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ABSTRACT

Recently, collaborative fine-tuning large language models (LLMs) has emerged
as a new paradigm for utilizing private data from different parties in a manner
that guarantees both efficiency and privacy. Meanwhile, the practical needs of the
“right to be forgotten” and the frequent demands to update outdated information,
have led to a burgeoning in the techniques of knowledge editing (KE) for LLMs.
However, current KE methods are all designed for a single model, and directly
adapting current KE methods to collaborative learning scenarios encounters severe
performance decreases. In this study, we propose a non-destructive collaborative
knowledge editing framework COLLABEDIT that utilizes novel model fusion strat-
egy to preserve overall editing performance. Empirical studies on two canonical
datasets demonstrate the effectiveness and superiority of our method compared
with other destructive baselines.

1 INTRODUCTION
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Figure 1: Limits of existing KE
methods under the collaborative edit-
ing scenarios on the Multi-CounterFact
dataset (Meng et al., 2022). We con-
duct independent knowledge editing on
each client locally, and then use model
fusion techniques like Simple-Average
(Chronopoulou et al., 2023) and Task-
Arithemetic (Ilharco et al., 2023) to
merge local models into a global model.
We compare the performance of naive
collaborative editing methods with the
optimal GLOBAL-EDIT: as the number
of edits increases, the performance gap
also widens.

Large Language Models (LLMs) (Achiam et al., 2023; Qiao
et al., 2023) recently have emerged as the promising solution to-
ward general artificial intelligence. However, deploying LLMs
in practice usually requires customizing LLMs with specific
knowledge (Meng et al., 2022), where re-training LLMs may
be expensive and unacceptable (Jang et al., 2023). Accordingly,
Knowledge Editing (KE) (Meng et al., 2022; Mitchell et al.,
2022; Tan et al., 2024; Zhang et al., 2023), which allows effi-
cient modification of knowledge stored in existing models, has
been proposed as a remedy.

Current KE methods only consider the centralized case where
all edit requests from different parties need to be first globally
collected, which usually violates privacy concerns: the edit
request itself contains sensitive private information and thus be-
comes infeasible for sharing. All these motivate resorting to the
collaborative learning paradigm (Wu et al., 2023; Kairouz et al.,
2021)—by only communicating the locally-updated-models,
rather than uploading a list of risky edit requests—namely col-
laborative knowledge editing for LLMs.

However, existing KE methods are all designed for the single
model scenario (Meng et al., 2022; Mitchell et al., 2022; Tan
et al., 2024; Meng et al., 2023) (see Figure 1). As our first
(side)-contribution, we examine a naive combination of local knowledge editing and global model
fusion methods, where these naive collaborating editing methods are all destructive.

To this end, we first analyze the performance gap between naive collaborative editing methods and the
global editing method (GLOBAL-EDIT) from a theoretical perspective, upon which we further design
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Figure 2: Comparison of global knowledge editing (GLOBAL-EDIT) and collaborative knowledge editing.

a novel framework COLLABEDIT that allows non-destructive collaborative editing. Our contributions
can be summarized as follows:

• We identify the performance gap between the naive collaborative knowledge editing method and
the upper bound performance (i.e., GLOBAL-EDIT) through theoretical and empirical analysis.

• To the best of our knowledge, we are the first to propose a non-destructive knowledge editing
framework in the context of collaborative learning. Our framework is designed to be versatile,
allowing seamless integration of existing knowledge-editing methods.

• Our empirical results demonstrate the effectiveness of our proposed framework compared with
baselines. Our discussions may shed light on future research for collaborative knowledge editing.

2 METHODOLOGY

2.1 INTRODUCTION TO KNOWLEDGE EDITING IN A SINGLE LLM

LLMs can answer natural-language queries about facts based on implicit knowledge encoded within
the parameters. Following Meng et al. (2023), we define a fact f as “(subject s, relation r, object
o)”, e.g., “(s = Danielle Darrieux, r = spoke the language, o = French)”. Given a sequence of
facts E = {fi|fi = (si, ri, oi)} to edit, knowledge editing aims to maximize the likelihood that the
updated LLM Mθ predicts the desired object oi for any factual prompt x⊕ p(si, ri), which involves
a prefix x and a templated prompt p(si, ri):

argminMθ

1
|E|

∑|E|
i=1 Ex − log PrMθ [oi|x⊕ p(si, ri)] . (1)

The state-of-the-art knowledge editing methods (Meng et al., 2022; 2023; Tan et al., 2024) found
that modifying a small sequence of MLP layers in the critical path of LLM is sufficient to edit its
factual associations. In particular, linear operation Wl in an MLP layer can operate as a key-value
store for input keys Kl and the memory/knowledge values Ml, where input keys correspond to the
intermediate feature vector of the model from a set of edit requests. Knowledge editing modifies each
MLP layer such that it associates Kl to the desired Ml by solving WlKl ≈ Ml. For brevity, we
will describe knowledge editing for a specific layer and omit l throughout the paper.

Given a set of facts E to edit, we first obtain their input keys K = [k1, . . . ,k|E|] to the layer l via a
single feed-forward. We also obtain the desired memory values M = [m1, . . . ,m|E|] of layer l that
maximize Pr [oi|x⊕ p(si, ri)]. The goal of editing the layer l can be formulated as optimizing the
∆ such that the updated weight W +∆ associates the input keys K to the desired memory values
M. Note that the MLP layer also contains previously stored memories of existing knowledge, which
should be preserved during the knowledge editing. Therefore, we also maintain the associations
between input keys of existing knowledge Kinit and their memory values (WKinit). Following
MEMIT (Meng et al., 2023), we derive the closed form of ∆ for a specific layer l as:

∆ = RK⊤(C+KK⊤)−1, (2)

where C=KinitK
⊤
init indicates the covariance matrix of the input keys of existing knowledge, and R=

M−WK represents the residual error in the output space of layer l. See more details in Appendix A.
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2.2 DESTRUCTIVE FUSION ENCOUNTERS COLLABORATIVE KNOWLEDGE EDITING

Knowledge editing in practice requires editing the factual associations of LLM (e.g., correcting the
hallucinations) using some edit requests simultaneously, in which multiple clients access and jointly
contribute to the same LLM service. Though global editing (GLOBAL-EDIT) illustrated in Figure
2(a) represents the ideal editing cases, it also necessitates each client to directly share the edit requests
with the server, which violates the privacy constraints. Collaborative editing (in Figure 2(b)) instead
allows each client to edit on its local LLM and only rely on the server to aggregate the edit updates.

However, existing knowledge editing algorithms are all designed for a single client and cannot be
trivially generalized to the collaborative editing case. As evidenced in Figure 1, naively extending
existing editing methods or model fusion methods yields a dramatic performance drop compared to
that of the GLOBAL-EDIT upper bound, especially when the number of edits increases. Given the
limits of these destructive collaborative editing methods, in the following section, we aim to develop
a non-destructive collaborative editing method that can achieve a similar editing performance as
GLOBAL-EDIT, even with a large number of edits.

2.3 COLLABEDIT: NON-DESTRUCTIVE COLLABORATIVE EDITING

To better understand the performance drop, we first explicitly model the relationship between the
weight updates ∆G of the global model using GLOBAL-EDIT and that of each client model ∆i using
local editing. For ease of presentation, we consider the collaborative editing scenario with N clients
and each client model has M edit requests.
Lemma 2.1 (The relationship between the weight updates from GLOBAL-EDIT and local editing).
Take the knowledge editing method MEMIT as an example. Following the definitions in Section 2.1,
let’s denote C as an aggregated statistic over the previously stored keys of existing knowledge and
use Ki to represent the new keys derived from client i’s edit. Then, the relationship between ∆G and
∆i is measured as:

∆G =
∑N

i=1 ∆i ·
(
αi := (C+KiK

⊤
i )(C+

∑N
j=1 KiK

⊤
i )

−1
)
. (3)

See detailed proof in Appendix B.1.

Intuition: If we can estimate ∆G using ∆i, then we can merge {∆i}Ni=1 to obtain the same global
model as GLOBAL-EDIT and, therefore, obtain non-destructive collaborative editing.

Details of COLLABEDIT: Indeed ∆G can be represented as the weighted sum of different local
weight updates ∆i with coefficient αi. However, the coefficient αi relies on the value of Ki of all
the clients: it breaks the privacy, given the fact that Ki is an intermediate feature vector of the model
from a set of edit requests and any external party can easily reconstruct the edit requests if Ki is
leaked. As a remedy, our COLLABEDIT instead proposes to directly communicate KiK

⊤
i , in which

we prove in Appendix B.2 that KiK
⊤
i is non-trivial to attack. See our pseudo-code in Appendix D.

Remark 2.2. Currently, we consider two mainsteam knowledge editing methods (Akyürek et al.,
2023), namely (1) locate and edit activations (e.g., MEMIT (Meng et al., 2023) and ROME (Meng
et al., 2022)); and (2) train an auxiliary model to directly predict parameters (e.g., MEND (Mitchell
et al., 2022) and MALMEN (Tan et al., 2024)). Note that our framework COLLABEDIT is general
enough to integrate many other knowledge editing methods, and we leave them for future work.

Justifying the performance drop for destructive editing approaches. We further analyze the
performance degradation for destructive editing approaches when the number of edits increases, as
illustrated in Figure 1. For the sake of simplicity, we take the TASK-ARITHMETIC (Ilharco et al.,
2023) with MEMIT as an example. The drop can be explained by:

∆G −∆′
G =

∑N
i=1 ∆i

[
(C+KiK

⊤
i )(C+

∑N
j=1 KiK

⊤
i )

−1 − λI
]
, (4)

where ∆G and ∆′
G represent the weight updates derived from COLLABEDIT (our non-destructive

collaborative editing) and a destructive collaborative editing using TASK-ARITHMETIC, respectively.
We can see that the impact of new knowledge KiK

⊤
i is negligible compared to existing knowledge

C when the number of edits is small, resulting in (C+
∑N

j=1 KiK
⊤
i )

−1 ≈ C and thus ∆G ≈ ∆′
G

when λ = 1. The gap becomes wider when the number of edits increases, contributing to the
continuous decline in TASK-ARITHMETIC’s performance in Figure 1 compared to GLOBAL-EDIT.
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Table 1: Overall editing performance on MCF and zsRE. GLOBAL-EDIT is 5000× 1, which means we edit
5000 records in one model (global model) at one time. GLOBAL-EDIT is an ideal situation. Others are merging
methods (500 × 10) where we edit 10 models and each model will be edited by 500 records. We merge 10
models into the global model by different methods and evaluate the final global model’s performance.

Method MCF zsRE
NS ↑ PS ↑ ES ↑ Score ↑ NE ↑ RS ↑ NA ↑ PA ↑ EA ↑ Score ↑

GLOBAL-EDIT 65.08 80.66 89.66 77.08 622.05 36.97 25.25 64.71 68.96 43.12

TIES-MERGING 78.46 26.35 27.16 34.27 627.15 31.56 24.94 25.99 27.59 26.12
TASK-ARITHMETIC 66.84 55.19 61.66 60.85 613.72 31.83 24.97 33.66 34.80 30.45
SIMPLE-AVERAGE 76.90 29.97 33.06 39.15 626.47 31.49 25.78 29.26 30.62 28.4

COLLABEDIT 65.26 80.67 89.70 77.18 622.38 37.10 25.21 64.27 68.40 42.95

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets and models. For datasets, we use Multi-CounterFact (MCF) (Meng et al., 2022) and
zsRE (Levy et al., 2017). For models, we use GPT2-XL (Radford et al., 2019).

Baselines. We compare our method with three naive collaborative editing methods (i.e., using current
knowledge editing methods to update the local model and then use model fusion techniques to
merge local updates to the global model), including SIMPLE-AVERAGE (Chronopoulou et al., 2023),
TASK-ARITHMETIC (Ortiz-Jimenez et al., 2023), and TIES-MERGING (Yadav et al., 2023).

Evaluation metrics. Following Meng et al. (2022; 2023), for MCF, we use Efficacy Score (ES),
Paraphrase Score (PS), Neighborhood Score (NS), N-gram Entropy (NE), Reference Score (RS), and
Score (harmonic mean of ES, PS, NS); for zsRE, we use Neighborhood Accuracy (NA), Paraphrase
Accuracy (PA), Efficacy ccuracy (EA), and Score (harmonic mean of NA, PA, EA). The exact
definitions refer to Appendix C.

3.2 RESULTS AND DISCUSSION

Superior collaborative knowledge editing performance. As shown in Table 1, our privacy-
preserving solution COLLABEDIT achieves on-par editing performance with that of GLOBAL-EDIT,
and significantly outperforms other naive model fusion methods in terms of the “Score”. Though
other baselines have a relatively higher NS value compared to GLOBAL-EDIT and our COLLABEDIT,
we conjecture that it might be caused by the under-fitting phenomenon: these model fusion methods
are not specifically designed for merging the weight updates from knowledge editing, which is
reflected by their low values of PS, ES, and Score.
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Figure 3: The ℓ2-norm of residual R when
data replication happens.

Discussion on the “overlapped” knowledge editing. In
a collaborative knowledge editing system, multiple par-
ties may apply the same or conflict editing action locally
and simultaneously, and then be aggregated in the global
model.

Such a pattern leads to overlapped or conflicting knowl-
edge editing records, which may jeopardize the overall
model performance (Li et al., 2024). Motivated by (2), we
leverage the following equation1, i.e., residual Rnew :=
Rold −∆K = Rold −RoldK

⊤(C+KK⊤)−1K, to track
the dynamics of knowledge editing. Preliminary experi-
ments in Figure 3 show that as the number of repeating
edits increases, the ℓ2-norm of residual R reduces rapidly and becomes smaller than 0.01 when
repeating edits for 12 times. This implies that the ℓ2-norm of R can be used to check whether

1When editing some knowledge, we can obtain weights update ∆ and residual Rold by the input key K.
If we edit the same knowledge (i.e., same K) after update the LLM with ∆, we can get the new residual
Rnew = Rold −∆K.
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“overlap editing” happens, which may be helpful for practitioners to avoid the decrease in model
performance.

Limitations and future work. Our empirical observation and discussion on the overlapped knowl-
edge editing shed light on exploring many interesting yet unsolved perspectives of collaborative
knowledge editing, including but not limited to:

1. Conflict editing. For example, one party edits the fact that “The mother tongue of Danielle
Darrieux is Spain”, while another party edits “The mother tongue of Danielle Darrieux is English”.

2. Multi-round editing. While our method could achieve perfect editing in a single round, it may
not extend to multiple rounds, which is essential for ensuring long-term continual collaborative
knowledge editing. Generalizing our method to multi-round scenarios is an important future work.
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A DETAILS OF KNOWLEDGE EDITING IN A SINGLE LLM

Details of identifying the critical path of MLP layers. Following MEMIT (Meng et al., 2023),
we apply causal tracing to LLMs (e.g., GPT-2 XL) and identify the critical path of MLP layers to edit.
For consistency, we edit the same set of layers R as MEMIT such as the 13-17th layers of GPT-2 XL.

Details of the closed form optimization of ∆ for a single layer. We optimize the following
objective to obtain the optimal weights W∗ of layer l:

W∗ ≜ argmin
Ŵ

 n∑
i=1

∥∥∥Ŵki −mi

∥∥∥2 + n+|E|∑
i=n+1

∥∥∥Ŵki −mi

∥∥∥2
 , (5)

where ki (1 ≤ i ≤ n) indicates the old keys derived from existing knowledge and ki (n+ 1 ≤ i ≤
n+ |E|) indicates the new keys derived from the edit requests E .

Next, we denote W as the model weights before knowledge editing, Kinit = [k1, . . . ,kn] as the
set of old keys derived from existing knowledge and K = [kn+1, . . . ,kn+|E|] as the set of new
keys derived from the edit requests E . Moreover, Minit = [m1, . . . ,mn] = WKinit represents the
memory values of Kinit that are previously stored and M = [mn+1, . . . ,mn+|E|] represents the
desired memory values of K that we aim to store. We can solve the Equation (5) by applying the
normal equation: (

W +∆)(KinitK
⊤
init +KK⊤) = MinitK

⊤
init +MK⊤,

WKinitK
⊤
init +WKK⊤ +∆KinitK

⊤
init +∆KK⊤ = MinitK

⊤
init +MK⊤.

(6)

In addition, we define two variables: (1) C ≜ KinitK
⊤
init, which represents the covariance matrix of

the input keys of existing knowledge. (2) R ≜ M −WK, which represents the residual error of
the new associations when evaluated on the old weights W. Then, we can obtain the closed-form
solution of the weight updates ∆ as:

∆ = RK⊤(C+KK⊤)−1. (7)

We compute C = µ · Ek

[
kk⊤], where Ek

[
kk⊤] is estimated as an uncentered covariance statistic

collected using an empirical sample of vector inputs to the layer (e.g., 100,000 Wikipedia records). µ
is a hyperparameter that balances the weighting of new v.s. old associations (a typical value of µ is
1.5× 104 according to MEMIT).

Details of the implementation on simultaneously editing multiple layers. Previously we fo-
cus on illustrating how existing knowledge editing algorithms edit a single layer in the LLM. To
simultaneously edit multiple layers of l ∈ R, existing editing algorithms (e.g., MEMIT (Meng
et al., 2023)) firstly obtain the desired output vector zi of final layer in R that can maximize
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Pr [oi|x⊕ p(si, ri)]. Then, they spread the whole residual over all the layers in R by computing

partial residual rli =
zi−Wl

ik
l
i

L−l+1 of each layer, i.e., l ∈ R. Then, the desired memory value of layer
l can be computed as ml

i = Wl
ik

l
i + rli and we can use Equation (7) to edit each layer. For details

of the implementation, please also refer to Meng et al. (2023). In this work, we strictly follow their
implementation to simultaneously edit multiple layers.

B THEORETICAL ANALYSIS OF THE METHODS

For ease of understanding, we will describe knowledge editing for a specific layer l and omit l
for brevity. We denote ∆G and ∆i as the weight updates derived from GLOBAL-EDIT and client
i’s edit. KG and Ki represent the new keys derived from all the edit requests and client i’s edits
requests. According to Section 2.1, RG and Ri represent the residual errors in the output space
of layer l derived from all the edit requests and client i’s edits requests, respectively. C represents
the aggregated statistic over the previously stored keys of existing knowledge. We consider the
collaborative editing scenario with N clients and each client model has M edit requests.

B.1 ANALYSIS OF THE NON-DESTRUCTIVE COLLABORATIVE KNOWLEDGE EDITING

Note that ∆i and ∆G can be computed via (2) as:

∆G = RGK
⊤
G(C+KGK

⊤
G)

−1 ,

∆i = RiK
⊤
i (C+KiK

⊤
i )

−1 .
(8)

Following the definitions of K and R in Section 2.1, we have:

Ki = [ki×(M−1)+1,ki×(M−1)+2, · · · ,ki×M ] ,

Ri = [ri×(M−1)+1, ri×(M−1)+2, · · · , ri×M ] ,

KG = [k1,k2, · · · ,kN×M ] = [K1,K2, · · · ,KN ] ,

RG = [r1, r2, · · · , rN×M ] = [R1,R2, · · · ,RN ] .

(9)

Then we have:
RGK

⊤
G = R1K

⊤
1 +R2K

⊤
2 + · · ·+RNK⊤

N . (10)

According to Equations (8) and (10), we can obtain:

∆G(C+
∑N

j=1 KjK
⊤
j ) = ∆G(C+K1K

⊤
1 · · ·+KNK⊤

N )

= ∆G(C+KGK
⊤
G)

= RGK
⊤
G

= R1K
⊤
1 +R2K

⊤
2 + · · ·+RNK⊤

N

= ∆1(C+K1K
⊤
1 ) + · · ·+∆N (C+KNK⊤

N )

=
∑N

i=1 ∆i(C+KiK
⊤
i ) .

(11)

According to the Equation (11), we can finally reach the following conclusion:

∆G =
∑N

i=1 ∆i(C+KiK
⊤
i )(C+

∑N
j=1 KjK

⊤
j )

−1 . (12)

B.2 COLLABEDIT IS PRIVACY-PRESERVING VIA DIRECTLY SHARING KK⊤

Next, we show that the design of sharing KK⊤ is privacy-preserving. Let’s define input keys K as:

K = [k1,k2, · · · ,kM ] ∈ Rd×M , (13)

where d indicates the dimension of the feature vector and M indicates the number of edit requests. In
particular, we aim to prove that given KK⊤, it is nontrivial to reconstruct the K. The problem is
equal to proving that given any specific KK⊤, there exists an infinite number of K (different K may
involve different M ) that will lead to the same KK⊤.
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To start with, let’s assume there exists a matrix operation W′ ∈ RM×M ′
, which can transform K

into K′ through K′ = K ·W′ and ensure that K′K′⊤ = KK⊤. Then we have:

K′K′⊤ = KW′⊤(KW′)⊤ = K(W′W′⊤)K⊤ = KK⊤. (14)
According to the Equation (14), we observe that any orthogonal matrix W′ such that W′W′⊤ = I
will lead to the K′ which has the same covariance matrix as K. Since there exists an infinite number
of orthogonal matrices when M > 1, we prove that it is nontrivial to reconstruct the K given KK⊤.

B.3 ANALYSIS OF THE GAP BETWEEN TWO EDITING METHODS

According to the Equation (12), we obtain the relationship between ∆G with ∆i as:

∆G = ∆1(C+K1K
⊤
1 )A

−1 + · · ·+∆N (C+KNK⊤
N )A−1 . (15)

Furthermore, we denote the weight updates derived from the destructive collaborative knowledge
editing method using “Task-Arithmetic (TA)” as ∆′

G. We have:
∆′

G = λ× (∆1 +∆2 + · · ·+∆N ) . (16)

Then, the gap between ∆G and ∆′
G can be calculated as:

∆G −∆′
G =

N∑
i=1

(∆i(C+KiK
⊤
i )A

−1 −
N∑
i=1

λ×∆i

=

N∑
i=1

∆i

(C+KiK
⊤
i )(C+

N∑
j=1

KiK
⊤
i )

−1 − λI

 .

(17)

C EVALUATION METRICS

C.1 METRICS FOR MULTI-COUNTERFACT

Multi-CounterFact (MCF) contains an assortment of prompts and texts for evaluating model rewrites.
For (si, ri), knowledge editing aims to rewrite the old object oci with the new desired object oi. We
use the same metrics as previous works (Meng et al., 2023) for evaluation:

• Efficacy Success (ES) is the proportion of cases where the new object oi exceeds the old object oci
in probability:

Ei [PrMθ
[oi|p(si, ri)] ≥ PrMθ

[oci |p(si, ri)]] . (18)
• Paraphrase Success (PS) is the proportion of cases where the new object oi exceeds the old object
oci in probability on rephrasings of the original statement:

Ei

[
Ep∈paraphrases(si,ri) [PrMθ

[oi|p] > PrMθ
[oci |p]]

]
. (19)

• Neighborhood Success (NS) is the proportion of neighborhood prompts (all such prompts have
the same old object oci ) where the model still assigns higher probability to the old object:

Ei

[
Ep∈neighborhood prompts(si,ri) [PrMθ

[oi|p] < PrMθ
[oci |p]]

]
. (20)

Additionally, the generation tests contain the following metrics:

• Reference Score (RS) measures the consistency of the model Mθ’s free-form generations. To
compute it, we first prompt Mθ with the subject s, then compute TF-IDF vectors for both
Mθ(s)and a reference Wikipedia text about o; RS is defined as their cosine similarity. Intuitively,
Mθ(s) would match better with o’s reference text if it has more consistent phrasing and vocabulary.

• We also check for excessive repetition (a common failure case with model editing) using Genera-
tion Entropy (N-gram Entropy, NE), which relies on the entropy of n-gram distributions:

−

(
2

3

∑
k

f2(k) log2 f2(k) +
4

3

∑
k

f3(k) log2 f3(k)

)
. (21)

Here, fn(·) is the n-gram frequency distribution.
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C.2 METRICS FOR ZSRE

For the sake of consistency, we report the same three accuracy-based metrics as the previous
work (Meng et al., 2023) to evaluate the editing performance on zsRE:

• Efficacy Accuracy (EA) is the proportion of edits that the model Mθ recalls with top-1 accuracy.
Specifically, an edited model Mθ should correctly recall the target object oi with the largest
probability given a templated prompt p(si, ri) containing si and ri:

Ei

[
oi = argmax

o′i

PrMθ
[o′i|p(si, ri)]

]
. (22)

• Paraphrase Accuracy (PA) is the accuracy of rephrasings of the original statement:

Ei

[
Ep∈paraphrases(si,ri)

[
oi = argmax

o′i

PrMθ
[o′i|p]

]]
. (23)

• Neighborhood Accuracy (NA) is the proportion of neighborhood prompts that the model gets
correct for the old object oci :

Ei

[
Ep∈neighborhood prompts(si,ri)

[
oci = argmax

o′i

PrMθ
[o′i|p]

]]
. (24)

D ALGORITHM OF OUR COLLABEDIT

Algorithm 1 COLLABEDIT: Non-destructive Collaborative Knowledge Editing
Require: The number of clients N , edit requests Ei of each client (1 ≤ i ≤ N ) where Ei = {(sij , rij , oij |j)},

language modelMθ with weights Wl of layer l, a set of MLP layers to edit R, covariance matrix C of
existing knowledge (optional for direct editing methods, e.g., MEMIT), Hyper-networkH with learnable
parameter κl for layer l (optional for hypernetwork-based editing methods, e.g., MALMEN), a set of prompt
templates P .

Ensure: Edited language modelMθ with updated weights W∗ = W +∆ of layer l.
1: ∆list = [ ] , KKTlist = [ ]
2: for i ∈ N do
3: ∆i

list ,KKTi
list ← GetDeltaAndKKT (Ei,Mθ , C,H, P)

4: ∆list.append(∆
i
list) , KKTlist.append(KKTi

list)

5: for l ∈ R do
6: A← C

7: A← κlI

8: for i ∈ N do
9: Kl

iK
l
i
⊤
= KKTlist[i][l] , ∆l

i = ∆list[i][l]

10: A← A+Kl
iK

l
i
⊤

11: ∆l
i ←∆l

i × (C+Kl
iK

l
i
⊤
)

12: ∆l
i ←∆l

i × (κlI+Kl
iK

l
i
⊤
)

13: W∗l ←Wl +
N∑
i=1

∆l
i ×A−1

9
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Algorithm 2 GetDeltaAndKKT
1: procedure GETDELTAANDKKT(Ei,Mθ ,H, C, P)
2: for sj , rj , oj ∈ Ei do
3: Lj ← 1

|P|
∑|P|

k=1− log PrMθ [oj |Pk(sj , rj)]

4: optimize zj ← argminzj
Lj

5: Cache Lj

6: ∆list = [], KKTlist = []
7: for l ∈ R do
8: hl

i ← hl−1
i + al

i +ml
i

9: for sj , rj , oj ∈ Ei,j do
10: kl

i ← kl
i =

1
P
∑|P|

k=1 Pk(sj , rj)

11: rli ←
zj−Wlkl

R[−1]−l+1

12: rli ← H(kl
i,∇kl

i
Lj)k

l
i

13: Kl ← [kl
1, ...,k

l
i]

14: Rl ← [rl1, ..., r
l
i]

15: ∆l ← RlKl⊤(Cl +KlKl⊤)−1

16: ∆l ← RlKl⊤(λlI+KlKl⊤)−1

17: ∆list.append(∆l) , KKTlist.append(KlKl⊤)
18: return ∆list, KKTlist
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