
Under review as a conference paper at ICLR 2023

LIMITS OF ALGORITHMIC STABILITY FOR DISTRIBU-
TIONAL GENERALIZATION

Paper under double-blind review

ABSTRACT

As machine learning models become widely considered in safety critical settings,
it is important to understand when models may fail after deployment. One cause
of model failure is distribution shift, where the training and test data distributions
differ. In this paper we investigate the benefits of training models using methods
which are algorithmically stable towards improving model robustness, motivated
by recent theoretical developments which show a connection between the two. We
use techniques from differentially private stochastic gradient descent (DP-SGD) to
control the level of algorithmic stability during training. We compare the perfor-
mance of algorithmically stable training procedures to stochastic gradient descent
(SGD) across a variety of possible distribution shifts - specifically covariate, label,
and subpopulation shifts. We find that models trained with algorithmically stable
procedures result in models with consistently lower generalization gap across vari-
ous types of shifts and shift severities as well as a higher absolute test performance
in label shift. Finally, we demonstrate that there is there is a tradeoff between dis-
tributional robustness, stability, and performance.

1 INTRODUCTION

As machine learning (ML) is applied in several high-stakes decision making situations such as
healthcare (Ghassemi et al., 2017; Rajkomar et al., 2018; Zhang et al., 2021a) and lending (Liu et al.,
2018; Weber et al., 2020), it is important to consider scenarios when models fail. Typically, models
are trained with empirical risk minimization (ERM), which assumes that the training and test data
are sampled i.i.d from the same underlying distribution (Vapnik, 1999). Unfortunately, this assump-
tion means that ERM is susceptible to performance degradation under distribution shift (Nagarajan
et al., 2021). Distribution shift occurs when the data distribution encountered during deployment is
different, or changes over time while the model is used. In practice, even subtle shifts can signifi-
cantly affect model performance (Rabanser et al., 2019). Given that distribution shift is a significant
source of model failure, there has been much work directed toward improving model robustness to
distribution shifts (Taori et al., 2020; Cohen et al., 2019; Engstrom et al., 2019; Geirhos et al., 2018;
Zhang et al., 2019; Zhang, 2019).

One concept recently introduced to improve model robustness is distributional generalization (Ku-
lynych et al., 2022; Nakkiran & Bansal, 2020; Kulynych et al., 2020). Distributional generalization
(DG) extends classical generalization to encompass any evaluation function (instead of just the loss
objective) and allows the train and test distributions to differ. Kulynych et al. (2022) prove that al-
gorithms which satisfy total variation stability (TV stability) bound the gap between train and test
metrics when distribution shift is present, i.e., algorithms which satisfy TV stability are also satisfy
DG. This motivates the use of techniques from differentially private (DP) learning to satisfy DG,
since DP implies TV stability (Kulynych et al., 2022). We know from other works that DP learning
often comes at a cost to accuracy (Bagdasaryan et al., 2019; Suriyakumar et al., 2021; Jayaraman
& Evans, 2019). Unfortunately these works don’t thoroughly explore the empirical implications of
their theorems across a wide variety of settings except for a positive result in Suriyakumar et al.
(2021). Because robustness to new settings is an important question for deployments of models, it
is important to understand how the theory of distributional robustness will work practically when
facing different types and severities of shifts. Furthermore, it is hard to understand from the current
theory how practitioners should tune the level of stability as to achieve high performing models.
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In this paper we conduct an extensive empirical study on the impact of using algorithmically sta-
ble learning strategies for robustness when facing distribution shift. Stable learning (SL) refers to
approaches that constrain the model optimization objective or learning algorithm to improve model
stability. We focus on two questions regarding the use of SL for DG in practice: (i) Under what
types of shift is SL more robust and accurate than ERM? (ii) Are SL trained models consistently
robust across all hyperparameters, model architectures, and shift severities? We target four common
examples of shift: covariate (Shimodaira, 2000), label (Lipton et al., 2018; Storkey, 2009), subpop-
ulation (Duchi & Namkoong, 2021; Koh et al., 2021), and natural shifts Taori et al. (2020). We use
state of the art models and large benchmark datasets focusing on realistic prediction tasks in object
recognition, satellite imaging, biomedical imaging, and clinical notes (see Table 1, with details in
Section 4.2). The primary comparison we make is through the generalization gap, defined as the dif-
ference in model performance between training and testing (Zhang et al., 2021b). Under extensive
experimentation–incorporating 32 distinct types of distribution shift and 5 severity levels–we find:

1. SL improves both accuracy and robustness for label and natural shifts.
2. SL has a robustness-accuracy tradeoff for covariate and subpopulation shift.
3. The tradeoffs of SL are consistent across different shift severities, model architectures, and

hyperparameter settings.

2 RELATED WORK

Many approaches have been developed in pursuit of robustness to distribution shift, including:
domain adaption (Wang & Deng, 2018), out-of-distribution detection (Yang et al., 2021), adver-
sarial training (Madry et al., 2018; Ilyas et al., 2019), as well as through algorithmic improve-
ments (Sagawa et al., 2019). To solve the distribution shift problem, many recent techiques for
distributionally robust optimization (DRO), such as risk averse learning (Curi et al., 2020), have
been developed. However, many of these methods do not perform better than ERM (Pfohl et al.,
2022) and involve complex implementations, making them difficult to use.

Algorithmic stability has also been explored to improve distributional robustness. It is often easier
to implement, with simpler methods such as: ℓ2 regularization (Wibisono et al., 2009), early stop-
ping (Hardt et al., 2016), and differentially private stochastic gradient descent (DP-SGD) (Abadi
et al., 2016). Early stopping and ℓ2 regularization have already been studied for their potential to
improve distributional robustness (Sagawa et al., 2019). However, it’s difficult to conduct fine-
grained analyses into improved robustness with these methods because their stability is not directly
controllable. This motivates our use of DP-SGD to investigate the limits of stability for DG since we
can control the level of stability by adjusting the noise multiplier σ in DP-SGD. While algorithmic
stability has been explored theoretically in previous works (see Section 3), we explore it empirically
in this paper across various synthetic and natural distribution shifts.

3 BACKGROUND AND NOTATION

We provide an overview of the connections between algorithmic stability, DP, and different forms of
generalization in this section. It is well-established that algorithmic stability implies generalization
in the traditional ERM setup (Bousquet & Elisseeff, 2002). Additional work has proven that DP
implies stability and thus, implies generalization (Bassily et al., 2016; Dwork et al., 2015). In this
section we define these concepts and draw connections between them. This is done to clarify the
theoretical implication that DP leads to improved distributional robustness.

Notation We assume there is a training dataset Dtrain = {(xi, yi)}ni=1 of labeled examples
such that Dtrain ∼ D and a testing dataset Dtest = {(xi, yi)}mi=1 of labeled examples such that
Dtest ∼ D′. Given Dtrain, we use a randomized learning algorithm M(Dtrain) to learn parame-
ters θ ∈ Θ of a model relating the datapoints {xi} to their corresponding label {yi}.

Now we will describe differential privacy and its links to stability.
Definition 1 (Differential Privacy (Dwork et al., 2006)). Suppose we have two datasets D,D′ which
have a Hamming distance (the number of examples which the two databases differ by) of 1, then an
algorithm M(D) is (ϵ, δ)-differentially private if:
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Pr[M(D) ∈ Θ] ≤ exp(ε)Pr[M(D′) ∈ Θ] + δ (1)

where Θ ⊆ Range(M).

By definition, DP guarantees privacy by bounding the effect that any individual datapoint has on the
output of M. This leads to DP implying strong forms of stability such as TV stability (Bassily et al.,
2016) and uniform stability (Wang et al., 2016). Next, we will define these notions of algorithmic
stability and show how DP implies them both.

Definition 2 (TV Stability). Suppose we have two datasets D,D′ which have a Hamming distance
of 1, then an algorithm M(D) is (δ)-TV stable if:

Pr[M(D) ∈ Θ] ≤ Pr[M(D′) ∈ Θ] + δ (2)

We can also write this as the an upper bound on the total variation distance between two distribu-
tions P and Q where D ∼ P and D′ ∼ Q between M(D) and M(D′). Where dTV (P,Q) =
supT |P (T )−Q(T )|, then TV stability is dTV (D,D′) ≤ δ.

Definition 3 (Uniform Stability (Bousquet & Elisseeff, 2002)). Suppose we have two datasets D,D′

which have a Hamming distance of 1, then an algorithm M(D) is (δ)-uniformly stable if:

∀D,D′

s. t.∥D−D′∥=1

|Eℓ(D;M(D))− Eℓ(D;M(D′))| ≤ δ (3)

If the loss function ℓ is bounded between [0,1] then TV stability implies δ-uniform stability (Ku-
lynych et al., 2022). All of these definitions assume we are sampling D and D′ from the same
underlying distribution. When distribution shift ocurrs, this is no longer true. Thus, we will present
the results of Kulynych et al. (2022) who demonstrate that TV-stable algorithms satisfy a notion of
generalization that captures distribution shift known as distributional generalization.

Definition 4 (Distributional Generalization (Kulynych et al., 2022; Nakkiran & Bansal, 2020; Ku-
lynych et al., 2020)). Given two datasets D and D′ sampled from two different distributions P and
Q, an algorithm M(D) satisfies δ-distributional generalization (DG) if for all ϕ: D ×Θ → [0, 1]

| E
D ∼P

ϕ(D;M(D))− E
D′ ∼P,D′ ∼Q

ϕ(D′;M(D))| ≤ δ (4)

Kulynych et al. (2022) prove that any algorithm which is δ-TV stable is δ-DG. Thus implying that
algorithmic stability improves robustness to distribution shift. The level of TV stability and DG
which are parameterized by δ are directly correlated with level of noise σ we use in DP-SGD.
Throughout the rest of the paper, the larger σ is the more stable the algorithm is (i.e. the lower δ is).

4 METHODS

To better understand the potential and limits for using algorithmic stability to improve model ro-
bustness we conduct a thorough empirical study across several datasets, types of shifts, and shift
severities. We explore both synthetic and natural distribution shifts that arise due to differences in
the covariate, label, and subpopulation distributions between training and testing (Table 1). Our
empirical investigation covers more than 200 experiments, incorporating 32 distinct forms of distri-
bution shift with varying levels of severity.

In each of our experiments—given a training dataset Dtrain and test dataset Dtest with known dis-
tribution shift—we compare the difference in generalization gap (Definition 5) of models with and
without algorithmic stability ( “stable learning” (SL)) and ERM respectively. Characterizing this
gap is an important step to determine how well the theoretical guarantees of DG hold in practice.

We aim to provide answers to the following critical questions about practical use of SL for DG,
motivating its use beyond theory: (i) Under what types of shift is SL more robust and accurate than
ERM? (ii) Are SL trained models consistently robust across all hyperparameters, model architec-
tures, and shift severities?
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Dataset Shift Type Size of Dataset Models Prediction Task Performance Metric

CIFAR10-C Synthetic Covariate 105,000 end-to-end CNN Classification Accuracy

Imbalanced CIFAR10 Synthetic Label 115,000 end-to-end CNN Classification Accuracy

Waterbirds Synthetic Subpopulation 4,795 Logistic Regression Classification Worst-Group Accuracy

COOS Natural Covariate 132,209 end-to-end ResNet18 Classification Accuracy

PovertyMap Natural Subpopulation & Label 19,669 end-to-end ResNet18 Regression Pearson Corr Coefficient

MIMIC-III Natural Subpopulation & Label 25,879 Logistic Regression Mortality Worst-Group AUC

Table 1: The datasets, prediction tasks, and model architectures used throughout the paper to evalu-
ate the relationship between algorithmic stability and distribution shift.

4.1 DISTRIBUTION SHIFT

We present and define the three different kinds of distribution shifts that we explore in our empirical
study.

Consider a joint distribution D between features X and labels Y , D = X × Y , with training data
Dtrain and testing data Dtest. We define distribution shift to be any change to the marginal, condi-
tional, or joint distributions of X and Y between Dtrain and Dtest, based on prior work (Quionero-
Candela et al., 2009; Rabanser et al., 2019; Duchi & Namkoong, 2018). We explain the three types
of shift below:

Covariate shift occurs when the features X change between training and testing, but the pre-
diction given a feature stays the same, such that P (Xtrain) ̸= P (Xtest), P (Ytrain|Xtrain) =
P (Ytest|Xtest). A natural example of covariate shift arises when datasets of MRI images are
recorded by different machines, providing different features but not changing disease prevalence.

Label shift is when the distribution of labels changes, but the class-conditional densities are con-
stant, such that P (Ytrain) ̸= P (Ytest), P (Xtrain|Ytrain) = P (Xtest|Ytest). This shift occurs when
one class is overrepresented in the dataset, but the underlying feature distribution is conditionally
equivalent.

Subpopulation shift is when the distribution of subpopulations (e.g. subgroups defined by the
intersection of sex and race) changes. Define G to be a discrete random variable representing mem-
bership in a subpopulation. Subpopulation shift occurs when ∃g ∈ G s.t. P (Xtrain, Ytrain|G =
g) ̸= P (Xtest, Ytest|G = g). For example, when we move between rural and urban medical centers
the proportion of subpopulations changes where minority populations are less represented in rural
settings.

Natural shift are those where the training and test distributions are different from real-world data
collection, without additional manipulation of data. These natural shifts can be combinations of
covariate, label, subpopulation, and other types of shifts.

4.2 DATASETS

We investigate synthetic covariate, label, and subpopulation shifts, as well as naturally occurring
instances of covariate and subpopulation shifts. We use the definition of natural and synthetic shift
from Taori et al. (2020). Synthetic shifts are those where the data originally is all from the same
distribution but is manipulated such that the training and test distributions are different. Meanwhile,
natural shifts are those where the training and test distributions are already different.

Synthetic datasets: For covariate shift, we use the CIFAR10-C dataset, created by shifting CI-
FAR10’s test set with 19 types of algorithmically generated corruptions of 5 different severities for
a total of 95 different synthetic covariate shifts (Hendrycks & Dietterich, 2019). For synthetic la-
bel shift, we use Imbalanced-CIFAR10, which we created by inducing a class imbalance in
CIFAR10 to create a shift in P (Y ). These shifts were created randomly, where the percentage
of of samples in the shifted dataset from the original test dataset was was chosen randomly from
10 − 100%. To explore synthetic subpopulation shifts, we use the Waterbirds dataset (Sagawa
et al., 2019) made up of bird images with synthetic backgrounds.
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Natural datasets: Our natural covariate shifts are derived from the Cells-Out-of-Sample (COOS)
dataset, which consists of mouse cell images of 7 biological classes, with 4 separate test sets of
increasing degrees of covariate shift (Lu et al., 2019). We also explore natural subpopulation and
label shifts with the PovertyMap dataset predicting poverty levels from satellite imagery (Koh
et al., 2021), and MIMIC-III clinical notes predicting mortality (Johnson et al., 2016).

For more detailed information about the datasets used in this paper, please refer to Appendix A.2.

4.3 MODEL TRAINING

We train models using DP-SGD (with varying levels of noise and clipping as a way to modify the
amount of stability, as detailed in Appendix A.1.2 and Appendix A.3) and ERM for each dataset and
type of shift. Each model is trained with early stopping on the validation loss to prevent overfitting.
The scale of the hyperparameter search and noise levels we used for determining the best performing
models can be found in Appendix A.3. For all experiments, we use the Opacus package (Yousefpour
et al., 2021) or Tensorflow Privacy package (McMahan & Andrew, 2018) to implement DP-SGD.
Models and data references are given in Table 1. Note that the models used for the CIFAR dataset
(Tramèr & Boneh, 2021) in covariate and label shift are small models created for differential pri-
vacy, to mitigate the dimensional dependence of DP-SGD Yu et al. (2017). Thus, the reported ERM
test accuracy is lower than state-of-the-art performance using larger model architectures such as the
ResNet (He et al., 2016) on the same dataset. When we compare against distributionally robust op-
timization (DRO) results, we use the conditional value at risk (CVaR) optimization algorithm (Lévy
et al., 2020).

4.4 EXPERIMENTAL PROCEDURE

For each pair of Dtrain and Dtest in an experiment, we perform the following procedure:

• Train a set of models {M1,M2, ...} (performing a hyperparameter search) on Dtrain with
DP-SGD using different noise multiplier values {σ1, σ2, ...} as varying levels of algorith-
mic stability. We also train ERM (not stable) and DRO (another stable algorithm) models as
comparative baselines. SL models are trained with DP-SGD, detailed in Appendix A.1.2.

• Test each model in the sets {M1,M2, ...} on shifted testing datasets {D′
1,D′

2...}. While
covariate and subpopulation shift have shifted test datasets, label shift has a shifted training
dataset, as practitioners would see in a scenario of class-imbalanced training data.

• Measure the generalization gap G, the difference between training and testing accuracy for
SL and ERM models, GSL and GERM . To measure the improvement SL has over ERM,
we report the difference in generalization gap ∆G as defined in Definition 5 below.

4.5 EVALUATION

We design our empirical investigation to answer the two previous questions posed at the outset of
Section 4 on the limits of using SL for distributional robustness. We address them as follows:

(i) The metric we use to primarily compare the robustness of models is the difference in generaliza-
tion gap, ∆G (Definition 5). If ∆G > 0, this indicates that the model trained with a stable learning
algorithm has a lower generalization gap and is therefore more robust than ERM trained models. As
mentioned in Section 4.4, we test across various levels of stability to find the optimal σ value.

Definition 5 (Difference in Generalization Gap). Given the training and D and D′ sampled from
two different distributions P and Q, an ERM model MERM (D) and alternate training algorithm
A with model MA(D) and metric ϕ: D ×Θ → R we define the generalization gap as:

∆G =

∣∣∣∣ E
D ∼P

ϕ(D;MERM (D))− E
D ∼P,D′ ∼Q

ϕ(D′;MERM (D))

∣∣∣∣− ∣∣∣∣ E
D ∼P

ϕ(D;MA(D))− E
D ∼P,D′ ∼Q

ϕ(D′;MA(D))

∣∣∣∣
(5)

We calculate ∆G for SL/DRO compared to ERM , referred to SL ∆G/DRO ∆G.

(ii) We investigate if stability holds over different shift severities using the synthetic datasets by
evaluating for which shifts is ∆G > 0. Shift severity is characterized as the distance between Dtrain
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Shift Severity ERM train acc ERM test acc SL train acc SL test acc DRO train acc DRO test acc SL Accuracy Gain SL ∆G DRO Accuracy Gain DRO ∆G

None 0.938± 0.001 0.771± 0.034 0.748± 0.165 0.700± 0.113 0.770± 0.032 −0.071± 0.113 −0.071± 0.113 0.119± 0.057 -0.001 ± 0.021 0.014 ± 0.002

1 0.923± 0.025 0.748± 0.042 0.731± 0.072 0.666± 0.029 0.892± 0.021 0.687± 0.063 −0.082± 0.037 0.109± 0.061 −0.061± 0.051 −0.029± 0.015

2 0.919± 0.000 0.686± 0.050 0.808± 0.089 0.646± 0.094 0.892± 0.015 0.676± 0.073 −0.041± 0.057 0.071± 0.047 −0.01± 0.045 0.016± 0.002

3 0.892± 0.049 0.649± 0.097 0.780± 0.139 0.612± 0.124 0.895± 0.012 0.588± 0.094 −0.038± 0.046 0.075± 0.127 −0.061± 0.095 −0.064± 0.021

4 0.875± 0.043 0.618± 0.067 0.783± 0.120 0.556± 0.104 0.886± 0.033 0.584± 0.075 −0.060± 0.059 0.032± 0.096 −0.034± 0.075 −0.046± 0.020

5 0.857± 0.046 0.538± 0.115 0.664± 0.144 0.468± 0.124 0.879± 0.036 0.484± 0.118 −0.070± 0.045 0.122± 0.111 −0.054± 0.116 −0.075± 0.023

Table 2: SL demonstrates an accuracy-robustness tradeoff in the CIFAR-C dataset representing
synthetic covariate shifts. We observe that for all shifts, SL ∆G > 0, indicating that each SL
model is more robust than ERM. However, there is a consistent loss in accuracy for both SL. We
present results across five shift severities for σ = 0.1. We observe a similar tradeoff for the DRO
CVaR algorithm, indicating that these algorithms cannot improve both robustness and accuracy with
covariate shift.

Shift Severity ERM train acc ERM test acc SL train acc SL test acc Accuracy Gain ∆G

None 0.913± 0.002 0.864± 0.020 0.852± 0.093 0.796± 0.123 −0.068± 0.089 0.007± 0.084

1 0.817± 0.202 0.778± 0.232 0.790± 0.215 0.748± 0.223 −0.031± 0.009 −0.004± 0.022

2 0.900± 0.267 0.777± 0.282 0.812± 0.120 0.749± 0.161 −0.028± 0.121 0.054± 0.025

3 0.897± 0.250 0.773± 0.251 0.812± 0.109 0.742± 0.157 −0.031± 0.094 0.054± 0.048

4 0.870± 0.197 0.715± 0.207 0.813± 0.134 0.7331± 0.155 0.018± 0.052 0.074± 0.011

5 0.937± 0.265 0.765± 0.200 0.850± 0.000 0.731± 0.160 −0.034± 0.041 0.053± 0.154

Table 3: SL demonstrates an accuracy-robustness tradeoff in the Waterbirds datasets represent-
ing synthetic subpopulation shifts. We observe that for all shifts, ∆G > 0, indicating that each SL
model is more robust than ERM. However, there is a consistent loss in accuracy. We present results
across five shift severities for σ = 0.1.

and Dtest. We use the Optimal Transport Dataset Distance (OTDD) (Alvarez-Melis & Fusi, 2020).
We choose this metric as opposed to other dataset distances for its provable guarantees and that it
allows for completely disjoint datasets to be compared. We categorize our synthetic datasets by shift
severity by first normalizing the computed OTDD and sorting them into quintiles 1-5.

(iii) To explore the tradeoff between robustness and accuracy, we also report model performance
throughout the paper and compare it to ∆G. Model performance is reported as accuracy except for
MIMIC-III and PovertyMap, where area under the curve (AUC) and Pearson Correlation Coef-
ficient are used, respectively, due to change in classification task (See Table 1). In MIMIC-III, re-
lated work focuses on AUC because it is the standard metric used for diagnostics. Thus, we use AUC
since it is the standard for evaluating clinical prediction models for mortality. In PovertyMap,
predicts a real-valued composite asset wealth index from satellite images, and thus, the models are
evaluated on the Pearson correlation (r) between their predicted and actual asset wealth indices.

5 STABILITY HAS POOR ROBUSTNESS-ACCURACY TRADEOFFS FOR
COVARIATE AND SUBPOPULATION SHIFTS

In this section, we examine results from our synthetic covariate and subpopulation experiments seen
in Table 2 and Table 3. We investigate potential sources of why this tradeoff exists.

We observe that for all shift severities in covariate CIFAR-C and subpopulation Waterbirds, SL
has increased robustness as compared to ERM, with ∆G > 0. However, for both shifts there is
a tradeoff between robustness and accuracy, seen by the consistent negative accuracy gains, which
increases with shift severity.

We also find that SL is more robust on the natural covariate shifted COOS but at the expense of
accuracy (Table 4). We find that this result holds across all values of stability we tried. This negative
finding is not surprising because each of the shifts in COOS are covariate shifts.
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Shift Severity SL train acc SL test acc ERM train acc ERM test acc Accuracy Gain ∆G

1 0.872 0.840 0.907 0.852 -0. 012 0.022

2 0.872 0.843 0.907 0.853 -0.010 0.024

3 0.872 0.810 0.907 0.706 0.166 0.033

4 0.872 0.467 0.907 0.559 -0.092 -0.056

Table 4: SL is more robust to most natural shifts found in COOS except for the most severe. This is
most likely due to lower model accuracy. These results are for σ = 0.1. Standard deviations are not
provided because of computational constraints.

To gain insight into the nature of this robustness-accuracy tradeoff, we compare SL to a DRO algo-
rithm that optimizes conditional value at risk (CVaR). Through empirical investigation we uncover
that both methods fail on covariate shift (see Table 2). More interestingly, these methods are failing
for different reasons. Investigation into the underlying cause has led to the formulation of follow-
ing conjecture: We believe that SL mimics learning under a transformation of P (X) such that it
becomes closer to the uniform distribution as we increase the level of stability.

With enough uniform stability, P (X) would be the Uniform distribution, equivalent to eliminating
all signal from the covariates and predicting randomly. Similar to covariate shift, as SL approaches
the uniform distribution, information about the changed P (X|G) during subpopulation shift is lost.
In contrast, the DRO CVaR optimization focuses on the tails of the distribution Levy et al. (2020)
providing limited utility for most covariate/subpopulation shifts which oftentimes apply the same
transform to every point in the distribution (Shimodaira, 2000; Duchi & Namkoong, 2018).

These results and the corresponding conjecture lead to the conclusion that SL under uniform stability
is not a good candidate for improving robustness under covariate or subpopulation shift, as it comes
at a major cost to accuracy.

6 STABILITY IMPROVES ROBUSTNESS AND ACCURACY TO LABEL SHIFT
AND NATURAL SHIFTS

In this section, we demonstrate that stability improves both robustness and accuracy to label shifts
and natural shifts. Furthermore, we investigate potential sources of this improvement compared to
ERM. We draw on similarities between importance weighting, distributionally robust optimization,
and stable learning to help understand these improvements.

We demonstrate these results first on a variety of label shifts on Imbalanced-CIFAR (Table 5).
Even as the shift severity increases, SL outperforms ERM, with ∆G > 0 and a positive accuracy
gain. However, these improvements occur at a specific level of stability σ = 0.1 (i.e. the amount of
noise in DP-SGD). At stronger levels of stability we find that robustness is better than ERM at the
expense of accuracy (Table 11). This is the first result of many throughout our work which indicates
that level of stability is a hyperparameter which should be tuned to find the best level of robustness
and accuracy.

We demonstrate similar improvements when testing against natural distribution shifts. SL improves
both robustness and accuracy on MIMIC-III and PovertyMap (Table 6). Specifically, we see an
increase in accuracy of 2.9% and and 11.3% and increase in robustness of 4.2% and 0.8% respec-
tively. Similar to our label shift results we had to tune the level of stability, again supporting the
observation that it is a hyperparameter that must be tuned.

We first investigate why stability outperforms ERM on both robustness and accuracy on label shifts.
We demonstrate that stable learning (especially those that satisfy uniform stability like DP-SGD)
mimics training that we would see if our training label distribution was uniform over all labels. We
show this by showing similar results when training with DRO (to mimic a uniform label distribution)
(Table 5). We show both of these methods also improve accuracy and robustness to a similar degree
that SL does.
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Shift Severity ERM train acc ERM test acc SL train acc SL test acc DRO train acc DRO test acc SL Accuracy Gain SL ∆G DRO Accuracy Gain DRO ∆G

None 0.919± 0.001 0.771± 0.034 0.748± 0.165 0.700± 0.113 0.904± 0.021 0.770± 0.032 −0.071± 0.113 0.119± 0.057 -0.001 ± 0.021 0.014 ± 0.002

1 0.776 ± 0.242 0.577 ± 0.174 0.824 ± 0.098 0.630 ± 0.081 0.868± 0.014 0.676± 0.005 0.086 ± 0.091 0.013 ± 0.052 0.099 ± 0.091 0.007 ± 0.002

2 0.863 ± 0.079 0.576 ± 0.066 0.824 ± 0.026 0.667 ± 0.006 0.88± 0.002 0.683± 0.002 0.091 ± 0.061 0.045 ± 0.038 0.107 ± 0.061 0.009 ± 0.003

3 0.734 ± 0.121 0.570 ± 0.118 0.829 ± 0.200 0.665 ± 0.034 0.859± 0.031 0.679± 0.003 0.095 ± 0.168 0.001 ± 0.054 0.109 ± 0.018 -0.01 ± 0.004

4 0.682 ± 0.210 0.509 ± 0.128 0.819 ± 0.234 0.700 ± 0.217 0.864± 0.011 0.695± 0.003 0.191 ± 0.217 0.064 ± 0.080 0.186 ± 0.032 0.004 ± 0.001

5 0.590 ± 0.057 0.417 ± 0.041 0.819 ± 0.014 0.670 ± 0.014 0.852± 0.011 0.684± 0.012 0.252 ± 0.047 0.024 ± 0.020 0.267 ± 0.021 -0.005 ± 0.001

Table 5: SL improves robustness and accuracy of models to label shift in Imbalanced-CIFAR.
We present results across five shift severities for σ = 0.1. We observe that for all shifts, ∆G > 0,
indicating that each SL model is more robust and accurate than ERM in the presence of label shifts.
We observe improvements in both robustness and accuracy for the DRO CVaR algorithm, indicating
that there is no tradeoff between the two.

Dataset ERM train perf ERM test perf SL train perf SL test perf Performance Gain ∆G

MIMIC-III Notes 0.840± 0.008 0.814± 0.039 0.827± 0.000 0.843± 0.035 0.029± 0.004 0.042± 0.008

PovertyMap 0.626± 0.152 0.489± 0.138 0.727± 0.085 0.602± 0.090 0.113± 0.046 0.008± 0.004

Table 6: SL improves robustness and performance of models in the presence of natural subpopula-
tion shifts. Here we use σ = 0.1 for MIMIC-III and σ = 0.001 for PovertyMap.

Natural shifts are more difficult to accommodate than synthetic shifts because they are usually com-
posed of multiple shifts. It is more difficult to train models to be robust against combinations of
shifts because most methods are developed to deal with a single type of shift. Given that natural
shifts are much harder than synthetic shifts we investigate why it is that SL is more accurate and
robust. We identify that the datasets we considered contain a combination of shifts which make
up the natural shift. Both MIMIC-III and PovertyMap contained both subpopulation and label
shift. Thus, we believe that the improvement in performance and robustness is in part due SL being
a much better learning algorithm for dealing with label shift.

7 CONSISTENCY OF STABLE LEARNING
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Figure 1: Stability is consistent across hyperparameters. We plot the training vs. testing accu-
racy across 3 representative examples of a) covariate, b) label, and c) subpopulation shift from the
CIFAR10-C, Imbalanced-CIFAR, and Waterbirds datasets, respectively. Each point in the
graph represents a different hyperparameter experiment for the dataset. SL follows the y = x line
more closely than ERM, indicating that the generalization gap of SL is lower than ERM and consis-
tent across all hyperparameters.

In this section, we investigate answers to query (ii) in Section 4. We explore to what level of
stability is needed and how consistent the results of the above two sections are across different
model architectures and hyperparameters.
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(a) Accuracy and ∆G of covariate shift across stability
levels

(b) Accuracy and ∆G of label shift across stability lev-
els

Figure 2: Robustness to distribution shift and accuracy are at odds for covariate shift and label
shift when we use stable learning for models trained on CIFAR-C and Imbalanced-CIFAR
respectively. This tradeoff worsens as the level of stability is increased.

7.1 LOW LEVELS OF STABILITY ARE NEEDED TO IMPROVE ROBUSTNESS

Overall, low levels of stability are required to see improvements over ERM. From Table 8, Table 11
and Fig. 2 we observe that while increasing stability leads to a lower generalization gap, it decreases
performance. Over all settings, we found that σ < 0.5 best balances accuracy-robustness tradeoffs.
We find that for larger values because stability is guaranteed by use of noise in DP-SGD this results
in much worse accuracy. In practice, the amount of stability needed to balance this tradeoff is
model and dataset dependent. As such, stability can be treated as a hyperparameter to be tuned for
robustness (similar to regularization), rather than a guaranteed solution.

7.2 BENEFITS OF STABLE LEARNING ARE CONSISTENT ACROSS ARCHITECTURES AND
HYPERPARAMETERS

In our experiments we consistently observed lower generalization gaps across all hyperparameter
settings of SL models. This indicates that the robustness improvements provided by SL hold across
different model settings, and are not simply a result of well-chosen hyperparameters. In Fig. 1, we
examine three representative covariate, label, and subpopulation shifts. We find that the SL models
more closely follow the ideal generalization trendline (in black) where the train set performance is
equal to the test set performance.

Additionally, we find that our results hold across a variety of commonly used model architectures.
Specifically, we use a variety of CNNs and logistic regression models across our tasks and find
that the findings do not change based on the model architecture. This is expected since algorithmic
stability is agnostic to architecture and hyperparameter choices by definition.

8 CONCLUSION

Our study investigates the utility of stability as a tool for improving both robustness and accuracy
to different distribution shifts. We find that by design, stability improves robustness at the expense
of accuracy for both covariate shift and subpopulation shift. Meanwhile, also by design, stability
improves both robustness and accuracy to label and natural shifts. We determine that this is be-
cause of the equal importance that uniform stability places on every data point in the training set.
Finally, we show that these results are consistent across hyperparamters, model architectures, and
shift severities.
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Olivier Bousquet and André Elisseeff. Stability and generalization. The Journal of Machine Learn-
ing Research, 2:499–526, 2002.

Irene Chen, Fredrik D Johansson, and David Sontag. Why is my classifier discriminatory? In
Advances in Neural Information Processing Systems, pp. 3539–3550, 2018.

Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized
smoothing. In International Conference on Machine Learning, pp. 1310–1320. PMLR, 2019.

Sebastian Curi, Kfir Y Levy, Stefanie Jegelka, and Andreas Krause. Adaptive sampling for stochastic
risk-averse learning. Advances in Neural Information Processing Systems, 33:1036–1047, 2020.

Agatha CH de Mattos, Gavin McArdle, and Michela Bertolotto. Mapping slums with medium
resolution satellite imagery: a comparative analysis of multi-spectral data and grey-level co-
occurrence matrix techniques. arXiv preprint arXiv:2106.11395, 2021.

John Duchi and Hongseok Namkoong. Learning models with uniform performance via distribution-
ally robust optimization. arXiv preprint arXiv:1810.08750, 2018.

John C Duchi and Hongseok Namkoong. Learning models with uniform performance via distribu-
tionally robust optimization. The Annals of Statistics, 49(3):1378–1406, 2021.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In Theory of cryptography conference, pp. 265–284. Springer, 2006.

Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toni Pitassi, Omer Reingold, and Aaron Roth. Gen-
eralization in adaptive data analysis and holdout reuse. Advances in Neural Information Process-
ing Systems, 28, 2015.

Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, and Aleksander Madry. Ex-
ploring the landscape of spatial robustness. In International Conference on Machine Learning,
pp. 1802–1811. PMLR, 2019.

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wichmann, and
Wieland Brendel. Imagenet-trained cnns are biased towards texture; increasing shape bias im-
proves accuracy and robustness. In International Conference on Learning Representations, 2018.

Marzyeh Ghassemi, Mike Wu, Michael C Hughes, Peter Szolovits, and Finale Doshi-Velez. Pre-
dicting intervention onset in the icu with switching state space models. AMIA Summits on Trans-
lational Science Proceedings, 2017:82, 2017.

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochas-
tic gradient descent. In Maria Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of
The 33rd International Conference on Machine Learning, volume 48 of Proceedings of Machine
Learning Research, pp. 1225–1234, New York, New York, USA, 20–22 Jun 2016. PMLR. URL
https://proceedings.mlr.press/v48/hardt16.html.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2016.

10

https://proceedings.mlr.press/v48/hardt16.html


Under review as a conference paper at ICLR 2023

Dan Hendrycks and Thomas G. Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. CoRR, abs/1903.12261, 2019. URL http://arxiv.org/
abs/1903.12261.

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander
Madry. Adversarial examples are not bugs, they are features. In Advances in Neural Information
Processing Systems, pp. 125–136, 2019.

Bargav Jayaraman and David Evans. Evaluating differentially private machine learning in practice.
In 28th {USENIX} Security Symposium ({USENIX} Security 19), pp. 1895–1912, 2019.

Alistair E. W. Johnson, Tom J. Pollard, Lu Shen, Li-wei H. Lehman, Mengling Feng, Mohammad
Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G. Mark. MIMIC-
III, a freely accessible critical care database. Scientific Data, 3(1):1–9, May 2016. ISSN
2052-4463. doi: 10.1038/sdata.2016.35. URL https://www.nature.com/articles/
sdata201635.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-
subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A
benchmark of in-the-wild distribution shifts. In International Conference on Machine Learning,
pp. 5637–5664. PMLR, 2021.

Bogdan Kulynych, Mohammad Yaghini, Giovanni Cherubin, and Carmela Troncoso. Disparate
vulnerability: on the unfairness of privacy attacks against machine learning. In 22nd Privacy
Enhancing Technologies Symposium (PETS 2022), volume abs/1906.00389, 2020. URL http:
//arxiv.org/abs/1906.00389.

Bogdan Kulynych, Yao-Yuan Yang, Yaodong Yu, Jarosław Błasiok, and Preetum Nakkiran. What
you see is what you get: Distributional generalization for algorithm design in deep learning. arXiv
preprint arXiv:2204.03230, 2022.
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