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ABSTRACT

Mathematical reasoning has long been a key benchmark for evaluating large lan-
guage models (LLMs). Although substantial progress has been made on math
word problems, the need for reasoning over tabular data in real-world applications
has been overlooked. For instance, applications such as business intelligence de-
mand not only multi-step numerical reasoning with tables but also robustness to
incomplete or inconsistent information. However, comprehensive evaluation in
this area is severely limited, constrained by the reliance on manually collected
tables that are difficult to scale and the lack of coverage for potential traps encoun-
tered in real-world scenarios. To address this problem, we propose AUTOT2T,
a neuro-symbolic framework that controllably transforms math word problems
into scalable and verified tabular reasoning tasks, enabling the evaluation of both
accuracy and robustness. Building on this pipeline, we develop TabularGSM, a
benchmark comprising three progressively complex subsets and a trap subset, with
two complementary evaluation settings. Our study reveals three key observations:
(1) Tabular structure makes mathematical reasoning more challenging; (2) The diffi-
culties stem from the joint effects of tabular retrieval and reasoning; (3) Reasoning
robustness is another significant issue that needs to be addressed in existing LLMs.
In-depth analyses are conducted for each observation to guide future research.

1 INTRODUCTION

Mathematical reasoning has long been a critical benchmark for evaluating the capabilities of large
language models (LLMs). The field has advanced remarkably in recent years (OpenAI, 2023; Guo
et al., 2025), with many single-scenario benchmarks now considered largely solved (Hosseini et al.,
2014; Patel et al., 2021; Cobbe et al., 2021). This progress has prompted a shift in research focus
toward real-world applications, particularly reasoning over semi-structured data like tables (Lu et al.,
2022). Unlike plain text, tables present information in a highly structured and organized format,
making them indispensable in domains such as business intelligence (Zhang et al., 2024) and financial
forecasting (Zhu et al., 2021).

Figure 1: Model performance com-
parasion between average questions and
top10% complex questions.

Nevertheless, real-world table reasoning scenarios present
significant challenges for LLMs. For example, in the finan-
cial sector, the need to process large-scale tables continues
to grow with the increasing volume and complexity of
data, alongside stricter requirements for reliability and
security (Bradley et al., 2024; Zavitsanos et al., 2024). In
quarterly financial reports, models are expected not only to
perform cross-column computations on numerous metrics
like revenue, profit, and liabilities but also to verify numeri-
cal consistency (e.g., ensuring total assets equal the sum of
liabilities and equity). Failure to properly interpret the data
or detect inconsistencies can lead to severe consequences
in downstream applications like investment decisions and
risk assessment (Cerchiello & Giudici, 2016).

Despite prior works (Zhu et al., 2021; Chen et al., 2021; Lu et al., 2022) addressing some aspects of
tabular mathematical reasoning, these efforts have been limited in table scale and primarily focused
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on accuracy of perfectly crafted problems. Specifically, existing tabular benchmarks largely rely on
manual annotation and collection, making it difficult to scale the datasets effectively. As a result,
these benchmarks fail to explore the limits of LLMs’ reasoning capabilities on more complex tables,
where the models perform worse (as shown in Fig. 1). Then, current benchmarks have not adequately
assessed the robustness of tabular mathematical reasoning, overlooking the risk of LLMs providing
hallucinated answers when faced with incomplete and inconsistent data. Therefore, to systematically
assess model capabilities across multiple dimensions, a comprehensive benchmark is crucial. In
this context, there is an urgent need for a more complete and systematic evaluation framework to
thoroughly explore and challenge the boundaries of existing models.

To address the above limitations, we propose an Automatic Text-to-Table generation framework,
AUTOT2T. It is a neuro-symbolic pipeline that converts math word problems into scalable and verified
tabular reasoning tasks without human annotation, enabling the evaluation of both accuracy and
robustness. To facilitate standardized evaluation and fair comparison, we construct a comprehensive
tabular math reasoning benchmark TabularGSM based on AUTOT2T. It includes three progressively
difficult subsets (Easy, Medium, Hard) as well as a Trap subset aimed at evaluating the robustness
of models in the face of incomplete or inconsistent tabular data, covering both table complexity
and robustness dimensions. Based on this, we conduct systematic experiments and analyses on 18
open-source and proprietary models, arriving at the following key observations.

1. Tabular structure makes mathematical reasoning more challenging (Sec 5.1). We observe
that nearly all models suffer significant performance drops on TabularGSM, with proprietary
reasoning models showing up to a 60% decline on complex tables. We further analyze the
preferences of different types of models for various table formats.

2. The difficulties stem from the joint effects of tabular retrieval and reasoning(Sec 5.2).
Our findings indicate that reasoning and retrieval difficulty jointly constrain performance. The
difficulty of reasoning in tables is significantly higher than pure retrieval, with the performance
gap between math reasoning and direct retrieval in tables exceeding 20% on average.

3. Reasoning robustness is another significant issue that needs to be addressed in existing
LLMs (Sec 5.3). We find that most models exhibit clear robustness weaknesses, often falling
into hallucination or overconfidence. Such traps introduce an additional step of reasoning
challenge, with contradiction-based traps hidden in reasoning chains being the hardest to detect.

Overall, we provide a systematic and in-depth analysis of tabular mathematical reasoning, revealing
that the coupling between reasoning and retrieval forms a core bottleneck in model performance.
This study represents a novel attempt at multimodal reasoning over structured data, and we discuss
initial directions for addressing these challenges.

2 RELATED WORK

Math Reasoning. Mathematical reasoning serves as a key benchmark for evaluating the capa-
bilities of large language models (LLMs) due to its verifiable nature. Early progress was made
on elementary-level math problems using datasets such as GSM8K (Cobbe et al., 2021), Multi-
Arith (Koncel-Kedziorski et al., 2016), and SVAMP (Patel et al., 2021), where methods like in-context
learning (Wei et al., 2022; Gao et al., 2023), supervised fine-tuning (Li et al., 2024b), and reinforce-
ment learning (Guo et al., 2025) demonstrated strong performance. Since then, researchers have
questioned the accuracy of current assessments of large models’ mathematical reasoning, exploring
approaches such as neural-symbolic methods (Mirzadeh et al., 2024). A growing area of interest is
the robustness of mathematical reasoning (Zhou et al., 2024; Shi et al., 2023), specifically, whether
models can refrain from generating hallucinations when faced with incomplete or logically deceptive
prompts (Tian et al., 2024; Zhao et al., 2024).

Table Question Answering. Table Question Answering(Table QA) has significant practical ap-
plications across various domains, including financial statement analysis (Chen et al., 2021) and
medical diagnosis (Hasny et al., 2025). The field has advanced considerably with the development
of high-quality datasets, beginning with the pioneering work of Pasupat et al. (Pasupat & Liang,
2015), who constructed the WikiTableQuestions (WTQ) dataset using Wikipedia tables. Subsequent
research shifted to more complex QA tasks requiring reasoning capabilities, exemplified by datasets
such as ToTTo (Parikh et al., 2020)(focused on answer generation) and OTTQA (Chen et al., 2020)
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Figure 2: An overview of AUTOT2T pipeline.

(emphasizing cross-table reasoning). More recently, FinQA (Chen et al., 2021) and AiTQA (Katsis
et al., 2021) have explored numerical reasoning in tables, while TableBench (Wu et al., 2025) and
Text2Analysis (He et al., 2024) introduced multimodal approaches incorporating visual elements.
However, most existing datasets rely on manual annotation, lacking an automated pipeline for scalable
data processing.

3 AUTOMATED TEXT TO TABLE

The construction process of the AUTOT2T (Automated Text to Table) pipeline for converting math
word problems into math tabular problems consists of three main stages: semantic decoupling, table
transformation, and table augmentation. An overview of AUTOT2T is shown in Fig 2.

3.1 SEMANTIC DECOUPLING

Firstly, our objective is to semantically decouple the text of the math word problems and extract key
elements that can be structurally represented. Inspired by previous work (Li et al., 2024a), we seek to
decompose and verify mathematical problems through formal language modeling. Specifically, we
use SMT-Lib (Barrett et al., 2010) as the formal language, and a math problem can be structured into
the following forms:

Goal g := solve f(v)

Constraints c := e1(v) ▷◁ e2(v), ▷◁∈ {≥,≤, >,<,=, ̸=}
Expressions e := h | e1 ⊕ e2, ⊕ ∈ {+,−,×,÷}

Domains D := N | N+ | R

In this formulation, v denotes a variable in the problem, c denotes a constraint involving variables, e
denotes an expression, h denotes a constant and f denotes the objective function to be solved. For
problem p, we denote the modeling state as S = (V, C) where V is the set of variables v and C is
the set of constraints c. We prompt LLM to perform formal language modeling, breaking down the
natural language text p into components of S.

(V, C) = LLMsd(p) (1)

We then invoke a formal solver Φ (such as Z3 (de Moura & Bjørner, 2008), CVC5 (Barbosa et al.,
2022)) to perform symbolic computation and verify whether the derived solution matches that of the
original problem. If it is not satisfied, we will re-execute this step. The verification through formal
tools ensures the correctness of our conversion.

Rvalid = Φ(V, C) (2)
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Figure 3: Illustrative cases in TabularGSM and corresponding model responses

3.2 TABLE TRANSFORMATION

After obtaining the formal modeling state, the next goal is to transform semantically decoupled
components into a structured tabular representation. Through semantic analysis, we focus on a single
entity (e.g., a person) by creating a name key and designating it as the table’s primary key. Next,
we prompt the LLM to convert the variable set V and their corresponding assigned constraints Ca
into corresponding column fields, while removing the data portion from the original text expression
p. The LLM output consists of a blurred text description p̂ and a 2-row × n-column seed table tseed,
where the first row represents the column headers, the first column represents the primary key entity
(name), and the remaining cells are filled with initial variables and their assigned values.

(p̂, tseed) = LLMtt(p,V, Ca) (3)

Upon completing the transformation process, we first verify whether a valid entity can be successfully
extracted—specifically, whether an entity-centric structure exists (i.e., the presence of a valid name
field). Subsequently, we reintroduce the variables and their assigned values extracted from the seed
table tseed into the previously constructed formal constraint system S , establishing a new assignment
constraint set Câ, and use the solver Φ to verify it again.

R̂valid = Φ(V, (C \ Ca) ∪ Câ) (4)

3.3 TABLE AUGMENTATION

After obtaining the initial seed table tseed, we construct an augmentation pool A to expand and modify
tables through randomized operations. We provide four types of strategies—Row Augmentation
(RowAug), Column Augmentation (ColAug), Order Shuffling (OrdShf) and Information Modification
(InfMut). The first three strategies increase the table’s complexity and retrieval difficulty by adding
rows or columns or by shuffling their order, whereas the last strategy introduces traps by altering
the target row, making the problem unsolvable. For instance, a missing condition problem removes
a required value, while a contradictory condition problem inserts an intermediate variable whose
assigned value conflicts with that derived from the known variables. Detailed explanations of these
augmentations are provided in Appendix A.2.1.

The user can select a series of augmentation strategies and times based on their own need, and apply
them to the previously obtained root table. After each completion, we will get a new table, which
will become the input for the next conversion.

ti =

{
tseed if i = 0

Augj(ti−1), Augj(·) ∈ A if i > 0
(5)
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Table 1: Comparation between TabularGSM and existed dataset

Dataset Key statistic Content Coverage Constrction Process

Test size Table
cells

Information
Retrieval

Math
Reasoning Robustness Automated

Varification Symbolizable

AddSub (Hosseini et al., 2014) 600 NA ✗ ✓ ✗ ✗ ✗
SVAMP (Patel et al., 2021) 1000 NA ✗ ✓ ✗ ✗ ✗
GSM8k (Cobbe et al., 2021) 1438 NA ✗ ✓ ✗ ✗ ✗
PMC (Tian et al., 2024) 5374 NA ✗ ✓ ✓ ✓ ✗
Tabfact (Chen et al., 2019) 1695 15.1 ✓ ✗ ✗ ✗ ✗
FinQA (Chen et al., 2021) 1147 24.5 ✓ ✓ ✗ ✗ ✗
TabMWP (Lu et al., 2022) 7686 11.8 ✓ ✓ ✗ ✗ ✗
TaT-QA (Zhu et al., 2021) 669 37.6 ✓ ✓ ✗ ✗ ✗
TabularGSM 3391 93.5 ✓ ✓ ✓ ✓ ✓

Through our AUTOT2T pipeline, users can perform customized tabular rewriting of math word
problems to automatically generate a large number of diverse problem variants without manual
annotation. This solution enables efficient and controllable data generation for specific downstream
proprietary domains.

4 TABULARGSM BENCHMARK

4.1 BENCKMARK DETAILS

Table 2: Key statistics in TabularGSM

Statistic Easy Medium Hard Trap
Total questions 797 797 797 1000
Table cells 41 82 162 90
Table Rows 4.1 4.1 8.1 4.5
Table Columns 10 20 20 20
Question Length 232.2 232.2 232.2 237
RowAug ✓ ✓ ✓ ✓
OrdShf ✗ ✓ ✓ ✓
ColAug ✗ ✗ ✓ ✗
InfMut ✗ ✗ ✗ ✓

To enable standardized evaluation and fair
comparison, we construct a predefined bench-
mark dataset, TabularGSM, through the AU-
TOT2T pipeline. Based on the GSM8K Cobbe
et al. (2021) test set as the source corpus,
TabularGSM consists of four subsets: Easy,
Medium, Hard, and Trap, comprising a total
of 3,391 problems.

Pure test setting. For the Pure Setting, we only
conceal the information required to solve the
problem within the table. The first three subsets
each contain 797 examples (with the remain-
ing samples excluded due to failures in table-

conversion validation), all derived from the same seed problems. The progression from Easy to
Hard reflects increasing table complexity (in terms of the number of rows or columns), which makes
information retrieval more challenging.

Robust test setting. We are the first to introduce robustness evaluation in the context of tabular
mathematical reasoning, with the primary goal of testing whether models can detect incomplete or
inconsistent information in tables and appropriately abstain from answering. Specifically, in Trap sub-
datset, we embed traps into tables, which fall into two categories: missing-type (removing essential
information from the target line of the table) and contra-type (injecting intermediate variables
required for the question but designed to conflict with existing information). During evaluation, we
observe whether models can accurately identify these traps and abstain from answering, which serves
as the core metric. We measure performance by reporting the proportion of ill-defined questions
that a model successfully rejects. To avoid overly conservative behavior (e.g., refusing to answer all
questions), our robust testing setting mixes well-defined(Medium difficulty) and trap questions in a
1:1 ratio, while explicitly informing the model in the prompt that traps may exist. This setup enables
a fair assessment of robustness.

Table 2 summarizes the key statistics of each subset as well as the augmentation strategies employed.
And an illustrative case in TabularGSM and corresponding model responses are shown in Fig 3,
while additional examples from TabularGSM and visual comparisons with GSM8K are provided in
Appendix A.2.
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Table 3: Main reults on TabularGSM benchmark

Pure test Robustness testDataset GSM8k Fmt Easy Medium Hard Avg Well Contra Missing Avg
Open source General Model

Qwen3 14B 94.54 Se 79.94 70.94 69.79 73.55 58.55 28.57 69.23 54.15
Md 77.87 70.21 61.59 69.89 55.89 28.21 67.03 51.88

Qwen3 8B 93.30 Se 75.17 62.62 56.99 64.92 44.44 41.25 70.97 50.35
Md 73.18 55.63 47.30 58.70 36.71 34.54 68.57 44.07

Qwen3 4B 91.79 Se 73.53 56.85 46.47 58.95 39.63 39.02 68.67 46.77
Md 71.57 52.68 41.73 55.32 39.31 32.12 69.75 45.15

Qwen2.5 14B 93.40 Se 79.90 68.06 62.34 70.10 59.40 6.40 22.40 36.90
Md 79.21 64.10 49.09 64.13 60.00 6.80 20.00 36.70

Qwen2.5 14B coder 90.68 Se 71.59 60.38 49.90 60.62 47.40 30.00 52.40 44.30
Md 72.63 57.74 45.61 58.66 47.40 23.60 51.60 42.50

Qwen2.5 7B 82.86 Se 35.56 21.36 19.39 25.43 39.20 13.60 34.00 31.50
Md 53.92 34.45 20.64 36.33 37.40 16.00 34.80 31.40

Qwen2.5 7B coder 84.71 Se 62.35 42.01 29.79 44.47 30.80 24.40 43.60 32.40
Md 64.78 42.13 23.52 43.47 33.40 20.80 34.00 30.40

Qwen2.5 3B 80.28 Se 36.37 22.71 16.94 25.34 2.20 84.00 91.20 44.90
Md 39.74 23.96 15.68 26.46 6.20 69.60 79.20 40.30

LLama3.1 8B 83.69 Se 42.84 34.93 30.01 35.92 29.00 6.40 8.40 18.20
Md 48.61 33.37 32.15 38.04 29.60 10.40 9.60 19.80

Open-Source Math Model

Qwen math 7B 95.45 Se 53.69 31.09 14.59 33.12 28.60 26.40 36.40 30.00
Md 53.69 30.37 14.59 32.88 27.00 20.80 48.93 30.93

DeepSeek math 7B 80.13 Se 13.93 6.24 3.96 8.04 2.60 50.40 51.20 26.70
Md 12.81 6.60 2.04 7.15 4.00 60.40 53.60 30.50

Open-Source Tabular Model

TableGPT 7B 24.33 Se 30.13 18.86 12.60 20.53 26.20 26.80 44.80 31.00
Md 30.60 16.44 17.64 21.56 30.60 23.20 46.40 32.70

StructLM 7B 32.97 Se 13.74 6.12 3.24 7.70 7.20 0 0 3.60
Md 14.78 8.28 4.44 9.17 9.60 0 0 4.80

Closed-Source API

DeepSeek v3 96.36 Se 88.45 87.27 85.71 87.14 68.60 68.40 85.20 72.70
Md 88.63 87.63 85.83 87.37 68.60 68.00 82.80 72.00

GLM-4-plus 95.07 Se 83.37 81.15 79.83 81.45 68.80 32.80 69.60 60.00
Md 84.52 81.03 78.27 81.27 71.40 27.60 65.60 59.00

GPT 4 94.46 Se 83.97 82.57 77.41 81.32 66.39 22.48 74.01 57.00
Md 85.54 78.42 75.23 79.73 64.25 21.11 80.20 57.80

* More results on TabularGSM are shown in appendix.

4.2 COMPARISON WITH EXISTING BENCHMARKS

As shown in Table 1, TabularGSM differs from existing ones in three key aspects: (1) Tables in
TabularGSM are more complex, containing more cells, which makes it harder to retrieve useful
information; (2) Compared with previous mathematical reasoning datasets, we jointly evaluate both
reasoning and retrieval abilities. Relative to other tabular QA datasets, we place particular emphasis
on mathematical reasoning while also assessing whether models can effectively identify traps in
problems/tables (e.g., flawed or contradictory conditions), thereby enabling robust and safe reasoning;
(3) In terms of construction, unlike prior work that relies heavily on manual annotation, we adopt a
neuro-symbolic approach AUTOT2T, which rewrites textual problems into tabular form. This allows
us to generate multiple table variants for the same seed problem, achieving efficient and controllable
data creation.

5 EXPERIMENTS AND RESULTS

In this section, we delve into three key research questions: RQ1. Does tabular structure introduce
additional challenges for mathematical reasoning? RQ2. What factors affect the difficulty of tabular
mathematical reasoning? RQ3. Can models achieve robust tabular mathematical reasoning?

For the experimental setup, we evaluated four major categories of LLMs within TabularGSM,
including open-source general-purpose models, open-source math-specialized models and proprietary
APIs. For each setting(Pure Setting and Robust Setting), we evaluate two widely used approaches
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Figure 4: Accuracy heatmap of table complexity and reasoning difficulty in tabular math reasoning

Figure 5: Performance comparison of table reasoning and single-step table retrieval

for organizing tables: Serialized format(Se) and Markdown format(Md). More setup details can be
found in Appendix A.3.1.

5.1 DOES TABULAR STRUCTURE INTRODUCE ADDITIONAL CHALLENGES FOR MATHEMATICAL
REASONING?

Observation 1: Tabular structure makes mathematical reasoning more challenging. As shown
in Table 3 left side, a consistent and substantial performance drop is observed across all models when
transitioning from the original GSM8K dataset to our constructed TabularGSM. Furthermore, this
decline becomes more pronounced as table complexity increases. Smaller models—already limited in
reasoning capability—experience sharper performance degradation, and domain-specialized models
(including both math-specific and table-specific models) also struggle to generalize in this setting.
We conducted a manual analysis of selected results and identified four main types of model errors:
retrieval omission (failing to recognize the need for retrieval), retrieval mismatch (discrepancy
between the ground truth and retrieved table values), expression error (incorrect formulation of the
target equation), and numerical calculation error (correct formula but incorrect computation). We
found that retrieval mismatch is a primary cause of model errors. A detailed case analysis is provided
in Appendix A.4.

General reasoning models tend to prefer serialized format, while Tabular LLMs show a pref-
erence for markdown format. The results in Table 3 clearly show that the organizational format
of the table is indeed important in tabular mathematical reasoning. Overall, the Serialized format
yields consistently higher accuracy across most models, as its linearized structure makes information
retrieval easier and reduces the difficulty of locating relevant entries during reasoning. In contrast,
the Markdown format preserves a more structured layout, which is more natural for humans but intro-
duces additional complexity for general-purpose reasoning models, making retrieval and multi-step
reasoning harder. Nevertheless, such structured representations may prove more beneficial for models
explicitly trained on table-structured data, such as specialized tabular reasoning LLMs.

5.2 WHAT FACTORS AFFECT THE DIFFICULTY OF TABULAR MATHEMATICAL REASONING?

Observation 2: The difficulties stem from the joint effects of tabular retrieval and reasoning
We categorize all test data from TabularGSM for each model along two axes: retrieval difficulty
(i.e., table complexity, divided into easy, medium, and hard subsets) and reasoning difficulty (the
number of variables required to solve the problem). This results in nine categories, and we present
the corresponding accuracies as a heatmap in Figure 4. The results show that model performance

7
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Table 4: Accuracy on Medium Dataset: Pure vs.
Robust Evaluation

Model Pure acc Robust acc ∆

Qwen3 14B 70.57 57.22 -13.35
Qwen2.5 14B 66.08 59.70 -6.38
Llama 3.1 8B 34.15 29.30 -4.85
Qwen math 30.73 23.60 -7.13
Deepseek-V3 87.45 68.20 -19.25

Table 5: Comparison between performance on
Direct trap and Hidden trap problems

Model Type D-Trap H-Trap ∆

Qwen3 8B Mis 91.59 69.77 -21.82
Con 36.17 37.90 +1.73

Qwen3 4B Mis 89.95 69.21 -20.74
Con 37.44 35.57 -1.87

Qwen3 1.7B Mis 48.51 29.87 -18.64
Con 18.36 15.63 -2.73

is strongly correlated with both factors, with retrieval difficulty and reasoning difficulty exerting
nearly equivalent influence—underscoring the significance of semi-structured (tabular) mathematical
reasoning tasks. In addition, we further conduct targeted table analysis by fixing either the number
of rows or columns using AUTOT2T (ablations of ColAug and RowAug), as detailed in the Ap-
pendix A.3.2. The findings clearly show that increasing both rows and columns substantially degrades
tabular reasoning performance.

The difficulty of reasoning in tables is significantly increased compared to pure retrieval. Math-
ematical reasoning in tables can be regarded as a compound task involving both tabular retrieval
and mathematical reasoning. We conducted an exploratory experiment comparing end-to-end rea-
soning with simplified single-step retrieval. Specifically, with a given question like “Janet’s
ducks lay x eggs per day...”, we asked “How many eggs do Janet’s ducks
lay per day?”, which corresponds directly to the “eggs-per-day” key in the table. As
shown in Figure 5, models performed markedly better on the single-step retrieval task than on the full
reasoning task. This indicates that when explicitly guided on what to retrieve, models can handle
retrieval reliably. However, their performance drops sharply once retrieval is embedded in multi-step
reasoning, by an average of 20%. This reveals a pronounced performance gap between retrieval and
reasoning in tables.

5.3 CAN MODELS ACHIEVE ROBUST TABULAR MATHEMATICAL REASONING?

Observation 3: Reasoning robustness is another significant issue that needs to be addressed
in existing LLMs. As shown in Table 3 right side, the robust setting is difficult for most LLMs,
with poor performance on both well-defined and trap instances. Within traps, contra problems are
harder than missing ones. Overall, robustness generally correlates with a model’s TableQA ability,
but exceptions exist. For example, Qwen2.5 3B uses overly conservative refusal strategies, improving
robustness scores while reducing accuracy on well-defined questions, revealing a lack of nuanced
robustness understanding. Models tend to focus on direct problem-solving and often fail to check
whether problem conditions are satisfied, especially when traps appear during reasoning, which can
lead to hallucinations. This is a primary source of robustness vulnerabilities.

Robustness evaluation as a reasoning challenge involving additional identification steps. In our
robust setting, we explicitly inform the model via prompts about the presence of both well-defined and
trap problems. This setup effectively raises the bar for reasoning, as the model must first determine
whether a problem is solvable before planning the next steps. As shown in Table 4, this mixed
setting leads to a noticeable drop in performance on well-defined problems across all types of models,
including advanced proprietary APIs. We argue that this need for discriminative capability essentially
places higher demands on the model’s planning and reasoning abilities, which makes the model think
one step further.

Traps within the reasoning process increase the risk of model hallucinations. To further discuss
the impact of trap types, we conduct experiments with two types of direct traps (D-Trap): Direct
Missing (DM) and Direct Contra (DC). Unlike the traps in TabularGSM, these are more explicit and
easier for humans to detect. In DM questions, the table lacks the "name" attribute required by the
question, so the target person and their information are entirely missing. In DC questions, the table
has duplicate columns with conflicting values, which can produce different answers depending on
which value is used. Table 5 shows that models detect missing traps more successfully than indirect
traps, while performance on contra traps remains poor and variable. These results suggest that traps
within the reasoning process are inherently harder for models to detect.
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Table 6: Performance changes on TabularGSM of the basic model after AUTOT2T training

Settings Easy Medium Hard

Se Md Se Md Se Md
Qwen2.5-3B-Instrct 36.37 39.74 22.71 23.96 16.94 15.68
Qwen2.5-3B-Instrct + finetune 55.43 53.58 41.91 41.78 37.01 36.51

∆ ↑ 19.06 ↑ 13.84 ↑ 19.20 ↑ 17.82 ↑ 20.07 ↑ 20.83
Qwen2.5-7B-Instrct 35.56 53.92 21.36 34.45 19.39 20.64
Qwen2.5-7B-Instrct + finetune 62.47 62.10 48.06 51.32 37.14 36.39

∆ ↑ 26.91 ↑ 8.18 ↑ 26.70 ↑ 16.87 ↑ 17.75 ↑ 15.75

5.4 MORE DISCUSSION

Figure 6: Performance Comparison of
Different Datasets on Qwen 2.5-7B

TabularGSM provides a representative range of diffi-
culty levels compared to other dataset. First, the dif-
ficulty of our multiple subsets differs from that of previ-
ous benchmarks: our dataset spans a wide range of diffi-
culty levels, encompassing those of other typical datasets.
Consequently, model performance on the hard subset of
TabularGSM is lower than on conventional benchmarks,
reflecting the increased challenge (results in Fig 6). Sec-
ond, our pipeline allows for flexible dataset expansion and
symbolic representation, which not only enables system-
atic exploration of model capabilities but also mitigates
the risk of overfitting on test data.

A flexible data generation framework can provide sub-
stantial support to improve tabular math reasoning ability. Although LLMs have advanced rapidly,
they still perform poorly on semi-structured mathematical problems, particularly on TabularGSM.
To address this gap, we leverage the flexibility of AUTOT2T to create targeted training data that
aligns with tabular reasoning challenges. Using the GSM8K training set as root set, we generated
about 6,000 augmented samples and fine-tuned representative models (Qwen2.5-7B and Qwen2.5-
3B), As shown in table 6, the fine-tuned model achieves an average performance improvement of
approximately 15% in TabularGSM. The benefits also transfer to other tabular reasoning benchmarks
such as TAT-QA (Zhu et al., 2021), FinQA (Chen et al., 2021), and TabMWP (Lu et al., 2022),
with an average gain of 4%. Improvements are most pronounced on complex tables, highlighting
the effectiveness of controlled data generation in enhancing both performance and generalization.
Detailed results are provided in Appendix A.3.2.

6 CONCLUSION

In this work, we introduce TabularGSM, a comprehensive benchmark for systematically examining
the limitations of Tabular math reasoning in LLMs. The benchmark comprises three progressively
complex subsets and a trap subset, together enabling precise evaluation of both model performance
and robustness. To construct this dataset, we propose a neural-symbolic framework, AUTOT2T, which
controllably transforms mathematical word problems into scalable and validated tabular reasoning
tasks. We conduct an extensive empirical evaluation of 18 models on TabularGSM, complemented by
detailed ablation analyses. By aligning three key observations with three guiding research questions,
our study highlights the inherent challenges of tabular mathematical reasoning and offers preliminary
insights into potential future research directions.

Future work and limitations. Beyond exploring more flexible and practical data generation frame-
works, a promising research direction is to decouple retrieval from inference by training large retrieval
models tailored for structured data. A limitation of this work is that the evaluation is restricted to
large models in the text modality. Future studies could incorporate tabular data in image form and
assess the effectiveness of multimodal large language models.
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and does not involve human subjects, sensitive personal data, or animals. All datasets used are publicly
available or synthetically generated, and do not contain sensitive or personally identifiable information.
The purpose of this study is to explore the limits of large language models in tabular mathematical
reasoning and to provide a standardized benchmark for future research. The experiments were
conducted with moderate computational resources and entail a limited environmental footprint. This
work is intended solely for academic research.

REPRODICIBILITY STATEMENT

Our dataset and main evaluation code are publicly available at https://anonymous.4open.
science/r/TabularGSM-2C31/. The experimental results reported in this paper can be repro-
duced using the released code.
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A APPENDIX

A.1 USE OF LLMS

This work investigates the boundaries of large language models (LLMs) in tabular mathematical
reasoning. In this process, LLMs serve a dual role. On the one hand, they act as both the subject of
study and a tool for dataset construction and experimental evaluation, supporting data generation
(Sec. 3) and benchmarking representative models (Sec. 4). On the other hand, LLMs are additionally
employed to polish the writing and enhance the clarity of English expression.

All key research ideas, theoretical analysis, experimental design, and writing of the main body of
the paper were independently completed by the authors. We did not use the large language model
to generate the scientific content of the manuscript, nor did we contribute to the formulation of the
research hypotheses or the interpretation of the findings. The authors bear full responsibility for the
accuracy, originality, and completeness of all content in the paper.

A.2 DETAILS OF TABLEGSM8K DATASET

To evaluate the reasoning ability of the models on structured data, we construct the TabularGSM
benchmark including four subsets: Easy, Medium, Hard, and Robust.The Robust subset contains 50%
solvable problems (corresponding to medium difficulty) and 50% unsolvable problems (25% with
contradictory conditions + 25% with missing information).

Taking the following problem as an example (Example 1), we use the four categories men-
tioned in 3.1.3 to generate five tables(Table 7 8 9 10 11) based on the seed row and corresponding
generalized problem, so that the table and generalized problem form a question pair as our dataset.

• Easy: Apply RowAug (10 times) and Shuffling to the seed row
• Medium: Apply RowAug (20 times), Shuffling to the seed row
• Hard: Apply RowAug (20 times), Shuffling, and ColAug (4 columns) (adding irrelevant

information marked with gray)
• Robust: Apply RowAug (20 times), Shuffling, and InfMod(two situations) to the seed row

– Contra: Apply Contradictory Condition Modification, adding row "eggs_for_sale",
which is an implicit variable that can be obtained from the formula "eggs_for_sale =
eggs_per_day - eggs_eaten - eggs_for_muffins". Modify this implicit variable (original
value is marked with blue) to create conflicts with existing constraints, making the
problem unsolvable.

– Missing: Apply Missing Condition Modification, removing a key data (marked with
yellow)(set as null) from seed row.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Example 1

Original Problem: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every
morning and bakes muffins for her friends every day with four. She sells the remainder at the
farmers’ market daily for $2 per fresh duck egg. How much in dollars does she make every
day at the farmers’ market?

Generalized Problem: Janet’s ducks lay x eggs per day. She eats y for breakfast every
morning and bakes muffins for her friends every day with z. She sells the remainder at the
farmers’ market daily for $w per fresh duck egg. How much in dollars does she make every
day at the farmers’ market?

Seed Row: (red word in table)
Name Eggs per Day Eggs Eaten Eggs for Muffins Price per Egg
Janet 16 3 4 2

Table 7: Easy Table

Name Eggs per Day Eggs Eaten Eggs for Muffins Price per Egg

Sebastian 72 8 16 7
Sofia 73 1 17 7
Elijah 5 4 14 10
Mia 73 9 19 7
Ava 46 0 7 5
Samuel 3 8 6 7
Logan 47 0 9 7
Henry 95 9 9 6
Janet 16 3 4 2
Ella 65 8 15 4
Elizabeth 54 0 2 4

Table 8: Medium Table

Price/Egg For Muffins Name Eaten Eggs/Day

1 18 Jacob 1 17
8 7 Sebastian 0 20
9 12 Lillian 3 59
6 14 Aiden 1 80
7 20 Joseph 2 11
7 4 James 9 20
9 16 Grace 4 36

10 17 Mia 6 90
8 8 Oliver 3 43
6 13 Charlotte 0 18
9 3 Mia 3 79

10 15 Mason 1 34
1 1 Jacob 9 85
4 8 Lucas 8 95
3 13 Liam 8 56

10 5 James 8 84
Continued on next page
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Table 8 – Continued from previous page
Price/Egg For Muffins Name Eaten Eggs/Day

1 0 Oliver 5 47
6 19 Eleanor 5 40
3 10 Victoria 9 68
5 5 Samuel 5 16
2 4 Janet 3 16
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Table 9: Hard Table

Age Heart Rate Eggs/Day Price/Egg Name Eaten For Muffins Body Temp Sleep Hours

23 81 75 1 Emma 3 1 38 4
46 79 81 5 Chloe 7 0 38 9
43 88 10 3 Emma 2 14 39 6
42 73 41 9 Madison 3 11 40 10
51 87 98 3 Eleanor 0 4 40 9
50 97 94 6 Olivia 1 7 37 10
63 67 93 3 Lily 5 16 40 8
38 70 51 5 David 5 11 39 6
70 87 19 10 Isabella 3 17 40 7
64 99 11 1 Avery 8 9 38 10
72 67 81 7 Emily 1 20 38 4
57 69 38 6 Ella 7 16 36 4
25 62 94 10 John 3 11 39 5
71 91 29 5 Camila 6 7 38 4
42 73 62 9 Layla 7 17 36 8
62 96 32 7 Harper 2 19 38 6
36 78 77 8 Olivia 6 3 39 9
48 85 7 7 Aiden 8 10 38 8
60 82 20 5 Joseph 9 19 38 6
30 94 77 7 Logan 2 18 40 7
25 72 16 2 Janet 3 4 39 5

Table 10: Table with Contradictory Conditions

eggs_per_day eggs_for_sale
(real_eggs_for_sale) eggs_eaten name eggs_for_muffins price_per_egg

65 10 (38) 7 Noah 20 4
87 9 (65) 5 Wyatt 17 1
95 13 (83) 0 Jayden 12 1
47 13 (27) 8 Lucas 12 4
34 15 (18) 9 Ethan 7 7
72 13 (53) 7 Liam 12 2
79 8 (53) 10 Sofia 16 4
12 7 (-1) 5 Lily 8 9
58 13 (45) 5 Sophia 8 1
31 12 (28) 0 Jayden 3 5
90 12 (78) 10 Ava 2 3
86 16 (58) 8 Sophia 20 10
45 14 (42) 1 Amelia 2 8
44 16 (37) 7 Victoria 0 10
84 10 (64) 7 Mason 13 9
16 12 (7) 3 Janet 4 2
74 7 (60) 7 Oliver 7 10
43 15 (31) 3 Aiden 9 8
82 16 (70) 7 Michael 5 5
57 16 (45) 0 Riley 12 7
52 12 (31) 5 Henry 16 8
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Table 11: Table with Missing Information

eggs_per_day eggs_eaten name price_per_egg eggs_for_muffins

66 2 Riley 8 10
97 2 Hannah 3 0
70 3 Olivia 3 20
51 8 Charlotte 6 9
79 0 Elizabeth 2 13
16 null Janet 2 4
14 10 Ava 8 3
48 4 Ethan 3 14
73 7 Olivia 3 20
32 0 Chloe 3 14
41 8 James 3 0

1 1 Benjamin 3 4
8 0 Sophia 3 13

20 6 Victoria 8 14
93 10 John 9 8
62 0 Penelope 10 10
21 2 Harper 6 5
17 1 Oliver 10 10
60 3 John 4 4
14 0 David 9 3
76 0 Jayden 1 7

A.2.1 DETAILD EXPLANATION OF AUGMENTATIONS

The detaild explanation of augmentations used in A are as follows.

• Row Augmentation(RowAug): Select an existing row as a seed and modify its column data
to simulate information of different individuals (e.g., changing names, adjusting numerical
values). As augmented rows only serve to expand the dataset size without affecting the
original problem’s solvability, no additional validation of numerical rationality is required.

• Column Augmentation(ColAug): A new column is added to the existing table. Since
each row is constructed based on the protagonist of the mathematical problem, column
augmentation enriches the description of the entities by adding information such as "height",
"blood pressure", and other attributes.

• Order Shuffling(OrdShf): Randomly shuffle row or column sequences to increase the
difficulty of data retrieval.

• Information Modification(InfMod): This strategy affects solvability in two ways:
– Missing Condition Modification: Remove one or more key data points from seed rows

(set as null), rendering the original problem unsolvable due to insufficient conditions.
– Contradictory Condition Modification: Modify implicit variables (values not ex-

plicitly stated but derivable from given conditions) to create conflicts with existing
constraints, making the problem unsolvable due to logical contradictions.
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Table 12: Performance of fine-tuned models on different tabular reasoning benchmarks

Setting TabMWP FinQA TAT-QA

Average Top10% Average Top10% Average Top10%

Baseline 74.09 74.07 57.72 48.00 37.34 30.77
Pure-finetune 91.60 91.90 74.80 71.19 67.38 51.28

Mix-finetune 94.70 98.11 77.59 77.97 69.53 56.41
∆ ↑ 3.10 ↑ 6.21 ↑ 2.79 ↑ 6.78 ↑ 2.15 ↑ 5.13

A.3 EXPERIMENT DETAILS

A.3.1 SETUP

Models. We evaluated four major categories of LLMs within TabularGSM, including open-source
general-purpose models (e.g., the Qwen series (Yang et al., 2024a)(including Qwen 3 and Qwen
2.5) and Llama3 series (Grattafiori et al., 2024)), open-source math-specialized models (DeepSeek-
Math (Shao et al., 2024) and Qwen-Math (Yang et al., 2024b)), open-source table-specialized models
(TableGPT (Zha et al., 2023) and StructLM (Zhuang et al., 2024)), and proprietary API models
(GPT-4 (OpenAI, 2023), DeepSeek-v3 (Liu et al., 2024), and GLM-4-plus (GLM et al., 2024)).

Setting. The evaluation setup is divided into two parts: Pure Setting and Robust Setting. In the Pure
Setting, models are required to answer questions solely based on the provided tabular information,
and we mainly assess their accuracy on standard tabular reasoning tasks. In the Robust Setting, trap
problems and medium problems are mixed at a 1:1 ratio to form the test set. At the same time, models
are explicitly informed that some problems may be unsolvable. If a model determines that a question
cannot be answered based on the given information, it is instructed to output Unsolvable.

Formats. We evaluate two widely used ways of organizing tables: serialized format and Markdown
format. In the serialized format, each table row is converted into key-value pairs (e.g., "name:
Janet, Eggs_per_day: 16, Eggs_eat_morning: 4..."). In the Markdown for-
mat, the table is presented using standard Markdown syntax, with the first row as column headers
and subsequent rows listing values in order, using the "|" symbol as the column delimiter. Details
prompts can be found in the appendix or the code section.

Computing Resources. We use NVIDIA A100 servers as our primary computing platform, along
with a few additional machines equipped with RTX 4090 GPUs.

A.3.2 ADDITIONAL RESULTS

AUTOT2T-generated data improves performance on other tabular reasoning datasets. We
evaluate on three other tabular math reasoning datasets on Qwen-2.5-7B model, namely TAT-QA (Zhu
et al., 2021), FinQA (Chen et al., 2021), and TabMWP (Lu et al., 2022), which primarily test
mathematical reasoning over tables. Under the same number of training steps, we further compare
two settings: (i) training only on the target dataset’s official training set (Pure-finetune), and (ii)
training on a mixed dataset that combines the target dataset with data generated by AUTOT2T
(Mix-finetune). As shown in Table 12, the Mix-finetune consistently outperforms the Pure-finetune
setting. The improvement is particularly pronounced on more complex tables, which highlights the
versatility and generalization ability of our AUTOT2T across diverse datasets.

Model performance degrades with increased retrieval difficulty. First, we want to explore
the relationship between performance degradation and table complexity. Through Table 3, we
get an initial observation that model performance decreases monotonically as table complexity
increases—from easy to hard levels. To further investigate the underlying mechanisms, we conducted
a supplementary analysis based on two data augmentation strategies: ColAug and RowAug. We
generated a series of augmented tables by fixing either the number of rows or columns and varying
the other, to examine how model performance responds to changes in table structure. As shown in
Figure 7, while the inference performance fluctuates as the number of columns (ColAug) or rows
(RowAug) increases, a clear downward trend is evident. We attribute this degradation to the increased
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Figure 7: Relationship between model performance changes and table complexity
Table 13: Comparison between performance on Direct trap and Hidden trap problems

Missing ContraModel Fmt Direct trap Hidden trap ∆ Direct trap Hidden trap ∆
Se 92.30 69.23 -23.07 28.68 28.57 -0.11Qwen3 14B Md 89.18 67.03 -22.15 21.47 28.21 6.74
Se 93.79 70.97 -22.82 40.87 41.25 0.38Qwen3 8B Md 89.38 68.57 -20.81 31.47 34.54 3.07
Se 91.72 68.67 -23.05 40.20 39.02 -1.18Qwen3 4B Md 88.19 69.75 -18.44 34.69 32.12 -2.57
Se 50.17 37.33 -12.84 20.00 16.86 -3.14Qwen3 1.7B Md 46.85 22.40 -24.45 16.72 14.40 -2.32

presence of irrelevant or distracting information, which raises the difficulty of information retrieval
and subsequently impairs the model’s reasoning ability.

Traps within the reasoning process make the model more prone to hallucinations. Which types
of traps are more challenging for the model to detect? To explore this question, we introduce an
additional set of experiments by incorporating two types of adversarial scenarios: Direct Missing
(DM) and Direct Contra (DC). Unlike the trap questions involved in TabularGSM, these traps are more
explicit and thus easier to detect for humans. In the DM questions, the table lacks the "name" attribute
required by the question, which means the name of the target person mentioned in the question and
their corresponding information are entirely absent from the table. In the DC questions, the table
contains two columns with the same header (i.e., duplicate column names) but with conflicting values.
These conflicting entries can lead to different answers depending on which value is used. We present
our experimental results in Table 13. For missing traps, the model exhibits a significantly higher
success rate in identifying direct traps compared to indirect ones. In contrast, performance on contra
traps remains consistently poor across models, with some degree of variability. These results indicate
that traps embedded within the reasoning process are inherently more difficult to detect.

A.3.3 DETAILED RESULTS

We provide comprehensive experimental results here that are not given in the main text due to space
limitations. Table 14 is the same as Table 3. Table 15 corresponds to Figure 5 , which shows the
performance comparison of table reasoning and single-step table retrieval. Table 16 17 18 and
19 correspond to Figure 7, which shows the relationship between model performance changes and
table complexity.
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Table 14: Main reults on TabularGSM benchmark
Pure test Robustness testDataset GSM8k Fmt Easy Medium Hard Avg Well Contra Missing Avg

Open source General Model

Qwen3 14B 94.54 Se 79.94 70.94 69.79 73.55 58.55 28.57 69.23 54.15
Md 77.87 70.21 61.59 69.89 55.89 28.21 67.03 51.88

Qwen3 8B 93.30 Se 75.17 62.62 56.99 64.92 44.44 41.25 70.97 50.35
Md 73.18 55.63 47.30 58.70 36.71 34.54 68.57 44.07

Qwen3 4B 91.79 Se 73.53 56.85 46.47 58.95 39.63 39.02 68.67 46.77
Md 71.57 52.68 41.73 55.32 39.31 32.12 69.75 45.15

Qwen3 1.7B 81.25 Se 54.40 31.13 19.20 34.92 26.81 16.86 45.71 29.03
Md 50.76 30.62 18.84 33.40 33.33 14.40 37.33 29.56

Qwen2.5 14B 93.40 Se 79.90 68.06 62.34 70.10 59.40 6.40 22.40 36.90
Md 79.21 64.10 49.09 64.13 60.00 6.80 20.00 36.70

Qwen2.5 14B coder 90.68 Se 71.59 60.38 49.90 60.62 47.40 30.00 52.40 44.30
Md 72.63 57.74 45.61 58.66 47.40 23.60 51.60 42.50

Qwen2.5 7B 82.86 Se 35.56 21.36 19.39 25.43 39.20 13.60 34.00 31.50
Md 53.92 34.45 20.64 36.33 37.40 16.00 34.80 31.40

Qwen2.5 7B coder 84.71 Se 62.35 42.01 29.79 44.47 30.80 24.40 43.60 32.40
Md 64.78 42.13 23.52 43.47 33.40 20.80 34.00 30.40

Qwen2.5 3B 80.28 Se 36.37 22.71 16.94 25.34 2.20 84.00 91.20 44.90
Md 39.74 23.96 15.68 26.46 6.20 69.60 79.20 40.30

LLama3.1 8B 83.69 Se 42.84 34.93 30.01 35.92 29.00 6.40 8.40 18.20
Md 48.61 33.37 32.15 38.04 29.60 10.40 9.60 19.80

LLama3 8B 55.34 Se 28.92 15.22 10.63 18.25 12.80 30.80 37.20 23.40
Md 36.30 21.12 20.68 26.03 16.60 19.20 35.20 21.90

Open-Source Math Model

Qwen math 7B 95.45 Se 53.69 31.09 14.59 33.12 28.60 26.40 36.40 30.00
Md 53.69 30.37 14.59 32.88 27.00 20.80 48.93 30.93

DeepSeek math 7B 80.13 Se 13.93 6.24 3.96 8.04 2.60 50.40 51.20 26.70
Md 12.81 6.60 2.04 7.15 4.00 60.40 53.60 30.50

Open-Source Tabular Model

TableGPT 7B 24.33 Se 30.13 18.86 12.60 20.53 26.20 26.80 44.80 31.00
Md 30.60 16.44 17.64 21.56 30.60 23.20 46.40 32.70

StructLM 7B 32.97 Se 13.74 6.12 3.24 7.70 7.20 0 0 3.60
Md 14.78 8.28 4.44 9.17 9.60 0 0 4.80

Closed-Source API

DeepSeek v3 96.36 Se 88.45 87.27 85.71 87.14 68.60 68.40 85.20 72.70
Md 88.63 87.63 85.83 87.37 68.60 68.00 82.80 72.00

GLM-4-plus 95.07 Se 83.37 81.15 79.83 81.45 68.80 32.80 69.60 60.00
Md 84.52 81.03 78.27 81.27 71.40 27.60 65.60 59.00

GPT 4 94.46 Se 83.97 82.57 77.41 81.32 66.39 22.48 74.01 57.00
Md 85.54 78.42 75.23 79.73 64.25 21.11 80.20 57.80

Table 15: Model Performance comparison of table reasoning and single-step table retrieval

Difficulty Model se-Retrival se-Reason md-Retrival md-Reason

Easy

Qwen3 14b 95.04 79.94 91.54 77.87
Qwen3 8b 92.44 75.17 93.02 73.18
Qwen3 4b 93.02 73.53 92.15 71.57
Qwen3 1.7b 81.10 54.40 85.71 50.76

Medium

Qwen3 14b 83.28 70.94 88.85 70.21
Qwen3 8b 88.26 62.62 86.80 55.63
Qwen3 4b 75.00 56.85 79.41 52.68
Qwen3 1.7b 63.82 31.13 69.50 30.62

Hard

Qwen3 14b 75.73 69.79 81.36 61.59
Qwen3 8b 86.98 56.99 82.24 47.30
Qwen3 4b 60.65 46.47 66.27 41.73
Qwen3 1.7b 58.28 19.25 56.80 18.84
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Table 16: Model Performance Comparison with ColAug (md row=10)

Model ColAug2 ColAug4 ColAug6 ColAug8 ColAug10

Qwen3 14b 64.94 63.07 63.21 50.25 45.59
Qwen3 8b 52.82 53.60 46.11 31.28 34.87
Qwen3 4b 48.45 44.32 38.54 24.26 20.00
Qwen3 1.7b 26.15 23.07 11.22 7.65 7.65
LLaMA3 8b 33.67 31.12 31.63 23.97 18.87
TableGPT 20.40 11.73 12.24 9.18 10.20

Table 17: Model Performance Comparison with ColAug (se row=10)

Model ColAug2 ColAug4 ColAug6 ColAug8 ColAug10

Qwen3 14b 70.31 73.71 69.63 66.32 63.58
Qwen3 8b 64.43 58.97 54.63 57.43 55.61
Qwen3 4b 52.30 52.04 47.69 51.02 48.97
Qwen3 1.7b 25.12 24.01 17.34 16.38 12.75
LLaMA3 8b 33.67 36.22 34.18 35.71 32.14
TableGPT 26.53 17.85 18.87 13.75 11.22

Table 18: Model Performance Comparison with RowAug md

Model RowAug5 RowAug10 RowAug15 RowAug20 RowAug25 RowAug30

Qwen3 14b 76.26 63.13 60.60 60.60 57.86 48.98
Qwen3 8b 65.15 56.41 51.26 43.14 38.89 35.53
Qwen3 4b 61.34 52.28 41.14 41.16 37.24 30.80
Qwen3 1.7b 33.83 23.85 15.22 16.16 14.14 12.62
LLaMA3 8b 40.40 38.88 36.36 36.68 28.28 20.20
TableGPT 9.18 7.65 7.65 4.59 4.59 2.04

Table 19: Model Performance Comparison with RowAug se

Model RowAug5 RowAug10 RowAug15 RowAug20 RowAug25 RowAug30

Qwen3 14b 76.14 73.09 67.51 60.71 38.25 36.36
Qwen3 8b 76.14 65.98 58.58 58.16 35.57 36.36
Qwen3 4b 59.39 57.86 49.49 53.06 35.57 33.33
Qwen3 1.7b 32.99 24.87 23.23 21.42 14.09 18.18
LLaMA3 8b 43.43 40.40 33.32 29.29 25.25 26.76
TableGPT 11.11 8.08 6.56 4.54 2.02 4.04
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Semantic Decoupling Prompt

"system_prompt":
You are an experienced mathematician, and you are familiar with formal
languages. I would like you to generate the formal form of a mathematical
problem.
You should express all logic in SMT-LIB syntax, using prefix notation.
For example, multiplication should be written as ‘(* a b)‘ instead of ‘a * b‘.
HIGHLIGHT!!!: All numbers appearing after ’assert’ are written as
floating point numbers.For example ’2’ is wrong and it should be
replaced with ’2.0’.

EXAMPLE INPUT:
• "problem": "Weng earns $12 an hour for babysitting. Yesterday, she just did 50

minutes of babysitting. How much did she earn?"

EXAMPLE OUTPUT:
• "problem": "Weng earns $12 an hour for babysitting. Yesterday, she just did 50

minutes of babysitting. How much did she earn?",
• "formal-problem": "(declare-fun hourly_rate () Int)

(declare-fun minutes_worked () Real)
(declare-fun hours_worked () Real)
(declare-fun earnings () Real)
(assert (= hourly_rate 12.0))
(assert (= minute_worked 50.0))
(assert (= minutes_per_hour 60.0))
(assert (= hours_worked (/ minutes_per_hour)))
(assert (= earnings (* hourly_rate hours_worked)))
(check-sat)
(get-value (earnings))"

"user_prompt:"
• "problem": {Question}
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Table Transformation Prompt

"system_prompt":
The user will provide a problem and its formal representation. You need to convert
the explicitly assigned known data of the problem into a tabular form.
The table should only include variables that are directly assigned values in the
problem (e.g., via assertions like (= variable value)).
The table should include all variables that appear in the formal definition and their
corresponding values: (“Given” or “Calculated”).
Please wrap the value of this variable and the method of obtaining it in a list like:
[5,"Given"]

Replace the variables that appear in the table in the original problem with un-
knowns to generate a generalized problem (i.e., table + generalization
= original problem).
Set a value range for each variable, ensuring the ranges conform to common
sense (they can be fixed values if appropriate).

EXAMPLE INPUT:
• "problem": "Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of

babysitting. How much did she earn?",

• "formal_problem":
"(declare-fun hourly_rate () Real)
(declare-fun minutes_worked () Int)
(declare-fun hours_worked () Real)
(declare-fun earnings () Real)
(assert (= hourly_rate 12.0))
(assert (= minutes_worked 50))
(assert (= minutes_per_hour 60))
(assert (= hours_worked (/ minutes_worked minutes_per_hour)))
(assert (= earnings (* hourly_rate hours_worked)))
(check-sat)
(get-value (earnings))"

EXAMPLE OUTPUT:
• "problem": "Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of

babysitting. How much did she earn?",

• "table": [ "name": "Weng",
"hourly_rate": [12,"Given"],
"minutes_worked": [50,"Given"],
"minutes_per_hour": [60,"Given"],
"hours_worked": [0.8333,"Calculated"],
"earnings": [10,"Calculated"] ],

• "generalization": "Weng earns $x an hour for babysitting. Yesterday, she just did t minutes of
babysitting. How much did she earn?",

• "value_ranges":
"name": null,
"hourly_rate": "min": 7.25, "max": 100, "unit": "dollars"
"minutes_worked": "min": 10, "max": 1440, "unit": "minutes"
"minutes_per_hour": "min": 60, "max": 60, "unit": "minutes"

"user_prompt:"
• "problem": {Question}

• "formal_problem": {Formal_problem}
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A.4 CASE ANALYSIS

A.4.1 CASE ANALYSIS OF HARD SUBSET

• Open source General model: Take Qwen14b as an example (Figure 8)
• Open-Source Math model: Take Qwen math 7b as an example (Figure 9)
• Open-Source Tabular model: Take TableGPT as an example (Figure 10)
• Closed source API: Take DeepSeek v3 as an example (Figure 11)

A.4.2 CASE ANALYSIS OF ROBUST SUBSET

• Open source General model: Take Qwen14b as an example (Figure 12)
• Open-Source Math model: Take Qwen math 7b as an example (Figure 13)
• Open-Source Tabular model: Take TableGPT as an example (Figure 14)
• Closed source API: Take DeepSeek v3 as an example (Figure 15)

Figure 8: Hard –Qwen14b

Reason 1: Retrieval Failed

Problem: Eliza’s rate per hour for the first x hours she works each week is $y. She also
receives an overtime pay of z times her regular hourly rate. If Eliza worked for t hours this
week, how much are her earnings for this week?

OverRatio OverHour Name BodyTemp Age RegularRate Height HeartRate RegularHour
...

1.2 5 Eliza 38 62 10.0 179 97 40
...

Model Response: From the provided table, we can find that Eliza’s regular hourly rate
(y) is $10.0, and her overtime multiplier (z) is 1.5. The number of regular working hours
before overtime starts is not directly given but implied to be within the total hours worked as
anything beyond that is considered overtime. ......

Reason 2: Reasoning Failed

Problem: Charlie wants to sell beeswax candles. For every pound of beeswax, he can make
x tapered candles. One pound of beeswax and the wicks cost $y in supplies. If he sells each
candle for $z each, what is his net profit if he makes and sells t candles?

HeartRate BodyTemp Name Age CandlesMade cost/pound Height price candles/pound
...

83 36 Charlie 74 20 10.0 199 2.0 10
...

Model Response: ......we find that Charlie’s specific information is: Cost_Per_Pound (y):
$10.0 Selling_Price (z):$2.0 Candles_Per_Pound (x): 10. However, there seems to be an
inconsistency as the selling price per candle (z) should ideally be higher than the cost of
producing one candle to ensure a profit. Typically, the selling price (z) would be higher
than the cost per unit, but here, it appears to be lower which would imply a loss rather than
profit......
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Figure 9: Hard –Qwen math 7b

Reason 1: Retrieval Error

Problem: Janet’s ducks lay x eggs per day. She eats y for breakfast every morning and bakes
muffins for her friends every day with z. She sells the remainder at the farmers’ market daily
for $w per fresh duck egg. How much in dollars does she make every day at the farmers’
market?

Age HeartRate eggs/day price/egg BodyTemp eaten name for_muffins SleepHours
...

25 72 16 2 39 3 Janet 4 5
...

Model Response: ......For Janet: Eggs per day: 94 ,Eggs eaten: 3,Eggs for muffins: 4. First,
calculate the number of eggs Janet has left after eating and making muffins: 94 - 3 - 4 = 87
......

Figure 10: Hard –TableGPT

Reason 1: No Ability to Solve

Problem: Kylar went to the store to buy glasses for his new apartment. One glass costs $x,
but every second glass costs only y% of the price. Kylar wants to buy n glasses. How much
does he need to pay for them?

price/glass glasses Weight name HeartRate discount BodyTemp Height
...

5.0 16 98 Kylar 98 0.6 37 78
...

Model Response: This problem is unsolvable.

Reason 2: Retrieval Failed

Problem: Mishka bought x pairs of shorts, y pairs of pants, and z pairs of shoes. One pair of
shorts costs $a. One pair of pants costs $b and one pair of shoes costs $c. How many dollars
did Mishka spend on all the clothing items?

pants pants
price SleepHours shorts

price
shoes
price shorts Age Weight name Height shoes

...
3 22.5 8 16.5 42.0 3 21 53 Mishka 198 3

...

Model Response: ......The table provides information about various individuals and their
clothing costs, but it does not directly provide the values for x, y, and z (the number of pairs
of shorts, pants, and shoes Mishka bought)......
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Figure 11: Hard –DeepSeek v3

Reason 1: Misunderstanding the Question

Problem: John plans to sell all his toys and use the money to buy video games. He has x
lego sets and he sells them for $y each. He ends up buying z video games for $w each and
has $v left. How many lego sets does he still have?

name lego
price

Sleep
Hours

Body
Temp

videogame
price

video
games

lego
sets

Heart
Rate

money
left Height

...
John 15 8 40 20 8 13 70 5 159

...

Model Response: ......Since John plans to sell all his toys, he sells all 13 lego sets. Therefore,
he has 0 lego sets left.

Reason 2: Reasoning Error

Problem: Sasha notices that prices for lumber have gone up x% in the last few months after
she bought some lumber. Since she has leftovers, she decides to sell them. She has leftover s
small boards that cost her $c each. She also has l large boards she bought for $d each. If she
sells them all, how much profit does she make?

small
boards

cost
large

boards
BodyTemp name

cost
small

boards
Age large

boards Height Weight percentage
increase

...
10 16.0 39 Sasha 10 37 5 150 51 0.5

...

Model Response: ......Selling price for small boards: ( c times (1 + x/100) = 10.0 times (1 +
0.5/100) = 10.0 times 1.005 = 10.05.
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Figure 12: Robust –Qwen14b

Reason 1: Retrieval Failed

Problem: Jordan has x children who wear diapers. Each child requires y diaper changes per
day. Jordan’s wife changes half of the diapers. How many diapers does Jordan change per day?

children diaper_changes_per_child name
...

2 5 Jordan
...

Model Response: ........we see various entries for different names and their respective
children and diaper change requirements. From the table, the only mention of Jordan is as
the name of a child with 2 children needing 5 diaper changes per day. But since the question
implies that Jordan (as a parent) has x children, we need to clarify which set of children
belong to Jordan as a parent. Since this information isn’t clearly specified in the question
or table, it’s not possible to determine exactly how many children Jordan has as a parent or
their specific diaper needs.. ......

Reason 2: Fail to Identify Contradictions

Problem: Bud makes homemade macaroni and cheese once a week. The pasta costs $x a
box, and he spends $y on cheddar cheese and twice that amount for the gruyere cheese. How
much money does Bud spend on making macaroni and cheese in one year?

cost
gruyere
cheese

weeks
per
year

total
cost

week

cost
cheddar
cheese

cost
pasta name

...
10.0 52 5.0 3.0 1.0 Bud

...

Model Response: ........The cost of cheddar cheese (y) = 3.0. The cost of gruyere cheese =
10.0. Since the cost of gruyere cheese is twice the cost of cheddar cheese, this aligns with the
provided values. The weekly cost for Bud is thus:Total weekly cost = x + y + 2y = 1.0 + 3.0
+ 2(3.0) = 1.0 + 3.0 + 6.0 = 10.0......
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Figure 13: Robust –Qwen math 7b

Reason 1: Contradictions Identified but Wrong Answer

Problem: Andrew plans a road trip from New Jersey to Rochester. It takes x days to travel
by bus and half as many days to travel by car from New Jersey to Rochester. How many days
will he travel if he plans to go to Rochester by bus and return from Rochester by car?

name bus_days car_days
...

Andrew 6 2
...

Model Response: ........From the table, we can see that Andrew has a bus days value of 6 and
a car days value of 2. The problem states that it takes half as many days to travel by car as it
does to travel by bus. However, the table provides a different value for car days, which is 2.
This suggests that the table may have an error or that the problem may have an additional
condition that we need to consider.Given the information in the table, we can use the bus
days value to calculate the total travel time. The total travel time is the sum of the bus days
and the car days.Total travel time = Bus days + Car days = 6 + 2 = 8. Therefore, the total
number of days Andrew will travel is 8......

Reason 2: Missing Identified but Wrong Answer

Problem: Aleksandra went to a restaurant for dinner. She ordered some soup, a bagel, and a
piece of cake. The bagel cost $x, and the soup 25% more. The cake is only half of the price
of the bagel. How much did Aleksandra need to pay for the dinner she ordered?

bagel_cost name
3.2 Alexander

15.8 Aiden
10.7 Sophia

...
null Aleksandra

...

Model Response: ......we are interested in the cost of the bagel ordered by Aleksandra, which
is not specified in the table. However, we can assume that the table is meant to provide a
reference for the cost of the bagel, and we can use the average cost of the bagel from the
table to find a reasonable estimate.......
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Figure 14: Robust –TableGPT

Reason 1: Fail to Identify Contradiction

Problem: Andrew plans a road trip from New Jersey to Rochester. It takes x days to travel
by bus and half as many days to travel by car from New Jersey to Rochester. How many days
will he travel if he plans to go to Rochester by bus and return from Rochester by car?

name bus_days car_days
...

Andrew 6 2
...

Model Response: ........The table provides the bus and car days for several individuals,
including Andrew. From the table: Andrew’s bus days: 6 , Andrew’s car days: 2. If Andrew
plans to go to Rochester by bus and return from Rochester by car, the total number of days he
will travel is the sum of his bus days and car days. Total days = Bus days + Car days = 6 + 2
= 8......

Reason 2: Regard Missing Info as 0

Problem: Samwell owns an appliances store. For this week, one-fourth of their sales are
smart TVs, one-eighth are analog TVs, and the rest are OLED TVs. If they were able to sell
a total of x TVs, how many OLED TVs were they able to sell?

total_tvs name
708 Sebastian
503 Sophia
935 Emily

...
null Aleksandra

...

Model Response: ......According to the table, Samwell’s total TV sales are listed as 0 (None).
Since Samwell’s total TV sales are 0, we can calculate the number of OLED TVs sold by
using the given fractions for smart TVs and analog TVs.One-fourth of the sales are smart
TVs: 1/4 times 0 = 0. One-eighth of the sales are analog TVs:1/8 times 0 = 0. The rest of the
sales are OLED TVs: 0 - 0 - 0 = 0.......
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Figure 15: Robust –DeepSeek v3

Reason 1: Contradictions Identified but Reasoning Error

Problem:

first_hour_cost name subsequent_hour_cost total_hours
...

15 James 35 4
...

Model Response: ......we find the row corresponding to James: First_Hour_Cost (x): 15,
Subsequent_Hour_Cost:35 (Note: This is not directly used in the calculation since the prob-
lem states each subsequent hour is twice the previous hour’s cost, not a fixed subsequent
cost) Total_Hours: 4. First paid hour:15. Second paid hour:2 × 15 = 30. Third paid hour:2
× 30 = 60. Total Cost = 15+ 3 + 60 = 105...... (The correct answer should be 15+30+30=75)

Reason 2: Regard Missing Info as 0

Problem: Elaina is holding the final concert in her tour. To celebrate her final concert, she
makes the concert twice as long as her usual concerts. At the end of the concert, she also
performs a t-minute encore. If the runtime of this final concert is f minutes then how long, in
minutes, do her usual concerts run for?

name final_concert_length encore_length
James 146 22
Ella 115 5
Matthew 92 24

...
Elaina 65 null

...

Model Response: ......From the table, we have the following data for Elaina: Fi-
nal_Concert_Length (f): 65. Encore_Length (t): None (which we can interpret as 0 minutes,
since no encore is performed) According to the problem, the final concert is twice as long as
the usual concert, thus x = 65/2 = 32.5.......
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