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Abstract

Text-guided image editing on real or synthetic images, given only the original im-
age itself and the target text prompt as inputs, is a very general and challenging task.
It requires an editing model to estimate by itself which part of the image should be
edited, and then perform either rigid or non-rigid editing while preserving the char-
acteristics of original image. Imagic, the previous SOTA solution to text-guided im-
age editing, suffers from slow optimization speed, and is prone to overfitting since
there is only one image given. In this paper, we design a novel text-guided image
editing method, Fast Imagic. First, we propose a vision-language joint optimization
framework for fast aligning text embedding and UNet with the given image, which
is capable of understanding and reconstructing the original image in 30 seconds,
much faster and much less overfitting than previous SOTA Imagic. Then we pro-
pose a novel vector projection mechanism in text embedding space of Diffusion
Models, capable of decomposing the identity similarity and editing strength thus
controlling them separately. Finally, we discovered a general disentanglement prop-
erty of UNet in Diffusion Models, i.e., UNet encoder learns space and structure,
UNet decoder learns appearance and texture. With such a property, we design the
forgetting mechanism by merging original checkpoint and optimized checkpoint
to successfully tackle the fatal and inevitable overfitting issues when fine-tuning
Diffusion Models on one image, thus significantly boosting the editing capability
of Diffusion Models. Our method, Fast Imagic, even built on the outdated Stable
Diffusion, achieves new state-of-the-art results on the challenging text-guided
image editing benchmark: TEdBench, surpassing the previous SOTA methods such
as Imagic with Imagen, in terms of both CLIP score and LPIPS score. Codes are
available at https://github.com/witcherofresearch/Forgedit.

1 Introduction

Text-guided Image Editing (20) is a fundamental problem in computer vision, with a target text prompt
indicating the editing intention to the given image. The approaches of text-guided image editing
are generally categorized into optimization-based methods and non-optimization ones according
to whether fine-tuning process is performed for reconstruction. Recent non-optimization editing
methods (3; 31; 5; 33; 18; 1; 4; 32) are very efficient. Yet they either struggle on preserving the
precise characteristics of original image during complex editing, or suffer from being incapable of
performing sophisticated and accurate non-rigid edits. It is undeniable that fine-tuning a diffusion
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model with the original image is still critical and necessary for high-precision identity preservation
and accurate semantic understanding. However, previous optimization-based methods (14; 27) suffer
from long fine-tuning time, severe overfitting issues or incapabliity of performing precise non-rigid
editing. Here overfitting refers to the phenomenon that the model could reconstruct the original image,
yet incapable of conducting the edit according to the target prompt, which we will demonstrate later.

Target prompt: a man and a woman are dating at a restaurant.

Target prompt: a man and a woman are in a car.

Target prompt: a man and a woman are singing with microphone in a forest.

Target prompt: a man and a woman at New York among skyscrapers.

Target prompt: a woman is standing by the ocean.

Target prompt: a man is firing a gun.

Input image

Figure 1: Fast Imagic could be used for consistent and controllable keyframe generation for visual
storytelling and movie generation, given one input image and target prompts. We list several samples
with different random seeds for each target prompt. We demonstrate Fast Imagic is capable of
controling multiple characters performing various actions at different scenes.Fast Imagic could
also control each different character separately. Forgetting strategy on UNet’s encoder with vector
subtraction leads to high flexibility and success rate to change the spatial structures and actions,
preserving appearance and identity by reserving UNet’s decoder.

In this paper, we are going to tackle the aforementioned issues of the SOTA optimization-based
editing method, Imagic (14). We name our text-guided image editing method Fast Imagic, which
consists of two stages: fine-tuning and editing.

For fine-tuning stage, with a generated source prompt from BLIP (17) to describe the original image,
we design a vision and language joint optimization framework, which could be regarded as a variant
of Imagic(14) by combining the first stage and the second stage of Imagic into one and using BLIP
generated caption as source prompt instead of using target prompt as source prompt like what Imagic
does. Such simple modifications are the keys to much faster convergence speed and less overfitting
than Imagic. With our joint learning of image and source text embedding, the finetuning stage
using one image with our Fast Imagic+Stable Diffusion 1.4 (26) takes 30 seconds on an A100 GPU,
compared with 7 minutes with Imagic +Stable Diffusion (14) reported by Imagic paper. This leads to
14x speed up. BLIP generated source prompt also eases overfitting, which we will demonstrate in
the ablation study. In addition, our joint vision-language optimization eliminates the strange random
flip phenomenon reported in Imagic, i.e., the direction of objects in the editing results randomly flip,
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leading to editing failures. Our Fast Imagic always lock the correct direction of the objects the same
as the original image, and only flips the directions of objects when the target prompt instructs so.

For editing stage, we propose two novel methods, vector projection in text embedding space and
forgetting strategy with a finding of a general UNet disentangled property. For the first time in the
literature of text-guided image editing with Diffusion Models, we propose a novel vector projection
mechanism in text embedding space of Diffusion Models, which is capable to separately control the
identity and editing strength by decomposing the language representations into identity embedding
and editing embedding. We explore the properties of vector projection and compare it with previous
vector subtraction method utilized in Imagic to demonstrate its superiority on identity preservation.
Finally, we discovered a general property of UNet structure in Diffusion Models, i.e., UNet encoder
learns space and structure, UNet decoder learns appearance and identity. With such a property,
we could easily tackle the fatal overfitting issues of optimization-based image editing methods
in a very effective and efficient manner during sampling process instead of fine-tuning process,
by designing a forgetting mechanism with model merging according to UNet disentanglement.
Without intention to reveal authors’ information, Fast Imagic has been completely open-sourced for
more than one year (of course, the open-sourced project is not called ’Fast Imagic’, thankfully not
violating the double-blind rule). We were the first to discover and open-source the encoder-decoder
disentanglement phenomenon in Diffusion UNet models more than one year ago, though such a
property is re-discovered in some recent papers.

To sum up, our main contributions are:
1. We present Fast Imagic, an efficient vision-language joint alignment framework, capable of
performing both rigid and non-rigid text-guided image editing, while speeds up previous SOTA
Imagic 14 times, completely solves the overfitting issue of Imagic.
2. We introduce a novel vector projection mechanism in text embedding space of Diffusion Models,
which decomposes the target prompt representations into identity embedding and editing embedding.
This improves Fast Imagic’s capability for preserving more consistent characteristics of original
image than existing methods.
3. We design a novel forgetting strategy via model merging based on our discovery on the disentangled
UNet architecture of diffusion models, i.e., UNet encoder learns space and structure, UNet decoder
learns appearance and texture. This allows us to effectively tackle the critical overfitting issue
of optimization-based image editing methods, thus significantly boosting the editing capability of
diffusion models.

Our Fast Imagic achieves new state-of-the-art results on the challenging benchmark TEdBench (14)
(even by using an outdated Stable Diffusion 1.4), surpassing previous SOTA Imagic built on Imagen
in terms of both CLIP score (8) and LPIPS score (34).

2 Related Works

Test-time fine-tuning image editing Diffusion Models have dominated text to image generation.
DDPM(11) improves Diffusion process proposed by (29) on generating images. DDIM (30) acceler-
ates the sampling procedure of Diffusion Models by making reverse process deterministic and using
sub-sequence of time-steps. Dalle 2 (25) trains a diffusion prior to convert a text caption to CLIP
(23) image embedding and then employs a Diffusion Decoder to transfer the generated CLIP image
embedding to an image. Imagen (28) is a Cascaded Diffusion Model (12), whose UNet is composed
of three Diffusion Models generating images with increasing resolutions, employing the powerful
T5 text encoder (24) for complex semantic understanding and generating sophisticated scenarios.
Stable Diffusion (26) utilizes Variational AutoEncoders (16) to compress the training image to a
compact latent space so that the UNets could be trained with low resolution latents in order to save
computational resources.These models are pretrained on billions of data. For image editing task with
one given image, DreamBooth (27), textual inversion (6), Lora (13), Imagic(14) etc., could be trained
with one image and conduct the edit with text to image generation.

Test-time fine-tuning free image editing There are some test-time finetuning-free methods, which do
not require to optimize the diffusion model for each reference image. However, methods like SDEdit
(18),DDIM inversion (30), MasaCtrl (4), Elite(32) all struggle to preserve the characteristics during
complex editing and some of them could also change the view, pose and background irrelevant to
target prompt, which leads to editing failures. Other typical methods like PnP Diffusion (31), Instruct
Pix2pix (3), Prompt to Prompt (7) are incapable to conduct non-rigid editing and space-related editing.
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Drag Diffusion (19), which extends DragGAN (21), is only capable of performing space-related
editing, which is just a portion of general image editing tasks. Instead, our Fast Imagic is a general
text-guided image editing framework to conduct various kinds of image editing operations, including
spatial transformations.

3 Fast Imagic

3.1 Preliminaries

Diffusion models (11; 29) consist of a forward process and a reverse process. The forward process
starts from the given image x0, and then progressively add Gaussian Noise ϵt ∼ N (0, 1) in each
timestep t to get xt. In such a diffusion process, xt can be directly calculated at each timestep
t ∈ {0, ..., T},

xt =
√
αtx0 +

√
1− αtϵt (1)

with αt being diffusion schedule parameters with 0 = αT < αT−1... < α1 < α0 = 1 .

In the reverse process, given xt and text embedding e, the time-conditional UNets ϵθ(xt, t, e) of
diffusion models predict random noise ϵt added to xt−1. With DDIM (30), the reverse process can be
computed as,

xt−1 =

√
αt−1√
αt

(xt −
√
1− αtϵθ(xt, t, e)) +

√
1− αt−1ϵθ(xt, t, e) (2)

With Latent Diffusion Models (26), the original image x0 is replaced by a latent representation z0
obtained from a VAE (16) Encoder ε(x0). The overall training loss is computed as,

L = Ezt,ϵt,t,e||ϵt − ϵθ(zt, t, e)||22 (3)

3.2 Joint vision-language optimization for alignement

In order to tackle such challenging text-guided image editing problems, we propose a image and text
alignment framework via joint optimization of text embedding and UNet with the given image. Shown
in Figure 2, we introduce the overall design of our vision-language joint optimization framework.

Source prompt generation. We first use BLIP (17) to generate a caption describing the original
image, which is referred to as the source prompt. The source prompt is then fed to the text encoder of
Stable Diffusion (26), generating an embedding esrc of source prompt. Previous three-stage editing
method Imagic (14) regards target prompt text embedding as source one esrc. We found that it is
essential to use the BLIP caption instead of using the target prompt as a pseudo source prompt like
Imagic. Otherwise such fine-tuning methods easily lead to overfitting issues, as demonstrated in the
5th column ’Imagic SD’ of Figure 6. This phenomenon indicates that using the BLIP caption as
source prompt would result in better semantic alignment with the given original image than Imagic.

Vision-language alignment with joint optimization. We choose to optimize UNet encoder blocks
of 0, 1, 2 and decoder blocks of 1, 2, 3 in the UNet structure since we found that fine-tuning deepest
features would lead to overfitting in our Fast Imagic framework, demonstrated in Figure 2. Similar
with Imagic, we regard source text embedding as parameters to optimize. Yet different with Imagic
which optimizes text embedding and UNet in two separate stages, we found it vital to align the
source text embedding and UNet parameters simultaneously, which is of great importance for faster
convergence and better reconstruction quality than Imagic. In particular, due to a large domain gap
between text and image, we use different learning rates for source text embedding (10−3) and UNet
(6× 10−5) with Adam Optimizer (15). For faster training, since we only have a single training image,
we repeat the tensors on batch dimension for batch-wise optimization with a batch size of 10. We use
mean square error loss, and empirically found that stable reconstruction results can be achieved when
the final loss is less than 0.03. With the batch size set to 10, the models are fine-tuned for 35 to 40
steps. We stop the training over 35 steps when the loss is less than 0.03, or stop at 40 steps at most.
This fine-tuning process is significantly more efficient than Imagic, taking 30 seconds on a single
A100 GPU. The training loss is computed as,

L = Ezt,ϵt,t,esrc ||ϵt − ϵθ,esrc(zt, t, esrc)||22 (4)
where the main difference with the training loss presented in 3 is that esrc is considered as parameters
to optimize.
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Figure 2: Overall framework of our Fast Imagic, consisting of a vision-language joint fine-tuning
stage and an editing stage. We use BLIP to generate a text description of an original image, and
compute an embedding of the source text esrc using a CLIP text encoder. The source embedding esrc
is then jointly optimized with UNet using different learning rates for text embedding and UNet, where
the deep blocks of UNet are frozen. During the editing process, we merge the source embedding
esrc and the target embedding etgt with vector subtraction or projection to get a final text embedding
e. With our forgetting strategies applied to UNet, we utilize DDIM sampling to get the final edited
image.

3.3 Reasoning and Editing with language representation decomposition

We first input the target prompt to the CLIP (23) text encoder of the Stable Diffusion model (26),
computing a target text embedding etgt. With our learned source text embedding esrc, we introduce
two methods to combine esrc and etgt so that the merged text embedding can instruct the UNet to
preserve characteristics of original image and also follow the target prompt. Given esrc ∈ RB×N×C

and etgt ∈ RB×N×C , we conduct all vector operations on the C dimension to get the final text
embedding e.

Vector Subtraction. We use the same interpolation method as Imagic (14),

e = γetgt + (1− γ)esrc = esrc + γ(etgt − esrc) (5)

As shown in Figure 3, the final text embedding e is obtained by travelling along vector subtraction
etgt − esrc . In our experiments, we found that in most cases, γ goes beyond 1 when the editing is
performed successfully. This leads to a problem that the distance between the final embedding e and
the source embedding esrc may be so far that the appearance of the edited object could change vastly.

Vector Projection. We propose to use vector projection to better preserve the appearance of the
original image. As shown in the Figure 3, we decompose a target prompt text embedding etgt into
a vector along esrc and a vector orthogonal to esrc. We call the orthogonal vector eedit. We first
calculate the ratio r of the projected vector on esrc direction.
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Figure 3: We demonstrate vector subtraction and vector projection to merge esrc and etgt. Vector
subtraction could lead to inconsistent appearance of the object being edited since it cannot directly
control the importance of esrc. The vector projection decomposes the etgt into resrc along esrc and
eedit orthogonal to esrc. We can directly control the scales of esrc and eedit by summation.
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𝑠𝑝𝑟𝑒𝑎𝑑𝑖𝑛𝑔 𝑤𝑖𝑛𝑔𝑠.

𝐴 𝑝ℎ𝑜𝑡𝑜 𝑜𝑓 𝑎 𝑓𝑟𝑢𝑖𝑡𝑓𝑢𝑙 𝑡𝑟𝑒𝑒.

Figure 4: The encoder of UNets learn features related to pose, angle, structure and position. The
decoder are related to appearance and texture. Thus we design a forgetting strategy according to the
editing target.

r =
esrcetgt
||esrc||2

(6)

Thus, we could get the eedit by computing

eedit = etgt − resrc (7)

To control the characteristics similarity and editing strength separately, we sum esrc and eedit with
two coefficient α and β,

e = αesrc + βeedit (8)

Editing. We use DDIM sampling (30) with a classifier free guidance (10) to conduct the edit. The
guidance scale is 7.5. For vector subtraction, we iterate over a range of γ ∈ [0.8, 1.6]. For vector
projection, we choose α from two values {0.8, 1.1}, and β from a range of [1.0,1.5].
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Figure 5: Fast Imagic Workflow.

3.4 The Ultimate Solution to overfitting with disentangled UNet and forgetting mechanism

Forgetting mechanism Considering the fact that there is only one training image provided, in some
cases the diffusion model still overfits, thus losing the editing capability, though joint vision-language
alignment could ease the overfitting to some extent. The fine-tuning process is computational
expensive compared to sampling process, thus we design a novel forgetting mechanism during
sampling process to tackle the overfitting problem. The network is only fine-tuned once, and can
be converted to multiple different networks during sampling process by merging certain fine-tuned
parameters wlearned and the corresponding parameters of original UNet (before fine-tuning) worig,
with a balance coefficient σ. In practice, we found that σ = 0 works in general, which means that we
can simply replace the learned parameters with original parameters so that the network completely
forgets these learned parameters. However, which paramters should be forgotten?

w = σwlearned + (1− σ)worig (9)

Disentangled UNet Shown in Figure 4, we found an general disentanglement property of UNet
in diffusion models. The encoder of UNets learns space and structure information like the pose,
action, position, angle and overall layout of the image, while the decoder learns appearance and
textures instead. We were the first to draw a clear and universal conclusion on disentangled UNet and
open-sourced our solution completely more than one year ago. In Figure 4 , given the target prompt
and original image in the first row, we conduct Fast Imagic with forgetting UNet encoder, UNet
decoder and nothing in the second, third and fourth rows respectively. We could see that without
forgetting mechanism, four out of five cases are overfitting. By forgetting UNet encoder, the structure
and space features are changed yet the appearance and texture are preserved. Vice versa for forgetting
UNet decoder.

Tackling overfitting with disentangled UNet and forgetting mechanism If the target prompt
tends to edit space and structure information, for example, the pose or layout, we will choose to
forget parameters of the encoder. If the target prompt aims to edit the appearance, the parameters of
decoder should be forgotten. Currently we only apply the forgetting strategy when a text embedding
e is obtained by vector subtraction in previous section. We will conduct a thorough exploration of
forgetting mechanism with disentangled UNet in appendix due to page limit.

3.5 WorkFlow

The overall workflow of Fast Imagic is explained in Figure 5. The fine-tuning stage is the same for
all images. The diamonds in the figure indicate that the process depends on the users’s choices and
preferences. In practice, these user decisions can also be replaced by thresholds on metrics like CLIP
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Editing method CLIP Score ↑ LPIPS Score ↓ FID Score ↓
Imagic+Imagen (14) 0.748 0.537 8.353

Fast Imagic+SD (ours) 0.771 0.534 7.071
Table 1: Our Fast Imagic with Stable Diffusion is the new state-of-the-art text-guided image editing
method on the challenging benchmark TEdBench, surpassing previous SOTA Imagic+Imagen.

score and LPIPS score, for completely automatic editing. Due to page limit, we will demonstrate the
workflow with practical examples in appendix 13.

4 Experiments
Benchmark. TEdBench (14) is one of the most difficult public-available text-guided image editing
benchmarks. It contains 100 editings, with one target prompt and one image for each edit. These
target prompts are very general with diversity, including but not limited to changing the appearance of
objects, replacing certain parts of the image, changing the position, action and number of the object,
editing multiple objects with complex interactions. In particular, non-rigid edits turn out to be very
tough for many SOTA text-guided image editing methods. In terms of quantitative evaluation, we
utilize CLIP Score (8) to measure semantic alignments with target prompt, and LPIPS score (34) and
FID score (9) to indicate fidelity to the original image.

4.1 Ablation Study

joint vision-language alignment. We explore the importance of using generated caption as source
prompt and joint alignment. We use BLIP generated source prompt to describe the original image, yet
previous SOTA method Imagic uses target prompt as source prompt. Since target prompt indicates
the editing target, it is obviously inconsistent with the original image. In Figure 11, we show cases
that do not need to use forgetting strategy from Figure 6, so that we could remove the effects of
forgetting strategy. If target prompt is used instead of BLIP generated source prompt, all these cases
of Fast Imagic without using generated source prompt will overfit.

We could also find it vital to align vision and language simultaneously instead of in separate stages in
order to ease overfitting, by comparing ’Imagic SD’ and ’Fast Imagic SD’ columns in Figure 11 since
all the cases in this figure do not use forgetting mechanism.

decomposition in text embedding space. We compare two different reasoning methods to merge esrc
and etgt to get the final text embedding e, shown in Figure 7 . These two methods are complementary
to each other, with vector projection better at preserving the identity, and vector subtraction showing
stronger editing capability. Thus in the workflow of Figure 5, we use vector subtraction to be the
default option. When the characteristics could not be preserved by vector subtraction, we switch to
vector projection.

Disentangled UNet. We explore what effects could the location and amount of forgotten parameters
cause to the editing results, in terms of UNet encoder in Figure 9 and UNet decoder in Figure 8. The
default strategies are ’encoderattn’ and ’decoderattn’ in Figure 5. In fact, our findings on disentangled
UNet could explain several phenomenons in controllable generation and image editing.
1. Why ControlNets (33) copy the UNet encoder branch instead of UNet decoder? Because UNet
encoder controls the space and structure of generated image. ControlNet utilize extra condition to fix
the layout and structure and does not control the texture.
2. Why methods like PnP diffuion (31) could not conduct non-rigid editing, for example, change the
pose and action of objects? because they only operate on UNet decoder and fix the UNet encoder,
which means that the space and structure cannot be edited.

hyperparameters effects for text embedding interpolation We explore the effects of hyperparame-
ters in vector subtraction and vector projection in Figure 10 and in Figure 13.

4.2 Comparison with State-of-the-art

We compare qualitative editing results of our Fast Imagic with SOTA methods on several random test
samples from TEdBench in Figure 6, demonstrating stronger semantic alignments with target prompts
and more precise identity preservation than other methods. Quantitatively, our Fast Imagic with
the even outdated Stable Diffusion 1.4, surpasses the current SOTA Imagic+Imagen on TEdBench
benchmark in terms of both CLIP Score, LPIPS Score and FID Score, shown in Table 1. For FID
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score, we follow the advice of the authors by setting dimension to 192 since there are only 100
samples in TEdBench.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

Imagic  SD Imagic  Imagen Fast Imagic SD (ours)Target prompt

a photo of a horse.

DreamBooth UNet

Figure 6: Comparison with SOTA: non-optimization SDEdit, optimization BLIP+DreamBooth and
Imagic, demonstrating the strong editing ability and stable identity preservation of Fast Imagic.

5 Conclusion
We present our Fast Imagic framework to tackle the challenging text-guided image editing problem.
Fast Imagic speeds up previous SOTA Imagic by 14 times, and completely solves the overfitting
problem of Diffusion Models when fine-tuning with only one image, via vision-language joint
alignment and disentangled UNet with forgetting mechanism, and obtain new SOTA on TEdBench.
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6 Appendix / supplemental material

6.1 Visual Storytelling

Our Fast Imagic could precisely preserve the characteristics of multiple actors and is capable of con-
ducting complex non-rigid editing, which makes our Fast Imagic an ideal tool for visual storytelling
and long video generation with strong consistency and very arbitrary scene and action. In Figure 1,
we input a random image generated by SDXL (22) and then use Fast Imagic with Realistic Vision
V6.0 B1 noVAE, a variant of Stable Diffusion to generate various samples for different target prompts.
With image to video models, for example Stable Video Diffusion (2), we could generate movies with
high consistency of several minutes.
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𝑡𝑎𝑟𝑔𝑒𝑡 𝑝𝑟𝑜𝑚𝑝𝑡:

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑖𝑚𝑎𝑔𝑒

𝑣𝑒𝑐𝑡𝑜𝑟 𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝐴 𝑝ℎ𝑜𝑡𝑜 𝑜𝑓
𝑎 𝑠𝑖𝑡𝑡𝑖𝑛𝑔 𝑑𝑜𝑔.

𝐴 𝑝ℎ𝑜𝑡𝑜 𝑜𝑓
𝑎 𝑑𝑜𝑔 𝑙𝑎𝑦𝑖𝑛𝑔 𝑑𝑜𝑤𝑛.

𝐴 𝑝ℎ𝑜𝑡𝑜 𝑜𝑓
𝑎 𝑗𝑢𝑚𝑝𝑖𝑛𝑔 𝑑𝑜𝑔.

𝐴 𝑝ℎ𝑜𝑡𝑜 𝑜𝑓
𝑎 𝑐𝑎𝑡 𝑤𝑒𝑎𝑟𝑖𝑛𝑔 𝑎 ℎ𝑎𝑡.

𝑣𝑒𝑐𝑡𝑜𝑟 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛

𝐴 𝑝ℎ𝑜𝑡𝑜 𝑜𝑓
𝑎 𝑏𝑖𝑟𝑑

𝑠𝑝𝑟𝑒𝑎𝑑𝑖𝑛𝑔 𝑤𝑖𝑛𝑔𝑠.

𝐴 𝑐𝑜𝑜𝑘𝑖𝑒 𝑛𝑒𝑥𝑡 𝑡𝑜
𝑎 𝑔𝑙𝑎𝑠𝑠 𝑜𝑓 𝑗𝑢𝑖𝑐𝑒.

Figure 7: Comparisons of vector subtraction and vector projection, which are complementary.

6.2 decomposition in text embedding space

We compare two different reasoning methods to merge esrc and etgt to get the final text embedding
e, shown in Figure 7 . These two methods are complementary to each other, with vector projection
better at preserving the identity, and vector subtraction showing stronger editing capability. Thus in
the workflow of Figure 5, we use vector subtraction to be the default option. When the characteristics
could not be preserved by vector subtraction, we switch to vector projection.

For the dog and the cat examples, vector projection can preserve more details of the appearance of
the dog and the cat than vector subtraction. However, for a glass of milk and cookie example, vector
subtraction performs better than vector projection which struggles to change the milk to juice and
also introduces wave-like blurs in the image. We observe such phenomenons in many other cases for
vector projection, which demonstrates that it is more suitable for edits where the identity of object
should be kept instead of changed.

6.3 Disentangled UNet

The default workflow is in the highlighted flow in Figure 12, where the default forgetting mechanisms
are ’encoderattn’ and ’decoderattn’. However, we still demonstrate in Figure 9 and Figure 8 how
changing which part of parameters to merge the models influence the editing result. We first inference
without forgetting strategies. If overfitting happens, we choose from the default ’encoderattn’ or
’decoderattn’ strategy according to the UNet property and target prompt intention. The ’encoderattn’
means forgetting all encoder parameters except attention-related parameters. ’decoderattn’ means
forgetting all decoder parameters except attention-related parameters. The user may choose to forget
more or fewer parameters according to the editing results, which we demonstrate and explain in 9
and 8.

6.4 The interpolation hyper-paramters of vector subtraction and vector projection

We explore the effect of hyper-parameters to the editing result in Figure 10.

6.5 Joint optimization of vision and language

The fine-tuning process of Imagic is composed of two stages, text embedding optimization for
500 steps and UNet optimization for 1000 steps. Our Fast Imagic employ unified vision language
optimization with a batch-wise traing on 1 a100 GPU, which leads to 40 steps in total, speeding
up Imagic for 14 times. This unified optimization of vision and lanugage goes beyond speeding up
Imagic. It also eases the overfitting issue to some extent, shown in Figure 11.
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𝐴 𝑝ℎ𝑜𝑡𝑜 𝑜𝑓 𝑎 ℎ𝑜𝑟𝑠𝑒.

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑖𝑚𝑎𝑔𝑒 𝑑𝑒𝑐𝑜𝑑𝑒𝑟𝑎𝑡𝑡𝑛2𝑘𝑣 𝑑𝑒𝑐𝑜𝑑𝑒𝑟𝑎𝑡𝑡𝑛 𝑑𝑒𝑐𝑜𝑑𝑒𝑟𝑎𝑡𝑡𝑛 + 𝑑𝑒𝑐𝑜𝑑𝑒𝑟2 𝑑𝑜 𝑛𝑜𝑡 𝑓𝑜𝑟𝑔𝑒𝑡

𝐴 𝑝ℎ𝑜𝑡𝑜 𝑜𝑓 𝑎 𝑐𝑎𝑡
𝑤𝑒𝑎𝑟𝑖𝑛𝑔 𝑎𝑛 𝑎𝑝𝑟𝑜𝑛.

𝐴 𝑝ℎ𝑜𝑡𝑜 𝑜𝑓
𝑎 𝑑𝑒𝑎𝑑 𝑡𝑟𝑒𝑒.

𝐴 𝑝ℎ𝑜𝑡𝑜 𝑜𝑓
𝑎 𝑟𝑜𝑡𝑡𝑒𝑛 𝑏𝑎𝑛𝑎𝑛𝑎.

Figure 8: We explore various forgetting strategies for decoder. All learned encoder parameters
are preserved. In the 2nd to 4th columns, we preserve decoder cross-attention parameters, decoder
self-attention and cross-attention, decoder self-attention, cross-attention and the entire decoder2
block, forgetting all the other parameters of decoder.

𝐴 𝑝ℎ𝑜𝑡𝑜 𝑜𝑓
𝑎 𝑏𝑖𝑟𝑡ℎ𝑑𝑎𝑦 𝑐𝑎𝑘𝑒.

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑖𝑚𝑎𝑔𝑒 𝑛𝑜𝑒𝑛𝑐𝑜𝑑𝑒𝑟 𝑒𝑛𝑐𝑜𝑑𝑒𝑟𝑎𝑡𝑡𝑛 𝑒𝑛𝑐𝑜𝑑𝑒𝑟𝑎𝑡𝑡𝑛 + 𝑒𝑛𝑐𝑜𝑑𝑒𝑟1 𝑑𝑜 𝑛𝑜𝑡 𝑓𝑜𝑟𝑔𝑒𝑡

𝐴 𝑝ℎ𝑜𝑡𝑜 𝑜𝑓
𝑎 𝑔𝑖𝑟𝑎𝑓𝑓𝑒 𝑒𝑎𝑡𝑖𝑛𝑔
𝑡ℎ𝑒 𝑔𝑟𝑎𝑠𝑠 𝑏𝑒𝑙𝑜𝑤.

𝐴 𝑏𝑖𝑟𝑑 𝑙𝑜𝑜𝑘𝑖𝑛𝑔
𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑠.

𝐴 ℎ𝑜𝑟𝑠𝑒 𝑟𝑎𝑖𝑠𝑖𝑛𝑔
𝑖𝑡𝑠 ℎ𝑒𝑎𝑑.

Figure 9: We explore different forgetting strategies for encoder. All learned decoder parameters
are preserved. For the second to fourth column each, we preserve none of the encoder parameters,
encoder self attention and cross attention, encoder self attention and cross attention and the entire
encoder1 block, forgetting all the other parameters of encoder.

6.6 Practical Examples of the Workflow

The overall workflow is shown in Figure 12. No matter what the input image is, we use the same
set of hyper-paramters for finetuning stage. In the editing stage, the default workflow is to use
vector subtraction with γ in the range of 0.8 to 1.6. In general, a proper editing result should already
been obtained from one of these 8 images. However, if a perfect editing did not show up, there
are two possibilities, overfitting or underfitting. Underfitting leads to the fact that the edited object
suffers from identity shift, which means with the editing strengthened, the appearance of target object
becomes gradually inconsistent with input image. In this circumstance, one needs to apply vector
projection instead, which I will show in another paper with examples from TEdBench. The more often
case is overfitting, which means that Fast Imagic could reconstruct the input image well yet cannot
conduct the edit successfully. With the disentangled property of UNet, we could utilize the forgetting
strategy to tackle the overfitting issue. If the target prompt aims to edit space and structure, one
should use the default "encoderattn" forgetting strategy. If the target prompt aims to edit appearance
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𝑡𝑎𝑟𝑔𝑒𝑡 𝑝𝑟𝑜𝑚𝑝𝑡: 𝐴 𝑝ℎ𝑜𝑡𝑜 𝑜𝑓 𝑎 𝑐𝑎𝑡 𝑤𝑒𝑎𝑟𝑖𝑛𝑔 𝑎 ℎ𝑎𝑡.

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑖𝑚𝑎𝑔𝑒

𝑣𝑒𝑐𝑡𝑜𝑟 𝑠𝑢𝑏𝑡𝑟𝑎𝑑𝑡𝑖𝑜𝑛 (1 − 𝛾)𝑒!"#+𝛾𝑒$%$

𝛾 = 0.6 𝑡𝑜 1.5

𝑣𝑒𝑐𝑡𝑜𝑟 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝛼𝑒&'($ + 𝛽𝑒!"#

𝛼 = 1.0 𝑡𝑜 1.6

𝛽=0.7

𝛽=0.9

Figure 10: γ for vector subtraction and α, β for vector projection.

and texture, one should use the default "decoderattn" forgetting strategy. Using the examples from
EditEvalv1 benchmark, we demonstrate several cases on how to adjust the hyper-parameters. The
base model used in the following examples is Stable Diffusion 1.4.

For the first case where the input image is a polar bear on the ice field, the target prompt is "A
polar bear raising its hand". To begin the workflow in Figure, we first run vector projection without
forgetting strategy with with γ in the range of 0.8 to 1.6. Shown in Figure , we could find that we are
facing the overfitting issue and the polar bear is incapable of raising its hands. Following Figure ,
we then run the default forgetting strategy on UNet’s encoder, i.e. "encoderattn", which means that
newly learned parameters of self attention blocks and cross attention blocks are preserved in UNet
encoder and all learned parameters of UNet decoder are preserved as well. The hyper-parameter γ
still ranges from 0.8 to 1.6. This time we could find successful edits in the results.

6.7 Limitations

First the effect of Fast Imagic is influenced by randomness. The fine-tuning process inevitably
introduces randomness thus for some particular cases, we cannot guarantee to perfectly reconstruct the
details of original image thus we have to run the fine-tuning stage several times for these challenging
cases. The sampling procedure is also related to the initial random seed of reverse process, thus for
some extremely challenging cases we have to sample tens of images or even hundreds, though rarely
the case, before we could get a proper edited one.

Second, the editing capability of Fast Imagic is restricted by the utilized Diffusion Model. If the
target prompt cannot even be generated by the Diffusion Model itself, it is almost impossible to
accomplish the edit according to the target prompt. For example, the prompt ’a sitting flamingo’
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Imagic  SD Imagic  Imagen

Forgedit  SD (ours)

Target prompt Fast Imagic  SD  (ours)

use BLIP generated source prompt

Fast Imagic  SD  w/o BLIP(ours) DreamBooth UNet

Figure 11: What should the source prompt be? Excluding the usage of forgetting strategies for
ablation, we could find that Fast Imagic using target prompt leads to severe overfitting, yet Fast
Imagic using BLIP generated source prompt eases overfitting.

cannot be generated by Stable Diffusion at all, thus Fast Imagic cannot successfully edit it either.
Such an issue could possibly be solved by switching to better Diffusion Models.

We show some typical bad cases in Figure 14.
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Figure 12: The workflow of Fast Imagic, the most usual flow of editing process is highlighted in the
figure, i.e. simple vector subtraction and default forgetting strategies according to our findings of the
disentangle rules of UNet.
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Target prompt: a polar bear raising its hand

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

Input image

Vector subtraction with gamma in [0.8,1.6), without using forgetting strategy

We could observe overfitting phenomenon. Since the target prompt aims to change action which is related with space and 
structure,  we follow the workflow by leveraging the  default forgetting strategy on UNet’s encoder, which is “encoderattn”.

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
Vector subtraction with gamma in [0.8,1.6), with default “encoderattn” on UNet encoder

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

Input image

Target prompt: a glass of milk next to a stack of cookies on a wooden board with a gray background

Vector subtraction with gamma in [0.8,1.6), without using forgetting strategy

Input image

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

Target prompt: a mountain lake

Vector subtraction with gamma in [0.8,1.6), without using forgetting strategy

Input image

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
Vector subtraction with gamma in [0.8,1.6), without using forgetting strategy

Target prompt: a Van Gogh style painting of a light house sitting on a cliff next to the ocean

Figure 13: We show the practical workflow of Fast Imagic, with testing images from EditEval. In
most cases, simple vector subtraction would finish the job. For other hard cases, the default forgetting
strategies, ’encoderattn’ or ’decoderattn’ according to editing intention on structrue or appearance,
could solve the problems.
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A photo of a bird leaning down. A cracked egg. A sitting flamingo.

Original image 

Edited image 

Target prompt

Figure 14: Bad cases from TEdBench.
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