
Semantic-Aware Action Space Compression via LLM-DRL Synergy for
Efficient Task-oriented Dialogue Policy Exploration

Anonymous ACL submission

Abstract

The flexibility of natural language significantly001
expands the action space in task-oriented dia-002
logue systems, causing inefficient exploration003
and slow convergence in deep reinforcement004
learning (DRL)-based policy optimization. Pre-005
trained large language models (LLMs), with006
world knowledge and semantic understanding,007
offer promising solutions. To this end, we pro-008
pose LLM-Guided DRL via Semantic-Aware009
Action Pruning (LLMSAP), a novel framework010
that synergizes pretrained LLMs with DRL.011
LLMSAP leverages the world knowledge and012
contextual understanding of LLMs to guide013
decision-making via an action feasibility as-014
sessment. Instead of requiring LLMs to di-015
rectly generate optimal actions due to their016
limited precision in sequential decision tasks,017
LLMSAP employs a lightweight action pruning018
mechanism. Specifically, LLMs act as action019
filters, rapidly eliminating semantically implau-020
sible or low-potential actions from multi-turn021
dialogue context, allowing the DRL agent to022
focus exploration on a refined candidate sub-023
set. This two-stage framework ("prune-then-024
optimize") avoids extensive LLM fine-tuning025
while preserving the decision-making precision026
of DRL. Experiments on multiple benchmarks027
verify the effectiveness of LLMSAP.028

1 Introduction029

Task-oriented dialogue (TOD) systems achieve user030

goals via multi-turn interactions, where dialogue031

policy (DP), as the core component, selects ap-032

propriate actions to steer the conversation. Deep033

reinforcement learning (DRL) has emerged as the034

dominant approach for DP optimization due to its035

strength in sequential decision-making (Du et al.,036

2024). However, natural language flexibility in-037

duces exponentially large action spaces (Zhao et al.,038

2024a). The resulting high dimensionality and se-039

mantic ambiguities in actions not only hinder effi-040

cient exploration (Ma et al., 2024) but also destabi-041

lize policy optimization through biased value esti-042

mation (Zhao et al., 2019), degrading DRL’s gener- 043

alization in complex TOD scenarios. 044

Recent advances in large language models 045

(LLMs), which acquire powerful world knowledge 046

and multi-turn semantic awareness through mas- 047

sive corpus pretraining, offer promising solutions to 048

the above challenges (Chung et al., 2023). Studies 049

show that LLMs could deeply model implicit se- 050

mantic relationships in dialogue contexts and infer 051

relevant system action sets accordingly (Qian et al., 052

2024). This capability offers a theoretical founda- 053

tion for developing semantic-aware action pruning 054

modules, enabling semantically-guided DRL ex- 055

ploration in expansive action spaces. 056

Despite their potential, deploying LLMs as end- 057

to-end decision-makers for dialogue policy guid- 058

ance faces dual challenges: (1) Untuned LLMs lack 059

alignment with TOD-specific reward signals, mak- 060

ing it difficult to optimize long-term action rewards 061

(Algherairy and Ahmed, 2025); 2) Large-scale fine- 062

tuning for specific tasks is hindered by the scarcity 063

of annotated TOD data and high computational 064

costs (Matarazzo and Torlone, 2025). 065

To bridge these gaps, we propose LLM-Guided 066

DRL via Semantic-Aware Action Pruning (LLM- 067

SAP), a two-stage "prune-then-optimize" frame- 068

work. It first leverages LLMs to assess action feasi- 069

bility based on dialogue context, pruning semanti- 070

cally inconsistent or low-potential actions to com- 071

press the action space. Then, DRL performs fine- 072

grained exploration over the pruned action subset, 073

optimizing action sequences via long-term reward 074

maximization. This design avoids costly LLM fine- 075

tuning while harnessing its role as a semantic filter, 076

balancing DRL policy optimization accuracy with 077

exploration efficiency. To the best of our knowl- 078

edge, this is the first study to integrate LLM with 079

DRL to dialogue policy optimization. In summary, 080

our contributions are threefold: 081

• A lightweight semantic action pruning mech- 082

anism that leverages LLMs filtering to com- 083
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press the action space efficiently, effectively084

alleviating the exploration bottleneck of DRL085

in high-dimensional environments;086

• A cross-modal decision fusion framework that087

unites LLM-derived semantic insights with088

DRL policy gradients through prompt-based089

action feasibility evaluation;090

• Experiments on multiple benchmarks demon-091

strate that LLMSAP accelerates convergence092

and boosts task completion rates, showcasing093

the synergistic benefits of combining semantic094

guidance with deep reinforcement learning.095

2 Related Work096

In DRL research, LLMs typically serve as informa-097

tion processors, reward designers, decision-makers,098

or generators (Cao et al., 2024). Nevertheless, ex-099

isting studies predominantly concentrate on gam-100

ing environments, exhibiting scant exploration of101

TOD systems. Due to fundamental differences102

in task specifications (discrete vs. continuous ac-103

tion spaces) and interaction patterns (turn-based vs.104

game dynamics), gaming approaches are ill-suited105

for TOD. This paper investigates analogous LLM-106

as-decision-maker methods in related fields, catego-107

rizing them into action decision-making and action108

guidance paradigms, to inform our exploration of109

LLM-DRL integration for TOD.110

For decision-making, recent advances have111

explored the use of LLMs through two main112

paradigms: policy initialization and sequence113

modeling-based decision making. The policy ini-114

tialization paradigm utilizes pre-trained LLMs to115

provide strong priors for DRL (Li et al., 2022). In116

contrast, the sequence modeling paradigm reframes117

decision-making as a conditional generation prob-118

lem, typically implemented via decision transform-119

ers (Shi et al., 2023). However, these approaches120

share a fundamental limitation: dialogue policy121

learning is a long-term task, and LLMs without122

task-specific fine-tuning often fail to generate an123

optimal sequence of actions (Yi et al., 2024b).124

For action-guiding, LLMs do not generate ac-125

tions directly, but act as guides, producing a con-126

densed set of candidate or expert actions. Hu and127

Sadigh (2023) proposed the instructRL framework,128

which utilizes pre-trained LLMs to generate a pri-129

ori strategy distributions based on linguistic cues to130

guide policy learning. However, instructRL relies131

on LLMs to generate strategy distributions directly,132

Figure 1: The first stage of LLMSAP utilizes LLMs to
prune redundant or invalid actions.

which has significant limitations in long sequence 133

tasks due to cumulative bias propagation and fail- 134

ure to maintain temporal consistency in action se- 135

quences. Meanwhile, DRL agents are subordinate 136

and lack the autonomy to correct policy deviations, 137

which may lead to unstable convergence or even 138

failure, especially in complex and dynamic dia- 139

logue tasks (Kwan et al., 2023). 140

In summary, direct policy initialization or ac- 141

tion generation with LLMs suffers from limited 142

adaptability and long-term optimization in TOD 143

scenarios. In contrast, LLMSAP utilizes LLMs 144

for semantic-level action pruning, avoiding their 145

limitations in long-horizon decision-making while 146

retaining the strengths of DRL, thus significantly 147

enhancing efficiency in complex dialogue tasks. 148

3 Methodology 149

LLMSAP comprises two stages: (1) LLM-Driven 150

Semantic Action Pruning: Leveraging the power- 151

ful semantic reasoning and world knowledge of 152

pre-trained LLMs, this stage filters out semanti- 153

cally inconsistent or low-potential actions, thereby 154

significantly reducing the effective action space; 155

(2) DRL-Driven Dynamic Optimization: Operating 156

within the pruned action subset provided by the 157

LLM, this stage employs DRL to fine-tune the dia- 158

logue policy via policy-gradient updates, ensuring 159

precise and efficient decision-making. 160

3.1 LLM-Driven Semantic Action Pruning 161

As illustrated in Figure 1, our framework employs 162

a prompt-based interaction mechanism with LLMs, 163

where the current dialogue state and the full action 164
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space are encoded in natural language and inte-165

grated into the prompt (detailed prompt design in166

Appendix H). Leveraging their world knowledge167

and semantic reasoning, LLMs perform context-168

aware semantic analysis of actions by incorporating169

the historical context. By eliminating redundant or170

invalid actions, the LLM output retains only those171

most relevant to the current dialogue state, thereby172

reconstructing a pruned action space. To facilitate173

seamless integration with the DP network, LLM174

outputs are formatted as action subscripts, and the175

pruned action space is returned as a JSON string.176

By applying semantic action pruning to the action177

space, LLMs mitigate interference from irrelevant178

actions, enabling the agent to focus on high-value179

candidates. This process enhances exploration effi-180

ciency and accelerates DP training convergence.181

3.2 DRL-Driven Dynamic Optimization182

Task-oriented dialogue policies operate within fi-183

nite, discrete action spaces. The DQN algorithm is184

well-suited for this setting, offering stable training185

and efficient offline learning and prior work shows186

DQN consistently outperforms continuous-control187

algorithms like PPO (Schulman et al., 2017) and188

SAC (Haarnoja et al., 2018) on discrete decision189

tasks. Thus, this paper employs DQN to learn op-190

timal policies within the LLM-pruned action set,191

quantifying how semantic action pruning impacts192

dialogue performance.1193

DQN extends Q-learning to high-dimensional194

spaces by replacing the value table with a deep net-195

work Q(s, a; θ) that estimates the expected return196

of executing action a in state s. For a given state st,197

the network outputs Q-values for all a ∈ A, and the198

parameters θ are updated to maximize long-term199

reward. The training objective is to minimize the200

following mean squared error loss function:201

L(θ) = E(st,at,rt,st+1)∼D
[
(yt−Q(st, at; θ))

2
]

(1)202

203
yt = rt + γmax

a′
Q(st+1, a

′; θ−) (2)204

where Q(st, at; θ) represents the expected cumu-205

lative reward from taking action at in state st. D206

is the experience replay buffer, which stores state207

transition tuples (st, at, rt, st+1). γ is the discount208

factor balancing immediate rewards and long-term209

returns. θ− denotes the parameters of the target Q-210

network, periodically synchronized from the online211

network θ to stabilize the training process.212

1The pruned action space remains finite, enabling substitu-
tion of DQN with any discrete-action RL algorithm.

Within the pruned action space, DQN follows 213

an ϵ-greedy strategy for action selection, condi- 214

tioned on the current dialogue state. At each step, 215

the agent explores by randomly selecting an action 216

from the pruned set with probability ϵ or exploits 217

by choosing the highest Q-value action with proba- 218

bility 1− ϵ. This process is detailed in Appendix I. 219

4 Experiments 220

We conducted experiments on three datasets from 221

the Microsoft Dialogue Challenge platform (Li 222

et al., 2018): movie ticket booking, restaurant reser- 223

vation, and taxi booking. The objectives were to: 224

(1) Demonstrate the superiority of LLMSAP in en- 225

hancing exploration efficiency (subsection 4.1); (2) 226

Analyze the impact of LLM scale and compatibil- 227

ity on performance (subsection 4.2); (3) Investigate 228

how semantic action pruning influences optimal 229

exploration rate (subsection 4.3); (4) Validate ef- 230

fectiveness via human evaluation (subsection 4.4); 231

Given the focus on addressing exploration ineffi- 232

ciencies in expanded action spaces using LLMs, 233

we selected baseline methods categorized into 234

two groups: (1) Exploration-Enhanced DRL Poli- 235

cies: DQN_EPSILON_N (Mnih et al., 2015), 236

NOISY_DQN (Han et al., 2022) and ICM_DQN 237

(Lin et al., 2025); (2) LLM-Based Dialogue 238

Policies: LLAMA_DP (Yi et al., 2024a) and 239

LLAMA_DP_NLG (Yi et al., 2024a). Additional 240

baselines and implementation details are provided 241

in Appendix A and Appendix B. 242

4.1 Main Results 243

Figure 2 shows the learning curves of different 244

agents across three datasets. NOISY_DQN and 245

ICM_DQN performed well in the simple Movie 246

task but degraded significantly in complex Restau- 247

rant/Taxi environments, due to inefficient explo- 248

ration in large action spaces. This decline is 249

mainly due to their inefficient exploration strate- 250

gies that struggle to traverse the extensive action 251

spaces characteristic of intricate dialogue scenar- 252

ios. LLAMA_DP and its variants, on the other 253

hand, leveraged world knowledge from pre-trained 254

LLMs for strong initial performance, but lack of 255

task fine-tuning hindered improvement. In contrast, 256

LLMSAP uses LLM semantic understanding to 257

prune actions and reduce redundant exploration, 258

achieving faster convergence and higher success 259

rates across all tasks. Detailed numerical results 260

are in Appendix C. 261
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(a) Movie (b) Restaurant (c) Taxi

Figure 2: The learning curves of different agents on three datasets. For the DQN_EPSILON_N, we set N = 0 to
represent no exploration, while N = 0.05 denotes its performance upper bound (optimal exploration). The impact
of different N values is detailed in Appendix G.

4.2 LLM Scale and Compatibility Analysis262

To evaluate the impact of LLM scale, we conducted263

semantic action pruning utilizing LLMs of different264

sizes. As shown in Figure 3, llama-3.1-8B (Dubey265

et al., 2024) achieves performance comparable to266

the 70B model while significantly reducing compu-267

tational costs. Therefore, we adopt llama-3.1-8B as268

the primary backbone for experiments, leveraging269

its balance of efficiency and effectiveness.270

Moreover, our approach is theoretically compat-271

ible with any LLM. To validate this, we applied272

it to other mainstream models, including gemma-273

2-9B (Team et al., 2024) and qwen2.5-7B (Yang274

et al., 2024), which are similar in scale to llama-275

3.1-8B. Experimental results across three domains276

(see Appendix E) show that all three LLMs outper-277

form baseline approaches. These results confirm278

the effectiveness of our approach and demonstrate279

its broad compatibility with various LLMs.280

4.3 Impact of Semantic Action Pruning on281

Exploration Efficiency282

We investigated how LLM-driven semantic action283

pruning affects the selection of the ϵ hyperparame-284

ter. By varying ϵ from 0.05 to 0.25, we discovered285

that ϵ = 0.15 strikes the optimal balance between286

exploration and exploitation. Unlike DRL-based287

methods, which attained its peak performance at288

ϵ = 0.05, the LLM-based approachs profits from a289

higher ϵ value. This is because it prunes redundant290

or invalid actions, thereby enabling more extensive291

yet productive exploration and enhancing training292

efficiency. Consequently, we set ϵ = 0.15 for all293

subsequent experiments. The complete results and294

comparisons are presented in Appendix D.295

4.4 Human Evaluation296

While automated metrics offer quantitative as-297

sessments, human evaluation better reflects user298

Figure 3: Performance on Llama with Different Scales.

experience by capturing task accuracy, dialogue 299

coherence, and naturalness in multi-turn interac- 300

tions. Human evaluations showed LLMSAP out- 301

performed baselines across all dimensions, aligning 302

with simulation results. The detailed settings and 303

results are provided in Appendix F. 304

5 Conclusion 305

This study introduces the LLMSAP architecture, a 306

novel framework that synergizes LLMs with DRL 307

to enhance exploration efficiency in task-oriented 308

dialogue policy optimization. The framework initi- 309

ates by conducting semantic interpretation of the 310

ongoing dialogue context and action space, where 311

an LLM is employed to eliminate redundant or se- 312

mantically inconsistent actions, thereby generating 313

a streamlined and high-purity action subset. DRL 314

is subsequently utilized to execute exploration and 315

policy refinement within this pruned action space. 316

Cross-domain experiments spanning multiple sce- 317

narios reveal that LLMSAP surpasses standalone 318

DRL and LLM methods in both exploration ef- 319

ficiency and convergence velocity. Its consistent 320

performance across diverse LLM variants further 321

underscores its robust generalizability. To the best 322

of our knowledge, this is the first study to integrate 323

LLM with DRL to dialogue policy optimization. 324
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6 Limitations325

Although the integration of LLMs and DRL in this326

study demonstrates clear advantages in improving327

exploration efficiency, the system requires LLMs to328

return data in a specific format. Any deviation from329

the expected structure may hinder accurate parsing330

and processing and thus compromise the system’s331

accuracy and stability. To address this limitation,332

future research could explore fine-tuning LLMs333

to ensure consistent adherence to the required out-334

put format and improve the robustness and overall335

performance of the system.336
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A Baselines 469

We compared our approach with publicly available dialogue agents, dialogue agents designed to enhance 470

exploration efficiency, and promising LLM-based dialogue agents: 471

• DQN_EPSILON_N agents are trained utilizing standard DQN with a traditional ϵ − greedy 472

exploration strategy, where ϵ = N (Mnih et al., 2015)2. 473

• NOISY_DQN agents enhance exploration by introducing noise into the network weights (Han et al., 474

2022). 475

• ICM_DQN agents incorporate intrinsic curiosity rewards to encourage exploration of the new space 476

(Lin et al., 2025). 477

• LLAMA_DP agents replace the DP module of the TOD system with an LLM, selecting suitable 478

actions to be passed to the NLG for response generation (Yi et al., 2024a)3. 479

• LLAMA_DP_NLG agents replace both the DP and NLG modules of the TOD system with an LLM, 480

directly selecting suitable words to construct responses (Yi et al., 2024a)3. 481

To ensure a fair comparison, we directly employ pretrained LLMs to replace the DP or NLG modules, 482

without involving any further fine-tuning on additional data. Therefore, our focus is placed on comparing 483

the performance of LLAMA_DP and LLAMA_DP_NLG with that of our fully converged approach. 484

B Implementation Details 485

All DQN-based agents use a multilayer perceptron containing two hidden layers, each containing 80 486

neurons, with an activation function of ReLU. In the training configuration, the discount factor γ is set to 487

0.99, the batch size is 16, the learning rate is 0.001, and the experience replay buffer size is 5000. For the 488

DQN_EPSILON_N agent, the ϵ starts at 0 and increases to 0.25 with a step size of 0.05. In the analysis of 489

the impact of LLMs on the exploration rate, the ϵ ranges from 0.05 to 0.25, and the step size is 0.05. In 490

our approach, epsilon is set to a default value of 0.15, as this setting yields the best performance. Detailed 491

justification can be found in subsection 4.3. The default model scale for llama is set to 8B, as justified 492

in subsection 4.2. The reward function assigns a reward of 2L for a successful dialogue and a penalty 493

of −L for a failed one. Additionally, to encourage concise conversations, a penalty of -1 is applied for 494

each dialogue turn. All agents have a maximum dialogue turn limit of 30. Before the formal training 495

begins, each agent undergoes 120 warm-up interactions with a rule-based user simulator to populate the 496

experience replay buffer for subsequent training. During the training phase, each agent interacts with the 497

environment once per episode and stores its experiences in the replay buffer. In the evaluation phase, each 498

agent interacts with the environment 50 times, but its experiences are not stored in the buffer; instead, 499

only the dialogue success rate, number of dialogue turns, and average reward are recorded. To ensure the 500

robustness of experimental results, each agent is trained five times with different random seeds, and the 501

average results are used for analysis. 502

C Main Result 503

The results of different agents across various domains are presented in Table 1. As shown in the table, the 504

difference between epsilon values of 0 and 0.05 highlights the importance of exploration for the agent. 505

Excessive exploration can lead to overly random strategies, preventing the agent from fully utilizing known 506

information, and thus affecting convergence speed and stability. Conversely, insufficient exploration can 507

cause the agent to get trapped in local optima, lacking the necessary diversity and flexibility to discover 508

2We assessed the impact of different ϵ values on performance across multiple dialogue domains, selecting the optimal value
for each domain as the baseline. Detailed results and analysis are provided in Appendix G.

3We chose llama as the base model primarily due to its strong language understanding capabilities and open accessibility. In
addition, we compare variants based on other LLMs to evaluate the generalizability of the proposed framework, as detailed in
Appendix H.
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the global optimum. Although NOISY_DQN demonstrates superior performance in the Movie domain,509

its performance significantly drops in the more complex state-action spaces of the Restaurant and Taxi510

domains. We hypothesize that, as the user objective becomes more complicated and the state space grows511

(Zhao et al., 2022), the role of the noise layer in facilitating exploration becomes limited, preventing the512

agent from effectively exploring more valuable policies. Similarly, the ICM_DQN agent suffers from this513

issue. While its convergence success rate reaches around 0.5 in the Movie domain, it drops below 0.1 in514

the Restaurant and Taxi domains. We believe that, in larger state spaces, ICM_DQN overly focuses on515

environmental dynamics rather than the task itself, leading to excessive, ineffective exploration. Although516

the LLAMA_DP and LLAMA_DP_NLG agents show impressive initial performance due to their built-in517

world knowledge, they fail to further improve performance due to the lack of task-specific data fine-tuning.518

In contrast, LLMSAP benefits from the world knowledge and semantic understanding of LLMs,519

effectively eliminating redundant or invalid actions within the action space. This allows our approach to520

achieve the best performance across all three domains, with improvements in both convergence speed and521

task success rate, demonstrating that semantic action pruning of the action space by LLMs significantly522

enhances exploration efficiency.523

Table 1: Results of different agents on three datasets, with top performance in each column highlighted. All results
of agent pairs are statistically significant at the same epoch (t-test, p < 0.05). Epochs (50, 250, 500) represent early,
mid, and post-convergence training stages.

Domain Agent Epoch = 50 Epoch = 250 Epoch = 500

Success↑ Reward↑ Turns↓ Success↑ Reward↑ Turns↓ Success↑ Reward↑ Turns↓

Movie

DQN_EPSILON_0.0 0.3505 -13.00 32.11 0.5403 12.99 25.70 0.5553 14.95 25.37
DQN_EPSILON_0.05 0.3093 -18.61 33.44 0.6795 31.84 21.39 0.7668 43.42 19.21
DQN_EPSILON_0.15 0.2086 -22.67 35.64 0.5137 11.61 28.18 0.5248 14.52 28.49
NOISY_DQN 0.4137 -4.73 30.75 0.7141 36.68 20.04 0.7280 39.38 20.16
ICM_DQN 0.1475 -37.81 33.00 0.5166 10.37 25.23 0.5311 12.49 24.47
LLAMA_DP 0.3845 -3.59 26.72 0.3845 -3.59 26.72 0.3845 -3.59 26.72
LLAMA_DP_NLG 0.1932 -26.73 28.31 0.1932 -26.73 28.31 0.1932 -26.73 28.31
LLMSAP 0.3459 -13.90 32.83 0.8081 48.49 18.96 0.8142 49.51 16.6

Rest.

DQN_EPSILON_0.0 0.0695 -36.57 27.66 0.4907 4.10 22.13 0.5671 11.63 23.22
DQN_EPSILON_0.05 0.0726 -36.28 27.63 0.5712 12.30 20.21 0.5817 12.79 21.12
DQN_EPSILON_0.15 0.0348 -38.66 29.32 0.3443 -2.13 27.69 0.3016 -5.65 30.47
NOISY_DQN 0.0000 -43.92 29.84 0.1669 -28.25 28.55 0.2988 -15.20 26.18
ICM_DQN 0.0067 -40.85 24.90 0.0231 -38.92 23.99 0.0082 -32.88 9.25
LLAMA_DP 0.3464 -10.77 23.12 0.3464 -10.77 23.12 0.3464 -10.77 23.12
LLAMA_DP_NLG 0.1830 -28.44 35.60 0.1830 -28.44 35.60 0.1830 -28.44 35.60
LLMSAP 0.0384 -53.36 35.96 0.8163 49.64 18.63 0.7962 46.99 18.32

Taxi

DQN_EPSILON_0.0 0.0004 -42.69 27.47 0.4846 2.26 24.70 0.5879 12.38 23.06
DQN_EPSILON_0.05 0.0000 -42.86 27.71 0.5598 8.19 22.38 0.6683 20.19 21.90
DQN_EPSILON_0.15 0.0009 -40.38 26.16 0.4186 1.13 26.56 0.4163 1.09 26.97
NOISY_DQN 0.0000 -43.73 29.46 0.1455 -30.56 29.32 0.2615 -19.46 28.00
ICM_DQN 0.0008 -42.34 26.84 0.0481 -34.48 19.62 0.0706 -28.59 11.90
LLAMA_DP 0.3288 -14.56 24.97 0.3288 -14.56 24.97 0.3288 -14.56 24.97
LLAMA_DP_NLG 0.1786 -18.33 28.46 0.1786 -18.33 28.46 0.1786 -18.33 28.46
LLMSAP 0.0003 -43.47 35.02 0.8220 48.62 19.44 0.8071 46.85 19.23

D Impact of LLMs Semantic Action Pruning on Exploration Rate524

To examine the influence of LLMs’ semantic action pruning of the action space on the ϵ hyperparameter525

and to provide valuable insights for future research and practical applications, we conducted a series of526

experiments on the ϵ hyperparameter. Intuitively, the magnitude of ϵ determines the extent of exploration.527

A larger ϵ increases the exploration frequency but does not exhibit a strictly linear relationship with528

exploration efficiency. An excessively large ϵ may lead to over-exploration, particularly in dialogue tasks529

with extensive state spaces, thereby degrading the quality of experiences. Conversely, an excessively small530

ϵ may result in insufficient exploration, causing the model to become trapped in local optima. Therefore,531

identifying an optimal ϵ value is essential for achieving an effective balance between exploration and532

exploitation.533

To determine the optimal ϵ, we conducted experiments with ϵ values ranging from 0.05 to 0.25 in534

increments of 0.05. The experimental results, presented in Figure 4, indicate that in all three domains, the535
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best performance was achieved when ϵ was set to 0.15, effectively balancing exploration and exploitation. 536

Consequently, ϵ was fixed at 0.15 as the default value for all subsequent experiments. 537

Overall, the experimental results are consistent with the findings from the ϵ hyperparameter experiments 538

conducted for the DQN in Appendix G. Both excessively small and excessively large values of ϵ resulted 539

in reduced exploration efficiency. However, a notable difference was observed in the optimal ϵ between the 540

two approaches: while the best ϵ for the DQN agent was 0.05, the optimal ϵ for the LLM-driven semantic 541

action pruning approach was 0.15. This discrepancy can be attributed to the effectiveness of semantic 542

action pruning in LLMs, which eliminates redundant or invalid actions. Consequently, a slightly larger ϵ 543

allows the agent to explore a broader action space while maintaining a higher proportion of high-reward 544

actions, thereby enhancing both exploration efficiency and overall training effectiveness.

(a) Movie (b) Rest. (c) Taxi

Figure 4: Impact of LLMs Semantic Action Pruning on Exploration Rate.

545

E LLMs Compatibility Experiment 546

(a) Movie (b) Rest. (c) Taxi

Figure 5: Our approach combines the performance of different LLMs.

Agents Taxi Rest Movie
SR↑ AS↑ SR↑ AS↑ SR↑ AS↑

DQN_EPSILON_0.0 0.4866 3.1 0.4274 2.8 0.3811 2.6
DQN_EPSILON_0.05 0.5562 3.3 0.4426 3.1 0.4860 2.8

NOISY_DQN 0.4964 2.9 0.2021 2.5 0.1876 2.4
ICM_DQN 0.4025 3.2 0.0862 1.6 0.1436 1.2
LLM_DP 0.3571 3.2 0.3684 2.9 0.2637 3.3

LLM_DP_NLG 0.2028 3.4 0.1921 3.3 0.1836 3.5
LLMSAP_LLAMA 0.6648 3.5 0.6732 3.4 0.6847 3.7
LLMSAP_GEMMA 0.6836 3.8 0.6391 2.9 0.5986 3.2
LLMSAP_QWEN 0.6012 3.2 0.6584 3.5 0.6258 3.3

Table 2: Human evaluation results of agents in different environments.
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F Human Evaluation547

We conducted a blind human study with 50 students. Following the metrics of Zhao et al. (2024b) and548

Liu et al. (2021), we reported success rate (SR) and average score (AS, 1–5) for naturalness, coherence,549

and task completion. Each participant interacted with a randomly assigned domain and could terminate550

ineffective sessions. Retaining ≥ 20 valid dialogues per participant yielded 1,026 dialogues in total. The551

results (Table 2) align with the simulation experiments.552

G Impact of Exploration Degree on Dialogue Policy Learning553

To assess the effect of exploration on DRL-based dialogue agents and identify the optimal ϵ value, we554

conducted experiments utilizing the DQN algorithm, as illustrated in Figure 6. With exploration disabled555

(DQN_epsilon_0.0), the agent always chooses the action with the highest known reward, which restricts556

its ability to find the globally optimal policy, resulting in suboptimal performance. In contrast, enabling557

exploration enables the agent to experiment with various actions, ultimately discovering higher-reward558

pathways. The best results were achieved with DQN_epsilon_0.05, with performance deteriorating as ϵ559

increased beyond this point. This indicates that too much exploration can cause random action selection,560

thereby diminishing the quality of the agent’s experiences. In conclusion, DRL-based dialogue agents561

must strike a balance between exploration and exploitation, as both insufficient and excessive exploration562

harm performance. Thus, DQN_epsilon_0.05 is chosen as the baseline model for our study.

(a) Movie (b) Rest. (c) Taxi

Figure 6: Effect of ϵ parameters on DQN performance.

563

H Prompt Design564

Listing 1: Action Space.
565

1 [566
2 {"diaact": "confirm_question", "inform_slots": {}, "request_slots": {}},567
3 {"diaact": "confirm_answer", "inform_slots": {}, "request_slots": {}},568
4 {"diaact": "thanks", "inform_slots": {}, "request_slots": {}},569
5 {"diaact": "deny", "inform_slots": {}, "request_slots": {}},570
6 {"diaact": "inform", "inform_slots": {"date": "PLACEHOLDER"}, "request_slots": {}},571
7 {"diaact": "inform", "inform_slots": {"genre": "PLACEHOLDER"}, "request_slots": {}},572
8 {"diaact": "inform", "inform_slots": {"state": "PLACEHOLDER"}, "request_slots": {}},573
9 {"diaact": "inform", "inform_slots": {"city": "PLACEHOLDER"}, "request_slots": {}},574

10 {"diaact": "inform", "inform_slots": {"zip": "PLACEHOLDER"}, "request_slots": {}},575
11 {"diaact": "request", "inform_slots": {}, "request_slots": {"moviename": "UNK"}},576
12 {"diaact": "request", "inform_slots": {}, "request_slots": {"theater": "UNK"}},577
13 {"diaact": "request", "inform_slots": {}, "request_slots": {"starttime": "UNK"}},578
14 {"diaact": "request", "inform_slots": {}, "request_slots":579
15 {"diaact": "request", "inform_slots": {}, "request_slots": {"zip": "UNK"}},580
16 {"diaact": "request", "inform_slots": {}, "request_slots": {"mpaa_rating": "UNK"}},581
17 {"diaact": "request", "inform_slots": {}, "request_slots": {"video_format": "UNK"}},582
18 {"diaact": "request", "inform_slots": {}, "request_slots": {"price": "UNK"}},583
19 {"diaact": "request", "inform_slots": {}, "request_slots": {"actor": "UNK"}},584
20 {"diaact": "request", "inform_slots": {}, "request_slots": {"description": "UNK"}},585
21 {"diaact": "request", "inform_slots": {}, "request_slots": {"other": "UNK"}},586
22 {"diaact": "request", "inform_slots": {}, "request_slots": {"numberofkids": "UNK"}}587
23 ...588
24 ]589590
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Table 3: Descriptions of Prompts used for LLM-based baselines.

Model Prompt

LLMSAP

You must strictly execute the following commands:
1. system roles: as an auxiliary dialogue policy module in a task-oriented
dialogue system, you are required to perform semantic action pruning on
the action space based on the current dialogue state, thereby assisting in
policy optimization.
2. Processing user dialogue state and action space: you will receive an
action space formatted similarly to Listing 1, along with a user dialogue
state formatted similarly to Listing 2. You should leverage your powerful
semantic understanding capabilities to deeply analyze the semantic
relevance between candidate actions and the current dialogue context, to
identify and eliminate invalid or redundant actions that do not match the
dialogue state.
3. Generate system actions: based on the above analysis, you are expected
to prune the action space and retain the actions that are more semantically
relevant and potentially more rewarding. Multiple actions can be retained.
The final output should be a list of indices corresponding to the retained
actions in the original action space.
4. Command execution requirements: you must strictly adhere to the above
instructions. The output must be a standard JSON string in the following
format: {"new_actions": [index0, index1, ...]} All elements must
be integers. Do not generate any additional text.

LLM_DP

You must strictly execute the following commands:
1. system roles: as the dialogue policy module of a task-oriented dialogue
system, you need to give actions based on the current state of the dialogue.
2. Processing user dialogue state: you will receive a dialogue state in a
format similar to the Listing 2 data format. This state will be used as a basis
for decision-making.
3. Generate system actions: based on the user dialogue state, you need to
generate system actions. These actions should be provided in the following
format: [[“ActionType”, “Domain”, “Slot”, “Value”]] where ‘ActionType‘
denotes the type of action (e.g. Request, Inform, Confirm, etc.), ‘Domain‘
specifies the associated domain (e.g. restaurant, taxi, hotel, etc.), ‘Slot‘ is
the specific information slot associated with the action (e.g. name, area,
type, etc.), and ‘Value‘ is the corresponding value or an empty string.
4. Command execution requirements: strictly enforce the above command,
the generated data must be in JSON format, and prohibit the generation of
other data.

LLM_DP_NLG

You must strictly execute the following commands:
1. system roles: as the dialog policy module and natural language generation
module of a task-oriented dialogue system, you need to give actions based
on the current state of the dialogue.
2. Processing user dialogue state: you will receive a dialogue state in a
format similar to the Listing 2 data format. This state will be used as a basis
for decision-making.
3. Generate system actions: make decisions based on the state of the
dialogue and generate natural language directly back to the user.
4. Command execution requirements: strictly enforce the above command,
the generated data must be in JSON format, and prohibit the generation of
other data.
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Listing 2: Dialogue State.
591

26 {592
27 "agent_action":{593
28 "request_slots":{"moviename":"UNK"},"turn":5,"speaker":"agent","inform_slots":{},"594

diaact":"request"},595
29 "user_action":{596
30 "request_slots":{},"turn":6,"speaker":"user","inform_slots":{"moviename":"zootopia"}597

,"diaact":"inform"},598
31 "turn":7,599
32 "current_slots":{600
33 "request_slots":{"theater":"UNK"},601
34 "agent_request_slots":{"moviename":"UNK"},602
35 "inform_slots":{"moviename":"zootopia"},603
36 "proposed_slots":{}},604
37 "kb_results_dict":{"matching_all_constraints":278,"moviename":278},605
38 "history":[606
39 {"request_slots":{"theater":"UNK"},"turn":0,"speaker":"user","inform_slots":{"607

moviename":"zootopia"},"diaact":"request"},608
40 {"request_slots":{"moviename":"UNK"},"turn":1,"speaker":"agent","inform_slots":{},"609

diaact":"request"},610
41 {"request_slots":{},"turn":2,"speaker":"user","inform_slots":{"moviename":"zootopia"611

},"diaact":"inform"},612
42 {"request_slots":{"moviename":"UNK"},"turn":3,"speaker":"agent","inform_slots":{},"613

diaact":"request"},614
43 {"request_slots":{},"turn":4,"speaker":"user","inform_slots":{"moviename":"zootopia"615

},"diaact":"inform"},616
44 {"request_slots":{"moviename":"UNK"},"turn":5,"speaker":"agent","inform_slots":{},"617

diaact":"request"}618
45 ]619
46 }620621

I Action Space Decision-Making Algorithm622

Algorithm 1: Action Space Decision-Making Algorithm.
Input: Current state st; pruned action space A′

t; Q-network parameters θ; exploration rate ϵ; target
network update frequency τ

Output: Selected action at; updated parameters θ
1 Action Selection:
2 Generate a random number r ∈ [0, 1];
3 if r < ϵ then
4 Randomly select at ∈ A′

t;
5 end if
6 else
7 at ← argmaxa∈A′

t
Q(st, a; θ);

8 end if
9 Environment Interaction:

10 Execute action at; observe reward rt and next state st+1;
11 Q-value Update:
12 yt ← rt + γmaxa′∈A′

t
Q(st+1, a

′; θ−);
13 Compute loss L(θ)← (yt −Q(st, at; θ))

2;
14 Update θ by minimizing L(θ);
15 Target Network Update:
16 if Current step t mod τ = 0 then
17 θ− ← θ;
18 end if
19 return Selected action at, updated parameters θ;
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