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Abstract

We experimentally investigate a collection of feature engineering pipelines for1

use with a CNN for classifying electroencephalogram (EEG) time series from the2

Bonn dataset Andrzejak et al. [2001]. We compare ε-series of Betti-numbers and3

ε-series of graph spectra (a novel construction)—two topological invariants of a4

latent geometry of the timeseries—to raw time series of the EEG to fill in a gap5

in the literature for benchmarking. Additionally, we test these feature pipelines’6

robustness to downsampling and data reduction. This paper seeks to establish7

clearer expectations for both time-series classification via geometric features, and8

how CNNs for time-series respond to data of degraded resolution.9

Topological Data Analysis (TDA) (Zomorodian and Carlsson [2004],Edelsbrunner et al. [2000])10

has gained much attention due to applications for data analysis and machine learning. In particular,11

persistent homology (Scopigno et al. [2004],Edelsbrunner et al. [2002]) has been leveraged for12

machine learning purposes in numerous tasks. The methods attempt to describe the shape of the data13

in a latent space particularly amenable to feature engineering. The efficacy of topological features14

has been demonstrated in various tasks (Chazal and Michel [2017]).15

In this paper, we investigate the performance of various topological feature engineering approaches16

for EEG time-series classification using one dimensional CNN as the classifiers. While CNN17

architectures are heavily experimented on, less research has explored models for feature engineering18

using modern geometric techniques (Seo et al. [2016], Bronstein et al. [2017]). Usually, CNNs are19

trained on the raw time-series data where a convolutional kernels of a fixed sizes and strides are20

applied to the series with moving windows to compute higher-order features. Persistent homology21

of the Takens’ embedding provides one geometric procedure to engineer features for a time-series22

(Umeda [2017]).23

For a time-series, the k-dimensional Takens’ embedding of the time-series is the Euclidean embedding24

of points defined by a sliding window of size k—this provides a point-cloud representation of the25

time-series. From this point cloud the usual TDA approach provides persistent features. Both the raw26

series and the persistent features can be exploited for machine learning tasks. As a first step towards27

better understanding feature engineering on time-series, we compare the performance of these two28

approaches for the classification task.29

Furthermore, we propose a novel geometric method beyond homology theories utilizing eigenvalues30

of sequences of graph Laplacians. Again, we utilize the point-cloud representation’s ε-neighbor graph,31

and compute the normalized graph Laplacians’ eigenvalues. Density counts of these eigenvalues are32

encoded as m discrete ε-series. We demonstrate the superiority of our approach over the homological33

features and compare to the raw time-series via classification experiments while keeping the classifier34

architecture fixed.35

Generally, CNN architectures are optimized via network features like batch size, learning rate, kernels,36

pooling layers, and the like. Some papers have experimented with resizing to improve training time —37
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in (Howard [2018]) they introduced dynamic resizing with progressive resolution; (Roy et al. [2018])38

have investigated the CNN robustness under noise. We have not found in the literature examinations39

of explicit downsampling algorithms’ effects. To this effect, we study the performance of the feature40

engineering methods across multiple regimes of time-series resolution, and effective resolutions,41

comparing degradation across the feature types and downsampling methods–––a practice common42

in the signal processing literature but less so in classification of time-series. Note that the encoding43

methods in this paper need not only apply to sequential collections.44

The principle contributions of this work include:45

• Introduce a new feature engineering technique utilizing latent geometric properties of the46

time series.47

• Apply the theory and methods of downsampling to time-series classification problem.48

• Propose and demonstrate a comparison framework and baseline results for time series49

clustering via varying features and CNN architectures.50

Overview of model pipelines51

Figure 1: Raw time series from a segment of time
where the patient’s eyes were closed, segmented to
600 time steps, not downsampled.

Figure 2: βj(ε) computed for the time series shown
in Fig. 1.

Figure 3: Area plot of µj(ε) for the time series in
Fig. 1 as described in Section 3.1.

Raw Time Series Features: We feed the se-52

quential series values into two kernel layers of53

one-dimensional convolution and max pool lay-54

ers followed by a fully connected layer.55

Persistent Betti Numbers Features: We en-56

code each time series with the ‘k-step‘ Tak-57

ens’ embedding into Rk. This point cloud’s58

ε-neighbor graph generates the Vietoris-Rips fil-59

tration up to dimension 3. The order of the de-60

gree n simplicial homology (or n’th Betti num-61

ber) is computed for each ε neighbor complex,62

and encoded as n discrete ε-series. We feed63

the sequential ε-series values — each on their64

own channel — into two kernel layers of one-65

dimensional convolution and max pool layers66

followed by a fully connected layer.67

Persistent Laplacian Eigenvalue Features:68

We encode each time series with the ‘k-step‘69

Takens’ embedding into Rk. This point cloud’s70

ε-neighbor graph is collected and it’s normalized71

graph Laplacians are computed. The eigenval-72

ues of these Laplacians are computed and buck-73

eted into a partition of m buckets. The counts74

of eigenvalues in each bucket are encoded as75

m discrete ε-series. We feed the sequential ε-76

series values — each on their own channel —77

into two kernel layers of one-dimensional con-78

volution and max pool layers followed by a fully79

connected layer.80

Downsampled input data: In each of the81

pipelines, we prepend the model pipeline with a downsampling step using one of three downsampling82

algorithms and several downsampling resolutions.83

Experimental design: Our design matrix consists of the three downsampling methods applied to84

{200, 300, 400, 500, 600} initial data resolutions downsampled by steps of 50. Each of these initial85

data sets are fed through each of the model pipelines and subsequent CNNs. We use cross-validation86

and accuracy to evaluate the performance.87
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1 Experiments88

Data set and classification task The data used in this work are time series EEG signals, and are89

provided by the University of Bonn, explored in Andrzejak et al. [2001]. This data set is comprised of90

five sets (labeled A-E), each containing 100 single-channel EEG segments 23.6 seconds in duration,91

with 4097 observations. The segments were hand selected from within a continuous multi-channel92

EEG recording, chosen for absence of artifacts as well as fulfilling a stationarity condition. Set93

E contains segments of seizure activity, sets C and D are taken from epilepsy patients during an94

interval where no seizure activity was occurring, and sets A and B are observations from non epilepsy95

diagnosed patients. The observations in set A occur during times when the patient’s eyes were96

open, while those in set B occur during times when the patient’s eyes were closed. We study the97

classification task of A vs. B.98

CNN architectures All of the prediction algorithms used in this paper are CNNs,99

each with two sets of one dimensional convolution and max pool layers, fol-100

lowed by a fully connected layer to predict the class label. Architecture pa-101

rameters are vectors representing 〈input, channels, factor, kernel1 size, kernel2 size〉;102

〈res, 1, 5, (res/600) ∗ 18, 2〉 , 〈300, 3, 7, 6, 2〉 , 〈300, 7, 3, 6, 2〉 for raw time-series, Bettis, and103

eigenvalues respectively. factor refers to the multiplicative factor of input channels to output104

channels in each convolution layer, and res refers to the resolution to which the time series was105

downsampled to. Stride and dilation in both conv layers are 1 for each model; first pooling layer has106

size 7, second has size 3; each model is trained for 10 epochs.107

Experiments and Results For a given chunk size, downsampling method, and downsampling rate,108

we run 10-fold cross validation for each of the three prediction methods described. The average and109

standard deviation of accuracy is recorded and displayed in Figure 4 for non-dynamic bucketing110

downsampling methods, and Figure 5 for dynamic bucketing downsampling methods.111

Figure 4: Experiment results for non dynamic bucketing downsampling methods.

2 Outcomes112

We’ve explored a collection of ‘experiments’ in training and testing CNNs built on EEG data to113

predict if a patient’s eyes are open or closed. The aforementioned experiments primarily sought to114

establish performance comparisons while varying the feature engineering choice, the chunk size, and115

the downsampling resolution used.116

We established a baseline performance using a raw time series feature set and reproduced performance117

in (Umeda [2017]) to compare to this baseline. We saw that the performance of this baseline actually118

outperforms the TDA feature engineered experiment as reported. This suggests that for a task of119

this type the TDA approach is not SOTA, but may hold value in other regimes, or under more120
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specific hyperparameter tuning. Building on these results, we explored the novel geometric feature121

engineering method of persistent eigenvalues of the Laplacian. This method also outperforms TDA,122

but does not significantly outperform the raw time series experiment.123

We showed the performance of these networks under the strain of reduced data samples, and in124

resolution reduction. The impact on performance as we iterate through the parameter space is125

relatively smaller for the eigenvalue features, but perform worse than the raw time-series when a126

significant difference is detectable.127

Finally, we provided a testbed for further iteration on these sorts of prediction tasks, and opened up a128

discussion around sensor resolution, sample data size, downsampling, feature engineering, and CNNs.129

The comparison pipelines are easily extensible for further experimentation with this dataset or others.130

All of the code for feature engineering and testing is available on GitHub.131

Variable resolution training has been employed on ImageNet (Howard [2018]) to dramatically reduce132

training time, it’s interesting to consider the implications of explicitly controlling downsampling133

schemes for this ansatz. Larger scope, we have left open the question of “multi-resolution” sensor134

networks and the impact on geometric feature engineering and downsampling.135

3 Methods136

3.1 Our Approach137

Spectral graph theory is an integral facet of graph theory (Chung and Graham [1997]) and one of the138

key objects of this theory is the Laplacian matrix of a graph, as well as its eigenvalues. We assume all139

graphs are undirected and simple. For a graph G, let A and D be the adjacency matrix and the degree140

matrix of G respectively.141

The Laplacian of G is defined to be L = D −A. The normalized Laplacian of G is then defined to142

be L̃ = D−1/2AD−1/2.143

Denote the eigenvalues(or spectrum) of L̃ by 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1. Recall:144

Theorem (Lemma 1.7, Chung and Graham [1997]). For a graph G with n vertices, we have that145

1. 0 ≤ λi ≤ 2, with λ0 = 0. Further, λn−1 = 2 if and only if a connected component of G is146

bipartite and nontrivial.147

2. If G is connected, then λ1 > 0. If λi = 0 and λi+1 6= 0 then G has exactly i+ 1 connected148

components.149

Persistent Laplacian Eigenvalues for Time Series Analysis Denote by L̃ε(X) the normalized150

Laplacian of Gε(X). Define λ̂ε(X) = [λε(X)0, λε(X)1, . . . λε(X)n−1] to be the vector of eigen-151

values of L̃ε(X), in ascending order: 0 = λε(X)0 ≤ λε(X)1 ≤ · · · ≤ λε(X)n−1 ≤ 2. When the152

context is understood, we will drop the designation (X) in the above notations; e.g. Gε or λε0.153

Let I be an interval, v̂ = [v0, v1, . . . , vn−1] be a vector, and define154

countI(v) := #{vi | vi ∈ I}. (1)

For a given interval [0, r] (this will be our range of resolutions), and a finite collection of real numbers155

0 = τ0 < τ1 < · · · < τk = 2, define for ε ∈ [0, r]:156

µj(ε) :=

{
count[τj ,τj+1)(λ̂ε) for 0 ≤ j < k − 1

count[τj ,τj+1](λ̂ε) for j = k − 1.
(2)

That is, µj(ε) counts the number of eigenvalues of L̃ε that lie between τj and τj+1. Observe that157

count[0,0](λ̂ε) is equal to the number of connected components of Gε. We will view the collection158

{µj} as a collection of j real-valued functions with domain [0, r]. We refer to the collection of µj’s159

as persistent Laplacian eigenvalues. Given a time series {f(ti)}ni=0 we form Tm, and compute160

{µj}lj=0 for some choice of τ0, . . . τl.161
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Broader Impacts200

As the primary application of study for these experiments lies within the medical space, both201

positive and negative applications jump to mind. Large, high-resolution datasets both for training and202

evaluation come at the benefit of those in developed and wealthy communities. Our research – through203

its focus on developing methods robust to degradation – provides an opportunity for an improvement204

in prediction methods in lower fidelity data regimes; i.e. methods designed with downsampling and205

data reduction in mind alleviate needs for larger and more complete datasets.206
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The present study examines EEGs and eye states, which could easily extend to other ailments. More207

accurate models for predicting seizure, for example, could greatly benefit those privileged enough208

to share characteristics with those used to train the model in the first place. But what of those not209

sampled?210

As (Hall [1999]) has observed: Blacks, women, and the elderly have historically been excluded from211

clinical trial research. Such arrangements can lead to what (Veinot TC [2018]) has referred to as212

intervention-generated inequalities (IGI), a social arrangement where one group gets better, while213

others don’t. On top of their original ailments, groups left out are burdened with continued medical214

involvement and the associated costs (e.g. additional tests, transportation, childcare, and missed215

opportunities).216

We offer the following suggestions for those in the medical industry hoping to combat some of this217

inequity: 1. Insist on multiple representative datasets including those from underrepresented groups –218

incentivization where appropriate. 2. Identify and assist in eliminating barriers to involvement in data219

collection or diagnostics.220

A Downsampling221

A.1 Time series downsampling222

We consider a downsampling a selection of a subsequence of points, or a smaller set of points that223

summarize the timeseries. We assume the timeseries has n+ 2 points, and construct a downsample224

of m+ 2 points.225

Naive Bucketing: Select the first and last points of the timeseries; cover the the rest of the points226

with m even-width intervals(up to integer rounding). We call this a bucketing.227

Consider a sequence of sequences:228 {
{x0} , {x1, . . . , xk} , {xk+1, . . . , x2k} , . . . ,

{
x(m−1)k+1, . . . , xmk

}
, {xn+1}

}
and for simplicity, call the sub-sequences {bi}0≤i≤n+1 such that b0 = {x0}, bn+1 = {xn+1}, and229

bj =
{
x(j−1)k+1 . . . x(j−1)k

}
, we refer to these as buckets.230

Dropout: For each bucket, select the first point in the subsequence.231

Bucket Averaging: For each bucket in a naive bucketing, average the x and y coordinates and take232

this as the reprsentative point; take also the first and last points.233

For a bucket, we compute the 2-dimensional average of the points contained within: µj . For234

convenience of notation, we write elements of bi, as
{
xji

}
.235

Largest-Triangle Three-Bucket Downsample (LTTB) We compute the subsequence via the opti-236

mization problem:237

compute li = argmax
xj
i

4
(
li−1, x

j
i , µi+1

)
such that l0 = b0 and µn+1 = bn+1.

The sequence {l0, . . . , ln+1} is the largest triangle three bucket downsample. For more details and238

intuition around this construction we recommend the original paper.239

Remark 1. This is computed via a recursive optimization process iterating through the buckets; a240

non-recursive formulation to find the global optima is also possible. The distinction between these241

two solutions is that in the recursive solution each optimization is conditioned on the previous bucket,242

where-as the global solution conditions on all buckets simultaneously.243

A.2 Dynamic downsampling244

In the above bucketing strategies, points in all regions of the time series are given equal weight245

in the downsample. Often times, the lagging-variance of a time series is not uniform across the246

time-domain. One might expect that regions of higher variance might warrant higher resolutions in247

the downsample, while low variance might require lower resolutions. A simple implementation of248

this idea, (inspired by Steinarsson [2013]) is demonstrated in Algorithm 1(implementation included249

in Appendix). Downsampling methods are then applied to this bucketing of the timeseries.250
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Algorithm 1 Variance weighted dynamic bucketing

Precondition: B a naive bucketing, and P an iteration count

1: function DYNAMICBUCKETS(B : List[List[Float])
2: [bj ]← B
3: for i← 1 to P do
4: for j ← 1 to m do
5: S(bj)← SSE(OLS(bj))

6: z← argmaxj(S(bj))

7: blz ←
{
xz1, . . . , x

z
bk/2c

}
8: brz ←

{
xzbk/2c+1, . . . , x

z
k

}
9: B ← B \ {bz} ∪

{
blz, b

r
z

}
10: for i← 1 to P do
11: for j ← 1 to m+ P do
12: S(bj)← SSE(OLS(bj))

13: a← argmina(S(ba) + S(ba+1))
14: b∗a← {xa1 , . . . , xak} ∪

{
xa+1
1 , . . . , xa+1

k

}
15: B ← B \ {ba, ba+1} ∪ {b∗a}
16: return B

Remark 2. Rather than serially splitting, and then combining buckets to arrive at the rebucketing,251

it’s natural to ask how alternating these operations effects the result. The authors carried out several252

simulations of this technique and found that convergence to ‘stable’ bucketing took place much more253

quickly, but produced far worse results with respect to total SSE.254

A.3 Dynamic downsampling results255

Figure 5: Experiment results for dynamic bucketing downsampling methods.
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