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ABSTRACT

Modeling stochastic processes with fractional diffusion instead of purely Brownian-
driven dynamics may better account for real-world memory effects, long-range de-
pendencies, and anomalous diffusion phenomena that standard Brownian motion
fails to capture. We incorporate fractional Brownian motion (fBM) into aligned
diffusion bridges for conformational changes in proteins, utilizing a Markov ap-
proximation of fractional Brownian motion (MA-fBM) to study the effect of this
generalized prior reference process on predicting future states of the protein confor-
mations from aligned data. We observe that our generalized dynamics yield a lower
root mean-squared deviation (RMSD) of Cα atomic positions in the predicted fu-
ture state from the ground truth. The best performance for this task is achieved
with a scaled Ornstein-Uhlenbeck (OU) reference process, which predicts 32% of
examples with an RMSD < 2Å on the D3PM test split, whereas a scaled purely
Brownian reference process achieves 0% for this threshold.

1 INTRODUCTION

Many real-world systems evolve according to continuous-time, stochastic dynamics [3; 10; 15]. In
practice, we only have observations at sparse, discrete time points, e.g. one initial state and one
future state. The objective of aligned diffusion Schrödinger bridges (SBALIGN) is to interpolate be-
tween these two observations through stochastic trajectories, and to infer future states based on the
initial observation. This requires a stochastic model that accurately captures the underlying transition
dynamics. The driving noise of SBALIGN is a Brownian motion, which cannot capture correlated
increments, memory effects, or anomalous diffusion. In this work, we expand the paired data per-
spective of Schrödinger bridges proposed in [13] to a driving Markov approximation of fractional
Brownian motion (MA-fBM), leading to an approximation of a scaled fractional Brownian bridge for
paired data interpolation. We apply our generalized framework to infer conformational changes in
proteins and achieve a reduced root mean-squared deviation (RMSD) of Cα atomic positions in the
predicted state.

2 BACKGROUND

Our work extends the framework of Somnath et al. [13] to a prior reference process approximating a
scaled Riemann-Liouville fractional Brownian motion (fBM) [9]. Assume we observe i.i.d. samples
of aligned data (xi

0,x
i
1)

N
i=1 drawn from a joint distribution π with marginals xi

0 ∼ P̂0 and xi
1 ∼

P̂1. The task is to reconstruct a stochastic process with marginal distribution (Pt)t∈[0,1] interpolating
between xi

0 and xi
1 such that π = P0,1, where P0,1 is the joint distribution of P0 and P1. A key

assumption in Somnath et al. [13] is that, given a prior reference process X = (Xt)t∈[0,1] with
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marginals (Qt)t∈[0,1], the minimizer of the Schrödinger bridge problem
π⋆ := argmin

P0=P̂0,P1=P̂1

DKL(P0,1,Q0,1) (1)

preserves the distribution of the observable data. Here, DKL denotes the Kullback-Leibler divergence,
the minimization is taken over all couplings of P0 and P1, and Q0,1 denotes the joint distribution of
Q0 and Q1. This is a strong assumption, as it implies that real-world dynamics follow the dynamics of
the minimizing stochastic process and that the reference process is rich enough to capture real-world
dynamics. While we adopt the first assumption, our work addresses the second by considering a richer
class of reference processes that approximate a scaled Riemann-Liouville fractional Brownian motion
(fBM) [9], replacing the scaled Brownian motion used in Somnath et al. [13]. See Appendix J for
more details on aligned diffusion Schrödinger bridges.

3 STOCHASTIC BRIDGES DRIVEN BY FRACTIONAL NOISE

For ease of notation we assume a data dimension of d = 1. The presented theory generalizes to the
multidimensional setting, as every data dimension is driven by independent noise. To approximate a
reference process driven by Riemann-Liouville (Type II) fractional Brownian motion BH with Hurst
index H ∈ (0, 1), we replace the Brownian reference process in Somnath et al. [13] by

dX(t) = g(t)dB̂H(t), (2)
i.e., driven by a Markovian approximation of fBM (MA-fBM), which is defined by the linear super-
position of K Ornstein-Uhlenbeck (OU) processes Yk(t)

B̂H(t) :=

K∑
k=1

ωkYk(t), Yk(t) :=

∫ t

0

e−γk(t−s)dB(s), (3)

with weights ω1, . . . , ωK and geometrically spaced speeds of mean reversion γ1(t), ..., γK(t). The
augmenting OU processes Y1, ..., YK are all driven by the same standard Brownian motion B, ap-
proximating the time-correlated behavior of fBM. For details on the approximation of fBM, we refer
the reader to Daems et al. [4]; Harms & Stefanovits [7] and provide a brief summary in Appendix H.
In light of the definition of B̂H in eq. (3), we find that X follows the reference dynamics

dX(t) = −g(t)

K∑
k=1

ωkγkYk(t)dt+

K∑
k=1

ωkg(t)dB(t), dYk(t) = −γkYk(t)dt+ dB(t). (4)

Letting Xaug := (X,Y1, ..., YK)T ∈ RK+1 denote the augmented reference process, it follows that
its dynamics can be written more compactly as

dXaug(t) = F (t)Xaug(t)dt+G(t)dB(t), (5)
for a suitable matrix-valued function F and vector-valued function G defined below in eq. (69), and
where all K + 1 dimensions are driven by the same Brownian motion B.

Partially pinned process To define a stochastic bridge connecting two given data points x0 and x1,
observe that we only have to steer the first dimension X of the augmented reference process Xaug

towards x1, while the terminal values Y1(1), . . . , YK(1) of the augmenting OU processes are not
required to attain a specific value. Conditioning X to attain the terminal value x1 leads to the partially
pinned process Zt = Xaug

t |(X(0) = x0, X(1) = x1) with dynamics

dZ(t) =
[
F (t)Z(t) +G(t)GT (t)u(t, Z(t))

]
dt+G(t)dB(t), (6)

u(t, Z(t)) = [1, ω1ζ1(t, 1), ..., ωKζK(t, 1)]
T x1 − µ1|t(Z(t))

σ2
1|t

, (7)

with ζk(t, 1) :=
∫ 1

t
−γkg(s)e

−γk(s−t)ds and where µ1|t(z) and σ1|t denote the conditional mean and
conditional variance of the reference process given by

µ1|t(z) := E [X(1)|Z(t) = z] = x+
∑
k

ωkykζk(t, 1), σ2
1|t := Cov(X(1), X(1)|Zt = z).

The above dynamics can be derived either by an optimal stochastic control argument [5] or via an
application of Doob’s h-transform; see Appendix A for details. As in SBALIGN the bridge process
between the two probability measures is constructed by a suitable data average of pinned processes,
connecting two individual data points. Hence, the major change is to derive the pinned process for the
MA-fBM.
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Wasserstein Distance ↓

Moons T-Shape Inverse T-Shape

SBALIGN 0.14±0.01 0.45±0.02 0.37±0.03

FBBALIGN (H = 0.3) 0.13±0.02 0.43±0.03 0.38±0.03
OUBALIGN (H = 0.9) 0.12±0.02 0.24±0.02 0.22±0.02

Table 1: Mean Wasserstein distance across dimensions averaged over 10 runs.

OUBALIGN Wasserstein Distance ↓

H = 0.9 H = 0.8 H = 0.7 H = 0.6 H = 0.5 H = 0.4 H = 0.3 H = 0.2 H = 0.1

Moons 0.12±0.02 0.13±0.03 0.14±0.01 0.16±0.03 0.15±0.02 0.17±0.03 0.15±0.02 0.15±0.02 0.16±0.03

T-Shape 0.24±0.02 0.27±0.01 0.32±0.01 0.37±0.02 0.43±0.02 0.48±0.03 0.53±0.05 0.57±0.05 0.64±0.08

Inverse T-Shape 0.22±0.02 0.26±0.02 0.30±0.02 0.35±0.01 0.40±0.04 0.44±0.02 0.52±0.05 0.50±0.05 0.56±0.07

Table 2: Wasserstein distances using a scaled OU process as a reference process on different toy
datasets—unnormalized variance.

Loss function Following Somnath et al. [13], we train two neural networks bθt and mϕ by minimiz-
ing the regularized loss functional

L(θ, ϕ) := E

{∥∥∥∥∥
∫ T

0

x1 − µT |t(Z(t))

σ2
T |t

−
[
bθt

(
µT |t(Z(t)

)
+mϕ

t

(
µT |t(Z(t)

)]∥∥∥∥∥
2

+ λt∥mϕ
t (µT |t(Z(t))∥2

}
.

Note that in contrast to Somnath et al. [13], the input of the two neural networks bθt and mϕ
t is taken

to be µT |t(Z(t)) = X(t) +
∑

k ωkYk(t)ζk(t, T ) instead of X(t).

Ornstein-Uhlenbeck bridge (OUBALIGN) We consider the minimal modification of SBALIGN
with a single OU process as a reference process, where we fix the speed of mean reversion at γ1 = 1
and ω1 = b/A depends on H according to Proposition 2 below. The variance of this reference process
is governed by the Hurst index H . Choosing H > 0.5 leads to a smaller terminal variance, while
H < 0.5 results in higher terminal variance.

Fractional Brownian bridge (FBBALIGN) To approximate a Riemann-Liouville fractional Brow-
nian bridge, we use MA-fBM as the driving noise of our stochastic bridge, fixing K = 5 throughout
all experiments. Following the experimental setup of Somnath et al. [13], we set the diffusion function
to a constant g(t) ≡ gmax/V[B̂H(T )], ensuring a terminal variance of gmax for the reference process.
In every experiment, we choose gmax according to Somnath et al. [13].

4 EXPERIMENTS

We showcase the performance of our two variants OUBALIGN and FBBALIGN of a generalized
Schrödinger bridge for aligned data first on toy data and second to infer conformational changes in
proteins. Our implementation is built on the repository provided in Somnath et al. [13].

Toy data In all the toy datasets we have a 8000 to 1000 train to validation split. Our evaluation
metric here is the Wasserstein-1 distance [17] (defined in Appendix F) computed between each di-
mension of the generated and the target test samples, averaged over the two data dimensions. The
reported distance is averaged over 10 trials. During one trial, we train two MLPs for 20 epochs and
generate 10000 samples via Euler-Maruyama [2] to compute the Wasserstein-1 distance to the target
test samples. For realizations of the three considered source (t0) and target (t1) distributions “Moons”,
“T-Shape” and “Inverse T-Shape” from Somnath et al. [13], see Appendix D. The goal on the Moons
dataset is to align two half-moon-shaped distributions, each rotated 120 degrees relative to the other.
In the task on the T-Shape dataset, one aims to match distributions positioned on different edges of a
T-shaped space, while for the Inverse T-Shape dataset, source and target distributions swap roles. For
OUBALIGN, we observe in Table 2 that the configuration with the lowest terminal variance under con-
sideration achieves the best performance in terms of average Wasserstein-1 distance across all three

FBBALIGN Wasserstein Distance ↓

H = 0.9 H = 0.8 H = 0.7 H = 0.6 H = 0.5 H = 0.4 H = 0.3 H = 0.2 H = 0.1

Moons 0.68±0.46 0.34±0.17 0.30±0.20 0.22±0.05 0.17±0.02 0.14±0.02 0.13±0.01 0.17±0.03 0.27±0.05

T-Shape 1.20±0.97 0.76±0.17 0.62±0.15 0.58±0.13 0.48±0.05 0.47±0.03 0.43±0.03 0.44±0.02 0.63±0.09

Inverse T-Shape 0.69±0.27 0.57±0.11 0.48±0.06 0.49±0.11 0.43±0.04 0.42±0.03 0.38±0.03 0.42±0.03 0.61±0.06

Table 3: Wasserstein distance across different H between generated samples and ground truth on
different toy datasts—with normalized terminal variance of gmax = 0.7 for the Moons dataset and
gmax = 1 for both tasks on the T-Shaped data.
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D3PM H RMSD(Å) % RMSD(Å) < τ

Median Mean Std τ = 2 τ = 5 τ = 10

SBALIGN – 3.80 4.98 3.95 0% 69% 93%

OUBALIGN 0.9 2.98 4.30 3.96 31% 75% 93%
OUBALIGN 0.8 3.25 4.38 3.98 28% 74% 93%
OUBALIGN 0.7 3.24 4.39 3.78 22% 75% 93%
OUBALIGN 0.6 3.12 4.37 3.77 20% 76% 93%
OUBALIGN 0.5 3.59 4.66 3.84 10% 72% 93%
OUBALIGN 0.4 3.54 4.58 3.66 3% 74% 95%
OUBALIGN 0.3 3.69 4.77 3.66 0% 70% 93%
OUBALIGN 0.2 3.71 4.90 3.67 0% 70% 93%

(a) Quantitative results for a single augmenting OU
process (K = 1; H induces terminal variance).

D3PM H RMSD(Å) % RMSD(Å) < τ

Median Mean Std τ = 2 τ = 5 τ = 10

SBALIGN – 3.80 4.98 3.95 0% 69% 93%

FBALIGN 0.8 3.42 4.66 3.92 2% 76% 93%
FBALIGN 0.7 3.59 4.77 3.90 1% 73% 92%
FBALIGN 0.6 3.57 4.80 4.05 2% 74% 92%
FBALIGN 0.5 3.37 4.58 3.76 3% 74% 93%
FBALIGN 0.4 3.09 4.47 3.73 4% 74% 93%
FBALIGN 0.3 3.34 4.50 3.75 3% 74% 93%
FBALIGN 0.2 3.25 4.49 3.68 2% 77% 93%
FBALIGN 0.1 3.47 4.61 3.64 0% 73% 94%

(b) Quantitative results for MA-fBM with K = 5
augmenting processes.

Table 4: Quantitative results on the D3PM test split.

toy tasks. Varying the Hurst index for FBBALIGN with normalized terminal variance, we observe the
best performance for H = 0.3 across all three toy datasets—following a U-shaped performance curve
over H: monotonically increasing from H = 0.9 to H = 0.3 and then decreasing from H = 0.3
to H = 0.1. The performance of the original SBALIGN compared to our methods OUBALIGN and
FBBALIGN on the Moons dataset is nearly the same. However, on the T-Shape datasets, OUBALIGN
outperforms both FBBALIGN and SBALIGN by a large margin, while FBBALIGN performs better
than SBALIGN .

Conformational changes in proteins In this task, we demonstrated the ability of OUBALIGN
and FBBALIGN to infer the bound state of a protein from its initial unbound state. We use the
D3PM dataset [11], pre-processed and provided in the repository of Somnath et al. [13]. The dataset
consists of 1,591 protein pairs, each containing an unbound and a bound state. We followed the
same train/validation/test split as the original work, with 1,291, 150 and 150 examples, respectively.
The evaluation metrics include the mean, median, and standard deviation of the RMSD (defined in
Appendix F) between the carbon atoms of the predicted and ground truth bound protein structures.
Following Somnath et al. [13], we report the percentage of generated proteins with an RMSD below
2.0, 5.0, 10.0 Å compared to the true structures. The best result on the protein conformations task was
achieved using OUBALIGN with H = 0.9, based on the mean/median RMSD and the percentage of
predicted and ground truth molecules aligned within 2 Å. For the FBBALIGN framework, the best
results for most statistical measures were obtained with H = 0.4.

5 CONCLUSION

We extend the framework of aligned diffusion Schrödinger bridges to a prior reference process ap-
proximating a scaled fBM and present two variations of this generalized Schrödinger bridge for paired
data: OUBALIGN with an OU process as a reference process and FBBALIGN with a driving MA-
fBM. On toy data and in the task of predicting conformational changes in proteins, we observe the
best overall performance is achieved with a OU process as a reference process with the lowest termi-
nal variance under consideration. For FBBALIGN, the terminal variance is identical across all Hurst
indices and can be disregarded for the sake of comparison. Since we observe the best performance for
FBBALIGN across all tasks at H = 0.3 and H = 0.4, we conjecture that a path rougher than a Brow-
nian path is preferable. To investigate this conjecture further, a first step is to retrain all configurations
using the empirically best-performing terminal variance for all configuration of FBBALIGN .

Limitations While we are confident in our results on toy data, our conclusions for predicting the
bound state of proteins are based on a very limited number of experiments, as we do not average our
quantitative results over multiple runs. Due to limited computational resources, each configuration
was trained only once.

MEANINGFULNESS STATEMENT

A meaningful representation of life should capture the stochastic processes that drive biological dy-
namics. Our work advances this direction by generalizing the driving noise in aligned diffusion
Schrödinger Bridges from a Brownian motion to a Markovian approximation of fractional Brown-
ian motion, providing increased flexibility for modeling biological variability. Importantly, we do
not claim that real-world biological dynamics are driven by fractional Brownian motion, but rather
that our approach makes a broader range of dynamics accessible to interpolate between snapshots of
biological processes.
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A DYNAMICS OF THE PARTIALLY PINNED PROCESS

Daems et al. [5] use a Gaussian expression for the reference process to construct the posterior SDE
that is steered towards x1. We derive for a fixed data pair (x0, x1) the dynamics of the partially pinned
process Xaug(t)|(X(0) = x0, X(1) = x1) using Doob’s h-transform, resulting in the same dynamics
as found in Daems et al. [5]. Towards that goal, we define the transform

h : [0, 1]× RK+1 → [0, 1], (t, z) 7→ q(x1|z(t)), (8)

where q(·|z(t)) satisfies

P(X1 ∈ A|Zt = z(t)) =

∫
A

q(x|z(t))dx, A ⊂ R. (9)

Denote by p(z, t) = p(x,y, t) = p(x, y1, ..., yK , t) the density of Zt such that

q(x) =

∫
RK

p(x,y, 1)dy (10)

and write
p(z̃(t+ s)|z(t)) = p(z̃, t+ s|z, t) (11)

for the transition density of Z from time t to t + s. To show that h defined in eq. (8) satisfies the
space-time regularity property we mimic the proof of [14, Theorem 7.11]. We write with Bayes rule

p(z(t+ s)|z(t), x1) =
q(x1|z(t+ s), z(t))p(z(t+ s)|z(t))

q(x1|z(t))
(12)

=
q(x1|z(t+ s))p(z(t+ s)|z(t))

q(x1|z(t))
, (13)

where we use for the second equation that Z is a Markov process. Hence, equivalently

p(z(t+ s)|z(t))q(x1|z(t+ s)) = p(z(t+ s)|z(t), x1)q(x1|z(t)), (14)

such that∫
RK+1

p(z(t+ s)|z(t))h(t+ s, z)dz(t+ s) =

∫
RK+1

p(z(t+ s)|z(t))q(x1|z(t+ s))dz(t+ s)

(15)
(14)
=

∫
RK+1

p(z(t+ s)|z(t), x1)q(x1|z(t))dz(t+ s)

(16)

= q(x1|z(t))
∫
RK+1

p(z(t+ s)|z(t), x1)dz(t+ s)︸ ︷︷ ︸
=1

(17)
(8)
= h(t, z). (18)

Hence, by Särkkä & Solin [14, eq. (7.73) - eq. (7.78)] we conclude that the partially pinned process
Z(t) := Xaug(t)|(X(0) = x0, X(1) = x1) follows the dynamics

dZ(t) =
[
F (t)Z(t) +G(t)GT (t)∇z log q(x1|Z(t))

]
dt+G(t)dBt. (19)

B EXPLICIT CALCULATION OF THE h-TRANSFORM

To further specify the above defined transform h(t, z) = q(xT |z(t)) we calculate for the reference
process X(T ) conditioned on X(t) = x and Yk(t) = yk at some time t, for future time T (Note that
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the derivations are valid for both Type I and II MA-fBM, since it is conditioned on the current state):

X(T ) = x+

∫ T

t

g(s)dB̂H(s) (20)

= x+
∑
k

ωk

∫ T

t

g(s) (−γkYk(s)ds+ dB(s)) (21)

= x+
∑
k

ωk

∫ T

t

g(s)

(
−γk

(
yke

−γk(s−t) +

∫ s

t

e−γk(s−r)dB(r)

)
ds+ dB(s)

)
(22)

= x+
∑
k

ωk

(∫ T

t

−γkykg(s)e
−γk(s−t)ds+

∫ T

t

∫ s

t

−γkg(s)e
−γk(s−r)dB(r)ds

+

∫ T

t

g(s)dB(s)

)
(23)

= x+
∑
k

ωk

(∫ T

t

−γkykg(s)e
−γk(s−t)ds+

∫ T

t

∫ T

r

−γkg(s)e
−γk(s−r)dsdB(r)

+

∫ T

t

g(s)dB(s)

)
(24)

= x+
∑
k

ωk

(∫ T

t

−γkykg(s)e
−γk(s−t)ds+

∫ T

t

∫ T

s

−γkg(r)e
−γk(r−s)drdB(s)

+

∫ T

t

g(s)dB(s)

)
(25)

= x+
∑
k

ωk

(∫ T

t

−γkykg(s)e
−γk(s−t)ds+

∫ T

t

∫ T

s

−γkg(r)e
−γk(r−s)dr

+ g(s)dB(s)

)
(26)

= x+
∑
k

ωk

(
ykζk(t, T ) +

∫ T

t

ζk(s, T ) + g(s)dB(s)

)
, (27)

where for convenience ζk(t, T ) =
∫ T

t
−γkg(s)e

−γk(s−t)ds. This leads for z = (x, y1, ..., yK) to

µT |t(z) := E [X(T )|X(t) = x, Yk(t) = yk] = x+
∑
k

ωkykζk(t, T ) (28)

and

σ2
T |t = Cov (X(T1), X(T2)|Z(t) = z) (29)

=
∑
k,l

ωkωl

∫ min(T1,T2)

t

(ζk(s, T1) + g(s)) (ζl(s, T2) + g(s)) ds (30)

does not depend on the condition z = (x, y1, ..., yK), where t < T1 and t < T2. Moreover, since

Yk(T ) = Yk(0)e
−Tγk +

∫ T

0

e−γk(T−s)dBs (31)

= e−γk(T−t)

[
Yk(0)e

−tγk +

∫ t

0

e−γk(t−s)dBs

]
+

∫ T

t

e−γk(T−s)dBs (32)

= e−γk(T−t)Yk(t) +

∫ T

t

e−γk(T−s)dBs, (33)

we have
µk
T |t(z) := E [Y (T )|X(t) = x, Yk(t) = yk] = e−γk(T−t)yk(t) (34)

and

Cov (X(T1), Yl(T2)|Z(t) = z) =

K∑
k=1

ωk

∫ min{T1,T2}

t

(ζk(s, T1) + g(s))e−γl(T2−s)ds. (35)
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does not depend on the condition z as well. Hence, we calculate

∂x log q(xT |z) = −xT − µT |t(z)

σ2
T |t

(
−∂xµT |t(z)

)
=

xT − µT |t(z)

σ2
T |t

(36)

and

∂yk log q(xT |z) = −xT − µT |t(z)

σ2
T |t

(
−∂ykµT |t(z)

)
= [ωkζk(t, T )]

xT − µT |t(z)

σ2
T |t

, (37)

such that the explicit dynamics of the partially pinned process are given by

dZt =
[
F (t)Zt +G(t)GT (t)u(t, Zt)

]
dt+G(t)dBt, (38)

u(t, Zt) = [1, ω1ζ1(t, T ), ..., ωKζK(t, T )]
T xT − µT |t(Z(t))

σ2
T |t

. (39)

C SAMPLING FROM PARTIALLY PINNED PROCESS

Partially pinned process For s < t < T we have

(X(t), Y1(t), ..., YK(t), X(T )|Z(s) = z)T ∼ N
((

µt|s(z)
µT |s(z)

)
,

(
Σt|s Σ12

Σ21 σ2
T |s

))
, (40)

with
µt|s(z) = (µt|s(z, s), µ

1
T |t(z), ..., µ

K
t|s(z))

T (41)
and

Σ12 = (cov(X(t), X(T )), cov(Y1(t), X(T )), ..., cov(YK(t), X(T )))T = ΣT
21. (42)

Hence, the process partially pinned at (xs, xT ) follows the distribution
Z(t)|(X(s) = xs, X(T ) = xT ) ∼ N (µ̄, Σ̄), (43)

with

µ̄ = µt|s(z) +
1

σ2
T |s

Σ12(xT − µT |s(z)) (44)

s=0
=

(x0, 0, ..., 0)
T + 1

σ2
T |0

Σ12(xT − x0 −
∑

k ωky0ζk(0, T )), (Type I)

(x0, 0, ..., 0)
T + 1

σ2
T |0

Σ12(xT − x0), (Type II)
(45)

and
Σ̄ = Σ− 1

σ2
T |t

Σ12Σ21 = Σ− 1

σ2
T |t

Σ12Σ
T
12. (46)

We further calculate for a constant diffusion coefficient g(t) ≡ g ∈ R

ζk(s, t) =

∫ t

s

−γkg(u)e
−γk(u−s)du = −gγk

∫ t

s

e−γk(u−s)du = g(e−γk(t−s) − 1) (47)

and

µT |t(z) = x+
∑
k

ωkykζk(t, T ) = x+ g

K∑
k=1

ωk(e
−γk(T−t) − 1)yk, (48)

µk
T |t(z) = e−γk(T−s)yk. (49)

Left to calculate are the entries of Σ and Σ1,2. With s < t ≤ T we calculate

Cov(X(t), X(T )|Z(s) = z) =

K∑
i,j=1

ωiωj

∫ t

s

(ζi(u, t) + g) (ζj(u, T ) + g) du (50)

= g2
K∑

i,j=1

ωiωj

∫ t

s

(
(e−γk(t−u) − 1) + 1

)(
(e−γk(T−u) − 1) + 1

)
du

(51)

= g2
K∑

i,j=1

ωiωj

∫ t

s

(
e−γi(t−u)

)(
e−γj(T−u)

)
du (52)
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Cov(Yi(t), Yj(T )|Z(s) = z) =

∫ t

s

e−γi(t−u)e−γj(T−u)du (53)

=
e−Tγj−tγi (etγj+tγi − esγj+sγi)

γj + γi
, (54)

Cov(Yl(t), X(T )) =

K∑
k=1

ωk

∫ t

0

e−γl(t−u)(ζk(u, T ) + g(u))du (55)

= g

K∑
k=1

ωk

∫ t

0

e−γl(t−u)e−γk(T−u)du (56)

= g

K∑
k=1

ωk

(
et(γl+γk) − 1

)
e−tγl−Tγk

γl + γk
. (57)

D TOY DATASETS

Moons T-Shape

t0 t1

Inverse T-Shape

Figure 1: Toy datasets from Somnath et al. [13]. Realizations of source (red) and target (blue) distri-
bution.

E TRAINING AND EVALUATION OF CONFORMATIONAL CHANGES IN PROTEINS
DATASET

To evaluate the models on this dataset we simulated the process for 100 steps. Moreover, the training
and evaluation dataset was augmented by generating 10 SE(3) symmetrical variants of every protein
to confirm that our models respect these symmetries.

F EVALUATION METRICS

Wasserstein distance To measure the distance from the original data distribution from the predicted
data distribution we use Wasserstein-1 distance. The Wasserstein-1 distance between ground truth data
distribution pt and sampled data distribution ps is defined as

W1(pt, ps) = inf
γ∼Π(pt,ps)

E(x,x̂)[||x− x̂||]. (58)

The lower the Wasserstein distance, the better are the distributions pt and ps aligned.

Root Mean Square Deviation Root mean square deviation of Cα atomic positions is a distance
between two superimposed molecules/proteins. If x is an observed 3D structure/configuration of the
protein and x̂ is a predicted configuration of the protein then

RMSD(x, x̂) =

√√√√ 1

n

n∑
i=1

||xi − x̂i||2. (59)

The lower the RMSD, the lower their L2-distance w.r.t. some unit of measure. In our example, the
unit of the measure is Angstrom, Å.
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G NETWORK ARCHITECTURES

Baseline network We started off with network architecture proposed by [13]. With introduction of
fractional Brownian noise we needed to change the input to the networks.

Toy datasets Here we use two Multi Layer Perceptrons (MLP) to approximate drift bθ(t,Zt) and
Doob’s h-score mϕ(t, bt,Zt).

Conformational changes in proteins Here we used one graph neural network with tensor product
convolution layers introduced by [16]. This neral network approximates both the drift and Doob’s
h-score.

H MARKOVIAN APPROXIMATION OF FRACTIONAL BROWNIAN MOTION
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H = 0.1 H = 0.3 H = 0.5 H = 0.7 H = 0.9

(a) Variance of the reference
process X with normalized
terminal variance through
g(t) ≡ 1/V[B̂H(T )].
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(b) Variance of the unnormalized
reference process X
with g(t) ≡ 1, recovering
MA-fBM.
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0.6
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Y1 Y2 Y3 Y4 Y5

(c) Variance of the augmenting OU
processes Y1, ..., Y5 approximating
fBM as a weighted sum.

Figure 2: Variance evolution of MA-fBM over time.

0.0 0.2 0.4 0.6 0.8 1.0

t

x0 ∼ P̂0

x1 ∼ P̂1

H = 0.1 H = 0.3 H = 0.5 H = 0.7 H = 0.9

Figure 3: Visualization of the relation between hurst index H and the smoothness of paths with
MA-fBM.

The key challenge of fBM is that fBM lacks the Markov property and is not a semimartingale for
H ̸= 0.5 [1; 8]. To address this, we approximate fBM using a linear combination of Markovian
semimartingales, leveraging an infinite-dimensional Markovian representation [4; 7]. In Definition 1
we outline the Markovian approximation, as proposed by Daems et al. [4]; Harms & Stefanovits [7],
in Proposition 2 we describe how to obtain a solution for MA-fBM following Daems et al. [4].
Definition 1 (Markovian approximation of fBM [4; 6]). Choose K ∈ N Ornstein–Uhlenbeck (OU)
processes

Yk(t) =

∫ t

0

e−γk(t−s)dBs, k ∈ N, t ≥ 0, (60)

with speeds of mean reversion γ1, ..., γK and dynamics dYk(t) = −γkYk(t)dt+ dBt. Given a Hurst
index H ∈ (0, 1) and a geometrically spaced grid γk = rk−n with r > 1 and n = K+1

2 we call the
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process

B̂H(t) :=

K∑
k=1

ωkYk(t), t ≥ 0, (61)

Markov-approximate fractional Brownian motion (MA-fBM) with approximation coefficients
ω1, ..., ωK ∈ R and denote by B̂H = (B̂H(1), ..., B̂H(D))T the corresponding D-dimensional pro-
cess where B̂H(i) and B̂H(j) are independent for i ̸= j inheriting independence from the underlying
standard BMs Bi and Bj .
Proposition 2 (Optimal Approximation Coefficients, Daems et al. [4]). The optimal approximation
coefficients ω = (ω1, ..., ωK) ∈ RK for a given Hurst index H ∈ (0, 1), a terminal time T > 0 and a
fixed geometrically spaced grid to minimize the L2(P)-error

E(ω) :=

∫ T

0

E
[(

BH(t)− B̂H(t)
)2

]
dt (62)

are given by the closed-form expression Aω = b with

Ai,j :=
2T + e−(γi+γj)T−1

γi+γj

γi + γj
, bk :=

T

γ
H+ 1

2

k

P

(
H +

1

2
, γkT

)
− H + 1

2

γ
H+ 3

2

k

P

(
H +

3

2
, γkT

)
(63)

and where P (z, x) = 1
Γ(z)

∫ x

0
tz−1e−tdt is the regularized lower incomplete gamma function.

Approximating fractional Schrödinger Bridges To approximate a reference process driven by
type II fractional Brownian motion BH we approximate the reference process by

dX(t) = g(t)dB̂H(t) ≈ g(t)dBH(t), t ∈ [0, 1], (64)

where every dimension has a driving MA-fBm B̂H(t) in accordance with Definition 1

B̂H(t) :=

K∑
k=1

ωkYk(t) with Yk(t) :=

∫ t

0

e−γk(t−s)dBs. (65)

This yields the augmented prior dynamics

dX(t) = g(t)

K∑
k=1

ωkdYk(t) = −g(t)

K∑
k=1

ωkγkYk(t)dt+ ω̄g(t)dBt, (66)

dYk(t) = −γkYk(t)dt+ dBt, (67)

with ω̄ :=
∑K

k=1 ωk. Resulting, for every data dimension, in the K + 1 dimensional augmented
reference process Xaug = (X,Y1, ..., YK) with dynamics

dXaug(t) = F (t)Xaug(t)dt+G(t)dBt, (68)

where F (t) ∈ R(K+1)×(K+1) and G(t) ∈ RK+1 are given by

F (t) =


0 −g(t)ω1γ1 −g(t)ω2γ2 . . . −g(t)ωKγK
0 −γ1 0 . . . 0
0 0 −γ2 . . . 0

0 0 0
. . . 0

0 0 0 . . . −γK

 , G = (ω̄g(t) 1 . . . 1)
T
.

(69)

I RELATED WORK

Our work builds upon [13], which established a Schrödinger bridge model for aligned data and our
implementation is based on their repository.1 Equivariant graph neural networks (EGNN) [12] is a
baseline for protein conformational changes. It is a model that respects roto-translational invariance of
the molecules which is important for the task since it removes these unnecessary degrees of freedom.

1https://github.com/vsomnath/aligned_diffusion_bridges

11

https://github.com/vsomnath/aligned_diffusion_bridges


J ALIGNED DIFFUSION SCHRÖDINGER BRIDGES

The reference process in [13] is a scaled Brownian motion

dXt = g(t)dBt, (70)

with a driving d-dimensional Brownian motion B = (Bt)t∈[0,T ] and g : [0, 1] → R+. Conditioning
the reference process on the aligend data pair (x0,xT ) ∼ π⋆ results in the scaled Brownian bridge
X̂ = Q|(x0,xT ) following the dynamics

dX̂t = g2t
xT − X̂t

β1 − βt
dt+ gtdBt, X̂0 = x0, βt =

∫ t

0

g2sds. (71)

The scaled Brownian bridge eq. (71) is used in a second step to train the neural networks bθ and mϕ

via the loss function

L(θ, ϕ) := E

∥∥∥∥∥
∫ T

0

xT − X̂t

β1 − βt
− (bθ(X̂t, t)−mϕ(X̂t))

∥∥∥∥∥
2
 (72)

aiming for bθ(·, t) ≈ bt and mϕ ≈ ∇ log ht to approximate the unknown dynamics

dX⋆
t = g2t [bt(X

⋆
t ) +∇ log ht(X

⋆
t )] dt+ gtdBt, ht(x) := P(XT = xT |Xt = x) (73)

of the process minimizing
π⋆ := argmin

P0=P̂0,P1=P̂1

DKL(P0,1,Q0,1), (74)

where we minimize over all couplings of X0 ∼ P0 and XT ∼ P1 and Q0,1 is the joint distribution of
Q0 and Q1.
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