans’s 2D pose estimation results (yellow for ground truth, blue for prediction), 3D pose
estimation results (red for ground truth, blue for prediction), and the detailed results of the major moving parts of the body (marked by boxes), respectively,
and the fifth to the last columns are our results. Our method achieves great results compared to Ras-PointTrans on three different movements, including “Left
arm abduction”, “Left leg knee lift”, and “Walking 3.5 km/h” from top to bottom.

where pred; and gt; represent the prediction and ground truth
of the ¢-th joint, respectively; J refers to the total number
of joints. Note that, the measurement unit of MPJPE for 2D
human pose estimation is pixel and is millimeter in 3D space.
Similar to [14], our network first predicts the 2D human pose,
then transform it into a 3D human pose by triangulation [49]
based on two projection matrices and positions of the front
two cameras.

We present the MPIPE, the number of model param-
eters, and the number of computations (GMACs) of our
model and other comparable models in Table IV. On one
hand, compared to the frame-based Pose-Res50 [52], although
the estimation errors of our model are relatively larger on
both 2D and 3D pose estimation tasks, it requires much
fewer model parameters and computational costs (3.59M pa-
rameters and 0.38G MACs). On the other hand, compared
to the transformer-based method VMV-PointTrans and Ras-
PointTrans, our model achieves the lowest estimation error
on both 2D and 3D pose estimation tasks while maintaining
much lower computational complexity, suggesting that our
model is capable of capturing more detailed semantic and
motion cues at a low computational cost. Such superiority
could be attributed to the proposed voxel-based representation
technique and the multi-scale feature aggregation mechanism.
In addition, we also visualize the human pose estimation
performances of both our model and Ras-PointTrans [14] in
Fig. 6. It is observed that our model is capable of providing
high-precision estimates for most joints compared to Ras-
PointTrans, especially for those with movements that are
marked by boxes. The above observations demonstrate that
the proposed voxel-based multi-scale transformer network is
also suitable for dynamic scenes with higher requirements for
motion details.
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Fig. 7. Ablation study of the STFE Module on CIFAR10-DVS. The blue
symbols indicate other methods, and the red ones indicate the methods of
this work.

D. Ablation Study

In this part, we conduct ablation studies for object classifica-
tion on the CIFAR10-DVS dataset to verify the effectiveness
of the four key ideas of our network, including the spatio-
temporal feature extraction (STFE) module, multi-scale (MS)
strategy, multi-scale feature fusion (MSF) module, and the
local-to-global (L-G) strategy.

STFE Module. We evaluate six different event representa-
tions with the same backbone and compare their classification
accuracy in Fig. 7, including rasterized events [14], voxels in
EV-VGCNN [11] and VMV-GCN [12], event frames gener-
ated in RG-CNN [13], our voxel-based representation and its
variant. To make the frame-based, point-based, and existing
voxel-based representations compatible with ours, we make
the following modifications: (1) we use the feature embedding
layer in [40] to project rasterized event points to tokens; (2)
we split the event frames into patches, and apply the patch
embedding used in [54] on representative patches to generate
tokens. In addition, our proposed model is briefly denoted
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TABLE V
ABLATION STUDIES OF EACH COMPONENT OF OUR VMST-NET ON DATASETS CIFAR10-DVS AND DHP19.
Structure Stagel-2 Stage3-4 CIFAR10-DVS ' DHP19 '

MS MSE MS MSF | Accuracy GMACs  Size(MB) | MPJPE_2D  MPIPE_ 3D GMACs _ Size(MB)

X X X X 0.749 0.43 292 6.891 78.48 0.36 2.9

v X v X 0.744 0.43 292 7.124 79.88 0.36 2.9
L-G v v X X 0.742 0.43 2.96 6.7 76.46 0.37 2.93

X X v v 0.745 0.44 3.58 72 81.86 0.37 3.55

v v v v 0.753 0.44 3.61 6.45 73.07 0.38 3.59
LL v v v v 0.75 0.44 3.61 7.23 81.78 0.38 3.59
G-G v v v v 0.758 0.51 3.61 6.75 76.41 0.40 3.59

Ours-ST, while Ours-S refers to the variant model without
time information encoding in the STFE module by setting
d to be 1. The number of tokens is set to 1024 for all
representations, except rasterized 2048. It shows that voxel-
wise and frame-wise input work better than point-wise input
because individual points carry less spatio-temporal informa-
tion. The frame-based representation loses a lot of information
as events accumulate, resulting in worse performance than
ours. Comparing the results of Ours-S and EV-VGCNN shows
that our STFE module has strong spatial information modeling
capabilities. And we only adapt spatial feature extraction
to achieve comparable results with VMV-GCN. When more
temporal information is encoded, our model Ours-ST achieves
a significant gain of 2.5% compared to Ours-S. Thus, the STFE
module can also extract temporal information at the same time,
which can provide more motion information.

MS Strategy, MSF Module, and L-G strategy. We per-
form ablation studies on object classification (CIFAR10-DVS)
and human pose estimation (DHP19 dataset), corresponding
to the static and dynamic scenes, respectively. Experiment
details are the same as described in Section IV.B, except
for changing the network structure and components. Table V
shows the results under different settings. “L-L” and “G-G”
indicate that the network uses local multi-scale and local-
global scale at all layers, respectively. “X” and “v/” denote
with and without the module, respectively. Note that we apply
an FC layer to fuse multi-head information when MSF is
removed. Take dataset CIFAR10-DVS from a static scene as
an example for illustration. According to the results of the
“L-G” structure, using only the MS mechanism in all stages
(the second row), the accuracy drops from 0.749 to 0.744,
showing that the MS mechanism cannot be simply introduced
due to the impact of the sub-optimal scale among multiple
scales. After applying the MSF module (the last row), the
accuracy is improved by about 1%, verifying that the MSF
module can effectively fuse multi-scale features, thus learning
useful information. Comparing the model complexity of the
first, second, and last rows, it can be found that our MS
mechanism introduces no calculations and model parameters,
and the MSF module only increases the 0.01G MACs and
0.69M parameters.The power of the proposed MSMHSA layer
is also demonstrated on the DHP19 dataset from the dynamic
scene. In addition, we also remove the multi-scale settings in
the local and global stages and replace them with single local
scales and global scales, respectively, both of which result in
a decrease in accuracy on these two datasets. In conclusion,

applying MS and MSF mechanisms to both local and global
stages can effectively encode useful coarse-to-fine features,
thereby improving the performance of the model. The results
of “L-L”, “G-G”, and the last row of “L-G” show that the
network processes the event stream in a local-to-global manner
could save computational costs while capturing discriminative
global features, achieving a trade-off between performance
and computational overhead. Especially on DHP19, “L-G” can
capture valuable global and detailed motion cues in addition
to appearance semantics for human pose estimation tasks,
bringing significant performance improvements.

V. CONCLUSION

The present work introduces a novel end-to-end frame-
work, a voxel-based multi-scale transformer Network (VMST-
Net), for event stream processing in a local-to-global manner.
VMST-Net develops a simple but effective spatio-temporal
feature extraction (STFE) block that encodes more spatio-
temporal relations inside the voxels than other representations.
VMST-Net captures coarse-to-fine features over voxels by
the multi-scale transformer block at each layer across our
network, modeling representative global features. The multi-
scale features are dynamically fused by the multi-scale fusion
(MSF) module. We demonstrate that our network achieves
better or comparable performance in accuracy than the SOTA
methods for different tasks in both static and dynamic scenes.
Moreover, our method requires less computational overhead
than prior methods, facilitating its use on low-power hardware.
As a future line of research, we plan to explore more efficient
downsampling algorithms and extend the network to dense
prediction tasks, such as optical flow estimation and depth
estimation.
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