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Abstract
Generating accurate and interpretable explanations for predictions
on heterogeneous graphs remains a significant challenge due to
their multi-typed structures and complex relational dependencies.
While Large Language Models (LLMs) have demonstrated strong
performance in natural language tasks, their ability to provide
grounded explanations for heterogeneous graphs is still underex-
plored. In this work, we introduce RAGE (Retrieval-Augmented
Graph Explainer), a novel framework that enhances explanation
quality by integrating Retrieval-Augmented Generation (RAG) with
structured graph retrieval. RAGE retrieves subgraphs directly rele-
vant to a given query, ensuring that explanations remain closely
aligned with the dataset’s inherent structure.
We evaluate RAGE on two heterogeneous graph datasets, DBLP and
Goodreads, across multiple LLMs. Through comprehensive experi-
ments, we demonstrate that RAGE achieves comparable or superior
predictive performance to metapath-based approach, while improv-
ing scalability. Furthermore, our qualitative evaluation highlights
that RAGE produces more coherent and contextually accurate ex-
planations, reducing the hallucination risks associated with indirect
explanation approaches.
By offering a directly interpretable alternative to metapath-based
explanation, RAGE provides a compelling framework for enhancing
LLM-based explanation over heterogeneous graphs.
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1 Introduction
Producing accurate explanations for predictions on heterogeneous
graph datasets remains a significant challenge due to their complex,
multi-typed structure.While manymethods have been developed to
achieve high-performing prediction tasks on such datasets, generat-
ing reliable and interpretable explanations for these predictions is
still an area of active exploration. For example, Li et al. [13] demon-
strated the potential of large language models (LLMs) in few-shot
node classification tasks, particularly for incomplete graphs, while
Bi et al. [1] explored the scalability of link prediction using LLMs,
highlighting their ability to learn and generalize from heteroge-
neous graph data effectively. Although these studies underline the
promise of LLMs in graph-based tasks, they focus mainly on predic-
tion accuracy and scalability, leaving the generation of interpretable
explanations as an underexplored avenue.

Large Language Models (LLMs), known for their ability to accu-
rately parse, interpret, and answer complex questions based on
text by understanding context, semantics, and linguistic patterns,
have shown impressive performance on textual data[22][19]. They
excel in providing detailed explanations for their decisions, mak-
ing them promising tools for enhancing interpretability in com-
plex tasks. Despite this, the application of LLMs to heterogeneous
graphs—composed of multiple types of nodes and edges—remains
challenging due to the non-textual and diverse nature of graph
data.

Heterogeneous graphs are characterized by diverse node relation-
ships and edge types, posing significant challenges for LLMs to
process effectively. Recent studies have proposed graph-to-text
transformation methods to address this incompatibility. For in-
stance, Jin et al. [9] utilized neural encoders to preserve structural
and semantic information during transformation, while Chai et
al. [3] demonstrated the efficacy of incorporating graph embed-
dings into LLM prompts to improve reasoning over graph-based
data. These advancements underscore the potential of reformatting
graph data for seamless integration with LLMs, paving the way for
improved reasoning and explanation generation.

Building on this foundation, our work leverages the Retrieval-
Augmented Generation (RAG) framework to enrich LLM prompts
with relevant subgraph data. By embedding contextually relevant
subgraphs, we aim to enable LLMs to generate more accurate predic-
tions and interpretable explanations while minimizing hallucinated
or irrelevant outputs. This approach addresses the dual challenge of
improving both prediction accuracy and explainability, particularly
in the context of heterogeneous graph datasets.
Our contributions can be summarized as follows:
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• RAG Pipeline for Heterogeneous Graphs: We introduce
a novel RAG pipeline tailored for heterogeneous graphs,
retrieving the subgraph most relevant to the query, ensuring
meaningful context for LLM predictions.

• LLM as an Explainer: By integrating subgraphs into RAG-
enhanced prompts, we propose using LLMs as explainers
for heterogeneous graph databases. This ensures factually
correct and interpretable explanations for the predictions
generated by LLMs.

• Comprehensive Evaluation: Through rigorous experi-
ments on public datasets, including DBLP and Goodreads,
across various LLMs, we demonstrate the robustness and
performance of our model.

2 Related Works
LLMs are proven to face challenges in reasoning, factual precision,
and explainability in various domains[2][5][4][15][16]. Lei et al. uti-
lized LLMs as surrogate models to explain black-box recommender
systems [11]. They employed alignment techniques—behavior, in-
tention, and hybrid alignment—to generate natural language ex-
planations for recommendations based on user profiles. Similarly
Fang et al. introduced a method to augment text-attributed graphs
(TAGs) through prompt engineering and LLM-based textual at-
tribute perturbation, integrating the augmented features into gen-
erative models and GNNs for improved performance [7].While both
approaches focus on leveraging LLMs, our framework diverges by
targeting heterogeneous graph datasets and employing LLMs as
both predictors and explainers.

The integration of large language models (LLMs) and retrieval-
augmented generation (RAG) techniques has garnered significant
attention[6][23]. Li et al. addressed the challenge of hallucinations
in LLMs by employing RAG pipelines to retrieve relevant context for
domain-specific and time-sensitive queries [12]. They used curated
datasets in formats such as HTML and PDF, which were divided into
small chunks for effective retrieval. Mavromatis et al. combined
GNNs with LLMs to retrieve and reason over dense subgraphs
in knowledge graphs (KGs) [14]. Their extracted reasoning paths
included both answer-containing and distractor paths, which were
verbalized and used as input for LLMs.

Our framework, RAGE, extends beyond the methodologies dis-
cussed by focusing on heterogeneous graphs, which pose unique
challenges in decision-making and explainability. By leveraging
SentenceBERT embeddings along with structural graph informa-
tion, we ensure robust representation of graph data. Rather than
fine-tuning LLMs on user profiles or modifying TAG attributes, we
dynamically retrieve and integrate subgraphs as contextual prompts
using RAG, enabling LLMs to provide factually correct predictions
and explanations without altering the original graph structure.
Unlike the approaches by Li et al. and GNN-RAG, which include
direct answers within retrieved reasoning paths, RAGE ensures
predictions are based solely on contextual understanding. This
avoids the risk of embedding biases or errors from pre-determined
answers, creating a more nuanced and generalizable framework for
reasoning over complex datasets.

3 Background
Heterogeneous graphs represent a versatile yet complex data struc-
ture found in various real-world domains, from citation networks
to healthcare and social media. This section provides a detailed
overview of key concepts and methodologies that form the founda-
tion of our proposed framework. We begin by introducing heteroge-
neous graphs and their unique challenges, followed by a discussion
on textually attributed graphs (TAGs), which integrate structural
and textual information. Next, we explore Retrieval-Augmented
Generation (RAG), an approach used to retrieve and process rele-
vant subgraphs to enhance prediction and explanation tasks. Finally,
we highlight the capabilities of Large Language Models (LLMs) in
generating interpretable explanations for predictions derived from
heterogeneous graphs, bridging the gap between structured graph
data and natural language.

Heterogeneous graphs are defined as directed graphs𝐺 = (𝑉 , 𝐸,𝑇𝑣,𝑇𝑒 )
where 𝑉 represents the set of nodes, 𝐸 denotes the set of edges,
and 𝑇𝑣 and 𝑇𝑒 are the sets of node and edge types, respectively.
Each node 𝑣 ∈ 𝑉 and edge 𝑒 ∈ 𝐸 is associated with type mapping
functions𝜏𝑣 (𝑣) : 𝑉 → 𝑇𝑣 and 𝜏𝑒 (𝑒) : 𝐸 → 𝑇𝑒 . Such graphs
can be represented using a set of adjacency matrices{𝐴𝑡 } |𝑇𝑒 |𝑡=1 , or a
three-dimensional tensor𝐴 ∈ R |𝑉 |× |𝑉 |× |𝑇𝑒 | , where 𝐴𝑡 ∈ R |𝑉 |× |𝑉 |

captures the adjacency relationships for the 𝑡-th edge type. Specifi-
cally, 𝐴𝑡 [𝑖, 𝑗] encodes the weight of an edge of type 𝑡 from node 𝑗

to node 𝑖 . In the special case where |𝑇𝑣 | = 1 and |𝑇𝑒 | = 1, the graph
reduces to a homogeneous graph.

Heterogeneous Textually Attributed Graphs (TAGs) extend this
framework by incorporating textual features at the node and edge
levels. Formally, let 𝑋 ∈ R |𝑉 |×𝑑 represent the textual features
of nodes, where 𝑑 is the dimension of the embedding space, and
𝐹 ∈ R |𝐸 |×𝑓 denote edge-level textual attributes. Jointly modeling
structural relationships through 𝐴 and textual features through 𝑋

and 𝐹 is a non-trivial task, as it requires balancing the heteroge-
neous graph’s relational complexity with the semantic richness of
the text. Predicting node labels in such networks involves jointly
modeling the graph’s structural and textual attributes, a non-trivial
challenge due to the diverse data modalities involved [9]. While
accurate prediction on TAGs remains difficult, the greater challenge
lies in generating explanations for these predictions. Capturing the
interplay of textual and structural information in TAGs is crucial for
achieving interpretability, especially when dealing with complex
heterogeneous datasets.

RAG enhances large language model outputs by retrieving relevant
context—such as subgraphs—from a database. This context enables
LLMs to provide factually accurate predictions and explanations.
In this framework, cosine similarity between query embeddings
and graph embeddings is employed to identify relevant subgraphs.
Rather than directly utilizing all retrieved information, a ranking
mechanism prioritizes top-k nodes and edges. These are then used
to construct subgraphs that optimize the retrieval process. The
retrieved subgraph, converted into textual form, is subsequently
fed into the LLM as part of the prompt, ensuring coherence and
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Figure 1: RAGE Framework: Retrieval-Augmented Graph Explainer approach to enhance explanations for Heterogeneous
Graphs. It leverages a heterogeneous graph database to retrieve subgraphs relevant to the question. The prompt, consisting
of the textual description of the retrieved subgraph, the question, and additional context, guides the LLM’s response. This
approach minimizes hallucinations while enhancing explanation quality by utilizing the rich structure of heterogeneous
graphs.

context relevancy. This step significantly mitigates the issue of
hallucination and enhances the quality of explanations.

Large Language Models (LLMs), such as GPT-based models, have
shown exceptional capabilities in natural language processing tasks,
including question answering[14], summarization, and text genera-
tion. They have also demonstrated utility in heterogeneous graph
prediction tasks[9].

In our framework, LLMs are leveraged not just for predictions
but also for generating explanations. Since LLMs are inherently
limited in understanding graph structures, a transformation process
is employed where heterogeneous graphs are "textualized" into a
sequence format suitable for language models. By integrating the
retrieved subgraphs as part of the prompt, the LLM can generate
accurate and interpretable explanations for its predictions.

This hybrid approach of graph retrieval and language-based expla-
nation opens new avenues for improving interpretability in hetero-
geneous graph learning while addressing key challenges associated
with complexity and multi-modal data representation.

4 Methodology
In this section, we outline a systematic approach aimed at improving
the quality of explanations for predictions made on heterogeneous
graph datasets. Due to the intricate relationships and varied edge
types within these graphs, generating grounded and interpretable
explanations remains a significant challenge. Our methodology
leverages the Retrieval-Augmented Generation (RAG) framework
to provide rich, graph-contextualized prompts to large language
models (LLMs), thereby addressing this challenge.

The RAG framework enables the extraction and embedding of rel-
evant subgraph data into the LLM’s input. This enriched context
allows the LLM to generate predictions and explanations that are
more specific, accurate, and aligned with the underlying graph data.
By bridging the gap between heterogeneous graph structures and
LLM capabilities, our approach aims to not only improve the inter-
pretability of LLM output, but also to enhance the overall prediction
accuracy.

As illustrated in Figure 1 the pipeline begins with the preprocess-
ing of heterogeneous graph data to extract key relationships and
subgraph structures. These subgraphs are then integrated into LLM
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prompts, forming a context-rich input for prediction and expla-
nation generation. The following subsections detail each step, in-
cluding graph data preprocessing, RAG-based prompt engineering,
prediction generation, and explanation evaluation.

4.1 Dataset Preprocessing and Graph
Embedding Construction

The preprocessing step involves extracting key metadata from the
raw dataset and ensuring data consistency through cleaning and
organization. This stage is crucial for refining the graph structure,
eliminating noise, and preparing a manageable and representative
subset of data for analysis. The processed data serves as the foun-
dation for constructing subgraphs used in downstream task.

The cleaned and sampled data is used to generate graph embed-
dings. In this process, the extracted metadata form nodes, while
directed edges represent relationships between these nodes, con-
structing a heterogeneous graph structure. This graph serves as the
input for our proposed framework. We use SBERT (Sentence-BERT)
to generate embeddings of the nodes and edges, capturing both
semantic and structural information[17]. This is particularly bene-
ficial for heterogeneous graphs where textual attributes (such as
paper abstracts in DBLP or book descriptions in Goodreads) serve
as primary sources of information. These embeddings are stored in
a vector database to facilitate efficient retrieval during downstream
tasks.

4.2 Retrieval and Sub-graph Creation
To enhance the relevance of information provided to the Large
Language Model (LLM), we implement a focused subgraph creation
process inspired by the methodology described by Xiaoxin He et
al[8]. The subgraphs are created using the the Prize-Collecting
Steiner Tree (PCST) algorithm[21].
We generate these subgraphs to refine the contextual information
passed to the LLM, ensuring the model focuses on query-relevant
data while minimizing noise. By using the PCST algorithm, we
extract the key nodes and their connecting edges, forming coher-
ent subgraphs that represent only the most essential relationships
within the broader graph. These extracted subgraphs are then trans-
formed into textual descriptions through a structured serialization
process. Each description includes the node attributes, edge re-
lationships, and contextual metadata, which are then stored in a
database for efficient retrieval during the LLM’s prompt generation.

PCST-Based Subgraph:
In this approach as shown in Figure 2, each retrieved node in the
graph is assigned a "prize" based on its cosine similarity with the
query embedding, indicating its relevance to the query. Similarly, re-
trieved edges are assigned prizes reflecting their relevance based on
similarity to the query embedding’s attributes. To balance relevance
with conciseness, each edge is also assigned a cost, which encour-
ages the inclusion of high-prize nodes and edges while minimizing
the overall cost of the resulting subgraph.

(1) Node and Edge Selection: To identify the most relevant
nodes and edges in response to a query 𝑥𝑞 , we utilize a k-
nearest neighbors (k-NN) retrieval approach. The query is

Figure 2: Three-step approach for creating a Prize-Collecting
Steiner Tree (PCST)-based subgraph 1. Node and Edge Em-
beddings: Nodes and edges are embedded using a pretrained
language model (SBERT). 2. Retrieval: A query is encoded
into an embedding using SBERT. Relevant nodes and edges
are retrieved based on cosine similarity with the query em-
bedding. 3. Subgraph Generation: The top-k nodes and edges
are used to construct a subgraph using the PCST approach.
The final subgraph maximizes relevance to the query while
maintaining structural coherence and minimizing redun-
dancy.

encoded into an embedding 𝑧𝑞 = 𝐿𝑀 (𝑥𝑞) ∈ R𝑑 , ensuring
consistent handling of textual data across queries and graph
components. The retrieval process involves computing the
cosine similarity between 𝑧𝑞 and the embeddings of nodes
(𝑧𝑛) and edges (𝑧𝑒 ) in the graph. The top-k relevant nodes
(𝑉𝑘 ) and edges (𝐸𝑘 ) are identified as:

𝑉𝑘 = arg top-k𝑛∈𝑉 cos(𝑧𝑞, 𝑧𝑛),
𝐸𝑘 = arg top-k𝑒∈𝐸 cos(𝑧𝑞, 𝑧𝑒 ) .

Here, cos(·, ·) denotes the cosine similarity function, and the
arg top-k operator retrieves the top-k elements based on the
similarity scores.

(2) Constructing the Subgraph: Using the selected 𝑉𝑘 and
𝐸𝑘 , we construct a Prize-Collecting Steiner Tree (PCST) to
create a cohesive and cost-effective subgraph. Higher prize
values are assigned to nodes and edges that exhibit greater
relevance to the query, with the top-k nodes/edges receiving
descending prize values from 𝑘 to 1. The node prize function
is defined as:

prize(𝑛) =
{
𝑘 − 𝑖, if 𝑛 ∈ 𝑉𝑘 and 𝑛 is the top 𝑖 node,
0, otherwise.

Edge prizes are computed similarly. The subgraph 𝑆∗ =

(𝑉 ∗, 𝐸∗) is then optimized to maximize the total prize of
its nodes and edges, minus the cost associated with its size:

𝑆∗ = argmax
𝑆⊆𝐺,

𝑆 is connected

∑︁
𝑛∈𝑉𝑆

prize(𝑛) +
∑︁
𝑒∈𝐸𝑆

prize(𝑒) − cost(𝑆),

where the cost of a subgraph is defined as:cost(𝑆) = |𝐸𝑆 | ·𝐶𝑒 .
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Here,𝐶𝑒 represents the per-edge cost, which can be adjusted
to control the size of the resulting subgraph. This formula-
tion ensures that the subgraph maximizes relevance to the
query while maintaining structural coherence and minimiz-
ing redundancy.

The final subgraph, which contains the top 5 most relevant nodes
and associated edges, effectively captures the relationships and
contextual information pertinent to the query. This subgraph is
then converted into a textual description, serving as a grounded
input for the LLM, which leverages it for more accurate prediction
and explanation.

4.3 Loading the Model and Prompt Generation
We begin the evaluation process by loading the test dataset, con-
sisting of 2,000 samples, and the pre-trained Large Language Model
(LLM). The key to effective predictions and explanations lies in
constructing a well-engineered prompt, leveraging the Retrieval-
Augmented Generation (RAG) approach to enhance both the
accuracy and relevance of the LLM’s output.

The prompt generation process is carefully designed to provide
the model with sufficient contextual information, ensuring precise
predictions while minimizing hallucinations. For each sample (in
this case, a research paper), the prompt is constructed as follows:

(1) Question Framing: Each prompt starts by clearly posing
the question. For instance, if the task is to predict the research
field of a paper, the question will be: "Predict the research
area for the paper titled: ’X’."

(2) Contextual Guidance (One-shot Learning:) To guide the
LLM in producing structured responses, we use a one-shot
example for each label. This step provides the model with
a template for generating answers. For example, the model
is shown how to answer for a paper in Machine Learning
and similarly for Computer Networking and Theoretical
Computer Science. This serves as an anchor, helping the
LLM maintain consistency in its output format.

(3) Including the Retrieved Subgraph: The most critical part
of the prompt is embedding the retrieved subgraph, which is
constructed using the Prize-Collecting Steiner Tree (PCST)
approach. This subgraph, consisting of the top 5 most rele-
vant nodes and their associated edges, reflects the key rela-
tionships between different concepts or papers. By embed-
ding this structured information, the LLM is given context
grounded in actual data, reducing the risk of generating
fabricated or irrelevant explanations.

The LLM then processes this complete prompt and returns:

• A predicted node, which represents the research field or
label for the paper.

• An explanation detailing why this node was chosen, based
on the relationships within the subgraph (e.g., co-citations,
shared authorship, or similar research topics). This grounded
explanation ensures transparency in the model’s decision-
making process.

By integrating both the question and relevant subgraph into the
prompt, we aim to improve the model’s interpretability and reduce
reliance on generic or uninformed outputs.

5 Experimentation
Dataset Description:We evaluate our model on two public het-
erogeneous graph datasets: DBLP[10] and Goodreads[20]. These
datasets contain multiple node and edge types, with textual at-
tributes available for specific node categories. To ensure consis-
tency in our analysis, we restrict the target labels to three per
dataset. In DBLP, papers are categorized into machine learning,
computer networking, and theoretical computer science. The graph
consists of three node types—papers (P), authors (A), and con-
ferences (C)—and four types of edges capturing author-paper and
conference-paper relationships. Paper abstracts serve as the pri-
mary textual feature.
Similarly, the Goodreads dataset is a book-oriented graph where
books are labeled as fiction, non-fiction, and romance. This dataset
comprises five node types—books (B), authors (A), publishers (P),
formats (F), and language codes (L)—with multiple relationships
connecting books to other entities, such as authors, publishers, and
formats. The primary textual component in this dataset is the book
description, which serves as the key feature for book nodes.

Baseline: To evaluate the effectiveness of our proposed framework,
we compare it against Metapath of Thought (MoT)[18], a structured
reasoning approach designed for node classification and explana-
tion tasks in heterogeneous graphs. Instead of directly retrieving
subgraphs,MoT generatesmetapaths—sequences of connected node
types that capture meaningful relational patterns within the graph.
These metapaths serve as structured reasoning chains, guiding the
large language model (LLM) in both prediction and explanation gen-
eration. By explicitly incorporating metapath-based reasoning, MoT
ensures that predictions are grounded in structured graph-derived
insights.

To evaluate our framework’s effectiveness, we conduct experiments
using two widely adopted commercial LLMs: Claude and GPT-4.
These models were selected due to their widespread use in research
and industry, and demonstrated success in handling complex nat-
ural language tasks. The inclusion of multiple LLMs allows us to
validate the robustness of our approach across different architec-
tures, ensuring that our findings are not model-specific but instead
highlight the general effectiveness of retrieval-augmented explain-
ability in heterogeneous graph explanation.

5.1 Task 1: Node Prediction
The node prediction task evaluates the model’s ability to correctly
classify target nodes within a heterogeneous graph. Given the com-
plex structure of these graphs, which include multiple node and
edge types, achieving high predictive accuracy requires effective
contextualization of both structural and textual information.
To standardize evaluation, we adopt Micro F1 and Macro F1 scores
as key performance metrics. The Micro F1 score captures overall
accuracy by considering all predictions equally, while the Macro F1
score accounts for per-label performance, ensuring that the model
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DATASET APPROACH Micro F1 Macro F1

DBLP

Best RAGE performance with Claude 0.8575 0.8584
Best MoT performance with Claude 0.90259 0.90533
Best RAGE performance with GPT-4 0.8915 0.8916
Best MoT performance with GPT-4 0.81481 0.81086

GOODREADS

Best RAGE performance with Claude 0.805 0.825
Best MoT performance with Claude 0.904 0.909
Best RAGE performance with GPT-4 0.906 0.910
Best MoT performance with GPT-4 0.876 0.866

Table 1: Performance Comparison of RAGE and MoT across datasets and models

is not biased toward more frequent classes. These metrics help
assess both the general effectiveness and class-wise robustness of
the model.
Additionally, the confusion matrix provides insights into label-wise
performance, identifying common misclassifications and highlight-
ing areas where the model struggles. By analyzing misclassification
patterns, we assess the robustness of the model across different cat-
egories of research papers, particularly in distinguishing between
closely related fields.

5.2 Task 2: Qualitative Analysis of Explanation
In addition to evaluating node prediction performance, we assess
the quality of explanations provided by RAGE and Metapath of
Thought (MoT) to determine how well each approach justifies its
predictions. Since generating factually accurate, clear, and con-
textually grounded explanations is crucial for interpretability in
heterogeneous graph classification, we employ a structured ranking
and rating system to compare the responses from both models.

For a given research paper, both RAGE and MoT generate an
explanation along with a predicted research area. These responses
are then ranked based on clarity and factual correctness, with the
more informative and precise explanation receiving a higher rank.
Additionally, each response is rated on a 1-3 scale across five key
dimensions:

• Clarity: Measures how well-structured and comprehensible
the explanation is.

• Relevance: Assesses how directly the response addresses the
research area of the given paper.

• Depth: Evaluates whether the explanation provides mean-
ingful insight into the model’s reasoning.

• Accuracy: Determines whether the response is factually cor-
rect and free of hallucinations.

• Consistency: Ensures the explanation is logically coherent
and aligns with known domain knowledge.

A score of 3 denotes a clear, well-structured, and highly relevant
explanation, while a score of 1 indicates a vague, off-topic, or factu-
ally incorrect response. By aggregating these scores across multiple
test samples, we quantitatively compare the explanation quality
of RAGE and MoT to identify strengths and weaknesses in their
respective approaches.

6 Results
We evaluate the performance of RAGE and MoT across two hetero-
geneous graph datasets (DBLP and Goodreads) using two differ-
ent LLMs (Claude and GPT-4). Table 1 presents the Micro F1 and
Macro F1 scores for both approaches.The results indicate that both
approaches achieve comparable node classification performance
across datasets and models suggesting that retrieving subgraphs
instead of relying on metapath-based reasoning can be equally or
more effective in heterogeneous graph learning tasks.
For the DBLP dataset, MoT achieves the highest performance with
Claude (Micro F1: 0.9025, Macro F1: 0.9053), while RAGE attains its
best performance with GPT-4 (Micro F1: 0.8915, Macro F1: 0.8916).
The difference in scores is minimal, highlighting that both frame-
works offer strong predictive capabilities when provided with ap-
propriate contextual information.
In contrast, for the Goodreads dataset, RAGE demonstrates a clear
advantage over MoT with GPT-4, surpassing all MoT scores with a
0.906 Micro F1 and 0.910 Macro F1. This reinforces that retrieving
direct subgraphs can be an effective alternative to metapath-based
approaches, particularly for datasets rich in textual attributes like
Goodreads.
Table 2 presents a comparative analysis of RAGE and the metapath-
based approach under varying prompt configurations, evaluating
the impact of 1, 3, and 5 random context examples per label. The
results reveal that while both methods maintain competitive per-
formance, RAGE exhibits greater robustness across different con-
figurations.

In addition to quantitative evaluation, we assess the quality of ex-
planations generated by RAGE and MoT using a structured ranking
and rating system. Table 3 presents a comparative analysis of ex-
planation quality, evaluating responses based on clarity, factual
accuracy, and relevance.
The results indicate a significant advantage of RAGE in generat-
ing high-quality explanations. Specifically, in the DBLP dataset,
RAGE explanations received a higher percentage of top ratings
(90.10% with a score of 3). Similarly, for the Goodreads dataset,
RAGE achieved 95.45% of top-rated explanations, far surpassing
MoT’s 72.71%. Furthermore, RAGE consistently ranked higher in
terms of explanation quality, with 70.72% of its responses earning
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DATASET APPROACH Context + 1 example Context + 3 example Context + 5 example
Micro f1 Macro f1 Micro f1 Macro f1 Micro f1 Macro f1

DBLP

RAGE performance with Claude 0.8575 0.8584 0.841 0.845 0.853 0.849
MoT performance with Claude - - - - 0.876 0.882
RAGE performance with GPT-4 0.8835 0.8834 0.8725 0.8671 0.8915 0.8916
MoT performance with GPT-4 0.801 0.815 0.791 0.78927 0.8181 0.81086

GOODREADS

RAGE performance with Claude 0.805 0.825 0.7938 0.7812 0.827 0.831
MoT performance with Claude - - - - 0.877 0.886
RAGE performance with GPT-4 0.8545 0.8844 0.8693 0.8751 0.906 0.910
MoT performance with GPT-4 0.827 0.8192 0.8519 0.8563 0.8764 0.8661

Table 2: Parameter Variation across approaches

Dataset Approach Rank 1 % of score 3 for quality of explanation % of score 2 for quality of explanation

DBLP RAGE 70.72 90.10 9.90
MOT 29.28 84.60 14.40

GOODREADS RAGE 83.76 95.45 4.55
MOT 16.24 72.71 27.29
Table 3: Comparison of quality of Explanations generated for the two approaches

Rank 1 in DBLP and 83.76% in Goodreads, demonstrating its ability
to provide clearer and more factually accurate justifications.

While MoT and RAGE achieve comparable F1 scores, RAGE demon-
strates enhancement in the quality of explanations, providing more
precise, contextually relevant, and factually consistent justifica-
tions for predictions. These results reinforce that RAGE not only
maintains strong predictive capabilities but also enhances inter-
pretability by providing more precise and contextually relevant
justifications for its predictions. RAGE offers several advantages
that make it a more scalable and efficient approach for het-
erogeneous graph reasoning. One fundamental distinction be-
tween the two frameworks lies in how they retrieve contextual
information. MoT relies on a multi-step pipeline, where metapaths
are first generated using a GNN, followed by prompting an LLM
with explanations of these metapaths before generating predictions.
In contrast, RAGE directly retrieves relevant subgraphs from the
heterogeneous graph, eliminating the need for an intermediate
GNN-based metapath generation step. This direct retrieval ensures
that the contextual information remains closely aligned with the
original dataset without additional abstraction layers.
Additionally, RAGE provides better scalability and computational
efficiency. The metapath generation process in MoT is inherently
computationally intensive and often requires task-specific fine-
tuning, limiting its adaptability to new datasets. RAGE, however,
scales naturally across heterogeneous graphs by retrieving rele-
vant subgraphs without requiring dataset-specific pre-processing
or training on metapath structures. This flexibility makes it a more
generalizable solution for various heterogeneous graph datasets.
Another key advantage of RAGE is its stronger grounding in
the original dataset, as it retrieves actual subgraph structures

rather than relying on metapaths. This ensures greater factual
consistency in predictions and explanations. In contrast, since MoT
depends on predefined metapath templates, it is more susceptible to
biases introduced by GNN-generated paths, which may not always
capture the most relevant contextual relationships in the original
data. As a result, RAGE offers a more direct, interpretable, and
scalable framework for improving explanation quality and reducing
hallucinations in LLM-generated outputs for heterogeneous graphs.

7 Conclusion
In this work, we introduced RAGE, a retrieval-augmented frame-
work designed to enhance both prediction accuracy and explanation
quality for heterogeneous graphs. By retrieving and integrating
relevant subgraphs directly into LLM prompts, RAGE eliminates
the need for intermediate metapath generation, offering a more
direct, interpretable, and computationally efficient alternative to
metapath-based approaches. Our extensive evaluations on DBLP
and Goodreads datasets, across multiple LLMs, demonstrate that
RAGE achieves competitive node classification performance while
significantly improving explanation clarity, relevance, and factual
accuracy.
A key strength of RAGE lies in its scalability and adaptability.
The framework utilizes a vector database for efficient retrieval.
While this approach proves effective for textually attributed het-
erogeneous graphs, future work could explore the applicability of
GraphDB-based retrieval, particularly for non-TAG heterogeneous
graphs where structural relationships may be more dominant than
textual attributes.
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Beyond academic benchmarks, RAGE holds significant potential for
real-world applications. Its ability to generate interpretable expla-
nations makes it valuable for scientific literature analysis, recom-
mendation systems, and biomedical knowledge graphs, where ex-
plainability is crucial for trust and transparency. Expanding RAGE
to include more diverse and complex heterogeneous graph datasets,
would further validate its generalizability and establish its broader
applicability across domains.
While we evaluated the performance of RAGE across multiple LLMs,
our primary objective was to assess its impact on explanation qual-
ity for heterogeneous graph tasks rather than to compare the LLMs
themselves. Our core contribution lies in demonstrating the effec-
tiveness of structured subgraph retrieval in enhancing explana-
tion clarity, factual consistency, and interpretability. Future work
can explore how different LLM architectures influence retrieval-
augmented explanations, further refining the balance between con-
textual grounding and model adaptability.
This research lays the foundation for more interpretable, scalable,
and efficient heterogeneous graph learning, bridging the gap be-
tween structured graph explanation and natural language under-
standing.
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