
Under review as a conference paper at ICLR 2023

COUNTERNET: END-TO-END TRAINING OF PREDIC-
TION AWARE COUNTERFACTUAL EXPLANATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Counterfactual (or CF) explanations are a type of local explanations for Machine
Learning (ML) model predictions, which offer a contrastive case as an explanation
by finding the smallest changes (in feature space) to the input data point, which will
lead to a different prediction by the ML model. Existing CF explanation techniques
suffer from two major limitations: (i) all of them are post-hoc methods designed
for use with proprietary ML models — as a result, their procedure for generating
CF explanations is uninformed by the training of the ML model, which leads to
misalignment between model predictions and explanations; and (ii) most of them
rely on solving separate time-intensive optimization problems to find CF expla-
nations for each input data point (which negatively impacts their runtime). This
work makes a novel departure from the prevalent post-hoc paradigm (of generating
CF explanations) by presenting CounterNet, an end-to-end learning framework
which integrates predictive model training and the generation of counterfactual
(CF) explanations into a single pipeline. We adopt a block-wise coordinate descent
procedure which helps in effectively training CounterNet’s network. Our extensive
experiments on multiple real-world datasets show that CounterNet generates high-
quality predictions, and consistently achieves 100% CF validity and low proximity
scores (thereby achieving a well-balanced cost-invalidity trade-off) for any new
input instance, and runs 3X faster than existing state-of-the-art baselines.

1 INTRODUCTION

A counterfactual (CF) explanation offers a contrastive case — to explain the prediction made by a
Machine Learning (ML) model on data point x, CF explanation methods find a new counterfactual
example x′, which is similar to x but gets a different (or opposite) prediction from the ML model.
From an end-user perspective, CF explanation methods1 (Wachter et al., 2017) may be more preferable
(as compared to other methods of explaining ML models), as they can be used to offer recourse to
vulnerable groups. For example, if a person applies for a loan and gets rejected by a bank’s ML
algorithm, CF explanation methods can suggest corrective measures to the loan applicant, which can
be incorporated in a future loan application to improve their chances of getting an approved loan.

Generating high-quality CF explanations is a challenging problem because of the need to balance the
cost-invalidity trade-off (Rawal et al., 2020) between: (i) the invalidity, i.e., the probability that a CF
example is invalid, or it does not achieve the desired (or opposite) prediction from the ML model;
and (ii) the cost of change, i.e., the L1 norm distance between input instance x and CF example x′.
Figure 1 illustrates this trade-off by showing three different CF examples for an input instance x.
If invalidity is ignored (and optimized only for cost of change), the generated CF example can be
trivially set to x itself. Conversely, if cost of change is ignored (and optimized only for invalidity), the
generated CF example can be set to x′

2 (or any sufficiently distanced instance with different labels).
More generally, CF examples with high (low) invalidities usually imply low (high) cost of change.
To optimally balance this trade-off, it is critical for CF explanation methods to have access to the

1CF explanations are closely related to algorithmic recourse (Ustun et al., 2019) and contrastive explanations
(Dhurandhar et al., 2018). Although these terms are proposed under different contexts, their differences from CF
explanations have been blurred (Verma et al., 2020; Stepin et al., 2021), i.e. these terms are used interchangeably.

1

Under review as a conference paper at ICLR 2023

decision boundary of the ML model, without which finding a near-optimal CF explanation (i.e., x′
1)

is difficult. For example, it is difficult to distinguish between x′
1 (a valid CF example) and x′

0 (an
invalid CF example) without prior knowledge of the decision boundary.

Figure 1: Illustration of the cost-
invalidity trade-off in CF explanations
for binary classification problems.

Existing CF explanation methods suffer from three major
limitations. First, to our best knowledge, all prior methods
belong to the post-hoc explanation paradigm, i.e., they
assume a trained black-box ML model as input. This
post-hoc assumption has certain advantages, e.g., post-hoc
explanation techniques are often agnostic to the particu-
lars of the ML model, and hence, they are generalizable
enough to interpret any third-party proprietary ML model.
However, we argue that in many real-world scenarios, the
model-agnostic approach provided by post-hoc CF expla-
nation methods is not desirable. With the advent of data
regulations that enshrine the "Right to Explanation" (e.g.,
EU-GDPR (Wachter et al., 2017)), service providers are re-
quired by law to communicate both the decision outcome
(i.e., the ML model’s prediction) and its actionable impli-
cations (i.e., a CF explanation for this prediction) to an end-
user. In these scenarios, the post-hoc assumption is overly
limiting, as service providers can build specialized CF
explanation techniques that can leverage the knowledge
of their particular ML model to generate higher-quality
CF explanations. Second, in the post-hoc CF explanation
paradigm, the optimization procedure that finds CF explanations is completely uninformed by the
ML model training procedure (and the resulting decision boundary). Consequently, such a post-
hoc procedure does not properly balance the cost-invalidity trade-off (as explained above), causing
shortcomings in the quality of the generated CF explanations (as shown in Section 4). Finally,
most CF explanation methods are very slow — they search for CF examples by solving a separate
time-intensive optimization problem for each input instance (Wachter et al., 2017; Mothilal et al.,
2020; Karimi et al., 2021), which is not viable in time-constrained environment, as the runtime is a
critical factor when deployed to end-user facing devices (Zhao et al., 2018; Arapakis et al., 2021).

Contributions. We make a novel departure from the prevalent post-hoc paradigm of generating CF
explanations by proposing CounterNet, a learning framework that combines the training of the ML
model and the generation of corresponding CF explanations into a single end-to-end pipeline (i.e.,
from input to prediction to explanation). CounterNet has three contributions:

• Unlike post-hoc approaches (where CF explanations are generated after the ML model is trained),
CounterNet uses a (neural network) model-based CF generation method, enabling the joint training
of its CF generator network and its predictor network. At a high level, CounterNet’s CF generator
network takes as input the learned representations from its predictor network, which is jointly
trained along with the CF generator. This joint training is key to achieving a well-balanced
cost-invalidity trade-off (as we show in Section 4).

• We theoretically analyze CounterNet’s objective function to show two key challenges in training
CounterNet: (i) poor convergence of learning; and (ii) a lack of robustness against adversarial
examples. To remedy these issues, we propose a novel block-wise coordinate descent procedure.

• We conduct extensive experiments which show that CounterNet generates CF explanations with
∼100% validity and low cost of change (∼9.8% improvement to baselines), which shows that
CounterNet balances the cost-invalidity trade-off significantly better than baseline approaches.
In addition, this joint-training procedure does not sacrifice CounterNet’s predictive accuracy and
robustness. Finally, CounterNet runs orders of magnitude (∼3X) faster than baselines.

2 RELATED WORK

Prior explanation techniques for ML models include LIME (Ribeiro et al., 2016), SHAP (Lundberg
& Lee, 2017), saliency maps (Selvaraju et al., 2017; Sundararajan et al., 2017; Smilkov et al., 2017),
which highlight attribution importance for each data instance. Further, case-based methods provide

2

Under review as a conference paper at ICLR 2023

(similar) data samples as model explanations (Guidotti et al., 2018; Molnar et al., 2020; Chen et al.,
2019; Koh & Liang, 2017). Our work is most closely related to prior literature on CF explanation
methods, which focuses on finding new instances that lead to different predicted outcomes (Wachter
et al., 2017; Verma et al., 2020; Karimi et al., 2020; Stepin et al., 2021). CF explanations are preferred
by human end-users as these explanations provide actionable recourse in many domains (Binns et al.,
2018; Miller, 2019; Bhatt et al., 2020). Almost all prior work in this area belongs to the post-hoc CF
explanation paradigm, which we categorize into non-parametric and parametric methods.

Non-parametric methods. Non-parametric methods aim to find a counterfactual explanation without
the use of parameterized models. Wachter et al. (2017) proposed VanillaCF which generates CF
explanations by minimizing the distance between the input instance and the CF example, while
pushing the new prediction towards the desired class. Other algorithms, built on top of VanillaCF,
optimize other aspects, such as recourse cost (Ustun et al., 2019), fairness (Von Kügelgen et al.,
2022), diversity (Mothilal et al., 2020), closeness to the data manifold (Van Looveren & Klaise,
2019), causal constraints (Karimi et al., 2021), uncertainty (Schut et al., 2021), and robustness to
model shift (Upadhyay et al., 2021). However, this line of work is inherently post-hoc and relies
on solving a separate optimization problem for each input instance. Consequently, running them is
time-consuming, and their post-hoc nature leads to poor balancing of the cost-invalidity trade-off.

Parametric Methods. These methods use parametric models (e.g., a neural network model) to
generate CF explanations. For example, Pawelczyk et al. (2020); Joshi et al. (2019) generate CF
explanations by perturbing the latent variable of a variational autoencoder (VAE) model. Yang et al.
(2021); Singla et al. (2020); Nemirovsky et al. (2022) and Mahajan et al. (2019); Rodríguez et al.
(2021); Guyomard et al. (2022) train generative models (GAN and VAE, respectively) to produce
CF explanations for a trained ML model. However, these methods are still post-hoc in nature, and
thus, they also suffer from poorly balanced cost-invalidity trade-offs. Contrastingly, we depart from
this post-hoc paradigm, which leads to a greater alignment between CounterNet’s predictions and
CF explanations. Note that Ross et al. (2021) propose a recourse-friendly ML model by integrating
recourse training during predictive model training. However, their work does not focus on generating
CF explanations. In contrast, we focus on generating predictions and CF explanations simultaneously.

3 THE PROPOSED FRAMEWORK: COUNTERNET

Unlike prior work, our proposed framework CounterNet relies on a novel integrated architecture
which combines predictive model training and counterfactual explanation generation into a single
optimization framework. Through this integration, we can simultaneously optimize the accuracy of
the trained predictive model and the quality of the generated counterfactual explanations. Formally,
given an input instance x ∈ Rd, CounterNet aims to generate two outputs: (i) the ML prediction
component outputs a prediction ŷx for input instance x; and (ii) the CF explanation generation
component produces a CF example x′ ∈ Rd as an explanation for input instance x. Ideally, the CF
example x′ should get a different (and often more preferable) prediction ŷx′ , as compared to the
prediction ŷx on the original input instance x (i.e., ŷx′ ̸= ŷx). In particular, if the desired prediction
output is binary-valued (0, 1), then ŷx and ŷx′ should take on opposite values (i.e., ŷx + ŷx′ = 1).

3.1 NETWORK ARCHITECTURE

Figure 2 illustrates CounterNet’s architecture which includes three components: (i) an encoder
network h(·); (ii) a predictor network f(·); and (iii) a CF generator network g(·). During training,
each input instance x ∈ Rd is first passed through the encoder network to generate a dense latent
vector representation of x (denoted by zx = h(x)). Then, this latent representation is passed through
both the predictor network and the CF generator network. The predictor network outputs a softmax
representation of the prediction ŷx = f(zx). To generate CF examples, the CF generator network
takes two pieces of information: (i) the final representation of the predictor network px (before it is
passed through the softmax layer), and (ii) the latent vector zx (which contains a dense representation
of the input x). These two vectors are concatenated to produce the final latent vector z′x = px ⊕ zx,
which is passed through the CF generator network to produce a CF example x′ = g(z′x). Note
that passing the representation of predictor network px through the CF generator network implicitly
conveys information about the decision boundary to the CF generation procedure, who leverages this
knowledge to find high-quality CF examples x′.

3

Under review as a conference paper at ICLR 2023

𝑥𝑥

So
ft

M
ax

So
ft

M
ax

So
ft

M
ax

𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡1
𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡2

𝑐𝑐𝑐𝑐𝑡𝑡1

𝑐𝑐𝑐𝑐𝑡𝑡2

𝑐𝑐𝑐𝑐𝑡𝑡3

Encoder
ℎ(⋅)

Predictor
𝑓𝑓(⋅)

CF Generator
𝑔𝑔(⋅)

�𝑦𝑦𝑥𝑥

𝑥𝑥𝑥

So
ft

M
ax

Neural Transformation

Copy Block

Transform to
One-hot Encoding

Softmax function

Pass during training
and testing
Pass during training

So
ft

M
ax

Block concatenation

𝑧𝑧𝑥𝑥

𝑧𝑧𝑥𝑥

𝑧𝑧𝑥𝑥 𝑝𝑝𝑥𝑥

𝑝𝑝𝑥𝑥

𝑧𝑧𝑥𝑥′

�𝑦𝑦𝑥𝑥′

Figure 2: CounterNet contains three components: an encoder to transform the input into a dense latent
vector, a predictor network to output the prediction, and a CF generator to produce explanations.

Furthermore, to ensure that the CF generator network outputs valid CF examples (i.e., ŷx ̸= ŷx′),
the output of the CF generator network x′ is also passed back as an input through the encoder and
predictor networks when training CounterNet. This additional feedback loop (from the output of CF
generator network back into the encoder and predictor networks) optimizes the validity of generated
CF examples. As such, we can now train the entire network in a way such that the predictor network
outputs opposite predictions ŷx and ŷx′ for the input instance x and the CF example x′, respectively.
Note that this “feedback loop” connection is only needed during training, and is removed at test time.
This design aims to achieve a better balance on the cost-invalidity tradeoff (as shown in Section 4).

Design of Encoder, Predictor & CF Generator. All three components in CounterNet’s architecture
consist of a multi-layer perception (MLP)2. The encoder network in CounterNet consists of two
feed-forward layers that down-sample to generate a latent vector z ∈ Rk (s.t. k < d). The
predictor network passes this latent vector z through two feed-forward layers to produce the predictor
representation p. Finally, the predictor network outputs the probability distribution over predictions
with a fully-connected layer followed by a softmax layer. On the other hand, the CF generator network
takes the final latent representation z′ = z ⊕ p as an input, and up-samples (using two feed-forward
layers) to produce CF examples x′ ∈ Rd. Each feed-forward neural network layer inside CounterNet
uses LeakyRelu activation functions (Xu et al., 2015) followed by a dropout layer (Srivastava et al.,
2014). Note that the number of feed-forward layers, the choice of activation function, etc., were
hyperparameters that were optimized using grid search. See Appendix B.4 for implementation details.

Handling Categorical Features. To handle categorical features, we customize CounterNet’s archi-
tecture for each dataset. First, we transform all categorical features in each dataset into numeric
features via one-hot encoding. In addition, for each categorical feature, we add a softmax layer after
the final output layer in the CF generator network (Figure 2), which ensures that the generated CF
examples respect the one-hot encoding format (as the output of the softmax layer will sum up to 1).
Finally, we normalize all continuous features to the [0, 1] range before training.

3.2 COUNTERNET OBJECTIVE FUNCTION

CounterNet has three objectives: (i) predictive accuracy - the predictor network should output accurate
predictions ŷx; (ii) counterfactual validity - CF examples x′ produced by the CF generator network
should be valid, i.e., they get opposite predictions from the predictor network (e.g. ŷx+ ŷx′ = 1); and
(iii) minimizing cost of change - minimal modifications should be required to change input instance x

2CounterNet can work with alternate neuronal blocks, e.g., convolution, attention, although effective training
of these neuronal blocks demands additional efforts (see Appendix H).

4

Under review as a conference paper at ICLR 2023

to CF example x′. Thus, we formulate this multi-objective minimization problem to optimize the
parameter of overall network θ:

argmin
θ

1

N

∑N

i=1

[
λ1 · (yi − ŷxi

)
2︸ ︷︷ ︸

Prediction Loss (L1)

+ λ2 ·
(
ŷxi

−
(
1− ŷx′

i

))2︸ ︷︷ ︸
Validity Loss (L2)

+ λ3 · (xi − x′
i)

2︸ ︷︷ ︸
Change Loss (L3)

]
(1)

where N denotes the number of instances in our dataset, (λ1, λ2, λ3) are hyper-parameters to balance
the three loss components, the prediction loss L1 denotes the mean squared error (MSE) between
the actual and the predicted labels (yi and ŷxi

on instance xi, respectively), which aims to maximize
predictive accuracy. Similarly, the validity loss L2 denotes the MSE between the prediction on
instance xi (i.e., ŷxi), and the opposite of the prediction received by the corresponding CF example x′

i
(i.e., 1− ŷx′

i
). Intuitively, minimizing L2 maximizes the validity of the generated CF example x′

i by
ensuring that the predictions on x′

i and xi are different. Finally, the proximity loss L3 represents the
MSE distance between input instance xi and the CF example x′

i, which aims to minimize proximity.
This choice of loss functions is crucial to CounterNet’s superior performance, as replacing L1, L2

and L3 with alternative functions leads to degraded performance (as we show in Section 4).

3.3 TRAINING PROCEDURE

The conventional way of solving the optimization problem in Eq. 1 is to use gradient descent with
backpropagation (BP). However, directly optimizing the objective function (Eq. 1) as-is results in
two fundamental issues: (1) poor convergence in training (shown in Lemma 3.1), and (2) proneness
to adversarial examples (shown in Lemma 3.2).

Issue I: Poor Convergence. Optimizing Eq. 1 as-is via BP leads to poor convergence. This occurs
because Eq. 1 contains two different loss objectives with divergent gradients, as Lemma 3.1 shows
the gradients of L1 and L2 move in opposite directions. Consequently, the accumulated gradient
across all three loss objectives fluctuates drastically, which leads to difficulty in training.
Lemma 3.1 (Divergent Gradient Problem). Let L1 = ∥y − ŷx∥2, and L2 = ∥ŷx − (1− ŷx′)∥2, if
x′ → x, 0 < ŷx < 1, y is a binary label, and |ŷx − y| < 0.5, then ∇L1 · ∇L2 < 0.

Issue II: Adversarial Examples. Our training procedure should generate high-quality CF exam-
ples x′ for input instances x without sacrificing the adversarial robustness of the predictor network.
Unfortunately, optimizing Eq. 1 as-is is at odds with the goal of achieving adversarial robustness.
Lemma 3.2 shows that optimizing L2 with respect to the predictive weights θf decreases the robust-
ness of the predictor f(·) (by increasing the Lipschitz constant of f(·) (Hein & Andriushchenko,
2017; Wu et al., 2021)), leading to its increased vulnerability to adversarial examples. Proof of
Lemma 3.1 and 3.2 can be found in Appendix A.
Lemma 3.2 (Lipschitz Continuity). Suppose f is a locally Lipschitz continuous function param-
eterized by θ, then it satisfies |fθ(x) − fθ(x

′)| ≤ K ∥x− x′∥2, where its Lipschitz constant
K = supx′∈B(x,ϵ){∥∇fθ(x

′)∥2}. Let L2 = ∥fθ(x)− (1− fθ(x
′)∥2, if x′ → x, 0 < fθ(·) < 1,

f(x) → y, and y is a binary label, then minimizing L2 w.r.t. θ increases the Lipschitz constant K.

We remedy these issues as follows: (1) to handle poor convergence in training, we adopt a block-wise
coordinate descent procedure, which divides the problem of optimizing Eq. 1 into two parts: (i)
optimizing predictive accuracy (primarily influenced by L1); and (ii) optimizing the validity and
proximity of CF generation (primarily influenced by L2 and L3). Specifically, for each mini-batch of
m data points {x(i), y(i)}m, we apply two gradient updates to the network through backpropagation.
For the first update, we compute θ(1) = θ(0) − ∇θ(0)(λ1 · L1), and for the second update, we
compute θ(2) = θ(1) − ∇θ(1)(λ2 · L2 + λ3 · L3). This procedure ensures that gradients for L1

and L2 are calculated separately, which lessens the divergent gradient problem (Lemma 3.1), and
leads to significantly better convergence. (2) Moreover, to improve adversarial robustness of our
predictor network, during the second stage of our coordinate descent procedure (when we optimize
for λ2 · L2+λ3 · L3)), we only update the weights in the CF generator θg and freeze gradient updates
in both the encoder θh and predictor θf networks. More formally, instead of updating the weights
θ of the entire network during the second update, we only update the CF generator weights θg as
follows: θ

(2)
g = θ

(1)
g − ∇

θ
(1)
g

(λ2 · L2 + λ3 · L3). This ensures that the Lipschitz constant of the
predictor network does not increase (Lemma 3.2).

5

Under review as a conference paper at ICLR 2023

4 EXPERIMENTAL EVALUATION

We primarily focus our evaluation on heterogeneous tabular datasets for binary classification problems
(which is the most common and reasonable setting for CF explanations (Verma et al., 2020; Stepin
et al., 2021)). However, CounterNet can be applied to multi-class classification settings, and it can
also be adapted to work with other modalities of data, e.g., images, etc. (as shown in Appendix G, I).

Baselines. We compare CounterNet against seven state-of-the-art CF explanation methods: (i)
VanillaCF (Wachter et al., 2017) – which generates CF examples by optimizing CF validity and
proximity; (ii) DiverseCF (Mothilal et al., 2020), ProtoCF (Van Looveren & Klaise, 2019), and
UncertainCF (Schut et al., 2021) – which optimizes for diversity, consistency with prototypes, and
uncertainty, respectively; (iii) VAE-CF (Mahajan et al., 2019), CounteRGAN (Nemirovsky et al.,
2022), C-CHVAE (Pawelczyk et al., 2020), and VCNet (Guyomard et al., 2022) – which rely on
generative models (i.e., VAE or GAN) to generate CF examples 3.

Unlike CounterNet, all of the post-hoc methods require a trained predictive model as input. Thus,
for each dataset, we train a neural network model and use it as the target predictive model for all
baselines. For a fair comparison, we only keep the encoder and predictor network inside CounterNet’s
architecture (Figure 2), and optimize them for predictive accuracy alone (i.e., L1). This combination
of encoder and predictor networks is then used as the black-box predictive model for our baselines.

Datasets. To remain consistent with prior work on CF explanations (Verma et al., 2020), we evaluate
CounterNet on four benchmarked real-world binary classification datasets: (i) Adult (Kohavi &
Becker, 1996) which predicts whether an individual’s income reaches $50K (Y=1) or not (Y=0); (ii)
Credit (Yeh & Lien, 2009) which uses historical payments to predict default of payment (Y=1) or not
(Y=0); (iii) HELOC (FICO, 2018) which predicts if a homeowner qualifies for credit (Y=1) or not
(Y=0); (iv) OULAD (Kuzilek et al., 2017) which predicts whether MOOC students drop out (Y=1) or
not (Y=0). We also provide experiments on four additional datasets in Appendix E.

Evaluation Metrics. For each input x, CF explanation methods generate two outputs: (i) a prediction
ŷx; and (ii) a CF example x′. We evaluate the quality of both these outputs using separate metrics.
For evaluating predictions, we use predictive accuracy (as all four datasets are fairly class-balanced).

For evaluating CF examples, we use five widely used metrics from prior literature (see Appendix B.3
for formal definitions): (i) Validity is the fraction of input instances on which CF explanation methods
output valid CF examples, i.e., the fraction of input data points for which ŷx + ŷx′ = 1. High validity
is desirable, as it implies the method’s effectiveness at creating valid CF examples (Mothilal et al.,
2020; Upadhyay et al., 2021). (ii) Proximity is the L1 norm distance between x and x′ divided by
the number of features (Wachter et al., 2017; Mothilal et al., 2020). (iii) Sparsity is the number of
feature changes between x and x′ (normalized by the total number of features) (Wachter et al., 2017;
Poursabzi-Sangdeh et al., 2021). Proximity and sparsity serve as proxies for measuring the cost of
change of our CF explanation approach, as it is desirable to have fewer modifications in the input
space to convert it into a valid CF example. (iv) Manifold distance is the L1 distance to the k-nearest
neighbor of x′ (we use k = 1 based on (Verma et al., 2022)). Low manifold distance is desirable as
closeness to the training data manifold indicates realistic CF explanations (Van Looveren & Klaise,
2019; Verma et al., 2022). (v) Finally, we also report the runtime for generating CF examples.

4.1 EVALUATION OF COUNTERNET PERFORMANCE

Table 1: Predictive Accuracy of CounterNet

Dataset Base Model CounterNet

Adult 0.831 0.828
Credit 0.813 0.819
HELOC 0.717 0.716
OULAD 0.934 0.929

Predictive Accuracy. Table 1 compares CounterNet’s
predictive accuracy against the base prediction model
used by baselines. This table shows that CounterNet
exhibits highly competitive predictive performance -
it achieves marginally better accuracy on the Credit
dataset (row 2), and achieves marginally lower accuracy
on the remaining datasets. Across all four datasets, the
difference between the predictive accuracy of Counter-
Net and the base model is ∼ 0.1%. Thus, the potential

3Note that Yang et al. (2021) propose another parametric post-hoc method, but we exclude it in our baseline
comparison because it achieves comparable performance to C-CHVAE (as reported in (Yang et al., 2021)).

6

Under review as a conference paper at ICLR 2023

Table 2: Evaluation of CF explanations: CounterNet achieves perfect validity (i.e., Val.), and

it incurs comparable (or lesser) cost of changes (i.e., Prox, Spar.) than baseline methods, with

comparable manifold distance (i.e., Man.). Bold and italicized cells highlight the best and second-
best performing methods, respectively.

Method Adult Credit HELOC OULAD
Val. Prox. Spar. Man. Val. Prox. Spar. Man. Val. Prox. Spar. Man. Val. Prox. Spar. Man.

VanillaCF 0.76 .202 .556 0.57 0.92 .123 .841 0.59 1.00 .154 .883 0.71 1.00 .101 .762 1.30
DiverseCF 0.54 .276 .662 1.16 1.00 .264 .918 1.68 0.90 .149 .434 1.34 0.68 .117 .565 2.51
ProtoCF 0.59 .250 .648 0.62 0.92 .197 .855 0.82 1.00 .168 .805 0.56 1.00 .107 .754 1.46
UncertainCF 0.36 .307 .713 1.23 0.62 .155 .217 0.80 0.55 .130 .161 0.94 0.59 .098 .734 2.23

C-CHVAE 1.00 .281 .721 0.94 1.00 .357 .853 1.85 1.00 .155 .790 0.81 1.00 .110 .797 2.11
VAE-CF 0.66 .287 .734 1.03 0.13 .201 .756 0.62 1.00 .221 .893 1.04 1.00 .115 .586 2.19
CounteRGAN 0.78 .327 .698 2.21 0.39 .260 .687 2.03 1.00 .271 .509 2.23 0.43 .087 .587 2.15
VCNet 1.00 .291 .755 0.19 1.00 .162 .939 0.16 1.00 .154 .786 0.39 1.00 .095 .903 1.33

CounterNet 1.00 .196 .644 0.64 1.00 .132 .912 0.56 1.00 .125 .740 0.56 1.00 .075 .725 0.87

benefits achieved by CounterNet’s joint training of predictor and CF generator networks do not come
at a cost of reduced predictive accuracy.

Counterfactual Validity. Table 2 compares the validity achieved by CounterNet and baselines on all
four datasets. We observe that CounterNet, C-CHVAE, and VCNet are the only three methods with
100% validity on all datasets. With respect to the other baselines, CounterNet achieves 8% and 12.3%
higher average validity (across all datasets) than VanillaCF and ProtoCF (our next best baselines).

Proximity & Sparsity. Table 2 compares the proximity/sparsity achieved by all methods. CounterNet
achieves at least 3% better proximity than all other baselines on three out of four datasets (Adult,
HELOC, and OULAD), and it is the second best performing model on the Credit dataset (where
it achieves 7.3% poorer proximity than VanillaCF). In terms of sparsity, CounterNet performs
reasonably well, it is the second best performing model on the Adult and HELOC datasets even
though CounterNet does not explicitly optimize for sparsity. This shows that CounterNet outperforms
all baselines by generating CF examples with the highest validity and best proximity scores.

Cost-Invalidity Trade-off. We illustrate the cost-invalidity trade-off (Rawal et al., 2020) for all
methods. Figure 3 shows that CounterNet lies on the bottom left of this figure — it consistently
achieves the lowest invalidity and cost on all four datasets. In comparison, VCNet achieves the same
perfect validity, but at the expense of ∼34% higher cost than CounterNet. Similarly, C-CHVAE
demands ∼71% higher cost than CounterNet to achieve perfect validity. On the other hand, VanillaCF
achieves comparable cost to CounterNet (10% higher cost), but it achieves lower validity by 8%. This
shows that CounterNet’s joint training enables it to properly balance the cost-invalidity trade-off.

0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24

Proximity

0.0

0.1

0.2

0.3

0.4

0.5

In
va

li
d

it
y

Methods

VanillaCF

DiverseCF

ProtoCF

UncertainCF

C-CHVAE

VAE-CF

CounteRGAN

VCNet

CounterNet

Figure 3: Illustration of the cost-invalidity
trade-off across all four datasets. Methods at
the bottom left are preferable.

Table 3: Runtime comparison (in milliseconds).
CounterNet outperforms all of baselines in runtime.

Method Adult Credit HELOC OULAD

VanillaCF 1432.09 1358.26 1340.42 1705.93
DiverseCF 4685.39 3898.43 3921.72 5478.17
ProtoCF 2348.21 2056.01 1956.71 2823.29
UncertainCF 379.95 60.80 7.91 6.81

C-CHVAE 3.28 568.28 2.68 4.79
VAE-CF 1.72 1.28 1.48 1.84
CounteRGAN 1.96 1.77 1.59 2.40
VCNet 1.39 1.23 1.13 1.81

CounterNet 0.64 0.39 0.44 0.79

7

Under review as a conference paper at ICLR 2023

Table 4: Ablation analysis of CounterNet. Each ablation leads to degraded performance, which in
turn, demonstrates the importance of different design choices inside CounterNet.

Ablation Adult Credit HELOC OULAD
Val. Prox. Val. Prox. Val. Prox. Val. Prox.

CounterNet-BCE 0.86 .238 0.96 .210 0.86 .238 0.95 .101
CounterNet-SingleBP 0.64 .248 0.92 .251 0.93 .206 0.94 .110
CounterNet-Separate 0.96 .257 0.99 .265 0.91 .161 0.94 .097
CounterNet-NoPass-px 0.97 .256 0.99 .339 0.98 .147 0.98 .101
CounterNet-Posthoc 1.00 .276 1.00 .247 1.00 .153 0.99 .099

CounterNet 1.00 .196 1.00 .132 1.00 .125 1.00 .075

Manifold Distance. Table 2 shows that CounterNet achieves the second-lowest manifold distance in
average (right below VCNet, which explicitly optimizes for data manifold). In particular, CounterNet
achieves the lowest manifold distance in OULAD, and is ranked second in Credit and HELOC. This
result shows that CounterNet generates highly realistic CF examples that adhere to the data manifold.

Running Time. Table 3 shows the average runtime (in milliseconds) of different methods to generate
a CF example for a single data point. CounterNet outperforms all seven baselines in every dataset. In
particular, CounterNet generates CF examples ∼3X faster than VAE-CF, CouneRGAN, and VCNet,
∼5X faster than C-CHVAE, and three orders of magnitude (>1000X) faster than other baselines. This
result shows that CounterNet is more usable for adoption in time-constrained environments.

4.2 FURTHER ANALYSIS

Ablation Analysis. We analyze five ablations of CounterNet to underscore the design choices
inside CounterNet. First, we accentuate the importance of the MSE loss functions used to optimize
CounterNet (Eq. 1) by replacing the MSE based L1 and L2 loss in Eq. 1 with binary cross entropy
loss (CounterNet-BCE). Second, we underscore the importance of CounterNet’s two-stage coordinate
descent procedure by using conventional one-step BP optimization to train CounterNet instead
(CounterNet-SingleBP). In addition, we validate CounterNet’s architecture design by experimenting
two alternative designs: (i) we use a separate predictor f : X → Y and CF generator g : X → X ′,
such that f and g share no identical components (unlike in CounterNet, where zx are shared with
both f and g; CounterNet-Separate); and (ii) we highlight the design choice of passing px to the CF
generator by excluding passing px (CounterNet-NoPass-px). Finally, we highlight the importance
of the joint-training of predictor and CF generator in CounterNet by training the CounterNet in a
post-hoc fashion (CounterNet-Posthoc), i.e., we first train the predictor on the entire training dataset,
and optimize CF generator while the trained predictor is frozen.

0.05 0.10 0.15 0.20
Epsilon

0.2

0.4

0.6

0.8

Pe
rt

ur
ba

tio
n

St
ab

ili
ty

Base Model
CounterNet-NoFreeze
CounterNet

Figure 4: Robustness of the predictor f(·).
CounterNet reaches the upper bound of ro-
bustness (i.e., comparable to the base model).

Table 4 compares the validity and proximity achieved
by CounterNet and five ablations. Importantly, each
ablation leads to degraded performance as com-
pared to CounterNet, which demonstrates Counter-
Net’s different design choices. CounterNet-BCE and
CounterNet-SingleBP perform poorly in compari-
son, which illustrates the importance of the MSE-
based loss function and block-wise coordinate de-
scent procedure. Similarly, CounterNet-Separate
and CounterNet-NoPass-px achieve degraded valid-
ity and proximity scores, which highlight the impor-
tance of CounterNet’s architecture design. Finally,
CounterNet-Posthoc achieves comparable validity as
CounterNet, but fails to match the performance of
proximity. This result demonstrates the importance
of the joint-training procedure of CounterNet in op-
timally balancing the cost-invalidity trade-off.

8

Under review as a conference paper at ICLR 2023

Adversarial Robustness. We illustrate that CounterNet does not suffer from decreased robustness of
the predictor network resulting from optimizing for the validity loss L2 (as shown in Lemma 3.2).
We compare the robustness of CounterNet’s predictor network f(·) against two baselines: (i) the
base predictive model described in Table 1; and (ii) CounterNet without freezing the predictor at the
second stage of our coordinate descent optimization (CounterNet-NoFreeze). Figure 4 illustrates the
perturbation stability (Wu et al., 2021) of all three CounterNet variants against adversarial examples
(generated via projected gradient descent (Madry et al., 2018)). CounterNet achieves comparable
perturbation stability as the base model, which indicates that CounterNet reaches its robustness upper
bound (i.e., the robustness of the base model). Moreover, the empirical results in Figure 4 confirm
Lemma 3.2 as CounterNet-NoFreeze achieves significantly poorer stability. We observe similar
patterns with different attack methods on other datasets (see Appendix C.1). These results show
that by freezing the predictor and encoder networks at the second stage of our coordinate descent
procedure, CounterNet suffers less from the vulnerability issue created by the adversarial examples.

Table 5: Impact of the immutable feature
constraints in CounterNet. CounterNet
generates feasible CF explanations with-
out sacrificing validity and proximity.

Dataset Val. Diff. Prox. Diff.

Adult 0.0 .009
Credit 0.0 .005
OULAD 0.0 .004

Feasibility of CF Explanations. Finally, we show how
CounterNet’s training procedure can be adapted to ensure
that the generated CF examples are feasible. In particular,
we attempt to use projected gradient descent during the
training of CounterNet and enforce hard constraints during
the inference stage in order to ensure that the generated
CF examples satisfy immutable feature constraints (e.g.,
gender should remain unchanged). At the training stage,
a CF example x′ is first generated from g(·), and is pro-
jected into its feasible space (i.e., x′′ = P(x′)). Next,
we optimize CounterNet over the prediction ŷx and its
projected CF example x′′ (via our block-wise coordinate
descent procedure). During inference, we enforce that the
set of immutable features remains unchanged. Table 5 shows that enforcing immutable features (via
projected gradient descent) does not negatively impact the validity and proximity of the CF examples.
This result shows that CounterNet can produce CF examples that respect feasibility constraints.

5 DISCUSSION & CONCLUSION

Although our experiments exhibit CounterNet’s superior performance than post-hoc baselines, these
two methods have somewhat different motivations. While post-hoc methods are designed for
generating CF explanations for trained black-box ML models (whose training data and model weights
might not be available), CounterNet is most suitable when the ML model developers aspire to build
prediction and explanation module from scratch, where the training data can be exploited to optimize
the generation of CF examples. We anticipate CounterNet to be valuable for service providers who
wish to comply with GDPR-style regulations without sacrificing their operational effectiveness (e.g.,
reduced predictive power). Importantly, CounterNet can still be used to interpret proprietary ML
models by forcing its predictor network to mimic that proprietary model (see Appendix D.1).

CounterNet has two limitations: (i) We do not consider other desirable aspects in CF explanations,
such as diversity (Mothilal et al., 2020), recourse cost (Ustun et al., 2019), fairness (Von Kügelgen
et al., 2022), and causality (Karimi et al., 2021). Further research is needed to address these issues.
(ii) It is also important to ensure that generated CF examples do not amplify or provide support to
the narratives resulting from pre-existing race-based and gender-based societal inequities (among
others). One short-term workaround is to have humans in the loop. We can provide CounterNet’s
explanations as a decision-aid to a well-trained human official, who is in charge of communicating
the decisions of ML models to human end-users in a respectful and humane manner. In the long-run,
further qualitative studies are needed to understand the social impacts of CounterNet.

This paper proposes CounterNet, which integrates predictive model training and CF example gener-
ation into a single end-to-end pipeline. Unlike prior work, CounterNet ensures that the objectives
of predictive model training and CF example generation are closely aligned. We adopt a block-
wise coordinate descent procedure to effectively train CounterNet. Experimental results show that
CounterNet outperforms state-of-the-art baselines in validity, proximity, and runtime, and is highly
competitive in predictive accuracy, sparsity, and closeness to data manifold.

9

Under review as a conference paper at ICLR 2023

6 ETHICS & REPRODUCIBILITY STATEMENT

Ethics Statement. Although CounterNet is suitable for real-time deployment given its superior
performance in its highly aligned CF explanations and speed, one must be aware of the possible
negative impacts of its CF explanations to human end-users. It is important to ensure that generated
CF examples do not amplify or provide support to the narratives resulting from pre-existing race-
based and gender-based societal inequities (among others). As we stated in Section 5, one short-term
workaround is to have humans in the loop. We can provide CounterNet’s explanations as a decision-
aid to a well-trained human official, who is in charge of communicating the decisions of ML models
to human end-users in a respectful and humane manner. In the long-run, further qualitative and
quantitative studies are needed to understand the social impacts of CounterNet.

Reproducibility Statement. To aid the reproducibility of this work, we provide the code in the
supplement material, and will make the code public once it is accepted. We also provide the dataset
used for evaluating this paper in this anonymous repository. In addition, we outline the choices of
hyperparameters in Appendix B.4. A detailed description of our experimental implementation can be
found in Appendix B. For theoretical analysis of our novel block-wise coordinate descent procedure,
we provide complete proof in Appendix A.

REFERENCES

Ioannis Arapakis, Souneil Park, and Martin Pielot. Impact of response latency on user behaviour in
mobile web search. In Proceedings of the 2021 Conference on Human Information Interaction and
Retrieval, pp. 279–283, 2021.

Arthur Asuncion and David Newman. Uci machine learning repository, 2007.

Umang Bhatt, Alice Xiang, Shubham Sharma, Adrian Weller, Ankur Taly, Yunhan Jia, Joydeep
Ghosh, Ruchir Puri, José M. F. Moura, and Peter Eckersley. Explainable machine learning in
deployment. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency,
FAT* ’20, pp. 648–657, New York, NY, USA, 2020. Association for Computing Machinery.
ISBN 9781450369367. doi: 10.1145/3351095.3375624. URL https://doi.org/10.1145/
3351095.3375624.

Reuben Binns, Max Van Kleek, Michael Veale, Ulrik Lyngs, Jun Zhao, and Nigel Shadbolt. ’it’s
reducing a human being to a percentage’ perceptions of justice in algorithmic decisions. In
Proceedings of the 2018 Chi conference on human factors in computing systems, pp. 1–14, 2018.

Jock Blackard. Covertype. UCI Machine Learning Repository, 1998.

Catherine Blake. Uci repository of machine learning databases. http://www. ics. uci. edu/˜
mlearn/MLRepository. html, 1998.

Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and Jonathan K Su. This looks
like that: deep learning for interpretable image recognition. In Advances in neural information
processing systems, pp. 8930–8941, 2019.

Paulo Cortez and Alice Maria Gonçalves Silva. Using data mining to predict secondary school
student performance. 2008.

Amit Dhurandhar, Pin-Yu Chen, Ronny Luss, Chun-Chen Tu, Paishun Ting, Karthikeyan Shanmugam,
and Payel Das. Explanations based on the missing: Towards contrastive explanations with pertinent
negatives. In Proceedings of the 32nd International Conference on Neural Information Processing
Systems, NIPS’18, pp. 590–601, Red Hook, NY, USA, 2018. Curran Associates Inc.

FICO. Explainable machine learning challenge. https://community.fico.com/s/
explainable-machine-learning-challenge, September 2018.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In Yoshua Bengio and Yann LeCun (eds.), 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,
2015. URL http://arxiv.org/abs/1412.6572.

10

https://doi.org/10.1145/3351095.3375624
https://doi.org/10.1145/3351095.3375624
https://community.fico.com/s/explainable-machine-learning-challenge
https://community.fico.com/s/explainable-machine-learning-challenge
http://arxiv.org/abs/1412.6572

Under review as a conference paper at ICLR 2023

Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Giannotti, and Dino
Pedreschi. A survey of methods for explaining black box models. ACM computing surveys (CSUR),
51(5):1–42, 2018.

Victor Guyomard, Françoise Fessant, Thomas Guyet, Tassadit Bouadi, and Alexandre Termier.
VCNet: A self-explaining model for realistic counterfactual generation. In Proceedings of the
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery
in Databases (ECML PKDD), 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Matthias Hein and Maksym Andriushchenko. Formal guarantees on the robustness of a classifier
against adversarial manipulation. Advances in neural information processing systems, 30, 2017.

Shalmali Joshi, Oluwasanmi Koyejo, Warut Vijitbenjaronk, Been Kim, and Joydeep Ghosh. Towards
realistic individual recourse and actionable explanations in black-box decision making systems.
arXiv preprint arXiv:1907.09615, 2019.

Kaggle. Titanic - machine learning from disaster. https://www.kaggle.com/c/titanic/
overview, September 2018.

Amir-Hossein Karimi, Gilles Barthe, Bernhard Schölkopf, and Isabel Valera. A survey of algorithmic
recourse: definitions, formulations, solutions, and prospects. arXiv preprint arXiv:2010.04050,
2020.

Amir-Hossein Karimi, Bernhard Schölkopf, and Isabel Valera. Algorithmic recourse: from counter-
factual explanations to interventions. In Proceedings of the 2021 ACM Conference on Fairness,
Accountability, and Transparency, pp. 353–362, 2021.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International Conference on Machine Learning, pp. 1885–1894. PMLR, 2017.

R Kohavi and B Becker. Uci machine learning repository: Adult data set, 1996.

Jakub Kuzilek, Martin Hlosta, and Zdenek Zdrahal. Open university learning analytics dataset.
Scientific data, 4:170171, 2017.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In Advances
in neural information processing systems, pp. 4765–4774, 2017.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net, 2018. URL https://openreview.net/forum?id=
rJzIBfZAb.

Divyat Mahajan, Chenhao Tan, and Amit Sharma. Preserving causal constraints in counterfactual
explanations for machine learning classifiers. arXiv preprint arXiv:1912.03277, 2019.

Tim Miller. Explanation in artificial intelligence: Insights from the social sciences. Artificial
Intelligence, 267:1–38, 2019.

Christoph Molnar, Giuseppe Casalicchio, and Bernd Bischl. Interpretable machine learning–a brief
history, state-of-the-art and challenges. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pp. 417–431. Springer, 2020.

Ramaravind K Mothilal, Amit Sharma, and Chenhao Tan. Explaining machine learning classifiers
through diverse counterfactual explanations. In Proceedings of the 2020 Conference on Fairness,
Accountability, and Transparency, pp. 607–617, 2020.

Daniel Nemirovsky, Nicolas Thiebaut, Ye Xu, and Abhishek Gupta. Countergan: Generating
counterfactuals for real-time recourse and interpretability using residual gans. In Uncertainty in
Artificial Intelligence, pp. 1488–1497. PMLR, 2022.

11

https://www.kaggle.com/c/titanic/overview
https://www.kaggle.com/c/titanic/overview
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb

Under review as a conference paper at ICLR 2023

Martin Pawelczyk, Klaus Broelemann, and Gjergji Kasneci. Learning model-agnostic counterfactual
explanations for tabular data. In Proceedings of The Web Conference 2020, pp. 3126–3132, 2020.

Forough Poursabzi-Sangdeh, Daniel G Goldstein, Jake M Hofman, Jennifer Wortman Wort-
man Vaughan, and Hanna Wallach. Manipulating and Measuring Model Interpretability. As-
sociation for Computing Machinery, New York, NY, USA, 2021. ISBN 9781450380966. URL
https://doi.org/10.1145/3411764.3445315.

Kaivalya Rawal, Ece Kamar, and Himabindu Lakkaraju. Can i still trust you?: Understanding the
impact of distribution shifts on algorithmic recourses. arXiv preprint arXiv:2012.11788, 2020.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i trust you?" explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 1135–1144, 2016.

Pau Rodríguez, Massimo Caccia, Alexandre Lacoste, Lee Zamparo, Issam Laradji, Laurent Charlin,
and David Vazquez. Beyond trivial counterfactual explanations with diverse valuable explanations.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1056–1065,
2021.

Alexis Ross, Himabindu Lakkaraju, and Osbert Bastani. Learning models for actionable recourse.
Advances in Neural Information Processing Systems, 34, 2021.

Lisa Schut, Oscar Key, Rory Mc Grath, Luca Costabello, Bogdan Sacaleanu, Yarin Gal, et al.
Generating interpretable counterfactual explanations by implicit minimisation of epistemic and
aleatoric uncertainties. In International Conference on Artificial Intelligence and Statistics, pp.
1756–1764. PMLR, 2021.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In Proceedings of the IEEE international conference on computer vision, pp. 618–626,
2017.

Sumedha Singla, Brian Pollack, Junxiang Chen, and Kayhan Batmanghelich. Explanation by
progressive exaggeration. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=H1xFWgrFPS.

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg. Smoothgrad:
removing noise by adding noise. arXiv preprint arXiv:1706.03825, 2017.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Ilia Stepin, Jose M Alonso, Alejandro Catala, and Martín Pereira-Fariña. A survey of contrastive and
counterfactual explanation generation methods for explainable artificial intelligence. IEEE Access,
9:11974–12001, 2021.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
International Conference on Machine Learning, pp. 3319–3328. PMLR, 2017.

Sohini Upadhyay, Shalmali Joshi, and Himabindu Lakkaraju. Towards robust and reliable algorithmic
recourse. Advances in Neural Information Processing Systems, 34, 2021.

Berk Ustun, Alexander Spangher, and Yang Liu. Actionable recourse in linear classification. In
Proceedings of the Conference on Fairness, Accountability, and Transparency, pp. 10–19, 2019.

Arnaud Van Looveren and Janis Klaise. Interpretable counterfactual explanations guided by proto-
types. arXiv preprint arXiv:1907.02584, 2019.

Sahil Verma, John Dickerson, and Keegan Hines. Counterfactual explanations for machine learning:
A review. arXiv preprint arXiv:2010.10596, 2020.

12

https://doi.org/10.1145/3411764.3445315
https://openreview.net/forum?id=H1xFWgrFPS

Under review as a conference paper at ICLR 2023

Sahil Verma, Keegan Hines, and John P Dickerson. Amortized generation of sequential algorithmic
recourses for black-box models. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 8512–8519, 2022.

Julius Von Kügelgen, Amir-Hossein Karimi, Umang Bhatt, Isabel Valera, Adrian Weller, and Bernhard
Schölkopf. On the fairness of causal algorithmic recourse. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pp. 9584–9594, 2022.

Sandra Wachter, Brent Mittelstadt, and Chris Russell. Counterfactual explanations without opening
the black box: Automated decisions and the gdpr. Harv. JL & Tech., 31:841, 2017.

Boxi Wu, Jinghui Chen, Deng Cai, Xiaofei He, and Quanquan Gu. Do wider neural networks really
help adversarial robustness? Advances in Neural Information Processing Systems, 34, 2021.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activations in
convolutional network. arXiv preprint arXiv:1505.00853, 2015.

Fan Yang, Sahan Suresh Alva, Jiahao Chen, and Xia Hu. Model-based counterfactual synthesizer for
interpretation. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, KDD ’21, pp. 1964–1974, New York, NY, USA, 2021. Association for Computing
Machinery. ISBN 9781450383325. doi: 10.1145/3447548.3467333. URL https://doi.org/
10.1145/3447548.3467333.

I-Cheng Yeh and Che-hui Lien. The comparisons of data mining techniques for the predictive
accuracy of probability of default of credit card clients. Expert Systems with Applications, 36(2):
2473–2480, 2009.

Yixue Zhao, Marcelo Schmitt Laser, Yingjun Lyu, and Nenad Medvidovic. Leveraging program
analysis to reduce user-perceived latency in mobile applications. In Proceedings of the 40th
International Conference on Software Engineering, pp. 176–186, 2018.

13

https://doi.org/10.1145/3447548.3467333
https://doi.org/10.1145/3447548.3467333

Under review as a conference paper at ICLR 2023

Appendix

A Supplemental Proof 15
A.1 Proof of Lemma 3.1 . 15
A.2 Proof of Lemma 3.2 . 15

B Implementation Details 16
B.1 Software and Hardware Specification . 16
B.2 Datasets for Evaluation . 16
B.3 Evaluation Metrics . 16
B.4 CounterNet Implementation Details . 16
B.5 Hyper-parameters for Baselines . 17

C Additional Experimental Results 17
C.1 Additional Robustness Results . 17
C.2 Training Time of CounterNet . 18

D Additional Ablation Study 18
D.1 CounterNet under the Black-box Assumptions 18
D.2 Ablations on CounterNet’s Training . 19

E Experimental Evaluation on Small-Sized Datasets 19

F Second-order Evaluation 21
F.1 Experimental Results . 21

G CounterNet under the Multi-class Settings 23
G.1 Training CounterNet for Multi-Class Classification 23
G.2 Experimental Evaluation . 23

H Impact of Neural Network Structures 24

I CounterNet on the Image Dataset 24

J Real-World Usage. 24

14

Under review as a conference paper at ICLR 2023

A SUPPLEMENTAL PROOF

A.1 PROOF OF LEMMA 3.1

Proof. ∇θL1 = ∇θ ∥y − ŷx∥2, and ∇θL2 = ∇θ ∥(1− ŷx)− ŷx′∥2. Then, we have

∇θL1 = ∇θy
2 − 2y · ∇θ · ŷx +∇θŷ

2
x

= −2y · ∇θŷx +∇θŷ
2
x

= −2y · ∇θŷx + 2ŷx∇θŷx

= 2(ŷx − y) · ∇θŷx

Since x′ → x, as we expect CF example x′ is closed to the original instance x, we can replace x′ to x
in L2. Then, we have

∇θL2 = ∇θ(1− 2ŷx)
2

= −4 · ∇θŷx + 4 · ∇θŷ
2
x

= −4 · ∇θŷx + 4 · 2 · ŷx · ∇θŷx

= 4 · (2ŷx − 1)∇θŷx

Hence,

∇θL1 · ∇θL2 = 2 · (ŷx − y) · ∇θŷx · 4 · (2ŷx − 1)∇θŷx

= 8 · (ŷx − y) · (2ŷx − 1)(∇θŷx)
2

Since (∇θŷx)
2 > 0, we only need to prove whether (ŷx − y) · (2ŷx − 1) is positive or negative.

Given that |ŷx − y| < 0.5,

• if y = 1, we have 0.5 < ŷx < 1. Then, (ŷx − y) < 0, (2ŷx − 1) > 0.

• if y = 0, we have 0 < ŷx < 0.5. Then, (ŷx − y) > 0, (2ŷx − 1) < 0.

Therefore, (ŷx − y) · (2ŷx − 1) < 0. Hence, ∇θL1 · ∇θL2 < 0.

A.2 PROOF OF LEMMA 3.2

Proof. Assuming fθ(x) → y as we expect the predictor network produces accurate predictions, and
y = {0, 1}, we can replace fθ(x) to y. Then, minimizing L2 (in Lemma 3.2) indicates minimizing
∥y − (1− fθ(x

′))∥2. Since 0 < fθ(·) < 1, we have

min ∥y − (1− fθ(x
′))∥2 = max ∥y − fθ(x

′)∥2

By replacing y to fθ(x), then minimizing L2 indicates maximizing ∥fθ(x)− fθ(x
′)∥2. By definition,

the lipschitz constant K is

K = sup
x′∈B(x,ϵ)

{∥∇fθ(x
′)∥2 = sup

x′∈B(x,ϵ)

{
∥fθ(x)− fθ(x

′)∥
∥x− x′∥

}
where minimizing L2 increases ∥fθ(x)− fθ(x

′)∥2. Therefore, the lipschitz constant K increases.

15

Under review as a conference paper at ICLR 2023

B IMPLEMENTATION DETAILS

Here we provide implementation details of CounterNet and five baselines on four datasets listed in
Section 4. The code can be found in the supplemental material.

B.1 SOFTWARE AND HARDWARE SPECIFICATION

We use Python (v3.7) with Pytorch (v1.82), Pytorch Lightning (v1.10), numpy (v1.19.3), pandas
(1.1.1) and scikit-learn (0.23.2) for the implementations. All our experiments were run on a Debian-10
Linux-based Deep Learning Image with CUDA 11.0 on the Google Cloud Platform.

The CounterNet’ network is trained on NVIDIA Tesla V100 with an 8-core Intel machine. CF
generation of four baselines are run on a 16-core Intel machine with 64 GB of RAM. The evaluation
are generated from the same 16-core machine.

B.2 DATASETS FOR EVALUATION

Table 6: Summary of Datasets used for Evaluation

Dataset Size #Continuous #Categorical

Adult 32,561 2 6
Credit 30,000 20 3
HELOC 10,459 21 2
OULAD 32,593 23 8

Student 649 2 14
Titanic 891 2 24
Cancer 569 30 0
German 1,000 7 13

Here, we reiterate our used datasets for evalu-
ations. Our evaluation is conducted on eight
widely-used tabular datasets. Our primary eval-
uation uses four large-sized datasets (shown in
Section 4), including Adult, Credit, HELOC,
and OULAD, which contain at least 10k data
instances. In addition, we experiment with
four small-sized datasets, including Student,
Titanic, Cancer, and German. Table 6 summa-
rizes datasets used for evaluations.

B.3 EVALUATION METRICS

Here, we provide formal definitions of the eval-
uation metrics.

Predictive Accuracy is defined as the fraction
of the correct predictions.

Predictive-Accuracy =
#|f(x) = y|

n
(2)

Validity is defined as the fraction of input instances on which CF explanation methods output valid
CF examples.

Validity =
#|f(x′) = 1− y|

n
(3)

Proximity is defined as the L1 norm distance between x and x′ divided by the number of features.

Proximity =
1

nd

n∑
i=1

d∑
j=1

∥x(j)
i − x

′(j)
i ∥1 (4)

Sparsity is defined as the fraction of the number of feature changes between x and x′.

Sparsity =
1

nd

n∑
i=1

d∑
j=1

∥x(j)
i − x

′(j)
i ∥0 (5)

B.4 COUNTERNET IMPLEMENTATION DETAILS

Across all six datasets, we apply the following same settings in training CounterNet: We initialize the
weights as in He et al. (2016). We adopt the Adam with mini-batch size of 128. For each datasets,

16

Under review as a conference paper at ICLR 2023

we trained the models for up to 1× 103 iterations. To avoid gradient explosion, we apply gradient
clipping by setting the threshold to 0.5 to clip gradients with norm above 0.5. We set dropout rate to
0.3 to prevent overfitting. For all six datasets, we set λ1 = 1.0, λ2 = 0.2, λ3 = 0.1 in Equation 1.

The learning rate is the only hyper-parameter that varies across six datasets. From our empirical
study, we find the training to CounterNet is sensitive to the learning rate, although a good choice of
loss function (e.g. choosing MSE over cross-entropy) can widen the range of an "optimal" learning
rate. We apply grid search to tune the learning rate, and our choice is specified in Table 7.

Additionally, we specify the architecture’s details (e.g. dimensions of each layer in encoder, predictor
and CF generator) in Table 7. The numbers in each bracket represent the dimension of the transformed
matrix. For example, the encoder dimensions for adult dataset is [29, 50, 10], which means that
the dimension of input x ∈ Rd is 29 (e.g. d = 29); the encoder first transforms the input into a
50 dimension matrix, and then downsamples it to generate the latent representation z ∈ Rk where
k = 10.

Table 7: Hyperparameters and architectures for each dataset.

Dataset Learning Rate Encoder Dims Predictor Dims CF Generator Dims

Adult 0.003 [29, 50, 10] [10, 10, 2] [20, 50, 29]
Credit 0.003 [33, 50, 10] [10, 10, 2] [20, 50, 33]
HELOC 0.005 [35, 100, 10] [10, 10, 2] [20, 100, 35]
OULAD 0.001 [127, 200, 10] [10, 10, 2] [20, 200, 127]

Student 0.01 [85, 100, 10] [10, 10, 2] [20, 100, 85]
Titanic 0.01 [57, 100, 10] [10, 10, 2] [20, 100, 57]
Cancer 0.001 [30, 50, 10] [10, 10, 2] [20, 50, 30]
German 0.003 [61, 50, 10] [10, 10, 2] [20, 50, 61]

B.5 HYPER-PARAMETERS FOR BASELINES

Table 8: Learning rate of the base
predictive models on each dataset.

Dataset Learning Rate

Adult 0.01
HELOC 0.005
OULAD 0.001
Student 0.01
Titanic 0.01
Cancer 0.001

Next, we describe the implementation of baseline methods. For
VanillaCF and ProtoCF, we follow author’s instruction as much
as we can, and implement them in Pytorch. For VanillaCF,
DiverseCF and ProtoCF, we run maximum 1× 103 steps. After
CF generation, we convert the results to one-hot-encoding for-
mat for each categorical feature. For training the VAE-CF, we
follow Mahajan et al. (2019)’s settings on running maximum
50 epoches and setting the batch size to 1024. We use the same
learning rate as in Table 7 for VAE training.

For training predictive models for baseline algorithms, we apply
grid search for tuning the learning rate, which is specified in
Table 8. Similar to training the CounterNet, we adopt the Adam
with mini-batch size of 128, and set the dropout rate to 0.3. We
train the model for up to 100 iterations with early stopping to avoid overfittings.

C ADDITIONAL EXPERIMENTAL RESULTS

Here, we provide additional results of experiments in Section 4. These results further demonstrate
the effectiveness of CounteNet.

C.1 ADDITIONAL ROBUSTNESS RESULTS

We provide supplementary results on evaluating the robustness of the predictor network on three
large datasets (i.e., Adult, HELOC and OULAD). In particular, we implement FSGM (Goodfellow
et al., 2015) and PGD (Madry et al., 2018) attack for testing the robustness of the predictive models.
Figure 5 illustrates that CounterNet achieves comparable perturbation stability (i.e., the robustness of

17

Under review as a conference paper at ICLR 2023

the predictive model) as the base model. In addition, Figure 5 supports the findings in Lemma 3.2
since CounterNet-NoFreeze consistently achieves lower stability than base models and CounterNet.

0.05 0.10 0.15 0.20
Epsilon

0.2

0.4

0.6

0.8

Pe
rt

ur
ba

tio
n

St
ab

ili
ty

Base Model
CounterNet-NoFreeze
CounterNet

(a) Robustness of f(·) under
FSGM attack on the adult dataset.

0.05 0.10 0.15 0.20
Epsilon

0.2

0.4

0.6

0.8

Pe
rt

ur
ba

tio
n

St
ab

ili
ty

Base Model
CounterNet-NoFreeze
CounterNet

(b) Robustness of f(·) under
FSGM attack on the OULAD
dataset.

0.05 0.10 0.15 0.20
Epsilon

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pe
rt

ur
ba

tio
n

St
ab

ili
ty

Base Model
CounterNet-NoFreeze
CounterNet

(c) Robustness of f(·) under
FSGM attack on the HELOC
dataset.

0.05 0.10 0.15 0.20
Epsilon

0.2

0.4

0.6

0.8

Pe
rt

ur
ba

tio
n

St
ab

ili
ty

Base Model
CounterNet-NoFreeze
CounterNet

(d) Robustness of f(·) under PGD
attack on the adult dataset.

0.05 0.10 0.15 0.20
Epsilon

0.1

0.2

0.3

0.4

0.5

0.6
Pe

rt
ur

ba
tio

n
St

ab
ili

ty

Base Model
CounterNet-NoFreeze
CounterNet

(e) Robustness of f(·) under PGD
attack on the OULAD dataset.

0.05 0.10 0.15 0.20
Epsilon

0.3

0.4

0.5

0.6

0.7

0.8

Pe
rt

ur
ba

tio
n

St
ab

ili
ty

Base Model
CounterNet-NoFreeze
CounterNet

(f) Robustness of f(·) under PGD
attack on the HELOC dataset.

Figure 5: Robustness of f(·) under FSGM attack (5a-5c) (Goodfellow et al., 2015) and PGD (5d-5f)
(Madry et al., 2018) attack.

C.2 TRAINING TIME OF COUNTERNET

Table 9 shows the training time of base model and CounterNet for each epoch in seconds. CounterNet
takes roughly 3X times training time as compared to the base model (which is only trained for the
predictive performance). Note that the training time is a secondary metric for evaluating the speed, as
the training of the model only occurs once, whereas the inference time (i.e., runtime in Table 2) is a
more important metric, as it keeps increasing during the deployment stage.

Table 9: Training time of base model and CounterNet for each epoch (in second).

Dataset Base Model CounterNet

Adult 0.73 2.11
HELOC 0.22 0.65
OULAD 0.72 2.11

D ADDITIONAL ABLATION STUDY

D.1 COUNTERNET UNDER THE BLACK-BOX ASSUMPTIONS

We illustrate how CounterNet can be adapted to the post-hoc black-box setting. In this setting, CF
explanation methods generate CF explanations for a trained black-box model (with access to the
model’s output). CounterNet can also be used in this post-hoc setting by forcing the predictor network
to surrogate the black-box model. Specifically, let a black-box model M : X → Y outputs the
predictions, our goal of training the predictor is to ensure that the predictor model behaves like the
black-box model (i.e., M(x) = f(x)). The training objective of CounterNet is

argmin
θ

1

N

∑N

i=1

[
λ1 ·(M(xi)− ŷxi

)
2︸ ︷︷ ︸

Prediction Loss (L1)

+ λ2 ·
(
ŷxi

−
(
1− ŷx′

i

))2︸ ︷︷ ︸
Validity Loss (L2)

+ λ3 · (xi − x′
i)

2︸ ︷︷ ︸
Proximity Loss (L3)

]
(6)

18

Under review as a conference paper at ICLR 2023

Table 10: Evaluation of CounterNet under the post-hoc setting. CFNET-BB represents the CounterNet
evaluated under the black-box setting. CFNET-PH represents the CounterNet trained via a post-hoc
fashion, which in turn, demonstrates the importance of joint-training procedure in CounterNet.

Method Adult Credit HELOC OULAD
Val. Prox. Spar. Man. Val. Prox. Spar. Man. Val. Prox. Spar. Man. Val. Prox. Spar. Man.

CFNET-BB 0.99 .217 .716 0.73 .99 .138 .861 0.64 0.98 .158 .758 0.58 0.99 .073 .641 0.96
CFNET-PH 1.00 .276 .663 1.26 1.00 .247 .804 1.36 1.00 .153 .815 0.83 0.99 .099 .731 1.64
CounterNet 1.00 .196 .644 0.64 1.00 .132 .912 0.56 1.00 .125 .740 0.56 1.00 .075 .725 0.87

Table 11: Ablation analysis of CounterNet. Each ablation leads to degraded performance, which in
turn, demonstrates the importance of different design choices inside CounterNet.

Ablation Adult Credit HELOC OULAD
Val. Prox. Val. Prox. Val. Prox. Val. Prox.

CounterNet-l1 .98 0.25 0.99 .163 .99 .155 0.99 .094
CounterNet 1.00 .196 1.00 .132 1.00 .125 1.00 .075

Note that Eq. 6 looks identical to Eq. 1. The only difference is that yi in Eq. 1 is replaced to M(xi).

Table 10 shows the performance of CounterNet under the black-box setting (CFNET-BB). CFNET-
BB degrades slightly in terms of validity, average L1 to CounterNet. This is because approximating
the black-box model leads to degraded performance in the quality of generating CF explanations.

D.2 ABLATIONS ON COUNTERNET’S TRAINING

In addition, we provide supplementary results on ablation analysis of three large datasets (Adult,
HELOC, and OULAD) to understand the design choices of the CounterNet training, shown in
Figure 6). This figure shows that compared to CounterNet’s learning curve for L2, CounterNet-BCE
and CounterNet-NoSmooth’s learning curves show significantly higher instability, illustrating the
importance of MSE-based loss functions and label smoothing techniques. Moreover, CounterNet-
SingleBP’s learning curve for L2 performs poorly in comparison, which illustrates the difficulty
of optimizing three divergent objectives using a single BP procedure. In turn, this also illustrates
the effectiveness of our block-wise coordinate descent optimization procedure in CounterNet’s
training. These results show that all design choices made in Section 3 contribute to training the model
effectively.

In addition, we experiment with alternative loss formulations. We replace the MSE based L3 loss in
Eq. 1 with l1 norm (CounterNet-l1). Table 11 shows that replacing L3 with a l1 formulation leads to
a degraded performance.

E EXPERIMENTAL EVALUATION ON SMALL-SIZED DATASETS

In addition to four large datasets in Section 4, we experiment with four small-sized datasets: (i)
Breast Cancer Wisconsin (Blake, 1998) which classifies malignant (Y=1) or benign (Y=0) tumors;
(ii) Student Performance (Cortez & Silva, 2008) which predicts whether a student will pass (Y=1) or
fail (Y=0) the exam; (iii) Titanic (Kaggle, 2018) which predicts whether passengers survived (Y=1)
the Titanic shipwreck or not (Y=0); and (iv) German Credit (Asuncion & Newman, 2007) which
predicts whether the credit score of a customer is good (Y=1) or bad (Y=0).

Table 12 compares the validity, average L1 and sparsity achieved by CounterNet and baselines.
Similar to results in Table 2, CounterNet achieves a perfect validity. In addition, CounterNet achieves
the lowest proximity in three out of four small datasets. This result further shows CounterNet’s ability
in balancing the cost-invalidity trade-off.

19

Under review as a conference paper at ICLR 2023

0 100 200 300 400 500 600 700

Epoch

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800

0.825

P
re

d
ic

ti
v
e

A
cc

u
ra

cy
(L

1
)

Predictive Accuracy (L1)

Name
CounterNet

CounterNet-BCE

CounterNet-SingleBP

CounterNet-NoSmooth

0 100 200 300 400 500 600 700

Epoch

0.5

0.6

0.7

0.8

0.9

V
a
li
d
it

y
(L

2
)

Validity (L2)

Name
CounterNet

CounterNet-BCE

CounterNet-SingleBP

CounterNet-NoSmooth

0 100 200 300 400 500 600 700

Epoch

6.5

7.0

7.5

8.0

8.5

9.0

9.5

P
ro

x
im

it
y

(L
3
)

Proximity (L3)

Name
CounterNet

CounterNet-BCE

CounterNet-SingleBP

CounterNet-NoSmooth

(a) Learning curves of model ablations on the Adult dataset.

0 100 200 300 400 500 600 700

Epoch

0.50

0.55

0.60

0.65

0.70

P
re

d
ic

ti
v
e

A
cc

u
ra

cy
(L

1
)

Predictive Accuracy (L1)

Name
CounterNet

CounterNet-BCE

CounterNet-SingleBP

CounterNet-NoSmooth

0 100 200 300 400 500 600 700

Epoch

0.825

0.850

0.875

0.900

0.925

0.950

0.975

V
a
li
d

it
y

(L
2
)

Validity (L2)

Name
CounterNet

CounterNet-BCE

CounterNet-SingleBP

CounterNet-NoSmooth

0 100 200 300 400 500 600 700

Epoch

7

8

9

10

11

12

13

P
ro

x
im

it
y

(L
3
)

Proximity (L3)

Name
CounterNet

CounterNet-BCE

CounterNet-SingleBP

CounterNet-NoSmooth

(b) Learning curves of model ablations on the HELOC dataset.

0 100 200 300 400 500 600 700

Epoch

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

P
re

d
ic

ti
v
e

A
cc

u
ra

cy
(L

1
)

Predictive Accuracy (L1)

Name
CounterNet

CounterNet-SingleBP

CounterNet-BCE

CounterNet-NoSmooth

0 100 200 300 400 500 600 700

Epoch

0.88

0.90

0.92

0.94

0.96

0.98

V
a
li
d
it

y
(L

2
)

Validity (L2)

Name
CounterNet

CounterNet-SingleBP

CounterNet-BCE

CounterNet-NoSmooth

0 100 200 300 400 500 600 700

Epoch

13

14

15

16

17

18

19

20

P
ro

x
im

it
y

(L
3
)

Proximity (L3)

Name
CounterNet

CounterNet-SingleBP

CounterNet-BCE

CounterNet-NoSmooth

(c) Learning curves of model ablations on the OULAD dataset.

Figure 6: Learning curves of L1 (left), L2 (mid), and L3 (right) of model ablations on the Adult (6a),
HELOC (6b), and OULAD (6c) dataset.

20

Under review as a conference paper at ICLR 2023

Table 12: Evaluation of counterfactual explanations on four small-sized datasets.

Method Student Titanic Cancer German
Val. Prox. Spar. Val. Prox. Spar. Val. Prox. Spar. Val. Prox. Spar.

VanillaCF 0.80 0.101 0.762 0.91 0.289 0.381 1.00 0.135 0.278 0.86 0.384 0.967
DiverseCF 0.53 0.117 0.565 0.52 0.321 0.370 0.99 0.075 0.157 0.64 0.246 1.000
ProtoCF 0.32 0.107 0.754 0.76 0.305 0.383 1.00 0.070 0.167 0.82 0.369 0.983
UncertainCF 0.45 0.251 0.675 0.41 0.422 0.512 1.00 0.023 0.039 0.50 0.310 0.945
C-CHVAE 1.00 0.110 0.797 1.00 0.389 0.475 0.62 0.353 0.325 1.00 0.307 0.568
VAE-CF 0.50 0.115 0.586 0.38 0.356 0.460 0.39 0.202 0.293 0.34 0.310 0.577

CounterNet 1.00 0.075 0.725 1.00 0.257 0.354 1.00 0.121 0.259 1.00 0.222 0.626

F SECOND-ORDER EVALUATION

We define three additional second-order metrics which attempt to evaluate the usability of CF
explanation techniques by human end-users. We posit that negligible feature differences (among
continuous features) between instance x and CF example x′ make it difficult for human end-users
to use CF example x′ (as many of the recourse recommendations contained within x′ may not be
actionable due to negligible differences). For example, human end-users may find it impossible
to increase their Daily_Sugar_Consumed by 0.523 grams (if the value of Daily_Sugar_Consumed
feature is 700 and 700.523 between x and x′, respectively). As such, human end-users may be willing
to ignore small feature differences between x and x′.

To define our usability related metrics, we construct a user-friendly second-order CF example x′′ by
ignoring small feature differences (i.e., |xi − x′

i| is less than threshold b) between instance x and CF
example x′. Formally, let x = {x1, x2, .., xd} and x′ = {x′

1, x
′
2, .., x

′
d} be the features of the input

instance and the CF example, respectively. Then, we use a threshold of b, and create a new data point
x′′ = {li = 1|xi−x′

i|≤bxi + 1|xi−x′
i|>bx

′
i ∀i ∈ 1 . . . d}, i.e., we replace all features i ∈ {1, d} in CF

example x′ with features in the original input instance x for which |xi − x′
i| ≤ b. Our metrics for CF

usability are defined in terms of x and x′′ as follows:

• Second-Order Validity is defined as the fraction of input instances on which x′′ remains a
valid CF example. High second-order validity is desirable, because it implies that despite
ignoring small feature differences, the second-order CF example x′′ remains valid.

• Second-Order Proximity is defined as the L1 norm distance between x and x′′. It is desirable
to maintain low second-order proximity because it indicates fewer cumulative modifications
in the input space.

• Second-Order Sparsity is defined as the number of feature changes (i.e., L0 norm) between
x and x′′. High second-order sparsity enhances the interpretability of a CF explanation.
Note that second-order sparsity is more important than the original sparsity metric, as the
second-order CF example x′′ ignores small feature changes in the continuous features,
yielding fewer number of feature changes in the input space.

F.1 EXPERIMENTAL RESULTS

The evaluation of counterfactual usability measures the quality of the second-order CF example x′′

which is created by ignoring negligible differences between input instance x and the CF example x′.
We use a fixed threshold b = 2 to derive the “sparse” second-order CF example x′′, and compute the
second-order evaluation metrics.

Second-order validity. Table 13 compares the second-order validity of CF examples generated
by CounterNet and other baselines on all six datasets. Similar to results in Table 2, CounterNet
performs consistently well across all six datasets on the validity metric, as CounterNet is the only CF
explanation method which achieves over 93.7% second-order validity on all six datasets. In particular,
CounterNet achieves ∼11% higher second-order validity than C-CHVAE (its closest competitor)
on all six datasets. Further, CounterNet is the only CF method which achieves more than 90%
second-order validity on the Breast Cancer dataset, whereas all post-hoc baselines perform poorly

21

Under review as a conference paper at ICLR 2023

Table 13: Evaluation of Usability of Counterfactual Explanations

Datasets Metrics Methods

VanillaCF DiverseCF ProtoCF C-CHVAE VAE-CF CounterNet

Adult
Validity 0.764 0.515 0.508 0.995 0.348 0.995
Proximity 5.843 8.007 7.261 8.139 8.319 7.170
Sparsity 4.445 5.297 5.181 5.771 5.869 5.148

HELOC
Validity 1.000 0.906 1.000 0.986 1.000 0.988
Proximity 5.350 5.202 6.131 5.841 6.725 4.289
Sparsity 20.304 9.979 18.514 18.166 20.546 17.020

OULAD
Validity 1.000 0.701 0.999 0.886 0.969 0.980
Proximity 12.469 14.751 13.183 13.569 13.335 11.740
Sparsity 23.618 17.516 23.360 24.696 18.162 22.472

Student
Validity 0.669 0.528 0.307 0.982 0.485 0.982
Proximity 11.919 18.392 15.606 21.406 21.336 19.758
Sparsity 6.840 9.313 7.896 10.847 10.951 10.043

Titanic
Validity 0.987 0.570 0.785 1.000 0.386 0.978
Proximity 17.282 16.809 17.039 21.145 20.278 15.056
Sparsity 9.906 9.632 9.960 12.359 11.964 9.215

Breast Cancer
Validity 0.699 0.196 0.329 0.615 0.210 0.937
Proximity 1.313 0.890 0.655 3.618 2.089 1.422
Sparsity 8.343 4.699 5.014 9.741 8.783 7.762

(none of them achieve second-order validity higher than 70%), despite the fact that three of these
baselines (VanillaCF, DiverseCF, and ProtoCF) achieved more than 99% first-order validity on this
dataset. This result demonstrates that CounterNet is much more robust against small perturbations in
the continuous feature space.

Second-order Sparsity and Proximity. In terms of second-order sparsity, CounterNet outperforms
two parametric CF explanation methods (C-CHVAE and VAE-CF), and maintains competitive
performance against two non-parametric methods (VanillaCF and ProtoCF). Across all six datasets,
CounterNet outperforms C-CHVAE and VAE-CF by ∼10% on the this metric. Moreover, the
difference between the second-order sparsity achieved by CounterNet and VanillaCF (and ProtoCF)
is close to 1%, which indicates that CounterNet achieves the same level of second-order sparsity
as these two non-parametric methods. In terms of second-order proximity, CounterNet is highly
proximal against baseline methods as it achieves the lowest proximity in HELOC, OULAD, and
Titanic datasets (similar to results in Table 2).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Invalidity

0.5

1.0

1.5

2.0

2.5

S
p

ar
si

ty

VanillaCF

DiverseCF

ProtoCF

VAE-CF

C-CHVAE

CounterNet

Figure 7: Illustration of trade-off between
invalidity and sparsity across six datasets
(methods at the bottom left are preferable).

Cost-Invalidity Trade-off. Figure 7 shows that Counter-
Net positions on the bottom left of this figure, which il-
lustrates that CounterNet can balance the cost-invalidity
trade-off in the counterfactual usability evaluation. No-
tably, CounterNet outperforms all post-hoc methods in
the second-order invalidity metric, and maintains the
same level of second-order sparsity as VanillaCF and
ProtoCF (∼1% difference). Moreover, although Diver-
seCF achieves ∼10% lower second-order sparsity value
than CounterNet, it has ∼50% higher second-order in-
validity than CounterNet. This results from DiverseCF’s
inability to balance the the trade-off between second-
order invalidity and sparsity. This high second-order in-
validity of DiverseCF hampers its usability, even though
it generates more sparse explanations.

22

Under review as a conference paper at ICLR 2023

G COUNTERNET
UNDER THE MULTI-CLASS SETTINGS

In prior CF explanation literature, counterfactual expla-
nations are primarily evaluated under the binary classi-
fication settings Mothilal et al. (2020); Mahajan et al.
(2019); Upadhyay et al. (2021). However, it is worth-
noting that CF explanation methods (including CounterNet) can be adapted to the multi-class classifi-
cation settings. This section first describes the problem setting of the CF explanations when dealing
with multi-class classification. Next, we describe how to train CounterNet for multi-class predictions
and CF explanations. Finally, we present the evaluation set-up and show the simulation results.

G.1 TRAINING COUNTERNET FOR MULTI-CLASS CLASSIFICATION

Given an input instance x ∈ Rd, CounterNet aims to generate two outputs: (i) a prediction ŷx ∈ Rk

for input instance x; and (ii) the CF example x′ ∈ Rd as an explanation for input instance x. The
prediction ŷx ∈ Rk is encoded as one-hot format as ŷx ∈ {0, 1}k, where

∑k
i ŷ

(i)
x = 1, k denotes the

number of classes. Moreover, we assume that there is a desired outcome y′ for every input instances
x. Then, it is desirable that a CF explanation yx′ needs to be predicted as the desired outcome y′ (i.e.,
yx′ = y′).

The objective for CounterNet in the multi-class setting remains the same as in the binary setting.
Specifically, we expect CounterNet to achieve high predictive accuracy, counterfactual validity and
proximity. As a result, we adjust loss functions from Eq. 1 as follows:

L1 =
1

N

∑N

i=1
(yi − ŷxi

)2

L2 =
1

N

∑N

i=1
(ŷxi − y′)2

L3 =
1

N

∑N

i=1
(xi − x′

i)
2

(7)

Same as training CounterNet in the binary setting, we optimize the parameter θ of the overall network
by solving the minimization problem in Eq. 1 to (except that we are switching to use loss functions
in Eq. 7). Moreover, we adopt the same block-wise coordinate optimization procedure to solve this
minimization problem by first updating for predictive accuracy θ′ = θ − ∇θ(λ1 · L1), and then
updating for CF explanation θ′′ = θ′ −∇θ(λ2 · L2 + λ3 · L3).

G.2 EXPERIMENTAL EVALUATION

Dataset. We use Cover Type dataset Blackard (1998) for evaluating the multi-class classification
experiment. Cover Type dataset predicts forest cover type from cartographic variables. This dataset
contains seven classes (e.g., Y=1, Y=2, ..., Y=7), with 10 continuous features. For CF explanation
generation, we assume that cover type 5 (e.g., Y=5) is the desired class. The original dataset is highly
imbalanced, so we equally sample data instances from each class.

Results. Table 14 compares the performance of counterNet and our two most competitive base-
lines (i.e., VanillaCF and C-CHVAE) in the evaluation for binary datasets (as found in Table 2 &
13). This table shows that CounterNet can achieve competitive performance against post-hoc CF
explanation techniques in the multi-class classification settings. In terms of predictive accuracy,
CounterNet performs comparably as the baseline methods with only ∼2% decrease (in average).
In terms of validity and proximity, CounterNet can properly balance the cost-invalidity trade-off.
Although CounterNet achieves higher proximity score than VanillaCF, it achieves 100% validity
score. Compared to C-CHVAE, CounterNet achieves ∼80% lower proximity. Finally, CounterNet
runs order-of-magnitudes faster than our two baseline methods. CounterNet runs more than 1000X
and 3000X faster than C-CHVAE and VanillaCF, respectively.

23

Under review as a conference paper at ICLR 2023

Table 14: Results for CF explanation methods on Forester Cover Type dataset.

Methods Predictive Accuracy Validity Proximity Running Time

VanillaCF 0.911 0.921 0.379 1679.676
C-CHVAE 0.911 1.000 1.503 734.625
CounterNet 0.887 1.000 0.800 0.566

H IMPACT OF NEURAL NETWORK STRUCTURES

We further study the impact of the different neural network blocks. In our experiment, we primarily
use multi-layer perception as it is a suitable baseline model for the tabular data. For comparison, We
also implemented the CounterNet with Convolutional building blocks (i.e. replace the feed forward
neural network with convolution layer). We implemented the convolutional CounterNet on the Adult
dataset. To train the feed forward neural network with convolution layers, we set the learning rate as
0.03 and λ1 = 1.0, λ2 = 0.4, λ3 = 0.01. The rest of the configuration is exactly the same as training
CounterNet with MLP.

Table 15 shows comparison between CounterNet with convolutional building blocks (CounterNet-
Conv) and multi-layer perceptions (CounterNet-MLP). The results indicate that CounterNet-Conv
matches the performances of CounterNet-MLP. In fact, CounterNet-Conv performs slightly worse
than CounterNet-MLP because convolutional block is not well-suitable for tabular datasets. Yet,
CounterNet-Conv outperforms the rest of our post-hoc baselines in validity (with reasonably good
proximity score). This illustrates CounterNet’s potential real-world usage in various settings as it is
agnostic to the network structures.

Table 15: Results for the CounterNet with Convolution layers on Adult dataset.

Building Block Predictive Accuracy Validity Proximity

CounterNet-Conv 0.823 0.980 7.554
CounterNet-MLP 0.828 0.994 7.156

I COUNTERNET ON THE IMAGE DATASET

CounterNet is designed to generate counterfactual explanations for tabular datasets (the most common
use case for CF explanations). We also experiment with CounterNet on the image datasets. This
experiment uses the MNIST dataset: class “7” is used as the positive label, and class “1” is used as the
negative label. Next, we apply the same CounterNet training procedure to generate image counterfac-
tuals. Table 16 demonstrates the results of CounterNet on the MNIST dataset. CounterNet achieves
52.4% validity with 0.059 average L1 distance. This result shows a current limitation of CounterNet
as applying CounterNet as-is is ill-suited for generating image counterfactual explanations.

Table 16: CounterNet on the Image Datasets.

Validity Proximity
CounterNet 0.524 0.059

J REAL-WORLD USAGE.

We illustrate how CounterNet generates interpretable explanations for end-users. Figure 8 show
an actual data point x from the Adult dataset, and the corresponding CF explanation x′ generated
by CounterNet. This figure shows that x and x′ differ in three features. In addition, CounterNet
generates x′′ by ignoring feature changes that are less than threshold b = 2 (in practice, domain
experts can help identify realistic values of b). Note that due to CounterNet’s high second-order

24

Under review as a conference paper at ICLR 2023

validity, x′′ also remains a valid CF example. After this post-processing step, x and x′′ differ in
exactly two features, and the end-user is provided with the following natural-language explanation:
“If you want the ML model to predict that you will earn more than US$50K, change your education
from HS-Grad to Doctorate, and reduce the number of hours of work/week from 48 to 33.5."

Figure 8: A counterfactual explanation from CounterNet.

25

Under review as a conference paper at ICLR 2023

26

	
	Introduction
	Related Work
	The Proposed Framework: CounterNet
	Network Architecture
	CounterNet Objective Function
	Training Procedure

	Experimental Evaluation
	Evaluation of CounterNet Performance
	Further Analysis

	Discussion & Conclusion
	Ethics & Reproducibility Statement

	 Appendix
	Supplemental Proof
	Proof of Lemma 3.1
	Proof of Lemma 3.2

	Implementation Details
	Software and Hardware Specification
	Datasets for Evaluation
	Evaluation Metrics
	CounterNet Implementation Details
	Hyper-parameters for Baselines

	Additional Experimental Results
	Additional Robustness Results
	Training Time of CounterNet

	Additional Ablation Study
	CounterNet under the Black-box Assumptions
	Ablations on CounterNet's Training

	Experimental Evaluation on Small-Sized Datasets
	Second-order Evaluation
	Experimental Results

	CounterNet under the Multi-class Settings
	Training CounterNet for Multi-Class Classification
	Experimental Evaluation

	Impact of Neural Network Structures
	CounterNet on the Image Dataset
	Real-World Usage.

