
How a Bilingual LM Becomes Bilingual:
Tracing Internal Representations with Sparse Autoencoders

Anonymous ACL submission

Abstract001

This study explores how bilingual language002
models develop complex internal representa-003
tions. We employ sparse autoencoders to an-004
alyze internal representations of bilingual lan-005
guage models with a focus on the effects of006
training steps, layers, and model sizes. Our007
analysis shows that language models first learn008
languages separately, and then gradually form009
bilingual alignments, particularly in the middle010
layers. We also found that this bilingual ten-011
dency is stronger in larger models. Building012
on these findings, we demonstrate the critical013
role of bilingual representations in model per-014
formance by employing a novel method that015
integrates decomposed representations from a016
fully trained model into a mid-training model.017
Our results provide insights into how language018
models acquire bilingual capabilities.019

1 Introduction020

Large Language Models (LLMs) have demon-021

strated remarkable multilingual capabilities (Ope-022

nAI et al., 2024; Dubey et al., 2024; Team et al.,023

2025). However, it is not yet clear how such ca-024

pabilities emerge during pre-training. Specifically,025

do LLMs initially learn each language separately026

before aligning them? Is bilingual alignment dis-027

tributed across layers or concentrated in specific028

components? How does model size affect this align-029

ment process? These are not just theoretical ques-030

tions; they directly impact our understanding of031

model scalability and the emergence of generaliza-032

tion abilities (Wei et al., 2022).033

To address these questions, in this study,034

we explore the internal mechanisms through035

which LLMs develop their internal representations;036

namely, we trace when, where, and how bilingual037

alignment (English-Japanese) emerges during pre-038

training. For this purpose, we use sparse autoen-039

coders (SAEs; Bricken et al., 2023; Huben et al.,040

2024) as a tool for our analysis, which enables041

Figure 1: Illustration of our findings based on SAE anal-
ysis. Our results show that bilingual language models
initially learn each language independently, and later
develop bilingual alignments.

us to extract interpretable latent features from hid- 042

den representations. Unlike previous approaches 043

(Bricken et al., 2023; Huben et al., 2024; Balcells 044

et al., 2024; Wang et al., 2025), our method cap- 045

tures fine-grained distinctions between language- 046

specific and bilingual features, as well as semantic 047

features, and allows analysis of their emergence 048

across training stages and model layers. 049

We conduct experiments on decoder-only mod- 050

els with a variety of sizes, pretrained on an English- 051

Japanese bilingual corpus. Our observations high- 052

light three key findings. 053

• LLMs initially learn languages independently, 054

and gradually develop bilingual alignment 055

over training (Section 4.1). 056

• Bilingual alignments are more prominently 057

captured in the mid-layers of the model (Sec- 058

tion 4.2). 059

• Larger models exhibit stronger bilingual align- 060

ment than smaller ones (Section 4.3). 061

Beyond these observations, we introduce a 062

method based on SAEs to identify which types 063

of representations are most critical to the model. 064

We first decompose the representations of a fully 065

1



trained model into three distinct types: English-066

specific, Japanese-specific, and bilingual. These067

components are then selectively injected into a mid-068

training model, allowing us to evaluate their impor-069

tance by observing the resulting changes in the070

model’s behavior.071

Our results demonstrate that bilingual representa-072

tions from a fully trained model enhance the perfor-073

mance of a mid-training model (Section 5). Beyond074

simply using SAEs to interpret language models,075

we harnessed them to directly manipulate internal076

representations, demonstrating their versatility as077

tools for both analysis and intervention. We believe078

that our approach can be further expanded to in-079

vestigate beyond bilinguality in language models,080

providing valuable insights to the broader research081

community.082

2 Sparse Autoencoders083

A sparse autoencoder (SAE) is an autoencoder084

that enforces a sparsity constraint on its hidden085

layer. In this study, we adopt a variant called086

TopK-SAE (Makhzani and Frey, 2014), where the087

TopK activation function is applied at the hidden088

layer. Compared to a ReLU-based SAE (Bricken089

et al., 2023; Huben et al., 2024), TopK-SAE has090

been shown to be easier to train while maintain-091

ing sparsity and achieving higher reconstruction092

performance (Gao et al., 2025).093

Let x ∈ Rd be the input vector of an SAE and n094

be the dimension of its hidden layer. The encoder095

E and decoder D are defined as follows:096

E(x) = TopK
(
Wenc(x− bpre)

)
, (1)097

x̂ = D(E(x)) = WdecE(x) + bpre, (2)098

where Wenc ∈ Rn×d and Wdec ∈ Rd×n are learned099

linear layers, and bpre ∈ Rd is a learnable bias pa-100

rameter. Wdec is initialized as the transpose of101

Wenc, and bpre is initialized to the geometric me-102

dian of the input data.103

The training objective is the following mean104

squared error (MSE) loss:105

L = ∥x− x̂∥22. (3)106

Two hyperparameters control TopK-SAE. In this107

study, we control TopK-SAE by two hyperparam-108

eters: n, the dimension of the hidden layer, and109

K, the number of hidden dimensions to keep ac-110

tive. Interpreting Wdec as n distinct vectors in Rd,111

TopK-SAE can be seen as selecting K vectors from112

Figure 2: Illustration of our approach to comparing
internal representations across different training stages
of language models. We train SAEs on the internal
representation from multiple checkpoints, layers, and
sizes.

n and using their weighted sum to reconstruct the 113

input. In this study, we denote each dimension of 114

the encoder output E(x) ∈ Rn as a feature. When 115

a feature is selected in the TopK operation and used 116

in reconstruction, we say the feature is activated. 117

3 Experiments 118

In this section, we describe our experimental setup 119

for analyzing the internal representations of mul- 120

tilingual language models using SAEs, including 121

model and dataset selection, SAE training proce- 122

dure, and metrics for evaluating language and se- 123

mantic selectivity. Figure 2 illustrates our overall 124

approach for training SAEs and analyzing their 125

features. 126

3.1 Experimental Setup 127

Language Models We used the models in the 128

LLM-jp family (150M, 440M, 980M, 1.8B, 3.7B) 129

as our focus for analysis (Aizawa et al., 2024). 130

These models were trained on the LLM-jp Corpus 131

v31, which contains 1.7T tokens: 950B in English, 132

592B in Japanese, 114B in code, 0.8B in Korean, 133

and 0.3B in Chinese. We chose the LLM-jp fam- 134

ily because (i) its intermediate checkpoints are (or 135

available upon request) publicly available, (ii) it 136

offers a range of model sizes, and (iii) it demon- 137

strates bilingual capabilities in both English and 138

Japanese. We analyzed all of the layers of each 139

language model. For additional details about the 140

models, please refer to the original repository2. 141

1https://gitlab.llm-jp.nii.ac.jp/datasets/
llm-jp-corpus-v3

2https://huggingface.co/llm-jp/llm-jp-3-3.7b
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Datasets We train SAE with the Japanese and En-142

glish Wikipedia subsets in the LLM-jp Corpus v3.143

For each document, we extract the first 64 tokens as144

the input to the LLM, discard the [BOS] token rep-145

resentation, and apply L2 normalization to the re-146

maining 63 representations (∈ R63×d), which serve147

as inputs to the SAE. We use 100M tokens to train148

an SAE (50M in Japanese and 50M in English),149

split into 80% for training, 10% for validation, and150

10% for testing.151

TopK-SAE We use TopK-SAE for all our exper-152

iments and set the sparsity parameter K = 32153

and the hidden layer’s dimension n = 32, 768154

across all experiments. The batch size is fixed at155

32,768, with a warm-up phase of 500 steps. We156

perform a grid search to optimize the learning rate157

(Appendix A.1). Training a single SAE takes ap-158

proximately 10 minutes to 1.5 hours on a single159

A100 40GB GPU (Appendix A.2). This variation160

is primarily due to the size of the Language Model,161

as we simultaneously obtain intermediate activa-162

tions through a Language Model while training an163

SAE. Our implementation leverages the activation164

buffer to temporarily store a batch of LM activa-165

tions, which are then used for SAE training (Nanda,166

2023; Samuel et al., 2024). The number of stored167

activations is adjusted based on the model size (Ap-168

pendix A.2).169

3.2 Finding Activation Patterns170

We collect tokens that strongly activate each fea-171

ture. Specifically, we first determine the maximum172

activation value of each feature using the valida-173

tion set. The threshold is then set at 70% of this174

maximum value, and all tokens that exceed this175

threshold are collected from test set.176

Next, we define token attribution distribution for177

feature i, denoted f(v|i) for 1 ≤ i ≤ n, as the prob-178

ability that an activation of feature i was caused by179

token v. This is defined by the count of v activating180

feature i divided by the total number of feature i181

being activated, satisfying
∑

v∈V f(v|i) = 1182

We also assess the language distribution condi-183

tioned on the activation of each feature i. Specif-184

ically, we define p(en|i) and p(ja|i) as the proba-185

bilities that the input of the LM was in English or186

Japanese, respectively, given that the feature was187

activated, satisfying p(en|i) + p(ja|i) = 1.188

Figure 3: The visualization of calculating Token En-
tropy (Htoken(i)), Semantic Entropy (Hsemantic)(i),
and Monosemanticity (Rmono(i)) for the ith feature.

3.3 Language Selectivity Metrics 189

We classify each feature into three categories — 190

English Feature, Japanese Feature, and Mixed Fea- 191

ture — based on the calculated language probabil- 192

ity p(en|i) and p(ja|i). The i-th feature is classified 193

as an English Feature if p(en|i) > 0.9, a Japanese 194

Feature if p(ja|i) > 0.9, and a Mixed Feature if nei- 195

ther condition is met. This classification reflects the 196

dominant language context in which each feature 197

is most strongly activated. 198

3.4 Concept selectivity metrics 199

To quantitatively evaluate the semantic alignment 200

of feature-activating tokens (i.e., tokens that acti- 201

vate a certain feature) over languages, we use three 202

metrics: Token Entropy, Semantic Entropy, and the 203

Semantic Diversity Ratio. 204

Token Entropy Token Entropy measures the di- 205

versity of tokens that activate a given feature. For 206

the i-th feature, it is calculated as: 207

Htoken(i) = −
∑
v∈V

f(v|i) log f(v|i) (4) 208

A high Token Entropy Htoken(i) value indicates that 209

a wide variety of tokens can activate the feature, 210

while a low value suggests that only a limited set 211

of tokens do so. 212

Semantic Entropy Semantic Entropy quantifies 213

the diversity of semantic meanings among the to- 214

kens that activate each feature. Calculating Se- 215

mantic Entropy consists of three steps: embedding 216

tokens, clustering based on cosine similarity, and 217

computing the entropy of the resulting clusters. 218

1. Token Embedding: Token embeddings of 219

feature-activating tokens, or tokens that ac- 220

tivated feature i at least once, are extracted 221

from the embedding layer of the 3.7B model. 222
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Figure 4: (a) Language Distribution and (b) Semantic Distribution of SAE’s features at the 14th layer of the 3.7B
model across training stages. During early training (≤ 4×108 tokens), the model exhibits a high proportion of mixed
language features and low monosemanticity, indicating that features are activated by tokens from both languages
without clear semantic coherence. As training continues (4× 108 – 4× 109 tokens), the mixed language proportion
decreases while monosemanticity increases, reflecting more language-specific and semantically coherent features.
In the late training stage (≥ 4× 109 tokens), the mixed-language proportion rises again, but high monosemanticity
is maintained, suggesting the emergence of bilingual semantic representations.

2. Semantic Clustering: Using the extracted223

embeddings, tokens with a cosine similarity224

above a predefined threshold are grouped into225

the same semantic cluster3.226

3. Entropy Calculation: Similar to Token En-227

tropy, we compute the entropy over these se-228

mantic clusters using the formula:229

Hsemantic(i) = −
∑
c∈Ci

p(c|i) log p(c|i) (5)230

where Ci is the set of semantic clusters for231

the i-th feature, and p(c|i) is the probability232

that an activation of feature i was caused by a233

token belonging to cluster c.234

A high value of Hsemantic(i) indicates that the235

activating tokens are semantically diverse, while a236

low value suggests they are semantically consistent.237

For example, in Figure 3, “Dog”, “dog”, and “cat”238

are grouped into the same cluster (only one cluster),239

resulting in Hsemantic = 0. This entropy effectively240

captures the degree of semantic diversity in token241

activation patterns.242

This quantification is based on the approach pro-243

posed by Farquhar et al. (2024). While they used244

semantic entropy to assess the semantic diversity245

among sentences and leveraged LLMs to cluster246

these sentences, our method applies semantic en-247

tropy to measure semantic diversity among tokens.248

3We set the cosine similarity threshold at 0.1 because it
effectively balances capturing semantically related tokens and
avoiding over-clustering of unrelated tokens.

Monosemanticity The Monosemanticity pro- 249

vides a normalized measure that quantifies the rela- 250

tionship between the semantic diversity and token 251

diversity. It is defined as the ratio of Semantic 252

Entropy to Token Entropy: 253

Rmono(i) = 1− Hsemantic(i)

Htoken(i)
(6) 254

This ratio ranges between 0 and 1: A value close 255

to 1 suggests that although the feature is activated 256

by a wide variety of tokens (high Token Entropy), 257

these tokens are semantically similar (low Semantic 258

Entropy). A value close to 0 indicates that the acti- 259

vating tokens are both diverse in form and meaning 260

(high token entropy and high semantic entropy) or 261

they are both consistent in form and meaning (low 262

token entropy and low semantic entropy). In the 263

special case where Htoken(i) = 0 (i.e., only one to- 264

ken activates the feature), we define Rmono(i) = 1. 265

4 Observations 266

We first examine the internal representations of 267

the model by analyzing the distribution of each 268

SAE’s features trained on various checkpoints (Sec- 269

tion 4.1), layers (Section 4.2), and model sizes 270

(Section 4.3). 271

4.1 LLMs first learn languages independently 272

before aligning them bilingually 273

Figure 4 presents the evolution of language and se- 274

mantic distributions for SAE’s features at the 14th 275
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MonosemanticityLanguageActivating tokens

0.19Mixed
・Born 20 June 1967) is
・This American Life episodes
・西部、ジュネーブ州の

0.24Mixed
・in Houston County, Albama
・Trichromia repanda is a
・大会は1938年の2月

1.00English
・which give rise to
・secretly gave assistance to
・which had given some

1.00Japanese
・は、ドイツの哲学者

・、日本の明治期の

・は、イギリスの法学者

0.85Mixed
・It was last assigned to the
・The channel assigns series
・に割り当てられており、

0.62Mixed
・different ritual and social
・as a ceremonial or heraldic
・のような儀式用の穀物

(a)

(b)

(c)

Figure 5: Activation patterns of features at the 14th layer
of the 3.7B model across training stages. (a) In the early
training stage (4 × 106 tokens), features are activated
by random tokens without any clear semantic structure.
(b) In the mid-training stage (4× 109 tokens), features
become more language-specific, with tokens activating
on semantically similar words in a single language. (c)
In the fully trained model (2 × 1012 tokens), features
exhibit bilingual activation, with semantically related
tokens appearing in both Japanese and English.

layer of the 3.7B model across different training276

stages. In the early training phase (≤ 4 × 108277

tokens), most features are categorized as mixed278

features and exhibit low monosemanticity. This279

indicates that individual features are activated by280

tokens from both Japanese and English without any281

consistent semantic pattern, effectively behaving282

as random activation patterns. This observation283

is consistent with the activation patterns shown in284

Figure 5(a), where activated tokens lack any clear285

semantic or linguistic coherence.286

As training progresses into the middle phase287

(4×108 – 4×109 tokens), the proportion of mixed288

language features sharply declines, while monose-289

manticity markedly increases. This shift suggests290

that features become more language-specific, acti-291

vating on tokens within a single language that share292

coherent semantic meanings. For instance, Fig-293

ure 5(b) illustrates two representative examples: the294

first feature is activated by English tokens “give,”295

“gave,” and “given,” which are grammatical varia-296

tions of the same verb, while the second feature is297

activated by Japanese tokens representing country298

names (“ドイツ” for Germany, “日本” for Japan,299

and “イギリス” for the United Kingdom). These300

patterns demonstrate that the model is beginning to301

Figure 6: Layer-wise evolution of mixed language pro-
portion and the monosemanticity in 3.7B model across
training stages.

Figure 7: Layer-wise evolution of span length average
in 3.7B model across training stages.

organize and align semantics within each language 302

independently. 303

In the late training stage (≥ 4 × 109 tokens), 304

the model exhibits a resurgence of mixed-language 305

features while maintaining high monosemanticity. 306

This phase signifies a transition from language- 307

specific semantics to bilingual semantic alignment, 308

where features activate on semantically similar to- 309

kens across both languages. As shown in Fig- 310

ure 5(c), one feature is activated by “assigned,” “as- 311

sign,” and “割り当て” (the Japanese term for “as- 312

sign”), while another is activated by “ritual,” “cere- 313

mon,” and “儀式” (the Japanese term for “ritual”). 314

These examples confirm that the model now cap- 315

tures semantic correspondences between languages, 316

functioning as a bilingual representation. 317

These findings suggest that LLMs learn in two 318

distinct stages. 319

1. During the early to mid-training phase, they 320

develop independent semantic representations 321

within each language. 322

2. In the subsequent mid-to-late training phase, 323

they begin to align these semantic representa- 324

tions across languages 325
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MonosemanticityLanguageActivating tokens

0.22Mixed
・, surgeon, and laryngologist
・orthopedic surgeon in the
・、南極海、南極大陸を

0.39English
・A portion of the shoreline
・and delivery platform.
・social media platforms or

0.55English
・stuccoed brick building.
・-story wood-frame house
・ brick and sandstone dwelling

1.00Japanese
・2丁目10番1号に所在する
・麻布台一丁目にある

・安井四丁目に鎮座する

(a)

(b)

Figure 8: Activation patterns of features in the 3.7B
model. (a) In the lower layer (2nd layer), features ex-
hibit activation across multiple meanings. (b) In the
upper layer (26th layer), features primarily activate on
long-span tokens.

4.2 Mid-layers capture more bilingual326

alignments327

Figure 6 illustrates the layer-wise evolution of the328

mixed language proportion and the monoseman-329

ticity of SAEs’ features in the 3.7B model across330

training stages. In the early to mid-training phase331

(≤ 4 × 109 tokens), all layers exhibit a decrease332

in the mixed language proportion and an increase333

in monosemanticity. This suggests that the model334

initially learns the semantics within each language335

in all layers.336

As training progresses into the later stages, layer337

behaviors begin to diverge. The mid layers (green)338

align with the behavior of the 14th layer described339

in Section 4.1, while the lower (purple) and upper340

layers (yellow) follow distinct patterns.341

In the lower layers, particularly the initial lay-342

ers, the mixed language proportion increases, while343

monosemanticity decreases compared to the mid344

layers. This suggests a tendency toward polyse-345

manticity, where a single feature is activated by346

multiple meanings. As illustrated in Figure 8(a),347

the first feature is activated on both the English348

word “on” and “南極” (Japanese for “Antarctica”),349

and the second feature is activated on “ portion”,350

“ platform”, and “ platforms”. Although these ac-351

tivation patterns are less random than in the early352

training stages, they still occur across multiple to-353

kens, reflecting the model’s polysemantic nature354

in these layers. Such behavior can be attributed355

to the model’s proximity to the input layer, where356

it must distinguish between a vast vocabulary of357

approximately 100,000 tokens, which exceeds the358

dimension n of the intermediate layers of the SAE.359

On the other hand, the upper layers consistently360

Figure 9: Layer-wise evolution of the mixed language
proportion and the monosemanticity in the 150M model
across training stages.

Figure 10: Layer-wise evolution of span length average
in 150M model across training stages.

maintain a lower mixed language proportion than 361

the mid layers, while their monosemanticity de- 362

clines even further as training progresses. Ana- 363

lyzing span length — the number of consecutive 364

tokens each feature activates — reveals that these 365

deeper layers increasingly focus on longer spans 366

(Figure 7), indicating that features are not monose- 367

mantic at the token level because they span multi- 368

ple, contextually connected tokens. For instance, as 369

shown in Figure 8(b), the first feature is activated 370

on phrases such as “uccoed brick”, “wood-frame”, 371

and “brick and sandstone”, all referring to build- 372

ing materials with spans of around three tokens. 373

The second feature activates on Japanese addresses 374

such as “2丁目10番1号” (similar to “Block 2, No. 375

10-1”), “一丁目” (“Block 1”), “四丁目” (“Block 376

4”), each spanning multiple tokens. 377

From these findings, it can be inferred that 378

• Mid layers specialize in learning bilingual rep- 379

resentations, balancing monosemanticity and 380

mixed language proportion. 381

• Lower layers exhibit polysemanticity, distin- 382

guishing a wide variety of tokens in the vocab- 383

ulary. 384

• Upper layers focus on multi-token concepts by 385

capturing longer spans rather than individual 386

tokens. 387
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4.3 Larger LMs develop more bilingual388

alignments389

Figure 9 illustrates the layer-wise evolution of the390

mixed language proportion and the monoseman-391

ticity in the 150M model. In the early to mid-392

training phase (≤ 4× 109 tokens), the behavior of393

around mid layers mirrors that of the 3.7B model:394

the mixed language proportion decreases while395

monosemanticity increases. This indicates that396

even in smaller models, the early training stage397

primarily involves learning languages individually.398

However, a divergence becomes apparent in399

three aspects: (1) within mid layers during the late400

training phase (≥ 4×109 tokens), (2) within upper401

layers during the late training phase, and (3) within402

the lower layers during all training phases.403

In the mid layers, the smaller model shows a404

smaller increase in mixed language proportion com-405

pared to the larger model, as described in Section406

4.2. The features learned by the smaller model407

around the mid layers are less inclined to exhibit408

high monosemanticity across languages. This sug-409

gests that a much lower capacity for learning bilin-410

gual features compared to the larger model.411

In lower layers, the smaller model retains a rel-412

atively high mixed language proportion and low413

monosemanticity. This indicates a failure to ade-414

quately capture semantics even within individual415

languages, unlike the larger model, where lower416

layers effectively acquire intra-language semantics.417

In summary, two key observations can be drawn:418

• Larger models exhibit a greater ability to learn419

bilingual features in the mid layers, while420

smaller models struggle to do so.421

• Although smaller models may acquire some422

degree of semantic alignments within individ-423

ual languages in certain layers, they lack a424

strong tendency to generalize these features425

towards bilingual representations in the later426

stages of training.427

5 Intervention428

We hypothesize that bilingual representations,429

which correspond to bilingual features, play a cru-430

cial role in the performance of a fully trained model.431

If this is true, integrating these representations into432

a mid-training model should significantly enhance433

its performance. To test this, here, we extract bilin-434

gual representations from a fully trained model435

Figure 11: Illustration of adding bilingual representa-
tions from a fully trained model into a mid-training
model.

using a TopK-SAE and inject them into the inter- 436

mediate representations of a mid-training model. 437

This process is illustrated in Figure 11. 438

5.1 Method 439

Mathematically, let Xℓ
full,X

ℓ
mid ∈ RT×d denote 440

the outputs of the ℓ-th layer of the fully trained and 441

mid-training models, respectively, where T is the 442

sequence length and d is the model dimension. We 443

also denote E : Rd → Rn and D : Rn → Rd as 444

an encoder and a decoder of TopK-SAE trained on 445

the fully trained model. A binary mask mask ∈ 446

Rn is also defined, with m elements set to 1 and 447

others to 0, forcing only the bilingual features to 448

get activated. The intervention is formulated as 449

follows: 450

Xℓ
mid ←Xℓ

mid + α ·D(mask⊙ E(Xℓ
full)) (7) 451

where α is a hyperparameter controlling the 452

strength of the intervention, set to 0.1 in our ex- 453

periments (see Appendix B for the result of other 454

values). This method allows us to assess the direct 455

impact of the bilingual representation incorpora- 456

tion. 457

5.2 Setup 458

We conducted experiments using the 14th layer of 459

the 3.7B model. As the mid-training model, we se- 460

lected the checkpoint at 10,000 (approximately 40B 461

training tokens), where the mixed language propor- 462

tion in this layer is relatively low (Figure 4). We 463

evaluated the effects of three feature types: English, 464

Japanese, and Bilingual (Mixed). The number of 465

selected feature dimensions was set to m = 5, 000 466

(see Appendix B for the result of other values ). 467

Each setting was evaluated five times, and the re- 468

sults were averaged. 469
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Perplexity (dif.)

Add Rep. English Japanese all

Baseline 17.57 19.54 15.39

English −0.16 −0.11 −0.14
Japanese −0.10 −0.36 −0.24
Bilingual −0.37 −0.72 −0.56

Table 1: Baseline denotes the perplexity (PPL) of the
mid-training model without any intervention. Adding
mixed (bilingual) representations leads to a greater re-
duction in PPL compared to adding Japanese or English
representations.

5.3 Results & Discussion470

Table 1 shows the results. Adding English-specific471

representations mainly improved performance on472

English, while adding Japanese-specific representa-473

tions primarily enhanced performance on Japanese.474

In contrast, adding bilingual representations signif-475

icantly improved performance on both languages.476

This performance boost holds even when varying477

the hyperparameters α and m as shown in Table 4.478

These results support our hypothesis that the bilin-479

gual alignments acquired by the model in the later480

stages of training play a crucial role in its overall481

performance.482

Note that this method requires the output of483

Layer ℓ from the fully trained model, meaning that484

the SAE alone cannot directly enhance the per-485

formance of a mid-training model. However, our486

findings reveal that the bilingual information en-487

coded in the later training stages is more critical for488

performance than monolingual information. This489

suggests that designing a training schedule that en-490

courages the acquisition of bilingual knowledge in491

the later stages of pre-training could be beneficial.492

6 Related Work493

Understanding the internal mechanisms of LLMs494

has become a major focus of the research commu-495

nity. Recent studies show neural networks can rep-496

resent more features than their dimensions (Elhage497

et al., 2022). To disentangle these representations,498

SAEs have emerged as a key tool for decompos-499

ing them into interpretable components (Huben500

et al., 2024; Olshausen and Field, 1997). While501

early work primarily focused on a single SAE, re-502

cent studies have shifted toward comparing SAE503

features across layers (Balcells et al., 2024; Bal-504

agansky et al., 2025), model architectures (Lan505

et al., 2024; Lindsey et al., 2024), or fine-tuning 506

stages (Lindsey et al., 2024; Wang et al., 2025). Xu 507

et al. (2024) concurrently tracks feature formation 508

during training, but lacks quantitative evaluation. 509

Another line of research has explored the mul- 510

tilingual capability of language models. Zeng 511

et al. (2025) explored the formation of multilin- 512

gual capabilities through neuron-level analysis and 513

showed that as models become larger and train- 514

ing progresses, they exhibit an increasing degree 515

of multilingual understanding. This result aligns 516

with our SAE-based analysis results. Wang et al. 517

(2024) identified neurons shared across languages 518

and tasks, while Tang et al. (2024) and Kojima 519

et al. (2024) highlighted language-specific neurons, 520

demonstrating their impact on model performance 521

and language output. 522

Our research builds on these foundations and 523

contributes to them in three key ways: (1) we inves- 524

tigate the formation process of bilingual capabili- 525

ties within a bilingual language model, (2) we con- 526

duct a comparative analysis across training stages, 527

model sizes, and layers, and (3) we exmploy SAEs 528

to perform direct interventions on bilingual repre- 529

sentations, offering novel insights on the dynamics 530

of bilingual representation in language models. 531

7 Conclusion 532

In this study, we investigated the evolution of in- 533

ternal representations in language models using 534

SAEs. Our analysis revealed that bilingual lan- 535

guage models initially learn languages indepen- 536

dently and later develop bilingual alignments, par- 537

ticularly in the mid-layers of larger models. We 538

further demonstrated the importance of bilingual 539

representations by conducting targeted interven- 540

tions with SAEs. Beyond using SAEs solely for 541

interpreting language models, we leveraged them 542

to manipulate internal representations, showcasing 543

their potential as a tool for both analysis and in- 544

tervention. We believe that our approach can be 545

extended to explore beyond analyzing the bilingual- 546

ity of language models and offer valuable insights 547

for the broader research community. 548

8 Limitations 549

We investigated the internal mechanism of bilin- 550

gual language models. This study explored the 551

internal mechanisms of bilingual language mod- 552

els, specifically focusing on English, Japanese, and 553

their bilingual interactions. While this provides 554

8



insights into cross-lingual representation between555

these two typologically distinct languages, the find-556

ings may not generalize to all language pairs. Fu-557

ture research should investigate a wider range of558

language pairs to validate and extend our observa-559

tions.560

Another limitation is the interpretability of the561

SAEs used in our analysis. While SAEs allowed562

us to investigate the types of information that563

models tend to encode as features, recent studies564

have raised concerns about the reliability and in-565

terpretability of them. Additionally, given that the566

reconstruction accuracy was not perfect, our anal-567

ysis is based on an approximation of the model’s568

internal representations. As a direction for future569

work, combining SAEs with other analytical meth-570

ods could lead to a more robust and comprehensive571

understanding of the model’s behavior.572
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A Training Details713

A.1 Learning Rate Selection714

We determined the optimal learning rate for train-715

ing SAEs on each LM size by a grid search. Specif-716

ically, we tested several learning rates (1e-4, 2e-4,717

5e-4, 1e-3, 2e-3, 5e-3) for each LM, the last check-718

point and the middle layer (maxlayer // 2), and719

selected one that resulted in the lowest reconstruc-720

tion loss (Eq. 3) on the validation set.721

Figure 12: Learning Rate vs. Reconstruction Loss for
SAEs on Various Model Sizes. The star markers indicate
the lowest loss points for each model.

Figure 12 shows the result. Our experiments re-722

vealed that smaller learning rates were more effec-723

tive for training SAEs on larger LMs. The selected724

learning rates for each model size are summarized725

in Table 2.726

LM Size Optimal Learning Rate
150M 2e-3
440M 1e-3
980M 1e-3
1.8B 5e-4
3.7B 5e-4

Table 2: Optimal learning rates for training SAEs across
different LM sizes

A.2 Time for training SAEs & the number of727

stored activations728

Table 3 shows the details.729

B Ablation Study of Adding Bilingual730

Features731

Table 4 shows the ablation result of different alpha732

and m.733

LM Size Training Time Number of stored act.
150M 20min 10M
440M 25min 5M
980M 40min 2M
1.8B 60min 1M
3.7B 90min 0.5M

Table 3: The training time for each SAE and the number
of buffered activations for each model size.

Perplexity (dif.)

α m Add Rep. En Ja all

Baseline 17.57 19.54 15.39

0.05

1000
En −0.08 −0.06 −0.07
Ja −0.07 −0.09 −0.08
Bi −0.10 −0.10 −0.10

3000
En −0.10 −0.07 −0.09
Ja −0.08 −0.15 −0.12
Bi −0.16 −0.19 −0.18

5000
En −0.12 −0.08 −0.10
Ja −0.09 −0.21 −0.15
Bi −0.21 −0.28 −0.25

0.10

1000
En −0.08 −0.07 −0.08
Ja −0.06 −0.12 −0.09
Bi −0.12 −0.15 −0.14

3000
En −0.13 −0.09 −0.11
Ja −0.08 −0.25 −0.17
Bi −0.23 −0.34 −0.29

5000
En −0.16 −0.11 −0.14
Ja −0.10 −0.36 −0.24
Bi −0.33 −0.50 −0.42

0.20

1000
En +0.13 +0.14 +0.13
Ja +0.18 +0.03 +0.10
Bi +0.05 −0.03 +0.01

3000
En +0.01 +0.10 +0.06
Ja +0.15 −0.25 −0.06
Bi −0.18 −0.40 −0.30

5000
En −0.07 +0.05 −0.01
Ja +0.10 −0.49 −0.21
Bi −0.37 −0.72 −0.56

Table 4: Baseline denotes the perplexity (PPL) of the
mid-training model without any intervention.
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Figure 13: Layer-wise evolution of the mixed language proportion and the monosemanticity in the 1.8B model
across training stages.

Figure 14: Layer-wise evolution of the mixed language proportion and the monosemanticity in the 980M model
across training stages.
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Figure 15: Layer-wise evolution of the mixed language proportion and the monosemanticity in the 440M model
across training stages.

Figure 16: Layer-wise evolution of the span length average in the 1.8B model across training stages.

Figure 17: Layer-wise evolution of the span length average in the 980M model across training stages.

Figure 18: Layer-wise evolution of the span length average in the 440M model across training stages.
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