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Abstract

The flexibility of natural language significantly
expands the action space in task-oriented dia-
logue systems, causing inefficient exploration
and slow convergence in deep reinforcement
learning (DRL)-based policy optimization. Pre-
trained large language models (LLMs), with
world knowledge and semantic understanding,
offer promising solutions. To this end, we pro-
pose LLM-Guided DRL via Semantic-Aware
Action Pruning (LLMSAP), a novel framework
that synergizes pretrained LLMs with DRL.
LLMSAP leverages the world knowledge and
contextual understanding of LLMs to guide
decision-making via an action feasibility as-
sessment. Instead of requiring LLMs to di-
rectly generate optimal actions due to their
limited precision in sequential decision tasks,
LLMSAP employs a lightweight action pruning
mechanism. Specifically, LLMs act as action
filters, rapidly eliminating semantically implau-
sible or low-potential actions from multi-turn
dialogue context, allowing the DRL agent to
focus exploration on a refined candidate sub-
set. This two-stage framework ("prune-then-
optimize") avoids extensive LLM fine-tuning
while preserving the decision-making precision
of DRL. Experiments on multiple benchmarks
verify the effectiveness of LLMSAP.

1 Introduction

Task-oriented dialogue (TOD) systems achieve user
goals via multi-turn interactions, where dialogue
policy (DP), as the core component, selects ap-
propriate actions to steer the conversation. Deep
reinforcement learning (DRL) has emerged as the
dominant approach for DP optimization due to its
strength in sequential decision-making (Du et al.,
2024). However, natural language flexibility in-
duces exponentially large action spaces (Zhao et al.,
2024a). The resulting high dimensionality and se-
mantic ambiguities in actions not only hinder effi-
cient exploration (Ma et al., 2024) but also destabi-
lize policy optimization through biased value esti-

mation (Zhao et al., 2019), degrading DRL’s gener-
alization in complex TOD scenarios.

Recent advances in large language models
(LLMs), which acquire powerful world knowledge
and multi-turn semantic awareness through mas-
sive corpus pretraining, offer promising solutions to
the above challenges (Chung et al., 2023). Studies
show that LLMs could deeply model implicit se-
mantic relationships in dialogue contexts and infer
relevant system action sets accordingly (Qian et al.,
2024). This capability offers a theoretical founda-
tion for developing semantic-aware action pruning
modules, enabling semantically-guided DRL ex-
ploration in expansive action spaces.

Despite their potential, deploying LLMs as end-
to-end decision-makers for dialogue policy guid-
ance faces dual challenges: (1) Untuned LLMs lack
alignment with TOD-specific reward signals, mak-
ing it difficult to optimize long-term action rewards
(Algherairy and Ahmed, 2025); 2) Large-scale fine-
tuning for specific tasks is hindered by the scarcity
of annotated TOD data and high computational
costs (Matarazzo and Torlone, 2025).

To bridge these gaps, we propose LLM-Guided
DRL via Semantic-Aware Action Pruning (LLM-
SAP), a two-stage "prune-then-optimize" frame-
work. It first leverages LLMs to assess action feasi-
bility based on dialogue context, pruning semanti-
cally inconsistent or low-potential actions to com-
press the action space. Then, DRL performs fine-
grained exploration over the pruned action subset,
optimizing action sequences via long-term reward
maximization. This design avoids costly LLM fine-
tuning while harnessing its role as a semantic filter,
balancing DRL policy optimization accuracy with
exploration efficiency. To the best of our knowl-
edge, this is the first study to integrate LLM with
DRL to dialogue policy optimization. In summary,
our contributions are threefold:

* A lightweight semantic action pruning mech-
anism that leverages LLMs filtering to com-



press the action space efficiently, effectively
alleviating the exploration bottleneck of DRL
in high-dimensional environments;

* A cross-modal decision fusion framework that
unites LLM-derived semantic insights with
DRL policy gradients through prompt-based
action feasibility evaluation;

* Experiments on multiple benchmarks demon-
strate that LLMSAP accelerates convergence
and boosts task completion rates, showcasing
the synergistic benefits of combining semantic
guidance with deep reinforcement learning.

2 Related Work

In DRL research, LLMs typically serve as informa-
tion processors, reward designers, decision-makers,
or generators (Cao et al., 2024). Nevertheless, ex-
isting studies predominantly concentrate on gam-
ing environments, exhibiting scant exploration of
TOD systems. Due to fundamental differences
in task specifications (discrete vs. continuous ac-
tion spaces) and interaction patterns (turn-based vs.
game dynamics), gaming approaches are ill-suited
for TOD. This paper investigates analogous LLM-
as-decision-maker methods in related fields, catego-
rizing them into action decision-making and action
guidance paradigms, to inform our exploration of
LLM-DRL integration for TOD.

For decision-making, recent advances have
explored the use of LLMs through two main
paradigms: policy initialization and sequence
modeling-based decision making. The policy ini-
tialization paradigm utilizes pre-trained LL.Ms to
provide strong priors for DRL (Li et al., 2022). In
contrast, the sequence modeling paradigm reframes
decision-making as a conditional generation prob-
lem, typically implemented via decision transform-
ers (Shi et al., 2023). However, these approaches
share a fundamental limitation: dialogue policy
learning is a long-term task, and LLMs without
task-specific fine-tuning often fail to generate an
optimal sequence of actions (Yi et al., 2024b).

For action-guiding, LLMs do not generate ac-
tions directly, but act as guides, producing a con-
densed set of candidate or expert actions. Hu and
Sadigh (2023) proposed the instructRL framework,
which utilizes pre-trained LLMs to generate a pri-
ori strategy distributions based on linguistic cues to
guide policy learning. However, instructRL relies
on LLMs to generate strategy distributions directly,
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Figure 1: The first stage of LLMSAP utilizes LLMs to
prune redundant or invalid actions.

which has significant limitations in long sequence
tasks due to cumulative bias propagation and fail-
ure to maintain temporal consistency in action se-
quences. Meanwhile, DRL agents are subordinate
and lack the autonomy to correct policy deviations,
which may lead to unstable convergence or even
failure, especially in complex and dynamic dia-
logue tasks (Kwan et al., 2023).

In summary, direct policy initialization or ac-
tion generation with LLMs suffers from limited
adaptability and long-term optimization in TOD
scenarios. In contrast, LLMSAP utilizes LLMs
for semantic-level action pruning, avoiding their
limitations in long-horizon decision-making while
retaining the strengths of DRL, thus significantly
enhancing efficiency in complex dialogue tasks.

3 Methodology

LLMSAP comprises two stages: (1) LLM-Driven
Semantic Action Pruning: Leveraging the power-
ful semantic reasoning and world knowledge of
pre-trained LLLMs, this stage filters out semanti-
cally inconsistent or low-potential actions, thereby
significantly reducing the effective action space;
(2) DRL-Driven Dynamic Optimization: Operating
within the pruned action subset provided by the
LLM, this stage employs DRL to fine-tune the dia-
logue policy via policy-gradient updates, ensuring
precise and efficient decision-making.

3.1 LLM-Driven Semantic Action Pruning

As illustrated in Figure 1, our framework employs
a prompt-based interaction mechanism with LLMs,
where the current dialogue state and the full action



space are encoded in natural language and inte-
grated into the prompt (detailed prompt design in
Appendix H). Leveraging their world knowledge
and semantic reasoning, LLLMs perform context-
aware semantic analysis of actions by incorporating
the historical context. By eliminating redundant or
invalid actions, the LLM output retains only those
most relevant to the current dialogue state, thereby
reconstructing a pruned action space. To facilitate
seamless integration with the DP network, LL.M
outputs are formatted as action subscripts, and the
pruned action space is returned as a JSON string.
By applying semantic action pruning to the action
space, LLMs mitigate interference from irrelevant
actions, enabling the agent to focus on high-value
candidates. This process enhances exploration effi-
ciency and accelerates DP training convergence.

3.2 DRL-Driven Dynamic Optimization

Task-oriented dialogue policies operate within fi-
nite, discrete action spaces. The DQN algorithm is
well-suited for this setting, offering stable training
and efficient offline learning and prior work shows
DQN consistently outperforms continuous-control
algorithms like PPO (Schulman et al., 2017) and
SAC (Haarnoja et al., 2018) on discrete decision
tasks. Thus, this paper employs DQN to learn op-
timal policies within the LLM-pruned action set,
quantifying how semantic action pruning impacts
dialogue performance.!

DQN extends Q-learning to high-dimensional
spaces by replacing the value table with a deep net-
work (s, a; 0) that estimates the expected return
of executing action a in state s. For a given state s¢,
the network outputs Q-values for all @ € A, and the
parameters 6 are updated to maximize long-term
reward. The training objective is to minimize the
following mean squared error loss function:

L(H) = E(st,at,rt,st+1)~D [(yt - Q(Stv ag; 9))2] (1)

ye = 1o+ ymax Q(se+1,07507) 2)

where Q) (s, at; 0) represents the expected cumu-
lative reward from taking action a; in state s;. D
is the experience replay buffer, which stores state
transition tuples (s¢, ag, 74, S¢+1). -y is the discount
factor balancing immediate rewards and long-term
returns. 6~ denotes the parameters of the target Q-
network, periodically synchronized from the online
network 6 to stabilize the training process.

'The pruned action space remains finite, enabling substitu-
tion of DQN with any discrete-action RL algorithm.

Within the pruned action space, DQN follows
an e-greedy strategy for action selection, condi-
tioned on the current dialogue state. At each step,
the agent explores by randomly selecting an action
from the pruned set with probability € or exploits
by choosing the highest Q-value action with proba-
bility 1 — €. This process is detailed in Appendix 1.

4 Experiments

We conducted experiments on three datasets from
the Microsoft Dialogue Challenge platform (Li
et al., 2018): movie ticket booking, restaurant reser-
vation, and taxi booking. The objectives were to:
(1) Demonstrate the superiority of LLMSAP in en-
hancing exploration efficiency (subsection 4.1); (2)
Analyze the impact of LLM scale and compatibil-
ity on performance (subsection 4.2); (3) Investigate
how semantic action pruning influences optimal
exploration rate (subsection 4.3); (4) Validate ef-
fectiveness via human evaluation (subsection 4.4);

Given the focus on addressing exploration ineffi-
ciencies in expanded action spaces using LLMs,
we selected baseline methods categorized into
two groups: (1) Exploration-Enhanced DRL Poli-
cies: DQN_EPSILON_N (Mnih et al., 2015),
NOISY_DQN (Han et al., 2022) and ICM_DQN
(Lin et al.,, 2025); (2) LLM-Based Dialogue
Policies: LLAMA_DP (Yi et al.,, 2024a) and
LLAMA_DP_NLG (Yi et al., 2024a). Additional
baselines and implementation details are provided
in Appendix A and Appendix B.

4.1 Main Results

Figure 2 shows the learning curves of different
agents across three datasets. NOISY_DQN and
ICM_DQN performed well in the simple Movie
task but degraded significantly in complex Restau-
rant/Taxi environments, due to inefficient explo-
ration in large action spaces. This decline is
mainly due to their inefficient exploration strate-
gies that struggle to traverse the extensive action
spaces characteristic of intricate dialogue scenar-
ios. LLAMA_DP and its variants, on the other
hand, leveraged world knowledge from pre-trained
LLMs for strong initial performance, but lack of
task fine-tuning hindered improvement. In contrast,
LLMSAP uses LLM semantic understanding to
prune actions and reduce redundant exploration,
achieving faster convergence and higher success
rates across all tasks. Detailed numerical results
are in Appendix C.
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Figure 2: The learning curves of different agents on three datasets. For the DQN_EPSILON_N, we set N = 0 to
represent no exploration, while N = 0.05 denotes its performance upper bound (optimal exploration). The impact

of different N values is detailed in Appendix G.

4.2 LLM Scale and Compatibility Analysis

To evaluate the impact of LLM scale, we conducted
semantic action pruning utilizing LLMs of different
sizes. As shown in Figure 3, llama-3.1-8B (Dubey
et al., 2024) achieves performance comparable to
the 70B model while significantly reducing compu-
tational costs. Therefore, we adopt llama-3.1-8B as
the primary backbone for experiments, leveraging
its balance of efficiency and effectiveness.

Moreover, our approach is theoretically compat-
ible with any LLM. To validate this, we applied
it to other mainstream models, including gemma-
2-9B (Team et al., 2024) and qwen2.5-7B (Yang
et al., 2024), which are similar in scale to llama-
3.1-8B. Experimental results across three domains
(see Appendix E) show that all three LLMs outper-
form baseline approaches. These results confirm
the effectiveness of our approach and demonstrate
its broad compatibility with various LLMs.

4.3 Impact of Semantic Action Pruning on
Exploration Efficiency

We investigated how LLM-driven semantic action
pruning affects the selection of the € hyperparame-
ter. By varying e from 0.05 to 0.25, we discovered
that € = 0.15 strikes the optimal balance between
exploration and exploitation. Unlike DRL-based
methods, which attained its peak performance at
€ = 0.05, the LLM-based approachs profits from a
higher € value. This is because it prunes redundant
or invalid actions, thereby enabling more extensive
yet productive exploration and enhancing training
efficiency. Consequently, we set € = (.15 for all
subsequent experiments. The complete results and
comparisons are presented in Appendix D.

4.4 Human Evaluation

While automated metrics offer quantitative as-
sessments, human evaluation better reflects user
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Figure 3: Performance on Llama with Different Scales.

experience by capturing task accuracy, dialogue
coherence, and naturalness in multi-turn interac-
tions. Human evaluations showed LLMSAP out-
performed baselines across all dimensions, aligning
with simulation results. The detailed settings and
results are provided in Appendix F.

5 Conclusion

This study introduces the LLMSAP architecture, a
novel framework that synergizes LLMs with DRL
to enhance exploration efficiency in task-oriented
dialogue policy optimization. The framework initi-
ates by conducting semantic interpretation of the
ongoing dialogue context and action space, where
an LLM is employed to eliminate redundant or se-
mantically inconsistent actions, thereby generating
a streamlined and high-purity action subset. DRL
is subsequently utilized to execute exploration and
policy refinement within this pruned action space.
Cross-domain experiments spanning multiple sce-
narios reveal that LLMSAP surpasses standalone
DRL and LLM methods in both exploration ef-
ficiency and convergence velocity. Its consistent
performance across diverse LLM variants further
underscores its robust generalizability. To the best
of our knowledge, this is the first study to integrate
LLM with DRL to dialogue policy optimization.



6 Limitations

Although the integration of LLMs and DRL in this
study demonstrates clear advantages in improving
exploration efficiency, the system requires LLMs to
return data in a specific format. Any deviation from
the expected structure may hinder accurate parsing
and processing and thus compromise the system’s
accuracy and stability. To address this limitation,
future research could explore fine-tuning LLMs
to ensure consistent adherence to the required out-
put format and improve the robustness and overall
performance of the system.
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A Baselines

We compared our approach with publicly available dialogue agents, dialogue agents designed to enhance
exploration efficiency, and promising LLM-based dialogue agents:

* DQN_EPSILON_N agents are trained utilizing standard DQN with a traditional ¢ — greedy
exploration strategy, where ¢ = N (Mnih et al., 2015)?.

* NOISY_DQN agents enhance exploration by introducing noise into the network weights (Han et al.,
2022).

* ICM_DQN agents incorporate intrinsic curiosity rewards to encourage exploration of the new space
(Lin et al., 2025).

* LLAMA_DP agents replace the DP module of the TOD system with an LLM, selecting suitable
actions to be passed to the NLG for response generation (Yi et al., 2024a)°.

* LLAMA_DP_NLG agents replace both the DP and NLG modules of the TOD system with an LLM,
directly selecting suitable words to construct responses (Yi et al., 2024a)°.

To ensure a fair comparison, we directly employ pretrained LLMs to replace the DP or NLG modules,
without involving any further fine-tuning on additional data. Therefore, our focus is placed on comparing
the performance of LLAMA_DP and LLAMA_DP_NLG with that of our fully converged approach.

B Implementation Details

All DQN-based agents use a multilayer perceptron containing two hidden layers, each containing 80
neurons, with an activation function of ReLU. In the training configuration, the discount factor - is set to
0.99, the batch size is 16, the learning rate is 0.001, and the experience replay buffer size is 5000. For the
DQN_EPSILON_N agent, the € starts at 0 and increases to 0.25 with a step size of 0.05. In the analysis of
the impact of LLMs on the exploration rate, the € ranges from 0.05 to 0.25, and the step size is 0.05. In
our approach, epsilon is set to a default value of 0.15, as this setting yields the best performance. Detailed
justification can be found in subsection 4.3. The default model scale for llama is set to 8B, as justified
in subsection 4.2. The reward function assigns a reward of 2L for a successful dialogue and a penalty
of —L for a failed one. Additionally, to encourage concise conversations, a penalty of -1 is applied for
each dialogue turn. All agents have a maximum dialogue turn limit of 30. Before the formal training
begins, each agent undergoes 120 warm-up interactions with a rule-based user simulator to populate the
experience replay buffer for subsequent training. During the training phase, each agent interacts with the
environment once per episode and stores its experiences in the replay buffer. In the evaluation phase, each
agent interacts with the environment 50 times, but its experiences are not stored in the buffer; instead,
only the dialogue success rate, number of dialogue turns, and average reward are recorded. To ensure the
robustness of experimental results, each agent is trained five times with different random seeds, and the
average results are used for analysis.

C Main Result

The results of different agents across various domains are presented in Table 1. As shown in the table, the
difference between epsilon values of 0 and 0.05 highlights the importance of exploration for the agent.
Excessive exploration can lead to overly random strategies, preventing the agent from fully utilizing known
information, and thus affecting convergence speed and stability. Conversely, insufficient exploration can
cause the agent to get trapped in local optima, lacking the necessary diversity and flexibility to discover

2We assessed the impact of different e values on performance across multiple dialogue domains, selecting the optimal value
for each domain as the baseline. Detailed results and analysis are provided in Appendix G.

3We chose llama as the base model primarily due to its strong language understanding capabilities and open accessibility. In
addition, we compare variants based on other LLMs to evaluate the generalizability of the proposed framework, as detailed in
Appendix H.



the global optimum. Although NOISY_DQN demonstrates superior performance in the Movie domain,
its performance significantly drops in the more complex state-action spaces of the Restaurant and Taxi
domains. We hypothesize that, as the user objective becomes more complicated and the state space grows
(Zhao et al., 2022), the role of the noise layer in facilitating exploration becomes limited, preventing the
agent from effectively exploring more valuable policies. Similarly, the ICM_DQN agent suffers from this
issue. While its convergence success rate reaches around 0.5 in the Movie domain, it drops below 0.1 in
the Restaurant and Taxi domains. We believe that, in larger state spaces, ICM_DQN overly focuses on
environmental dynamics rather than the task itself, leading to excessive, ineffective exploration. Although
the LLAMA_DP and LLAMA_DP_NLG agents show impressive initial performance due to their built-in
world knowledge, they fail to further improve performance due to the lack of task-specific data fine-tuning.

In contrast, LLMSAP benefits from the world knowledge and semantic understanding of LLMs,
effectively eliminating redundant or invalid actions within the action space. This allows our approach to
achieve the best performance across all three domains, with improvements in both convergence speed and
task success rate, demonstrating that semantic action pruning of the action space by LLMs significantly
enhances exploration efficiency.

Table 1: Results of different agents on three datasets, with top performance in each column highlighted. All results
of agent pairs are statistically significant at the same epoch (t-test, p < 0.05). Epochs (50, 250, 500) represent early,
mid, and post-convergence training stages.

Epoch =50 Epoch =250 Epoch = 500
Successt Reward!? Turns] K Successt Reward? Turns| Successt Rewardf Turns|
DQN_EPSILON_0.0 0.3505 -13.00 32.11 0.5403 12.99 25.70 0.5553 14.95 25.37

Domain Agent

DQN_EPSILON_0.05 | 0.3093 -18.61 33.44 0.6795 31.84 21.39 0.7668 43.42 19.21
DQN_EPSILON_0.15 | 0.2086 -22.67 35.64 0.5137 11.61 28.18 0.5248 14.52 28.49
Movie NOISY_DQN 0.4137 -4.73 30.75 0.7141 36.68 20.04 0.7280 39.38 20.16
ICM_DQN 0.1475 -37.81 33.00 0.5166 10.37 25.23 0.5311 12.49 24.47
LLAMA_DP 0.3845 -3.59 26.72 0.3845 -3.59 26.72 0.3845 -3.59 26.72
LLAMA_DP_NLG 0.1932 -26.73 28.31 0.1932 -26.73 28.31 0.1932 -26.73 28.31
‘LLMSAP 03459 -13.90 32.83 7| 0.8081 4849 1896 | 08142 4951 16.6
DQN_EPSILON_0.0 0.0695 -36.57 27.66 0.4907 4.10 22.13 0.5671 11.63 23.22
DQN_EPSILON_0.05 | 0.0726 -36.28 27.63 0.5712 12.30 20.21 0.5817 12.79 21.12
DQN_EPSILON_0.15 | 0.0348 -38.66 29.32 0.3443 -2.13 27.69 0.3016 -5.65 30.47
Rest.  NOISY_DQN 0.0000 -43.92 29.84 0.1669 -28.25 28.55 0.2988 -15.20 26.18
ICM_DQN 0.0067 -40.85 24.90 0.0231 -38.92 23.99 0.0082 -32.88 9.25
LLAMA_DP 0.3464 -10.77 23.12 0.3464 -10.77 23.12 0.3464 -10.77 23.12
LLAMA_DP_NLG 0.1830 -28.44 35.60 0.1830 -28.44 35.60 0.1830 -28.44 35.60
LLMSAP 0.0384 -5336 3596 | 0.8163 49.64 18.63 | 0.7962 4699 1832

DQN_EPSILON_0.0 0.0004 -42.69 27.47 0.4846 2.26 24.70 0.5879 12.38 23.06
DQN_EPSILON_0.05 | 0.0000 -42.86 27.71 0.5598 8.19 22.38 0.6683 20.19 21.90

DQN_EPSILON_0.15 | 0.0009 -40.38 26.16 0.4186 1.13 26.56 0.4163 1.09 26.97
Taxi NOISY_DQN 0.0000 -43.73 29.46 0.1455 -30.56 29.32 0.2615 -19.46 28.00
ICM_DQN 0.0008 -42.34 26.84 0.0481 -34.48 19.62 0.0706 -28.59 11.90
LLAMA_DP 0.3288 -14.56 24.97 0.3288 -14.56 24.97 0.3288 -14.56 24.97
LLAMA_DP_NLG 0.1786 -18.33 28.46 0.1786 -18.33 28.46 0.1786 -18.33 28.46
LLMSAP 0.0003 4347 35.02° 7| 0.8220 48.62 1944 | 08071 ~ 46.85 19.23

D Impact of LLMs Semantic Action Pruning on Exploration Rate

To examine the influence of LLMs’ semantic action pruning of the action space on the ¢ hyperparameter
and to provide valuable insights for future research and practical applications, we conducted a series of
experiments on the e hyperparameter. Intuitively, the magnitude of € determines the extent of exploration.
A larger e increases the exploration frequency but does not exhibit a strictly linear relationship with
exploration efficiency. An excessively large e may lead to over-exploration, particularly in dialogue tasks
with extensive state spaces, thereby degrading the quality of experiences. Conversely, an excessively small
€ may result in insufficient exploration, causing the model to become trapped in local optima. Therefore,
identifying an optimal e value is essential for achieving an effective balance between exploration and
exploitation.

To determine the optimal €, we conducted experiments with e values ranging from 0.05 to 0.25 in
increments of 0.05. The experimental results, presented in Figure 4, indicate that in all three domains, the



best performance was achieved when e was set to 0.15, effectively balancing exploration and exploitation.
Consequently, e was fixed at 0.15 as the default value for all subsequent experiments.

Overall, the experimental results are consistent with the findings from the € hyperparameter experiments
conducted for the DQN in Appendix G. Both excessively small and excessively large values of e resulted
in reduced exploration efficiency. However, a notable difference was observed in the optimal € between the
two approaches: while the best e for the DQN agent was 0.05, the optimal e for the LLM-driven semantic
action pruning approach was 0.15. This discrepancy can be attributed to the effectiveness of semantic
action pruning in LLMs, which eliminates redundant or invalid actions. Consequently, a slightly larger e
allows the agent to explore a broader action space while maintaining a higher proportion of high-reward
actions, thereby enhancing both exploration efficiency and overall training effectiveness.
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Figure 4: Impact of LLMs Semantic Action Pruning on Exploration Rate.

E LLMs Compatibility Experiment
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Figure 5: Our approach combines the performance of different LLMs.

Taxi Rest Movie
SRT AST SRt AST SRt  AS?T
DQN_EPSILON_0.0 0.4866 3.1 04274 2.8 0.3811 26
DQN_EPSILON_0.05 0.5562 3.3 04426 3.1 04860 2.8

Agents

NOISY_DQN 04964 29 0.2021 25 0.1876 2.4
ICM_DQN 04025 32 00862 16 0.1436 1.2
LLM_DP 0.3571 32 03684 29 02637 33
LLM_DP_NLG 0.2028 34 0.1921 33 0.1836 3.5

LLMSAP_LLAMA 0.6648 35 0.6732 34 0.6847 3.7
LLMSAP_GEMMA 0.6836 3.8 0.6391 29 05986 3.2
LLMSAP_QWEN 0.6012 32 0.6584 3.5 0.6258 3.3

Table 2: Human evaluation results of agents in different environments.



F Human Evaluation

We conducted a blind human study with 50 students. Following the metrics of Zhao et al. (2024b) and
Liu et al. (2021), we reported success rate (SR) and average score (AS, 1-5) for naturalness, coherence,
and task completion. Each participant interacted with a randomly assigned domain and could terminate
ineffective sessions. Retaining > 20 valid dialogues per participant yielded 1,026 dialogues in total. The
results (Table 2) align with the simulation experiments.

G Impact of Exploration Degree on Dialogue Policy Learning

To assess the effect of exploration on DRL-based dialogue agents and identify the optimal € value, we
conducted experiments utilizing the DQN algorithm, as illustrated in Figure 6. With exploration disabled
(DQN_epsilon_0.0), the agent always chooses the action with the highest known reward, which restricts
its ability to find the globally optimal policy, resulting in suboptimal performance. In contrast, enabling
exploration enables the agent to experiment with various actions, ultimately discovering higher-reward
pathways. The best results were achieved with DQN_epsilon_0.05, with performance deteriorating as ¢
increased beyond this point. This indicates that too much exploration can cause random action selection,
thereby diminishing the quality of the agent’s experiences. In conclusion, DRL-based dialogue agents
must strike a balance between exploration and exploitation, as both insufficient and excessive exploration
harm performance. Thus, DQN_epsilon_0.05 is chosen as the baseline model for our study.
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Figure 6: Effect of ¢ parameters on DQN performance.

H Prompt Design

Listing 1: Action Space.

L

{"diaact"”: "confirm_question”, "inform_slots”: {3}, "request_slots": {}},

{"diaact”: "confirm_answer”, "inform_slots”: {3}, "request_slots”: {}},

{"diaact"”: "thanks"”, "inform_slots”: {}, "request_slots": {}},

{"diaact”: "deny", "inform_slots"”: {3}, "request_slots"”": {}},

{"diaact"”: "inform”, "inform_slots”: {"date”: "PLACEHOLDER"}, "request_slots”": {}},
{"diaact”: "inform"”, "inform_slots”: {"genre"”: "PLACEHOLDER"3}, "request_slots”": {}},
{"diaact"”: "inform"”, "inform_slots”: {"state”: "PLACEHOLDER"}, "request_slots": {}},
{"diaact”: "inform"”, "inform_slots”: {"city": "PLACEHOLDER"}, "request_slots”: {}3},
{"diaact"”: "inform”, "inform_slots”: {"zip": "PLACEHOLDER"}, "request_slots": {}},
{"diaact”: "request”, "inform_slots"”": {3}, "request_slots”: {"moviename”: "UNK"}},
{"diaact”: "request”, "inform_slots": {3}, "request_slots”: {"theater”: "UNK"}},
{"diaact”: "request”, "inform_slots"”": {3}, "request_slots”: {"starttime”: "UNK"}},
{"diaact”: "request”, "inform_slots"”: {3}, "request_slots":

{"diaact”: "request”, "inform_slots"”: {3}, "request_slots”: {"zip": "UNK"}},
{"diaact”: "request”, "inform_slots": {3}, "request_slots”: {"mpaa_rating"”: "UNK"}3},
{"diaact”: "request”, "inform_slots"”: {3}, "request_slots”: {"video_format”: "UNK"3}},
{"diaact”: "request”, "inform_slots": {3}, "request_slots”: {"price”: "UNK"3}},
{"diaact”: "request”, "inform_slots"”: {3}, "request_slots”: {"actor”: "UNK"3}},
{"diaact”: "request”, "inform_slots"”: {3}, "request_slots”: {"description”: "UNK"}3},
{"diaact”: "request”, "inform_slots"”: {3}, "request_slots”: {"other”: "UNK"3}},
{"diaact"”: "request"”, "inform_slots"”: {3}, "request_slots"”": {"numberofkids”: "UNK"}}
]
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Table 3: Descriptions of Prompts used for LLM-based baselines.

Model

Prompt

LLMSAP

You must strictly execute the following commands:

1. system roles: as an auxiliary dialogue policy module in a task-oriented
dialogue system, you are required to perform semantic action pruning on
the action space based on the current dialogue state, thereby assisting in
policy optimization.

2. Processing user dialogue state and action space: you will receive an
action space formatted similarly to Listing 1, along with a user dialogue
state formatted similarly to Listing 2. You should leverage your powerful
semantic understanding capabilities to deeply analyze the semantic
relevance between candidate actions and the current dialogue context, to
identify and eliminate invalid or redundant actions that do not match the
dialogue state.

3. Generate system actions: based on the above analysis, you are expected
to prune the action space and retain the actions that are more semantically
relevant and potentially more rewarding. Multiple actions can be retained.
The final output should be a list of indices corresponding to the retained
actions in the original action space.

4. Command execution requirements: you must strictly adhere to the above
instructions. The output must be a standard JSON string in the following
format: {"new_actions”: [index@, index1, ...]1} All elements must
be integers. Do not generate any additional text.

LLM_DP

You must strictly execute the following commands:

1. system roles: as the dialogue policy module of a task-oriented dialogue
system, you need to give actions based on the current state of the dialogue.
2. Processing user dialogue state: you will receive a dialogue state in a
format similar to the Listing 2 data format. This state will be used as a basis
for decision-making.

3. Generate system actions: based on the user dialogue state, you need to
generate system actions. These actions should be provided in the following
format: [[“ActionType”, “Domain”, “Slot”, “Value”’]] where ‘ActionType’
denotes the type of action (e.g. Request, Inform, Confirm, etc.), ‘Domain
specifies the associated domain (e.g. restaurant, taxi, hotel, etc.), ‘Slot* is
the specific information slot associated with the action (e.g. name, area,
type, etc.), and ‘Value® is the corresponding value or an empty string.

4. Command execution requirements: strictly enforce the above command,
the generated data must be in JSON format, and prohibit the generation of
other data.

3

LLM_DP_NLG

You must strictly execute the following commands:

1. system roles: as the dialog policy module and natural language generation
module of a task-oriented dialogue system, you need to give actions based
on the current state of the dialogue.

2. Processing user dialogue state: you will receive a dialogue state in a
format similar to the Listing 2 data format. This state will be used as a basis
for decision-making.

3. Generate system actions: make decisions based on the state of the
dialogue and generate natural language directly back to the user.

4. Command execution requirements: strictly enforce the above command,
the generated data must be in JSON format, and prohibit the generation of
other data.
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Listing 2: Dialogue State.

26 {

27
28

29
30

31
32
33
34
35
36
37
38
39

40

41

42

43

44

45
46

"agent_action":{

"request_slots”:{"moviename”:"UNK"},"turn":5,"speaker”:"agent"”,"inform_slots”":{},"
diaact"”:"request"},

"user_action":{

"request_slots”:{},"turn”":6,"speaker”:"user"”,"inform_slots"”:{"moviename"”:"zootopia"}
,"diaact”:"inform"},

"turn":7,

"current_slots":{

"request_slots":{"theater":"UNK"},
"agent_request_slots":{"moviename":"UNK"},
"inform_slots"”:{"moviename":"zootopia"},

"proposed_slots”:{}},
"kb_results_dict”:{"matching_all_constraints”:278,"moviename”:278},
"history":[

{"request_slots”:{"theater”:"UNK"},"turn":0,"speaker”:"user”,"inform_slots"”:{"
moviename”:"zootopia”"},"diaact”:"request”"},
{"request_slots”:{"moviename":"UNK"3},"turn”":1,"speaker”:"agent”,"inform_slots”":{},"
diaact”:"request"},
{"request_slots”:{},"turn”:2,"speaker”:"user”,"inform_slots”:{"moviename":"zootopia"”
},"diaact”:"inform"},
{"request_slots”:{"moviename"”:"UNK"3},"turn":3,"speaker”:"agent”,"inform_slots”:{},"
diaact”:"request"},
{"request_slots”:{},"turn":4,"speaker”:"user”,"inform_slots”:{"moviename":"zootopia"”
},"diaact”:"inform"},
{"request_slots”:{"moviename"”:"UNK"3},"turn":5, " "speaker”:"agent”,"inform_slots”:{},"
diaact”:"request"}
]
3

I Action Space Decision-Making Algorithm

Algorithm 1: Action Space Decision-Making Algorithm.

Input: Current state s;; pruned action space A}; Q-network parameters 0; exploration rate ¢; target
network update frequency 7
Qutput: Selected action a;; updated parameters 6
1 Action Selection:
Generate a random number 7 € [0, 1];
if r < € then
‘ Randomly select a; € Aj;
end if
else
‘ at < argmaxge 41 Q(st, a;0);
end if
9 Environment Interaction:
10 Execute action ay; observe reward r; and next state s;41;
1 Q-value Update:
12y < 1+ ymaxgeq Q(se1,a307);
13 Compute loss L(6) < (y; — Q(s1, ag; 0))*;
14 Update 6 by minimizing L(6);
15 Target Network Update:
16 if Current stept mod 7 = 0 then
17 0~ « 0,
18 end if
19 return Selected action a;, updated parameters 6;
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