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Abstract

Graph Neural Networks (GNNs) are powerful models for node classification,
but their performance is heavily reliant on manually labeled data, which is of-
ten costly and results in insufficient labeling. Recent studies have shown that
message-passing neural networks struggle to propagate information in low-degree
nodes, negatively affecting overall performance. To address the information bias
caused by degree imbalance, we propose a Learnable Enhancement and Label
Selection Dynamic Graph Convolutional Network (L2ZDGCN). L2DGCN con-
sists of a teacher model and a student model. The teacher model employs an
improved label propagation mechanism that enables remote label information dis-
semination among all nodes. The student model introduces a dynamically learn-
able graph enhancement strategy, perturbing edges to facilitate information ex-
change among low-degree nodes. This approach maintains the global graph struc-
ture while learning graph representations. Additionally, we have designed a la-
bel selector to mitigate the impact of unreliable pseudo-labels on model learning.
To validate the effectiveness of our proposed model with limited labeled data,
we conducted comprehensive evaluations of semi-supervised node classification
across various scenarios with a limited number of annotated nodes. Experimental
results demonstrate that our data enhancement model significantly contributes to
node classification tasks under sparse labeling conditions.

1 Introduction

Graphs model structured and relational systems and are used in fields like traffic networks[ 1], molec-
ular structures|[2]], and protein networks[3l]. Graph learning algorithms analyze graph-structured data
by considering node features and their relationships (edges), achieving success in many domains.

Graph neural networks (GNNs), based on message-passing mechanisms, are a key technology for
handling graph data. Node classification, a core task related to graphs, has received much atten-
tion. Traditional GNN methods rely on supervised learning with numerous labeled nodes, but high
labeling costs limit their practicality. Researchers have combined self-training and pseudo-labeling
techniques with GNNs to improve semi-supervised node classification under limited labeled data.
However, these methods still struggle when labeled nodes are scarce or unlabeled nodes are abun-
dant.
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Figure 1: The number of nodes corresponding to the node degree.

In a graph, a node’s degree usually refers to the number of edges connected to that node, reflect-
ing its connection strength and importance within the network, significantly influencing the path
and speed of information propagation. However, in real-world scenarios, the degree distribution of
nodes often follows a power-law distribution[4]], where most nodes are low-degree nodes, and only
a few have very high degrees. We believe that this degree imbalance is a primary reason for the
model’s failure in situations with few labeled nodes. According to related influence theories[3]], the
label of a target node is affected by the cumulative influence of the normalized features of its neigh-
boring nodes within a K-hop propagation range. For low-degree nodes, every connection is crucial
for their correct classification, but due to their limited number of connections, their information
propagation capacity is significantly restricted, thus affecting the effectiveness of the propagation
path. Figure || illustrates the impact of the degree of the node on the propagation of information
when the number of labeled nodes is limited. In Figure[T](a), the degree-0 node (labeled node 1 and
unlabeled nodes 2 and 3) cannot transmit information; in Figure|l|(b), the 1-degree node is misclas-
sified due to incorrect connections; whereas in Fi gureﬂ] (c), despite the presence of some erroneous
connections, nodes with degrees greater than 1 still achieve correct classification. The insufficient
connections of low-degree nodes limit information propagation, especially in the case of scarce la-
beled nodes. Therefore, in this context, graph neural networks require multi-step propagation to
effectively transmit information, highlighting the importance of addressing low-degree nodes in the
effective dissemination of information.

In the research on the degree bias problem in Graph Neural Networks (GNNs), several studies have
explored solutions from different perspectives: DegFairGT [6] proposes a learnable structural en-
hancement and structural self-attention mechanism, which generates new edges by calculating the
structural similarity between node pairs to balance message passing, and retains the global topology
with the help of a self-supervised task based on p-step transition probability matrices, thereby allevi-
ating the problem of insufficient information in low-degree nodes and over-smoothing in high-degree
nodes; DAHGN [7], on the other hand, focuses on heterogeneous information networks, constructs
a dual-view contrast framework of heterogeneous views and homogeneous subgraphs, combines
semi-supervised task loss and contrast loss, and adopts differentiated strategies for low-degree and
high-degree nodes to eliminate degree bias, filling the gap in research on heterogeneous scenar-
ios; GraphPatcher [8] innovatively realizes model-agnostic degree bias mitigation through test-time
augmentation, iteratively generates virtual nodes to repair damaged neighborhoods of low-degree
nodes, improving the performance of low-degree nodes (by an average of 6.5%) while preserving
the advantages of high-degree nodes, with an overall performance improvement of 3.6% on average.
However, existing methods still have limitations in sparse labeling scenarios: DegFairGT’s struc-
tural enhancement has limited adaptability to dynamic topologies and is difficult to directly cope
with the challenge of insufficient labeled data; DAHGN’s contrastive learning framework is insuffi-
cient in handling the reliability of pseudo-labels in complex heterogeneous networks; GraphPatcher,
as a test-phase strategy, cannot fundamentally optimize the information aggregation of low-degree
nodes during training.

Our proposed learnable enhanced and label selection dynamic graph convolutional network aims to
address the poor node classification performance caused by degree bias in the absence of labeled
nodes. The model comprises a teacher model and a student model. The teacher model generates
pseudo-labels for unlabeled nodes via an improved label propagation method. The student model
dynamically learns from the graph through two approaches: 1) Structural Optimization: It prunes
edges based on node degree, retains core edges, and uses high-order feature information from a de-
coupled GCN to enhance the topological structure of low-degree nodes, ensuring balanced informa-
tion flow. 2) Pseudo-Label Selection: A pseudo-label selector combines nodes with high confidence
and removes those with low confidence, dynamically updating the training set. Our contributions
include:



* Proposing a dynamic graph convolutional network based on learnable augmentation and
label selectors to address degree bias caused by the scarcity of labeled nodes.

¢ Introducing a teacher model that uses soft pseudo-label propagation to expand the training
set.

* Designing a student model that performs edge pruning based on node degree and integrates
higher-order node features for dynamic topology learning, thereby mitigating degree bias
effects while using the label selector to enhance the training set.

* Demonstrating through extensive experiments on multiple datasets that our model is highly
effective for semi-supervised node classification with extremely limited labeled nodes, par-
ticularly in alleviating degree bias.

2 Related Work

Graph Convolutional Networks Graph Convolutional Networks (GCNs) have significantly ad-
vanced graph learning, being mainly divided into spectral and spatial graph convolutions. Spectral
graph convolution processes graph signals using graph spectral theory, Fourier transforms, and con-
volution theorems[9][10], while spatial graph convolution extracts features by passing and aggregat-
ing information from neighboring nodes. Common GCN models such as GCN [11]], GAT [12], and
SGC [I13] typically employ a coupled structure of propagation and aggregation. However, in scenar-
ios with scarce labeled nodes, increasing model depth is often considered a solution, though deeper
models like GCNII[14] see a significant increase in computational complexity. Consequently, de-
coupled GCNs have gained attention for their stability and flexibility. For instance, some approaches
expand the receptive field through decoupled transformation and propagation, APPNP[15] optimizes
global information utilization by combining personalized PageRank, GAMLP [16] maintains high
scalability during pre-computation, while DecGCN [17] focuses on improving model stability and
generalization capabilities.

Node Classification With Few Labels In semi-supervised node classification tasks with limited
labeled nodes, traditional GCN models often face performance issues due to insufficient supervi-
sion. Recent graph learning methods aim to address this challenge. For example, CGPN [18] uses
Poisson learning to counteract Laplacian performance degradation, M3S [19]] enhances GCN gener-
alization through a self-supervised multi-stage training framework, IGCN [20] introduces a unified
graph filtering approach to reduce overfitting and training parameters, GraphHop [21] improves
graph signal smoothing with a two-stage training process, AGST [22] enhances decision boundary
separation by capturing remote node interactions through self-training, and CMPGNN [23]] presents
a noise-resistant framework via contrastive message passing. PASTEL [24] addresses the prob-
lems of insufficient information and excessive suppression caused by "topological imbalance" by
proposing a position-aware graph structure learning framework. It enhances intra-class connections
and optimizes edge weights through anchor position encoding, alleviating structural biases at the
level of propagation paths. NodeMixup [25] focuses on the insufficient reachability between labeled
and unlabeled nodes, designing a cross-set mixing strategy and neighbor label distribution-aware
sampling to enhance information interaction through node pair mixing without adjusting the GNN
architecture. Another study[26] expands the GNN’s receptive field to skip neighborhoods through
position encoding, adding virtual nodes/edges to the input graph and injecting position features
to achieve model-agnostic receptive field expansion, avoiding complex architectural modifications.
Despite these advances, existing methods often overlook the reliability of pseudo-labels, which can
lead to inaccuracies in model training, MSP-LR[27]] introduces a label regularization method and
proposes a graph neural network with basic learning and label regularization modules to enhance
label reliability through pseudolabeling and regularization based on the cluster assumption.

Graph Representation Learning In graph representation learning, edges are crucial for informa-
tion dissemination, but real-world graphs often contain noisy edges. Researchers have developed
several approaches to optimize graph structures. JLGCN [28]] transforms graph optimization into
distance metric learning using the Mahalanobis distance metric. [29] proposes an end-to-end joint
fusion framework aiming for consistent feature integration and adaptive topology tuning. IDGL
[30] frames graph learning as similarity metric learning, iteratively refining graph structures and
embeddings. [31] introduces a self-supervised framework that combines graph structure learning,
clustering for pseudo-labels, and sample selection for clean labels. [32]] leverages information the-
ory to maximize mutual information for reconstructing topological transformations. [33] presents a
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Figure 2: Overview of the proposed framework. In each iteration, the teacher model generates
pseudo-labels for all nodes, while the student model enhances the graph structure using higher-order
features. Based on the student model’s pseudo-labels, reliable nodes are selected to dynamically
update the training set and optimize pseudo-labeling via weakly supervised contrastive loss.

method that simultaneously integrates graph learning and graph convolution into a unified network
architecture and enforces label smoothing through unsupervised loss terms.[34] uses graph structure
refinement to eliminate irrelevant noise and simultaneously maximizes view-shared and view-unique
task-relevant information, thereby tackling the frontier of non-redundant multiplex graph.

3 Proposed Method

This section describes our proposed node classification model for under-labeled scenarios. We start
with a mathematical formulation of the problem, followed by an overview of the model’s architec-
tural framework and a detailed exposition of its key components in the subsequent subsections.

3.1 Problem formulation

An undirected graph with e edges and n nodes can be represented as a quintuple:
G=(V,E,X) (1)

where V and E denote the set of nodes and edges, respectively, and X € R™*? denotes the initial
feature matrix of the graph G with n nodes each having d features. The adjacency matrix A €
{0,1}™*™ represents the connections between nodes, and A includes self-loops. Let D be the
diagonal matrix of A, and Sy, = D~'/2AD~'/2 denotes the symmetric normalized adjacency
matrix with self-loops. The labeling matrix is denoted by Y € R™*¢, where c is the number of
classes. In a semi-supervised setup, the node set V' is divided into labeled VL and unlabeled VU
sets. Our focus is on predicting labels for V'V given a few labeled nodes in V£, which may be
balanced or unbalanced across classes. If each class has K labeled nodes, the problem becomes
under-shot semi-supervised node classification.

3.2 Architecture Overview

In this section, we will provide a detailed introduction to our proposed L2DGCN, a self-training
graph convolutional network model. This model effectively improves the performance of GCN
when labeled nodes are scarce by mitigating degree bias through three innovative designs across
two key modules. Figure [2]illustrates the overall architecture of L2ZDGCN.



3.2.1 Teacher model based on the propagation of soft pseudo-labels

In self-training models, teacher models typically use labelled data to predict unlabelled data, provid-
ing pseudo-labelling information for unlabelled nodes.Whereas in the label propagation algorithm
[35], the labels of the tagged nodes are reset to their true labels after each iteration, which means
that the influence of other nodes on the labels of the tagged nodes is absorbed in the subsequent iter-
ations.Therefore, we make use of soft pseudo labels for long range propagation in order to generate
pseudo labels for unlabelled nodes. The improved soft label propagation formula is as follows:

Yy = (1 - a)gi‘yerf;Y(Kfl) +ay©
Sviter. — (Di}fr.)—l/QAi}fr.(Din.)—l/Q

sym

2)

where Y(©) = Y € R™*is the initial label matrix, K is the order of propagation, flf}i”' = Aifer- 4+ T
denotes the adjacency matrix with self-loop added after the iter.th matrix optimization, and D%¢™ is

the diagonal matrix of A%“", where d;**" = 77| A", Dite" = dt*" ,Siter- is the normalized
adjacency matrices, and for the convenience of writing, in the following expressions we omit the
superscript iter. « is the balanced higher-order pseudo-labels with the initial pseudo-labels hyper-
parameters. By setting an appropriate « , the model can effectively maintain accurate perception
of local structures even after multiple propagations, thus improving the overall learning effect and

model performance.

3.2.2 Student model based on dynamic learnable graph augmentation and label selector

Decoupled GCN backbone

Graph Convolutional Networks (GCNs) combine neighbourhood aggregation and feature transfor-
mation for node representation learning. However, recent studies indicate that this coupled design
can cause issues like training difficulties, underutilisation of graph structures, and excessive smooth-
ing. To address these, we adopt a decoupled GCN model for graph feature propagation, enabling
higher-order feature interactions.

XD = (1 - B)8ymX TV 4 gx©
XT = (ReLUXDW1) )W,
where (3 is a positive parameter that balances the initial and higher-order feature information, similar
to . By setting 8 appropriately, the model can preserve initial feature information even with infinite
propagation. At the first iteration, X () = X represents the initial feature information. While a large

number of propagation steps 7" allows for extensive higher-order interaction, excessive 7" introduces
noise, making the classification boundaries less distinct.

T>1 3)

Dynamic Learnable Graph Enhancement

Real-world graphs have many low-degree nodes whose edges are crucial for information dissemina-
tion. Incorrect or missing edges can significantly affect these nodes. To boost model performance,
especially with limited labeled data, we dynamically optimize the graph topology using node de-
grees and features.

Edge Pruning Based on Node Degrees A node’s degree is its edge count. High-degree nodes are
central to the graph’s structure and information flow, while edges of low-degree nodes are especially
important. We propose pruning the graph by keeping edges of high-degree nodes and removing
those of low-degree nodes to reduce the impact of incorrect edges. The steps are as follows.

Step 1: Determine the number of nodes to preserve the edges:
M= (1-By)*n “)

where 3, is the pruning rate 3,, € [0,1],(1 — B, ) is the ratio of the number of total nodes to the
number of nodes whose edges are to be retained, n is the total number of nodes, and M is the number
of nodes to be retained.When (3, = 1 our model can degenerate into an MLP with self-training,when
Bw = 0 our model can be seen as an APPNP model with self-training.

Step 2: Sort the nodes in descending order based on the node degree d(v) and select the first M
nodes, denoted as V:
Vs = {v1,v9,...,0m} (5)



where d(v1)d(ve)...d(var), D is the degree matrix , A € R™*™ is the initial adjacency matrix,
where the choice of optimising the initial graph structure each time avoids introducing cumulative
errors and local optimal solution problems in the optimisation process, and ensures the controllabil-
ity and stability of the optimisation process.

Step 3: For the selected node V5, all edges Fs connected to it are retained, while all edges of the
nodes that are not selected and those that are also not selected when the retained edges are selected
are removed. The obtained selected edges and the pruned adjacency matrix Ay, are

 =E,Ue,_, iorj €V, (6)

1, &jj € ES
0, otherwise,

This operation filters the top M nodes by degree and retains the edges between them. By selecting
the right q value, the model can retain the minimal edges for optimal results, offering insights into
graph data compression and preservation.

Graph enhancement based on dynamic similarity matrix The decoupled GCN’s backbone sup-
ports long-range feature propagation and local attention, enabling the feature matrix to capture
global and local features. The similarity matrix from this feature matrix effectively expresses both
types of features and is calculated as:

€T
s 5" = ®
;" 125

(fi‘(T) )Trans ~(T)

where S (:iET), fcg-T)) denotes the similarity between nodes 7 and j.

To refine the graph structure and ensure low-degree nodes primarily have core edges, we use a KNN
graph for unselected discrete nodes V;;, guaranteeing each has at least P neighbors. The graph
structure is enhanced by:

. ~(T) ~(T . (T (T
Aali,j) = {1, ife;; € Ay or S(xf ),xg- )) > mln(T(xE ),P),T(.’E§» ),P)), ©)

0, otherwise.

Here, ¢;; € A,, indicates Ay contains edge e;;, and T(jfl(»T), P) returns the similarity between Z

and the P-th similar row vector in X (7). This approach leverages the mutual reinforcement between
quality features and good structural information to optimize the graph structure for subsequent model
iterations.

()

%

Self-training label enhancement Self-training augments GNNs by generating pseudo-labels for
unlabeled nodes using a teacher model, but initial pseudo-labels can be unreliable. We introduce a
method with a confidence threshold p, where only pseudo-labels above p are used, ensuring high-
confidence contributions. The student model determines node confidence via the formula:

Y© = (ReLU(X W))Wy

- . - > 1 (10)
Y = (1 - B)SeymY T~V + gy ©)

In the student model, parameter T controls information dissemination. A larger 1" captures broader
node info, aiding complex graph understanding but risking noise overload in suboptimal graphs. A
smaller 7" limits info to local nodes, possibly missing higher-order relationships. Balancing info
coverage and noise is key for effective learning.

Next, according to the set threshold u, the high confidence unlabelled nodes are selected for super-
vised learning of the model, i.e:

VU =vUy {vi,gng)} for i € V¥ such that ggT) > (11)
where VU is the initial set of unlabelled nodes and VU is the set of reliable unlabelled nodes.

In order to utilise reliable pseudo-labels to assist in labelling the training set for model training, the
standard semi-supervised learning objective function can be modified into the following form:

L="LL+ ALY (12)



where LL, is the cross-entropy loss of the labelled nodes and Lge/ is the cross-entropy loss of the
unlabelled nodes in the student model with a confidence level greater than p. i.e:

C
Li=- > > ylogi (13)

viEVL c=1

c
Lic == Y > ilogy; (14)

v, VU e=1
where § denotes the pseudo-labelling information obtained by the teacher model and ¢ denotes
the pseudo-labelling obtained through the student model.Also, in order to maintain the consistency
of the information obtained from the teacher model and the student model, we motivate the simi-
larity function to assign large values to the positive pairs and small values to the negative pairs by

introducing the infoNCE contrast loss [36} 37]].

n

+
exp(i - 2 /7)
L = E -1 !
ener i=1 % Di—oexp(2i - 2/T)

15)

Let z;r be the positive sample of z;, and z; consist of one positive and r negative embeddings. 7
adjusts the model’s ability to distinguish negative samples; a large 7 may equalize negative sample
treatment, while a small 7 can hinder convergence or generalization. The contrast loss aims to
enhance pseudo-label validity by calculating the distance between reliable pseudo-labeled nodes U’
and class prototypes. The formula for class prototypes is:

1 ~T
Co= WE+ Vo 2 7 (16)
mE{VCLUVCUI}

where V.1 denotes the set of labelled nodes belonging to class c, VCU/ denotes the set of reliable
pseudo-labelled nodes belonging to class ¢, and C,. denotes the corresponding class prototype of

class c. The hard pseudo-tag of the reliable pseudo-tag set U’ is §j; = arg max ¢, . The contrast loss
J
function after correction using reliable pseudo-tags is:

Ler= Y. (—log oxp(e: - Uy, /7) ) (17)
) >

v e{VLuvy’ c=1 exp(z; - Cc/T)

where (Y, is the corresponding prototype of node v;. For any node p, its corresponding class proto-
type is used as a positive sample, and the embedding of other class prototypes is a negative sample.
Then the loss function of the whole model is:

L=LE + ALY +~Lcy (18)

where A and  are hyperparameters that balance the loss of unlabelled nodes and contrast.

3.3 Computational Complexity Analysis

The computational complexity of the proposed model is determined by the core operations of both
the teacher model (for pseudo-label generation) and the student model (for dynamic graph enhance-
ment, feature propagation, and pseudo-label selection), depending on key parameters: graph scale
(number of nodes n, number of edges F), feature dimension d, and propagation steps K (for the
teacher model) or T (for the student model); to align the labels (including pseudo-labels) generated
by the teacher model with the node pseudo-labels obtained by the student model and ensure con-
sistency in their iterative propagation processes, we set K = T. Specifically, the teacher model
generates pseudo-labels via improved soft label propagation, with a time complexity of O(K - n?c)
for K iterations (where ¢ denotes the number of classes), as each iteration involves matrix multi-
plication between an n X n adjacency-related matrix and an n X c label matrix. For the student
model, its complexity comes from three modules: dynamic graph enhancement (with complexity
O(nlogn + E +n2d+n - P - d), including node sorting, edge traversal, KNN graph construction



based on cosine similarity calculation, and neighbor supplementation, where P is the number of
neighbors per node), decoupled GCN propagation (with complexity O(T - E - d) for T iterations,
as each iteration requires feature aggregation over E' edges for d-dimensional features), and pseudo-
label selection (with complexity O(n - ¢) from traversing all n nodes to compute label confidence).
Combining the teacher and student modules, the overall computational complexity is dominated by
terms related to n (notably n? from matrix operations), E (notably E - d from graph propagation),
and the unified propagation step K =T

4 Experiments

In this section, we conduct experiments to validate our model’s effectiveness and robustness with
extremely few labeled nodes. Experimental design is as follows:

4.1 Experimental setup

Datasets We validated our model’s effectiveness in semi-supervised node classification on six ho-
mogeneous graph datasets of varying sizes. These include citation networks Cora, Citeseer, and
Pubmed|[38]], widely used for semi-supervised node classification; Coauthor-CS and Coauthor-
Physics[39] datasets for academic collaboration analysis; and Amazon-Photo[39]], which comprises
product images with metadata labels. Detailed dataset information is in Table[T]

Table 1: Dataset statistics Table 2: Hyperparameters range
Dataset #Nodes #Edges #Features #Classes #Edge Density Hyperparameters #Range
Cora 2,708 5278 1433 7 0.0014 pro 11,2.3,4,5]
Citeseer 3327 4,552 3,703 6 0.0008 p A OaAeS
Pubmed 19717 44324 500 3 0.0002 Bu {0.12, Oil((]), ?'581* %016*60‘%7 %%l 0.00}
Coauthor-CS 18333 81,894 6,805 15 0.0005 H {1. s -2, 14 1.0, 1.8, 2 }
Coauthor-Physics 34,493 247,962 8415 5 0.0004 P {1,2,3,4,5,6,7,8,9,10, 12}
Amazon-Photo 7487 119,043 745 3 0.0042 T {1,2,3,4,5,6,7,8,9,10}

Balancing setup at low labelling rates: We built the training set by randomly selecting 3, 5, or 10
labeled nodes per category (3-shot, 5-shot, 10-shot). The validation set had 30 nodes per category,
with the rest used for testing [22].

Balancing setup under standard segmentation: Following [11], we used 20 labeled nodes per
class for training, with a 500-node validation set and the remaining nodes in the test set.

Compared Methods: We compared our model with classical and state-of-the-art methods, includ-
ing GCN [L1], GAT [12]], SGC [13]], label-efficient GCN models (GLP [40], IGCN [40]], CGPN
[41]], CMPGNN [23]], GraphHop [21]]), and self-trained GNN models (PTA [15], ST-GCNs [42],
M3S [19], AGST [22]], Muse [43]]).

4.2 TImplementation Details

We implemented all algorithms in PyTorch with the Adam optimizer, following original settings
when available. Results reported are average accuracies from 10 independent runs. Our model was
trained with a maximum of 100 iterations, a learning rate of 0.01, and a regularization weight of
5 x 10~°. To prevent overfitting, early stopping was applied, halting training if validation loss didn’t
improve for 1000 steps. Default parameters included K=7', matrix optimization iterations (iter.),
pruning rate 3,,, P neighboring nodes added, and T feature propagation steps for the decoupled
GCN. Hyperparameter ranges are in Table [2] with variations based on dataset labeling rates.For
the selection of optimal values of the parameters listed in [2}, we adopted the grid search method.
Specifically, within the preset parameter ranges, we exhaustively combined the possible values of
each parameter, evaluated the model performance on the validation set, and finally selected the
parameter combination that made the model perform optimally.

4.3 Main results

In the experiments, we evaluate our model and baselines in semi-supervised node classification
across various labeling rates. The top three models are labeled, with the best in bold and the other
two underlined, combining results from [22] and our experiments.



Table 3: Accuracy (%) of semi-supervised node classification test with low labeling rate under
balanced training

Method Cora Citeseer Pubmed
3-shot 5-shot 10-shot 3-shot 5-shot 10-shot 3-shot 5-shot 10-shot

LP 52.76+0.92 58.72+0.79 64.03+£0.65 3487+£093 37.58+£081 41.74+£0.50 59.58£0.98 62.32+0.94 67.02£0.75
GCN 56.31+0.81  64.184+0.66  72.87+0.53 47.59+£0.90 54.27+£0.81  62.26+0.57 59.24 £0.81 66.40+0.85  72.37+£0.74
GAT 63.39£0.98 69.93+0.84 7644+0.35 51.624+0.97 58.67+0.81 6513+£0.51 64.72+0.91 68.32+0.90  73.8540.60
SGC 55.944+0.97  59.774+0.97  67.76 £0.91 52.604+0.92  58.9440.85 64.924+0.54 58744+0.92 64.72+0.91 69.02 + 0.83
GLP 65.99+094 7231+£089 77.56+0.43 50.46+0.96 59.09+0.88  66.06£0.38 66.31+0.95 72.59+0.73 75.82+0.58
IGCN 66.91 £ 0.91 72.78+0.85  78.2740.31 50.994+0.97  59.534+0.89  66.51+0.39 66.23+0.97 71.96+0.85  75.97+0.50
CGPN 71.8842.52  71.834+3.14 7485+ 1.54 62544356 62.204+1.63 63.76+£1.09 68.21+£3.89 71.214+2.90  75.4442.53

CMPGNN 66.35 £ 2.65 77.48+3.15 77.80+1.27 55854+ 1.55  60.50+2.16 64.43+£1.93 67.49+2.66 71.75+2.53  72.65+1.86
GraphHop 69.06 £2.23  74.60+£1.18 7549+£0.93 57.56+£0.46 60.39£3.25 64.43+4.71 61.24+3.35 64.11+£6.94 73.61+3.08
NAGphormer  63.82+0.87  70.28 +£0.41 74.884+£0.97  48.50 £ 0.98 53.22+0.72 59.26+0.58 67.07£0.53 68.13+0.38  73.49+0.23

PTA 6921 £099 73.98+073 78.60£039 5418E094 61135086 66.69L048 67.60L092 7228+082 7647051
ST-GCNs 65.85+£094 7L16+087 7654049 49854095 6139+£091 6858036 65.99+093 70.26+£098 7410+ 0.63
M3S 64.01+£0.71 69264075 77204041 5031088 59.72+£082 6599 +£041 66.01+£090 72.38+£0.85 75.31+0.49
AGST 7100053 79724033  79.924058 5233+£0.62 531242080 66444029  76.66 £0.63 78.26+0.77 73.36+0.53
OURS 78501021 81671033 82291025 68991011 70481023 71641050 7477L055 78.07L040 80.88L0.66
(16.62) (11.95) (1237 (16.45) (18.28) (13.06) (1.89) 10.19) (14.41)

Table 4: Accuracy (%) of semi-supervised node classification test with low labeling rate under
balanced training

Method Coauthor-CS Coauthor-Physics ‘Amazon-Photo

3-shot 5-shot 10-shot 3-shot 5-shot 10-shot 3-shot 5-shot 10-shot
LP 57.77£0.77 62.09£0.60 66.18£0.36  73.46+0.93  76.94+£0.61  80.55£0.41  69.24+0.92  73.43+£0.72  77.78+0.61
GCN 77.17+0.79 84.094£0.59  89.014+0.98 82.49+0.88  87.50+£0.69  90.78+0.38  69.54+0.99  74.424+0.97  80.30+0.78
GAT 79.66+0.75 85.114£0.49  89.3440.19 86.07+1.16  89.35+0.48  91.64+0.48 70.47+1.19 77.89+1.05  82.39+1.11
SGC 84.93+0.57 88.11+£0.35 90.13+0.99 87.55+0.64 87.68+0.39 91.384+0.31  75.05+0.88  78.73+0.69  84.14+0.45
GLP 84.58+0.61 87.36+£0.61 91.59+0.15 89.34+0.99 91.524+0.32 93.02+0.20 75.11£1.19  81.99+0.97 85.33+0.38
IGCN 84.26+0.47 86.45+£0.33  90.82+0.13  89.82+0.57 91.33£0.29  92.784+0.21  75.36+£0.98  82.10+0.89  85.50+0.32
CGPN 88.96+3.37 89.14+£3.27 90.374£2.14  90.06+3.48  91.764£2.33  92.564+2.22  83.57+£3.24 84.744+2.63 87.78+2.44
CMPGNN 80.2242.57 84.29+£2.21 88.65+0.82 81.33£1.98  83.2842.15 87.684+2.38  81.59+£3.35 85.4244.15 86.94+3.83
GraphHop 71.1544.98 84.394+0.82  82.994+3.94 85.05+1.18  86.55+0.30 91.91+0.12  68.42+1.09 84.43+1.12  86.20+1.30
NAGphormer  85.61+0.38 89.0840.85 90.554+0.49  86.264+0.55  89.91+0.82  92.54+0.24  74.794+0.35  83.58+0.33  87.85+0.19
PTA 86.56+0.46 89.43+0.31 90.724+0.18 88.62+0.60  90.36+0.53  92.15+0.32 77.43+0.89  82.63+0.76  85.51+0.74
ST-GCNs 88.34+0.46 89.68+0.45 91.39+0.14 87.61+0.69 90.23+0.39  91.75+0.21  73.86+1.53  81.93+1.09  85.54+0.67
M3S 84.11+0.46 86.96+£0.41 91.08+0.11  89.12+0.55  91.274£0.31  92.93+0.25 74.96+0.97  81.88+0.93  85.42+0.37
AGST 87.14+0.25 91.30£0.53 89.83+0.39 91.64+047 90.88+£0.53 93.264+0.36  81.63+0.73  81.83+0.89  85.97+0.58
OURS 91.45+0.36 91.82+0.45 92.1840.68 93.39+0.66 94.03+0.44 94.65+0.88 86.10+0.53 87.90+0.69 88.56+0.59

(12.49) (10.52) (10.59) (11.75) (12.27) (11.39) (12.53) (12.48) (10.71)

Low-labeling rates setting: Tables [3] and [4] show our model outperforms others, achieving up to
8.28% higher accuracy in the 5-shot. This highlights its effectiveness with few labeled nodes. Clas-
sical shallow GCNs struggle with limited data, while models using higher-order and pseudo-label
info perform better.

Standard Divisions experiments: Table 5| shows our model gains up to 2.39% accuracy over base-
lines on Cora, Citeseer, and Pubmed datasets, despite the low-labeling focus, underscoring its supe-
rior performance.

4.4 Ablation Study

In this section, we evaluated the performance gains of each model component through ablation ex-
periments, including graph structure optimization based on node degree, pseudo-label reliability, and
the effectiveness of contrastive loss. Experiments are performed on the Cora and Citeseer datasets
under 3-shot, 5-shot, and 10-shot labeling rates.Results in Figure [3] show that in the Cora dataset,
label selection significantly improves performance in 3-shot and 5-shot tasks, while learnable graph
augmentation is more effective in the 10-shot task. Conversely, this pattern is reversed in the Citeseer
dataset, which is attributed to the dataset’s unique characteristics. Compared with models retaining
contrastive loss , LZDGCN-LC shows significant performance gaps: on Cora, the gap reaches over
20 percentage points in 3-shot scenarios , narrowing to 8 and 5 percentage points in 5-shot and
10-shot scenarios, respectively; on the more complex Citeseer, the gaps are over 20, 14, and 7-8 per-
centage points in 3-shot, 5-shot, and 10-shot scenarios. These results confirm that contrastive loss
helps capture feature associations from limited data, suppresses interference in noisy datasets, and
is critical for enhancing model adaptability and classification stability. We will supplement these
experiments and analyses to clarify the independent role of contrastive loss, making the conclusions
more robust.



4.5 Parameter Analysis

In this section, in order to verify the impact of each hyperparameter on the model performance, we
conduct a series of experiments on the Cora and Citeseer datasets under 3 and 5 settings. These
experiments are divided into three main parts, and their results are shown in Figure {4}

1)Matrix Optimization Hyperparameters: Evaluated pruning rate (/3,,) and number of nearest neigh-
bors (P) on Cora and Citeseen. On Cora, both showed minor fluctuations in accuracy. On Cite-
seer’s 3-shot task, accuracy rose with higher (3,,) and more neighbors, but fluctuated; for 5-shot, no
clear trend for (5,,), but P showed a rapid improvement before declining if too large. 2) Pseudo-
Labelling Selection Threshold (u): On 5-shot Cora and Citeseer, performance was stable but in
Citeseer’s 3-shot task, performance varied significantly and dropped sharply as increased. 3) De-
coupled GCN Propagation Steps (T): Cora showed minimal variation. Citeseer had notable fluc-
tuations, especially in the 3-shot task, due to many discrete nodes and random training selection.

Table 5: Test accuracy of node classification

Method Cora Citeseer Pubmed ~ 95.0 cora
LP 67.04+0.41 45294034 69.78 £ 0.54 £ es0
GCN 77.85+£0.33 65.95 £ 0.42 76.33 £0.47 2 750
GAT 76.85 + 0.34 65.12 +0.72 73.20 +£0.49 3 65.0 II I II I II I
SGC 71.19+£0.29 69.20+0.37  72.13 £0.66 < 550
GLP 79.33 £0.27 68.94 £ 0.28 78.49 £ 0.39 3-shot 5-shot 10-shot
IGCN 80.11 +0.31 67.89 4+ 0.29 78.64 + 0.39 M L2DGCN-LS M L2DGCN-LE ® L2DGCN-LC M L2DGCN
CGPN 7412+ 1.54 67.34 +£1.07 75.81 +1.26 Citeseer
CMPGNN 72.54 + 3.32 60.80 £+ 1.99 73.94 + 2.61 o
GraphHop 79.16 +£ 1.10 67.23 +2.40 75.62 + 3.01 L 250
PTA 81.54 £0.35 69.84 +0.25 78.66 + 0.44 g 650
ST-GCNs 79.75+£0.24 70.26+0.23  7812+0.30 g 550 II I “ I II I
M3S 78.11+0.39 70.42 + 0.29 77.98 £0.29 < 450
AGST 80.57 £0.12 67.60 £ 0.01 76.50 £ 0.35 3-shot 5-shot 10-shot
Muse 78.80 + 0.50 73.50+1.40 73.60 + 3.10 B L2DGCN-LS M L2DGCN-LE ® L2DGCN-LC B L2DGCN
OURS 83.93+0.11 71.79+0.20 80.02+0.01
(12.39) (1.71) (11.36) Figure 3: Visualization of ablation results
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Figure 4: Model performance with varied hyperparameters

5 Conclusion

To address the problem that existing models perform poorly with limited labelled nodes, we propose
a new solution, L2ZDGCN.The model contains two modules and is designed with three key elements
aimed at optimising graph structure learning and efficiently propagating semantic information, thus
mitigating the problem of model performance degradation due to insufficiently labelled nodes.We
have conducted extensive experiments on several benchmark datasets with low labelling rates, and
the results show the effectiveness of solving the graph structure problem in terms of node degree,
as well as the precise selection of pseudo-labels to address their unreliability. We realise that con-
sidering only features for learnable graph augmentation in the current study is not comprehensive
enough, especially for low-homogeneous graphs that may introduce undesirable edges.Therefore,
future work will focus on a multifaceted exploration of graph augmentation, aiming to develop
more robust classification models.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: blue[Yes]

Justification: The main claims made in the abstract and introduction accurately reflect our
contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: blue[Yes]

Justification: The authors have discussed the limitations of the new method in the Conclu-
sion section.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: gray[NA]
Justification: No theoretical result.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: blue[Yes]

Justification: Our algorithm is easy to understand, and we have provided detailed explana-
tions of the implementation details.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-

missions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: orange[No]
Justification: We use the publicly available dataset.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

e The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: blue[ Yes]

Justification: We have provided detailed parameter analysis in the experimental section, as
well as the basis for setting some parameters to fixed values.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: gray[NA]
Justification: N.A.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: blue[ Yes]
Justification: We have provided the computational resources.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: blue[ Yes]

Justification: We have carefully read the NeurIPS Code of Ethics and our research conforms
with it.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: gray[NA]

Justification: The research is an improvement of existing classification algorithms and does
not address social impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: gray[NA]
Justification: N.A.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: blue[ Yes]
Justification: We have cited the utilized papers.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.
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14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: gray[NA]
Justification: N.A.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: gray[NA]
Justification: N.A.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: gray[NA]

Justification: N.A.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: gray[NA]
Justification: N.A.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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