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Figure 1: We present UniVid, an open-source unified video model for both understanding and
generation tasks. Our model requires only a small amount of high-quality data for fine-tuning,
achieveing competitive results across various tasks.

ABSTRACT

Unified video modeling combining generation and understanding capabilities is
increasingly important, yet faces two key challenges: maintaining semantic faith-
fulness during flow-based generation due to text-visual token imbalance and the
suboptimality of uniform cross-modal attention across the flow trajectory, and
efficiently extending image-centric MLLMs to video without costly retraining.
We present UniVid, a unified architecture that couples an MLLM with a dif-
fusion decoder through a lightweight adapter, enabling both video understand-
ing and generation. We introduce Temperature Modality Alignment to improve
prompt adherence and Pyramid Reflection for efficient temporal reasoning via
dynamic keyframe selection. Extensive experiments on standard benchmarks
demonstrate the state-of-the-art performance of our unified video model, achiev-
ing a 2.2% improvement on VBench-Long total score compared to the previous
SOTA method EasyAnimateV5.1, and 1.0% and 3.3% accuracy gains on MSVD-
QA and ActivityNet-QA, respectively, compared with the best prior 7B baselines.

1 INTRODUCTION

Video intelligence encompasses two core capabilities: generation and understanding. Generation
enables content creation, simulation, and data augmentation through diffusion and flow models (Shi
et al., 2020; Podell et al., 2024; Wang et al., 2025; Blattmann et al., 2023a). Understanding powers
perception, retrieval, analytics, and human-computer interaction via multimodal LLMs (Wang et al.,
2024a; Chen et al., 2024c; Lin et al., 2024; Bai et al., 2025). Real-world applications increasingly
demand unified systems that combine both capabilities within a single framework. Recent efforts
toward unified video modeling have converged on two paradigms. The first is an autoregressive
(AR)–centric route: all modalities (text, images, video) are projected into a shared discrete token
space and a single Transformer is trained with next-token prediction over multimodal sequences;
representative examples include Emu3 (Wang et al., 2024b) and Chameleon (Lu et al., 2023). The
second is a hybrid diffusion–AR route: a multimodal AR backbone governs understanding and
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control signals, while a diffusion video decoder renders high-fidelity frames from high-level visual
tokens; recent works such as Transfusion (Zhou et al., 2024a) and Show-O (Xie et al., 2025a) follow
this pattern. In this work, we adopt the hybrid route to retain high-quality rendering while leveraging
an MLLM for semantic control and interpretability.

However, even within this hybrid setting, unified video modeling faces two key challenges. First,
maintaining semantically faithful conditioning in video diffusion across the flow trajectory is diffi-
cult. Text prompts convey high-level intent but under-specify pixel-aligned details; in MM-DiT-style
Esser et al. (2024) models, the cross-modal signal can be diluted by the numerical imbalance be-
tween few text tokens and many visual tokens, and the role of guidance is inherently timestep-
dependent—early steps benefit more from strong semantic constraints, whereas later steps ben-
efit from visual detail refinement, yielding prompt–video drift that worsens with longer, higher-
resolution clips. Second, extending image-centric MLLMs to video faces two key challenges: the
computational cost of temporal modeling (dedicated encoders, long-context handling, large-scale
training) that risks destabilizing existing capabilities, and the mismatch between video’s vast tem-
poral information and the typically small subset relevant to any question. Traditional approaches
either process all frames uniformly, causing inefficiency and noise, or use fixed sampling that may
miss critical evidence. Furthermore, different question types demand different strategies—static
questions need distinctive keyframes while dynamic questions require understanding temporal tran-
sitions.

To address these challenges, our motivation is twofold. First, on the generation side, we leverage
multimodal understanding to construct structure-aware tokens in the language space that encode
both global semantics and localized cues; these tokens are used as faithful semantic conditioning
for a diffusion video decoder, and we schedule cross-modal attention over flow steps so that early
integration emphasizes textual intent while later steps emphasize visual refinement. Second, on
the understanding side, we develop an adaptive evidence selection approach that extends image-
centric MLLMs to video without substantial architectural changes. This requires a mechanism that
can iteratively explore and refine the evidence set based on feedback, balance exploration of new
frames with exploitation of current evidence, and learn from failure signals to improve future selec-
tions. This suggests a sequential decision-making framework, but rather than traditional parameter
updates, we implement a form of verbal test-time reinforcement learning. We develop Pyramid
Reflection, where policy improvement occurs through natural language refinement—the Reflector
verbally adjusts search queries based on feedback, while SigLIP2 (Tschannen et al., 2025) enables
query-driven keyframe selection that iteratively expands or prunes the evidence set.

Hence, we propose UniVid, a unified architecture that couples a multimodal LLM with a diffu-
sion video decoder via a lightweight conditioning adapter: the LLM ingests text and salient visual
evidence and outputs rich semantic understandable tokens that both support reasoning and con-
dition the decoder for text/image-to-video generation. To stabilize guidance in MM-DiT (Esser
et al., 2024), we introduce Temperature Modality Alignment, a timestep-aware, temperature-adjusted
cross-modal attention schedule that emphasizes semantic intent early and visual refinement late, mit-
igating text suppression and improving prompt faithfulness. To enable efficient understanding with
minimal change, we introduce Pyramid Reflection, which implements sequential decision-making
through SigLIP2-based keyframe selection and an Actor–Evaluator–Reflector loop that verbally ad-
justs search strategies while progressively expanding or pruning context. Through extensive eval-
uation on standard benchmarks, we validate the superior capability of our unified approach, which
consistently outperforms existing methods across multiple video-centric tasks, demonstrating the
potential of unified modeling for comprehensive video intelligence.

Our contribution can be summarized below:

• We introduce UniVid, a unified paradigm that couples an MLLM with a diffusion video decoder
via a lightweight conditioning adapter; the MLLM produces rich, understandable semantic tokens
that both support reasoning and condition text/image-to-video generation.

• We propose Temperature Modality Alignment, a timestep-aware, temperature-adjusted cross-
modal attention schedule in MM-DiT that strengthens early semantic guidance and later shifts em-
phasis to visual refinement; we further develop Pyramid Reflection with SigLIP2-based keyframe
selection to enable efficient temporal reasoning with minimal architectural change and training.

• We conduct comprehensive experiments on MSVD-QA (Piergiovanni et al., 2022), MSRVTT-
QA (Piergiovanni et al., 2022), TGIF-QA (Jang et al., 2017), and ActivityNet-QA (Yu et al.,
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Figure 2: Overall architecture of our proposed UniVid for unified video understanding and gen-
eration. Notably, for the understanding task, we adopt only the ViT encoder to achieve a better
efficiency–accuracy trade-off.

2018) for understanding, and on VBench for generation, demonstrating competitive performance
and efficiency. Ablations verify the contribution of each component.

2 RELATED WORK

Video generation. Video generation has seen remarkable advancements with the rise of diffusion
models and generative adversarial networks tailored for temporal data. Recent diffusion or flow
based frameworks, such as Video Diffusion Models (Ho et al., 2022b), Imagen Video (Ho et al.,
2022a), VideoCrafter2 (Chen et al., 2024a) and Stable Video Diffusion (Blattmann et al., 2023b),
have produced high-fidelity clips with improved temporal consistency, enabling applications in cre-
ative generation and simulation (Liu et al., 2025; Shi et al., 2025). Latent diffusion techniques
(Blattmann et al., 2023c) further improve efficiency by operating in compressed latent spaces, en-
abling scalable video generation. In parallel, GAN methods like MoCoGAN (Tulyakov et al.,
2018) and StyleGAN-V (Skorokhodov et al., 2022) explore alternative formulations. Despite these
advances, maintaining long-term temporal consistency in extended sequences remains challenging,
as summarized by recent surveys and analyses (Melnik et al., 2024; Yin et al., 2025).

Video understanding. Recent progress in video understanding has been driven by transformer-
based architectures and self-supervised learning paradigms that effectively model spatio-temporal
relationships. Methods like MViT (Fan et al., 2021), Video Swin Transformer (Liu et al., 2022),
TimeSformer (Bertasius et al., 2021) and ViViT (Arnab et al., 2021) have advanced the field by
capturing long-range dependencies across video frames, achieving strong performance on datasets
such as Kinetics-700 (Carreira et al., 2019). Beyond supervised training, self-supervised ap-
proaches—including masked modeling (VideoMAE (Tong et al., 2022), MaskFeat (Wei et al.,
2022), OmniMAE (Girdhar et al., 2023)) and early contrastive methods (VideoMoCo (Pan et al.,
2021))—leverage unlabeled videos to learn robust, transferable representations, reducing depen-
dence on costly annotations and benefiting action recognition and video segmentation.

Unified multimodal models. Unified multimodal modeling has progressed from joint vi-
sion–language pretraining to architectures that support both understanding and generation across
modalities. Foundational systems like CLIP (Radford et al., 2021) establish large-scale alignment,
while BEiT-3 (Wang et al., 2023) and UnifiedMLLM (Li et al., 2024) broaden task coverage. Push-
ing toward unified generation, Show-o (Xie et al., 2025a) integrates autoregression with discrete
diffusion within a single Transformer to support VQA, text-to-image, and various editing tasks. In a
complementary direction focused on robustness rather than general any-to-any generation, FLUID
(Cuong et al., 2025) uses token-level distillation for cross-modal fusion. Open generalist systems
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then aim to unify understanding and generation end-to-end: BAGEL (Deng et al., 2025) offers an
open, decoder-only framework with parallel language and diffusion branches trained jointly, achiev-
ing competitive results across image-centric tasks, and BLIP3-o (Chen et al., 2025) releases a fully
open family where a diffusion transformer is coupled to strong multimodal understanding, yielding
unified image understanding and generation. Extending unification from images to video, Omni-
Video (Tan et al., 2025) teaches an MLLM to emit continuous visual tokens that are adapted and
consumed by a diffusion video decoder, enabling generation, editing, and understanding in one
pipeline.

3 THE PROPOSED METHOD

3.1 OVERVIEW

Our goal is a unified multimodal video model that supports both generation and understanding within
a single framework. To this end, we adopt a three-stage hierarchical training recipe that first aligns
the conditioning between the MLLM and the generator, then finetunes the MLLM and introduces
Pyramid Reflection, which augments the understanding branch with temporal cues, and finally co-
adapts both branches end-to-end. Fig. 2 presents the overall UniVid architecture.

3.2 ARCHITECTURE

Multimodal archiecture. The multimodal large language model serves as the core reasoning en-
gine. Text inputs are processed through a standard tokenizer, while visual inputs follow different
encoding paths depending on the target branch. For the generation branch, images are encoded us-
ing both ViT (Dosovitskiy et al., 2021) for semantic features and VAE (Kingma & Welling, 2019)
for pixel-level details. For the understanding branch, only ViT encoding is employed, as video un-
derstanding tasks primarily rely on high-level semantic understanding rather than fine-grained pixel
details. The encoded visual features are then projected into the textual token space and concatenated
with text tokens, allowing the LLM to output unified multimodal representations.

Generation branch. The generation pathway employs a DiT-based model Wan 2.2 (Wang
et al., 2025) conditioned on rich semantic representations extracted from MLLM outputs through
a lightweight adapter. The system processes video generation in latent space using a 3D VAE (Zhao
et al., 2024), with conditioning signals integrated via cross-attention mechanisms.

Understanding branch. For video understanding, multi-frame evidence is encoded by the ViT
(Dosovitskiy et al., 2021) and fused with text; the LLM produces an initial textual answer. We
then apply Pyramid Reflection, a query-driven, hierarchical loop that iteratively expands or prunes
keyframe context via SigLIP2 (Tschannen et al., 2025) selection and refines the frame space via an
Actor–Evaluator–Reflector process, yielding the final answer without modifying the backbone.

Conclusively, our generation builds on the MLLM’s strong comprehension, while video understand-
ing uses Pyramid Reflection to leverage the MLLM and collaborate with an LLM for efficient and
accurate answers.

3.3 CONDITIONAL GENERATION WITH TEMPERATURE MODALITY ALIGNMENT

Given fused tokens from the understanding path, the MLLM output Zu is mapped to time-indexed
conditions by a lightweight adapter gϕ:

Ct = gϕ(Zu, t) ∈ RMt×dc , (1)

where Mt is the number of conditioning tokens at timestep t and dc is the conditioning dimension.

Let the 3D VAE define the latent trajectory {zt} along the flow, where zt ∈ RH×W×F×C repre-
sents the latent representation with spatial dimensions H ×W , temporal frames F , and channels
C. The Wan 2.2 DiT predicts the velocity field under cross-attention to Ct, then we integrate the
probability–flow ODE to obtain ẑ0, which the VAE decoder converts to video frames.

Inspired by TACA (Lv et al., 2025), we adapt its finding that text is suppressed in MM-DiT (Esser
et al., 2024) because (i) the softmax over a much larger pool of visual tokens (Nvis ≫ Ntxt) dilutes
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Algorithm 1 Pyramid Reflection as Test-time RL

Require: video V , question q
1: Uniformly sample N=64 frames; encode once and cache visual embeddings
2: From 16 frames, summarize into a global caption Cg

3: Initialize state s1←(q, Cg,W=∅), policy π with mode router expand/shrink
4: for r = 1 to R ≤ 3 do
5: Action: ar ∼ π(sr)

expand: add frames most relevant to current search text
shrink: prune to diverse key frames using cached similarities

6: Update working set W accordingly using cached embeddings (index-only change)
7: Actor: answer using ordered W conditioned on Cg

8: Evaluator: score r̂r ∈ [0, 1] as confidence signal
9: if r̂r ≥ τ then return answer

10: elseReflector: refine the search text q←short declarative cue
11: Update state sr+1←(q, Cg,W ) (verbal policy improvement)
12: end if
13: end for
14: return fallback answer from Cg

attention mass on text keys, and (ii) conditioning plays different roles across timesteps (early se-
mantics, late detail). We therefore strengthen the visual-to-text path in Wan 2.2 (Wang et al., 2025)
with a simple schedule:

S̃v→t(u) = αtxt(u)Sv→t, u ∈ [0, 1], (2)

where u is the normalized flow matching progress (0 early, 1 late), Sv→t denotes the visual-to-text
attention scores, and S̃v→t(u) represents the modulated attention scores. The modulation factor is
defined as:

αtxt(u) =

1 +
λtxt

2

(
1 + cos

(πu

0.4

))
, u ∈ [0, 0.4],

1, u ∈ (0.4, 1],
λtxt = 0.3. (3)

Thus, text guidance is strongest early and decays to neutral (αtxt→1) late, improving prompt faith-
fulness without over-constraining details.

For reference-image that requires identity stability, we apply a small late-stage boost to visual cross-
attention:

S̃v→v(u) = αimg(u)Sv→v, (4)
where Sv→v represents visual cross-attention scores and

αimg(u) =


1, u ∈ [0, 0.6],

1 +
λimg

2

(
1− cos

(
π(u− 0.6)

0.4

))
, u ∈ (0.6, 1],

λimg = 0.3. (5)

3.4 PYRAMID REFLECTION FOR UNDERSTANDING

Formulation. We cast video question answering as test-time reinforcement learning over a small,
ordered evidence set. The state at round r is (sr,Wr, Cg), where sr is a short search text, Wr is an
ordered subset of frames, and Cg is a global caption distilled once from uniformly sampled seeds.
The action is to reconfigure Wr given sr, either by adding frames (expand) or by pruning to a diverse
core (shrink). The policy πs is a retrieval rule driven by text–image similarity and a diversity term;
it maps s to a distribution over frame indices. The environment returns an answer a produced by the
Actor and a scalar reward r ∈ [0, 1] from the Evaluator. Policy improvement is carried out verbally:
the Reflector emits a refined sr+1 that concentrates on disambiguating cues such as before/after,
first/last, motion phase, color, or role. The loop stops early when r exceeds a confidence threshold.

Policy class. We instantiate πs with a cached-embedding retriever. All N candidate frames are
embedded once by a vision encoder; the text side uses ϕ(s). For expand we add the highest-scoring
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Table 1: T2V performance on VBench-Long (Huang et al., 2024).
Method Overall Scores Technical Quality Aesthetic Quality

Total Score↑ Quality↑ Semantic↑ Subject↑ Background↑ Temporal↑ Motion↑ Dynamic↑ Aesthetic↑ Imaging↑
EasyAnimateV5.1 (Fu et al., 2024b) 83.42 85.03 77.01 98.00 97.41 99.19 98.02 57.15 69.48 68.61
MiniMax-Video-01 (MiniMax, 2024) 83.41 84.85 77.65 97.51 97.05 99.10 99.22 64.91 63.03 67.17
Kling 1.6 (Technology, 2025) 83.40 85.20 76.99 97.40 96.84 99.64 99.13 62.22 64.81 69.70
Wan2.1-T2V-1.3B (Wang et al., 2025) 83.31 85.23 76.95 97.56 97.93 99.55 98.52 65.19 65.46 67.01
Wan2.2-TI2V-5B (Wang et al., 2025) 83.59 85.64 76.53 97.66 98.03 99.10 98.71 65.76 65.52 67.51
HunyuanVideo (Kong et al., 2024) 83.24 85.86 75.82 97.32 97.93 99.49 98.99 70.83 60.36 67.56
Gen-3 (Runway, 2024) 82.32 84.11 75.17 97.01 96.62 99.61 99.23 60.14 63.34 66.82
Vchitect-2.0 (VEnhancer) (Fan et al., 2025) 82.24 83.54 77.06 96.83 96.66 98.97 98.98 63.89 60.41 65.35
CogVideoX1.5-5B (Yuan et al., 2024) 82.17 82.78 79.76 96.87 97.35 98.88 98.31 50.93 62.79 65.02
Omni-Video (Tan et al., 2025) 83.00 84.27 77.92 98.39 97.68 99.87 99.10 56.67 62.48 64.56

UniVid (Ours) 85.27 86.44 80.58 98.96 97.76 99.88 99.25 61.83 64.21 73.03

Method Semantic Fidelity
Object↑ Multi-Obj↑ Action↑ Color↑ Spatial↑ Scene↑ Appearance↑ Temporal↑ Overall↑

EasyAnimateV5.1 (Fu et al., 2024b) 89.57 66.85 95.60 77.86 76.11 54.31 23.06 24.61 26.47
MiniMax-Video-01 (MiniMax, 2024) 97.83 76.04 92.40 90.36 75.50 50.68 20.06 25.63 27.10
Kling 1.6 (Technology, 2025) 93.34 73.99 96.20 81.26 79.08 55.57 20.75 24.51 26.04
Wan2.1-T2V-1.3B (Wang et al., 2025) 88.81 74.83 94.00 82.00 73.04 41.96 21.81 23.13 25.50
Wan2.2-TI2V-5B (Wang et al., 2025) 89.21 75.23 94.09 82.43 72.90 42.36 21.89 23.78 26.03
HunyuanVideo (Kong et al., 2024) 86.10 71.66 93.42 91.60 68.09 53.69 19.80 23.89 26.44
Gen-3 (Runway, 2024) 87.81 53.64 96.40 80.90 65.03 54.57 24.31 24.71 26.69
Vchitect-2.0 (VEnhancer) (Fan et al., 2025) 86.61 68.84 97.20 87.04 57.55 56.57 23.73 25.01 27.57
CogVideoX1.5-5B (Yuan et al., 2024) 87.47 69.65 97.20 87.55 80.25 52.91 24.89 25.19 27.30
Omni-Video (Tan et al., 2025) 93.54 71.06 93.60 88.89 73.15 44.33 23.45 25.81 26.99

UniVid (Ours) 94.52 77.45 94.20 92.10 80.70 46.66 23.57 25.91 27.60

unseen frames by cosine similarity ⟨vi, ϕ(s)⟩, which suits static questions whose evidence is sparse
but distinctive. For shrink we start broad to preserve chronology, then apply a Maximal Marginal
Relevance objective that balances relevance to ϕ(s) and pairwise dissimilarity within W , which suits
dynamic questions where ordering, repetition, or transitions matter. In both regimes W is kept in
temporal order so the Actor can compare events across [t1→ tk] rather than hallucinate transitions.

Value and critic signals. The Evaluator provides a calibrated confidence that serves as a value
proxy. Its scalar reward r both triggers early stopping and conditions the Reflector. When r is low,
the Reflector returns a short declarative refinement of s that encodes the suspected failure mode:
missing entity, wrong time span, ambiguous referent, or occluded phase. This verbal update reshapes
the retrieval distribution without touching model weights, yielding a form of policy gradient in the
space of prompts. Our Pyramid Reflection procedure is summarized in Algorithm 1, and the high-
level understanding pipeline is shown in Fig. 8. The theoretical details of Pyramid Reflection as
test-time RL are provided in Appendix A.5.

The design achieves efficiency by caching frame embeddings once and reducing exploration to
lightweight index updates, while the Actor reasons over compact, temporally ordered evidence
with fixed global context to maintain scene priors under tight token budgets. The adaptive rout-
ing between expansion and MMR-based shrinking aligns retrieval strategies with question structure,
enabling effective temporal reasoning at low computational cost.

Nevertheless, this efficiency-oriented retrieval scheme inherently operates on a sparse temporal sub-
set rather than the full dense sequence. As a result, its ability to infer subtle motion cues, fine-grained
temporal continuity, or high-frequency dynamics may be limited compared to methods that process
all frames end-to-end. These dense approaches often provide more precise motion understanding
and object interaction modeling, particularly in tasks where small spatial shifts or rapid temporal
transitions are critical for accurate reasoning.

4 EXPERIMENTS

4.1 DATASET AND METRICS

Datasets. We evaluate UniVid on established benchmarks for both video generation and under-
standing. For generation, we train on curated samples from OpenVid-1M, a large-scale text-to-video
dataset, and evaluate on VBench, a comprehensive benchmark suite for video generative models that
provides fine-grained evaluation metrics across multiple dimensions. For understanding, we train on
20k samples from the ActivityNet-QA train dataset (Yu et al., 2018) and evaluate on four compre-
hensive video QA benchmarks: MSVD-QA (Piergiovanni et al., 2022) with 1,970 video clips and
50.5K QA pairs, MSRVTT-QA (Piergiovanni et al., 2022) with 10K videos, 243K QA pairs, TGIF-
QA (Jang et al., 2017) containing 165K QA pairs for animated GIFs, and the ActivityNet-QA test
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Table 2: Comparison on four video QA benchmarks (Piergiovanni et al., 2022; Jang et al., 2017; Yu
et al., 2018).

Video QA Performance

Method LLM size MSVD-QA MSRVTT-QA TGIF-QA ActivityNet-QA
Acc↑ Score↑ Acc↑ Score↑ Acc↑ Score↑ Acc↑ Score↑

FrozenBiLM (Yang et al., 2022) 1B 32.2 – 16.8 – 41.0 – 24.7 –
VideoChat (Li et al., 2023) 7B 56.3 2.8 45.0 2.5 34.4 2.3 – 2.2
LLaMA-Adapter (Zhang et al., 2023b) 7B 54.9 3.1 43.8 2.7 – – 34.2 2.7
Video-LLAMA (Zhang et al., 2023a) 7B 51.6 2.5 29.6 1.8 – – 12.4 1.1
Video-ChatGPT (Maaz et al., 2024) 7B 64.9 3.3 49.3 2.8 51.4 3.0 35.2 2.7
Chat-UniVi (Jin et al., 2024) 7B 65.0 3.6 54.6 3.1 60.3 3.4 45.8 3.2
Video-LLaVA (Lin et al., 2024) 7B 70.7 3.9 59.2 3.5 70.0 4.0 45.3 3.3
BT-Adapter (Liu et al., 2024) 7B 67.5 3.7 57.0 3.2 – – 45.7 3.2
Valley-v3 (Luo et al., 2023) 7B 60.5 3.3 51.1 2.9 – – 45.1 3.2
FreeVA (Wu, 2024) 7B 73.8 4.1 60.0 3.5 – – 51.2 3.5
DeepStack-L (Meng et al., 2024) 7B 76.0 4.0 – – – – 49.3 3.1
IG-VLM (LLaVA-v1.6) (Kim et al., 2024) 7B 78.8 4.1 63.7 3.5 – 4.0 54.3 3.4
SF-LLaVA-7B (Xu et al., 2024) 7B 79.1 4.1 65.8 3.6 78.7 4.2 55.5 3.4
UniVid (Ours) 7B 80.1 4.2 61.4 3.4 75.0 4.1 58.8 3.6

dataset (Yu et al., 2018) with 58,000 QA pairs on 5,800 complex web videos. These datasets cover
diverse temporal reasoning scenarios across short to medium-length video clips, ranging from brief
animated sequences to multi-minute activity videos.

Evaluation metrics. For video generation, we evaluate on VBench across multiple fine-grained
dimensions: Technical Quality metrics including Subject consistency, Background preservation,
Temporal flickering, Motion smoothness, and Dynamic degree; Aesthetic Quality measures cov-
ering overall visual appeal and imaging quality; and Semantic Fidelity metrics assessing Object
accuracy, Multi-object handling, Action fidelity, Color accuracy, Spatial relationships, Scene con-
sistency, Appearance preservation, and Temporal coherence. For video understanding, we report
average accuracy and scores on each benchmark dataset.

4.2 IMPLEMENTATION DETAILS

We adopt a three-stage hierarchical training recipe. It initializes UniVid from strong public check-
points to reduce compute. For generation, we couple the BAGEL-7B (Deng et al., 2025) with Wan
2.2 5B TI2V model (Wang et al., 2025) via a textual adapter and LoRA on DiT (Peebles & Xie,
2023), keeping other weights frozen. For understanding, we tune only the connector and the last
two ViT blocks on ActivityNet QA (Yu et al., 2018) with dialog style supervision while the LLM
remains frozen. Finally, we co-train both tasks to refine the connector and obtain additive gains.
Sequence parallelism enables long high-resolution clips. For details, see Appendix A.2.

For generation, we use a flow-matching ODE sampler with classifier-free guidance and a universal
negative prompt. Unless noted, videos are sampled at 1280 × 704 resolution, 121 frames at 24
fps; the guidance scale is set to 5.0 for both T2V and I2V with 50 inference steps. At input time,
the LLM receives the text prompt together with image ViT embeddings and VAE latents; it outputs
conditional textual tokens. During generation, Wan 2.2 consumes these conditional textual tokens
and image via cross-attention. Our Temperature Modality Alignment schedule applies a cosine-
scheduled text gain that transitions from αtxt = 1.3 to 1.0 over the first 40% of denoising steps
(u ∈ [0, 0.4]), then maintains αtxt = 1.0 for the remaining steps. This enhances text guidance during
early denoising when structural decisions are made, while allowing finer details to emerge in later
stages.

For understanding, we uniformly sample a pool of N = 64 frames per video and cache their SigLIP2
image embeddings; subsequent selection reuses cached features. Global context is a caption summa-
rized from 16 uniformly spaced seed frames. Query–image ranking uses SigLIP2 cosine similarity
with L2-normalized features and batch size 64. Static questions follow a 4 → 8 → 16 keyframe
schedule. Dynamic questions follow 64 → 32 → 16 with MMR down-selection, λ = 0.5. Con-
fidence is accepted when the Evaluator’s score is at least 0.7 or the verdict is accept, with at most
R ≤ 3 rounds. The LLM determines routing between static and dynamic modes. For implemen-
tation, we use DeepSeek v3.1 to serve as the Evaluator and determine the type of questions and
Qwen-plus to serve as the Reflector. Full prompt texts are listed in the Appendix A.4.
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(1)The player jumps and shoots a clean jump shot, the ball 
arcs smoothly toward the hoop. 

(2)The race car speeds down the track, tires screeching 
as it takes a tight corner.

EasyAnimateV5.1

HunyuanVideo

MiniMax-Video-01

Wan2.1-T2V-1.3B

Unnatural: Missing fingers and basketball

Unnatural: Wrong movements and logical errors 

Unnatural: There is no basketball hoop

Unnatural: Missing body parts and basketball
 

Jumps and shoots      Hoop

Unnatural: Sudden smoke appearance

Unnatural: Two cars appear

Unnatural: The racing car is missing its rearview mirror 

Unnatural: The shape of the racing car has changed 

Speeds      Track      Corner 

Figure 3: Comparisons with State-of-the-Art Video Generation Models (Wang et al., 2025; Mini-
Max, 2024; Kong et al., 2024; Fu et al., 2024b).

4.3 MAIN RESULTS

Generation quantitative results. We evaluate UniVid on the challenging VBench-Long bench-
mark (Huang et al., 2024). As shown in Tab. 1, UniVid establishes a new state of the art with an
overall score of 85.27, outperforming prior leading systems such as EasyAnimateV5.1 (Fu et al.,
2024b), MiniMax-Video-01 (MiniMax, 2024), and Kling 1.6 (Technology, 2025). In particular,
UniVid exhibits clear advantages in semantic alignment (80.58), highlighting its superior capabil-
ity in faithfully rendering objects, actions, and multi-object interactions. On the technical side, it
attains near-perfect temporal (99.88) and motion (99.25) consistency, validating the effectiveness
of our long-context dynamics module. Moreover, UniVid delivers the best imaging score (73.03),
reflecting sharper details and more stable visual quality compared with prior systems, as shown in
Fig. 1, which demonstrates high-quality visual generation.

Beyond overall scores, UniVid demonstrates consistent gains in semantic fidelity. As summa-
rized in the Semantic Fidelity block of Tab. 1, it achieves leading results on multi-object reason-
ing (77.45), color faithfulness (92.10), and spatial grounding (80.70), while remaining competi-
tive in action depiction and appearance consistency. These improvements suggest that our design
choices—particularly the integration of hierarchical scene representation with dynamic frame align-
ment—substantially enhance both controllability and alignment with textual prompts. Taken to-
gether, the results indicate that UniVid pushes forward the frontier of long-horizon text-to-video
generation by simultaneously ensuring high-fidelity semantics and strong technical as well as aes-
thetic quality. More examples of video generation can be seen in Appendix A.3.

Generation qualitative results. Fig. 3 compares UniVid with Wan2.1-T2V-1.3B (Wang et al.,
2025), MiniMax-Video-01 (MiniMax, 2024), HunyuanVideo (Kong et al., 2024), and EasyAni-
mateV5.1 (Fu et al., 2024b). Competing models often show missing basketballs or distorted cars,
while UniVid generates coherent jump shots and realistic racing scenes with stable dynamics and
faithful semantics.

Understanding quantitative evaluation. Across MSVD-QA (Piergiovanni et al., 2022),
MSRVTT-QA (Piergiovanni et al., 2022), TGIF-QA (Jang et al., 2017), and ActivityNet-QA (Yu
et al., 2018), UniVid sets the 7B-scale state of the art on MSVD-QA and ActivityNet-QA and re-
mains competitive on the other two (Tab. 2), despite a smaller post-training set and no test-time
ensembling. Joint finetuning of generation and understanding with Pyramid Reflection strengthens
the abilities these datasets emphasize: better action–entity binding and object or attribute grounding

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

What is the role of the sail in the video?

The sail in the video plays a crucial role in the sport of windsurfing. It catches the wind, providing the necessary 
force to propel the windsurfer across the water. The sail's position and angle are adjusted by the windsurfer to 
control speed and direction, allowing them to navigate the water and perform various maneuvers.

Video-LLaVA

:

The sail is used by the man to propel himself across the water on the surfboard. The wind catches the sail, and 
the man uses the sail to move forward on the surfboard.

In this scene, the sail is the key element that channels the wind into usable power. By leaning and shifting its 
position, the surfer can guide the board’s movement across the waves, ensuring steady progress while adapting to 
changes in wind flow.

SF-LLaVA

What happens after the tomatoes are diced?

Video-LLaVA
After the tomatoes are diced, the person adds them to the bowl along with the onions. The mixture is then 
seasoned and stirred.                                                                                                                            

After the tomatoes are diced, the person starts chopping a green chili pepper on the same white cutting board, 
adding it into the bowl with the other ingredients.                                                                                          

SF-LLaVA After the tomatoes are diced, the person begins cutting a cucumber and places it beside the bowl, before the 
mixture is combined for the salad.                                                            

missing the role of speed and direction control

not emphasize role in balance and stability

Precise

Precise

pepper not cucumber being placed beside it

Without chopping

Figure 4: Comparisons of State-of-the-Art Video Understanding Models (Lin et al., 2024; Xu et al.,
2024).

in short open-domain clips, stronger temporal reasoning over frame sequences, and more reliable
long-range evidence retrieval in untrimmed videos.

As illustrated before, UniVid performs robust multi-frame reasoning with our Pyramid Reflection
loop. Starting from a global caption and automatic type detection, the system first produces an
initial answer, which is then scored by the evaluator; when evidence is insufficient, the reflector
issues a refined, declarative query that re-ranks keyframes toward the true scene. This Pyramid
Reflection steers attention from opening credits to the lane shots, yielding a consistent interpretation
of roles (in the example of Fig. 8: bowler and nearby teammate/coach) grounded in the visual context
rather than spurious cues. The dynamic keyframe schedule reduces the number of inspected frames
while maintaining accuracy, demonstrating both evidence tracing and efficiency gains in short-clip
understanding. More examples of video understanding can be seen in Appendix A.3.

Understanding qualitative results. We compare UniVid with Video-LLaVA (Lin et al., 2024)
and SF-LLaVA (Xu et al., 2024) on video QA; as shown in Fig. 4, baselines often give plausible but
incomplete statements. These examples highlight UniVid’s stronger action–entity binding, temporal
reasoning, and resistance to distractor frames, yielding precise and concise answers. Additionally,
we conduct systematic ablation experiments to validate the contributions of UniVid. The results and
analyses are provided in the Appendix A.6.

5 CONCLUSION

We introduced UniVid, a unified video model that couples an MLLM with a diffusion decoder
via a lightweight conditioning adapter to both understand and generate videos. Two key mecha-
nisms enable this: Temperature Modality Alignment schedules cross-modal attention across flow
steps to preserve prompt faithfulness while refining details, and Pyramid Reflection performs query-
driven keyframe selection for efficient temporal reasoning. With these components, UniVid achieves
state-of-the-art or competitive results on VBench-Long and multiple video-QA benchmarks while
avoiding costly retraining of image-centric backbones. We release UniVid to support research on
practical, controllable, and truly unified video intelligence.
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A APPENDIX

A.1 LLM USE DECLARATION

Large Language Models (ChatGPT) were used exclusively to improve the clarity and fluency of
English writing. They were not involved in research ideation, experimental design, data analysis, or
interpretation. The authors take full responsibility for all content.

A.2 HIERARCHICAL POST TRAINING

Initialization. To avoid the prohibitive cost of training a unified video model from scratch, we
bootstrap UniVid from strong, publicly available checkpoints and finetune only small subsets of
parameters. Our architecture follows the BAGEL (Deng et al., 2025) design framework, adopting
its multimodal integration approach with three key components: Qwen2 (Yang et al., 2024) as the
LLM backbone with standard architectural choices such as RMSNorm (Zhang & Sennrich, 2019),
SwiGLU (Shazeer, 2020), RoPE (Su et al., 2024), GQA (Ainslie et al., 2023), and QK-Norm (Henry
et al., 2020) for training stability, SigLIP2-so400m/14 (Tschannen et al., 2025) as the ViT (Dosovit-
skiy et al., 2021) encoder for visual understanding with NaViT support for native aspect ratios, and a
pre-trained FLUX VAE with 8× downsampling and frozen weights. The framework interleaves text,
ViT, and VAE tokens within the LLM using generalized causal attention, where tokens attend to all
preceding modality splits while maintaining appropriate attention patterns within each modality.

Data curation and formatting. For understanding, we align our data format with the dialog style
used by Video-ChatGPT (Maaz et al., 2024). ActivityNet-QA annotations (video id, q, a) are
converted into structured conversations. Specifically, each sample is represented as a JSON object
containing three fields: (1) an identifier, (2) a video reference, and (3) a conversations array con-
sisting of two turns, a user query and the corresponding model response. For generation, we curate
a subset of OpenVid-1M to form text/image to video pairs. Videos are uniformly sub-sampled and
preprocessed identically to inference.

Stage I generation branch alignment. We couple the MLLM with Wan 2.2 and adapt the condi-
tioning path so that MLLM-produced tokens can reliably steer synthesis. Concretely, we (i) insert a
textual adapter between the LLM tokens, with dynamic sequence length adaptation, and (ii) apply
LoRA to the DiT cross-attention layers; all other DiT/MLLM weights remain frozen. Training uses
a standard flow-matching objective with classifier-free guidance dropout on text, optimizing only
the context projector and LoRA parameters. This stage preserves MLLM’s native understanding
while aligning Wan’s generation to the rich semantics emitted by MLLM.

Stage II understanding adaptation. We finetune for video QA on ActivityNet-QA using 20k
samples from the dataset. Each sample concatenates the question with a <video> placeholder,
and we feed a multi-frame clip obtained by uniform sampling. Frames are encoded by the ViT
into visual tokens and projected to the LLM space via the connector. We adopt instruction SFT
for video: compute autoregressive cross-entropy only on the assistant turns; user tokens are fully
masked to prevent label leakage. To keep compute moderate while injecting temporal cues, we
finetune only the last two ViT blocks and the connector for 4 epochs, keeping the LLM frozen.

Stage III joint training. Finally, we co-train generation and understanding to let the two branches
benefit from each other. During joint training, we gradually activate the VAE feature branch and al-
ternate which modules are trainable. In the initial phase, only the last few ViT layers and connector
are trainable and the adapter is frozen, so the MLLM is forced to encode features in ViT that are
beneficial for both understanding and generation. Next, we freeze the ViT and progressively intro-
duce VAE features into the adapter input, enabling the DiT LoRA to learn how to generate guided
by different mixing ratios of ViT and VAE features. Finally, we co-train both the ViT layers, con-
nector, adapter and DiT to fully exploit the complementary strengths of semantic ViT features and
detail-rich VAE features. On the understanding side, Fig. 10 shows that joint training leads to faster
convergence and consistently higher MSVD-QA (Piergiovanni et al., 2022) accuracy than single-
task training. On the generation side, Stage III further improves the VBench-Long overall score
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who is laughing?

What letterman interviewing comedic actor bill murray?

The person on the right is laughing.

The video shows a scene from \"The Tonight Show Starring David Letterman,\" where the 
host David Letterman is interviewing the comedic actor Bill Murray.

What is a person playing on a television?

What is a woman doing?

Maybe the person is playing the guitar.

The woman in the image appears to be playing a rhythm game on a screen, possibly a music video 
game or a dance game. She is positioned in front of a virtual stage with a guitar-like interface, 
indicating that she is likely performing or following a rhythm pattern.

What is the role of the sail in the video?

How safe is this game in the video?

The sail in the video plays a crucial role in the sport of windsurfing. It catches the wind, 
providing the necessary force to propel the windsurfer across the water. The sail's position 
and angle are adjusted by the windsurfer to control speed and direction, allowing them to 
navigate the water and perform various maneuvers.

The game shown in the video is windsurfing, which can be considered relatively safe for 
experienced individuals. However, it does carry some risks, such as falling into the water, 
collisions with other windsurfers or objects, and potential injuries from the sail or board. It 
is important for participants to wear appropriate safety gear, such as life jackets and 
helmets, and to be aware of their surroundings and wind conditions. Additionally, taking 
lessons from a qualified instructor can help ensure a safer experience.

Figure 5: The qualitative results of the video understanding. Blue for static questions, green for
dynamic questions.

from 79.28 to 85.27 and boosts most technical and semantic dimensions, as summarized in Tab. 6,
confirming that better video understanding feedback translates into higher-quality video generation.

A.3 MORE EXAMPLES OF VIDEO GENERATION AND UNDERSTANDING.

We provide more examples of video understanding and generation in Fig. 5 and Fig. 6
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A dolphin leaps out of the ocean, splashing water as it dives back in.

Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a 
spotlighted stage.

A futuristic drone weaves quickly between skyscrapers, lights glowing in the night sky.

A hawk soars above the mountains, wings spread wide against the sunset.
(from image)

A cinematic video of a young woman with natural makeup and long blonde hair, standing on 
a sunlit street with blurred trees and cars in the background. The camera slowly moves 
closer as her hair gently flows with the breeze. She softly smiles and blinks, creating a 
natural and elegant moment. Warm golden hour lighting, realistic style, high detail, 4K. 

(from image)

A high-speed train rushes past the station, its motion blurring in the background.

Text to Video

Text and Image to Video

Figure 6: The qualitative results of T2V and TI2V generation.
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A.4 TEXT PROMPTS USED IN THE UNDERSTANDING

Role. Classify a video question as static or dynamic. Output JSON only.
Definitions.
• dynamic: requires temporal reasoning such as counting, repetition, order, or changes over

time (e.g., “how many times”, “before/after”, “first/last”).
• static: can be answered from a small set of unordered frames (identity, attribute, location,

scene, one-shot action).
Question. {question}
Return. Single-line JSON with fields: qtype ("static" or "dynamic"), rationale
(1–2 short phrases; no extra text).

1: Question Type Classification Prompt

Role. Summarize chronologically ordered frame notes into a compact global caption. Do not
invent facts.
Input. Frame-wise notes (earlier→ later):
- {note 1}
- {note 2}
. . .
Write. One global caption (2–4 sentences) that connects multiple frames, focusing on: (1)
moving entities with consistent appearance and actions across time; (2) static scene objects and
their states; (3) temporal hints only if explicitly evidenced (e.g., “then”, “later”, “repeatedly”).
Style: terse and factual; no bullet lists, storytelling, or frame-by-frame recitation.

2: Frame Summarization Prompt

Role. Precise evaluator for video-QA. Return a single-line JSON only (no Markdown/code).
Keys. score (float 0..1), verdict ("accept" if score ≥ 0.7 else "reject"),
brief reason (1–2 short bullets).
Example user. {one shot user}
Example assistant. {one shot assistant}
Your task. Given the current case, output the JSON only.

3: Answer Evaluation Prompt

Role. Reflector in a video-understanding pipeline. You receive the question, a global caption
(from 16 uniformly sampled frames), the last answer (low confidence/rejected), and its evalua-
tion JSON.
Objective. Analyze why the answer likely fails (missing object, wrong span, ambiguity, etc.)
and produce a single short declarative retrieval text for the next round of keyframe selection.
Strict rules. (1) Output JSON only with key refined query. (2) refined query ≤
25 tokens, declarative statement (not a question), capturing disambiguating cues (entities, at-
tributes, actions, temporal hints, viewpoint). (3) If confidence is already good (score ≥ 0.7 or
verdict="accept"), return an empty string. (4) Prefer concrete visual cues (colors, clothing,
object names, motion phase, timestamps, left/right, first/last). (5) No speculation or unseen en-
tities.
Inputs. Question: {question} Global caption: {global caption} Last answer:
{last answer} Evaluation JSON: {eval json}
Return. {"refined query": "..."}

4: Reflection Prompt

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 3: Ablation study of UniVid on VBench-Long. w/o means “without”. Best results are bold.

Model Overall Scores Technical Quality Aesthetic Quality
Total Score↑ Quality↑ Semantic↑ Subject↑ Background↑ Temporal↑ Motion↑ Dynamic↑ Aesthetic↑ Imaging↑

UniVid (base) 76.25 77.11 72.82 93.82 93.43 94.15 94.04 57.16 58.47 65.65
UniVid (w/o MLLM) 77.82 78.69 74.32 94.55 94.78 95.19 94.79 58.08 59.88 66.01
UniVid (w/o TMA) 80.42 81.51 76.04 96.55 95.91 97.12 96.25 59.98 62.08 67.10

UniVid (Full) 85.27 86.44 80.58 98.96 97.76 99.88 99.25 61.83 64.21 73.03

Model Semantic Fidelity
Object↑ Multi-Obj↑ Action↑ Color↑ Spatial↑ Scene↑ Appearance↑ Temporal↑ Overall↑

UniVid (base) 89.53 73.32 89.41 87.86 76.13 42.32 19.03 21.60 22.48
UniVid (w/o MLLM) 90.80 74.37 90.12 87.99 76.63 43.32 20.57 22.26 22.98
UniVid (w/o TMA) 91.51 75.42 91.53 89.33 77.58 44.61 21.03 23.62 24.13

UniVid (Full) 94.52 77.45 94.20 92.10 80.70 46.66 23.57 25.91 27.60

Table 4: Ablation study on TMA schedules on VBench-Long. w/o means “without”. Best results
are bold.

Model Overall Scores Technical Quality Aesthetic Quality
Total Score↑ Quality↑ Semantic↑ Subject↑ Background↑ Temporal↑ Motion↑ Dynamic↑ Aesthetic↑ Imaging↑

UniVid (w/o TMA) 80.42 81.51 76.04 96.55 95.91 97.12 96.25 59.98 62.08 67.10
UniVid (Constant) 82.72 83.96 77.78 97.81 96.41 98.12 98.01 60.11 63.47 70.65
UniVid (Step) 82.80 84.35 76.59 97.32 96.74 98.15 98.54 59.71 63.91 71.19
UniVid (Linear) 83.30 84.51 78.47 97.45 96.78 98.20 98.76 60.01 63.88 71.01

UniVid (Consine) 85.27 86.44 80.58 98.96 97.76 99.88 99.25 61.83 64.21 73.03

Model Semantic Fidelity
Object↑ Multi-Obj↑ Action↑ Color↑ Spatial↑ Scene↑ Appearance↑ Temporal↑ Overall↑

UniVid (w/o TMA) 91.51 75.42 91.53 89.33 77.58 44.61 21.03 23.62 24.13
UniVid (Constant) 92.52 76.81 92.40 90.81 79.13 45.29 22.01 24.19 25.41
UniVid (Step) 91.78 75.81 91.41 89.88 78.13 44.89 21.78 23.54 24.31
UniVid (Linear) 92.80 76.32 92.11 90.98 79.61 45.25 22.56 24.21 26.91

UniVid (Consine) 94.52 77.45 94.20 92.10 80.70 46.66 23.57 25.91 27.60

Role. Assist video understanding via per-frame analysis. Describe the main objects and actions
in this single frame concisely.
Focus. (1) Living entities: distinct entities (appearance, clothing, color, species), likely roles,
and what each is doing (verb phrases). (2) Static objects & scene: salient items and states (color,
shape, on/off, open/closed, broken/intact), plus scene context (indoor/outdoor, location hints).
Style. Specific but brief; no speculation; 2–4 short sentences.

5: Single-Frame Analysis Prompt

Role. Answer concisely using only the question and the global video caption.
Inputs. Question: {question} Global caption (may miss fine details): {global caption}
Instruction. Produce one short answer (1–2 sentences). If information is insufficient, reply:
“Not enough evidence from global caption.”

6: Global Answer Prompt

A.5 PYRAMID REFLECTION AS TEST-TIME RL

We cast Pyramid Reflection as a test-time reinforcement learning procedure operating on an ordered
evidence set. At round r, the state is xr = (sr,Wr, Cg), where sr is a short search text, Wr is the
ordered working set of frames, and Cg is a global caption distilled once from uniformly sampled
seeds. The action reconfigures Wr given sr via an expand or shrink policy. The Actor answers from
(Wr, Cg), and the Evaluator returns a score Rr ∈ [0, 1] and a verdict that controls early stopping.
All frame embeddings are computed once and cached; later rounds update indices and similarity or
diversity scores only.
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Table 5: Ablation study of the generation branch of UniVid to verify the effectiveness of encoder
setting. w/o means “without”. Best results are bold.

Model Overall Scores Technical Quality Aesthetic Quality
Total Score↑ Quality↑ Semantic↑ Subject↑ Background↑ Temporal↑ Motion↑ Dynamic↑ Aesthetic↑ Imaging↑

UniVid (w/o ViT) 48.53 57.16 46.37 74.51 72.91 74.02 74.23 46.91 47.01 55.10
UniVid (w/o VAE) 71.78 71.90 71.75 89.43 88.75 90.19 89.80 57.23 58.86 67.12

UniVid (Ours, VAE & ViT Encoder) 85.27 86.44 80.58 98.96 97.76 99.88 99.25 61.83 64.21 73.03

Model Semantic Fidelity
Object↑ Multi-Obj↑ Action↑ Color↑ Spatial↑ Scene↑ Appearance↑ Temporal↑ Overall↑

UniVid (w/o ViT) 72.41 54.41 75.51 74.31 58.68 32.69 14.12 15.63 17.15
UniVid (w/o VAE) 87.23 69.54 87.34 88.92 74.32 39.27 20.54 21.61 22.12

UniVid (Ours, VAE & ViT Encoder) 94.52 77.45 94.20 92.10 80.70 46.66 23.57 25.91 27.60

Table 6: Stage I vs Stage III performance on VBench-Long to verify the effect of hierarchical joint
training on video generation. w/o means “without”. Best results are bold.

Model Overall Scores Technical Quality Aesthetic Quality
Total Score↑ Quality↑ Semantic↑ Subject↑ Background↑ Temporal↑ Motion↑ Dynamic↑ Aesthetic↑ Imaging↑

UniVid (Satge I) 79.28 80.38 74.90 94.23 94.19 95.31 96.32 58.98 61.91 70.11

UniVid (Joint, Stage III) 85.27 86.44 80.58 98.96 97.76 99.88 99.25 61.83 64.21 73.03

Model Semantic Fidelity
Object↑ Multi-Obj↑ Action↑ Color↑ Spatial↑ Scene↑ Appearance↑ Temporal↑ Overall↑

UniVid (Stage I) 90.12 75.59 90.98 89.91 77.52 44.57 20.51 21.12 24.01

UniVid (Joint, Stage III) 94.52 77.45 94.20 92.10 80.70 46.66 23.57 25.91 27.60

Frame selection uses a vision–language retriever with cosine similarity. Let ϕ(s) be the text embed-
ding and {vi}Ni=1 the cached frame embeddings:

sim(i, s) =
〈
v̂i, ϕ̂(s)

〉
. (6)

We define a soft retrieval policy over the pool P :

π(i | s) =
exp

(
sim(i, s)/τ

)∑
j∈P exp

(
sim(j, s)/τ

) . (7)

Sampling sequentially without replacement with joint probability
∏K

ℓ=1 π(iℓ | s, i<ℓ) and respecting
chronology yields Ws.

In the expand mode, at target size Kt we add the top m unseen frames by similarity (no duplicates):

∆t = argmax
i∈P\Ssel

m sim(i, st−1), Ssel ← Ssel ∪∆t, m = Kt − |Ssel|. (8)

In the shrink mode, with current Ssel and target Kt ∈ {32, 16}, we apply Maximal Marginal Rele-
vance:

Ssel = argmax
S⊆Ssel, |S|=Kt

∑
i∈S

[
λ sim(i, st−1)− (1− λ) max

j∈S\{i}
sim(i, j)

]
. (9)

We adopt a verbal policy–improvement view (Shinn et al., 2023). Let the objective be the expected
Evaluator value under the retrieval policy:

J(s) = Ei1:K∼π(·|s)[V (Ws)] , (10)

with
V (Ws) = E

[
R
∣∣Ws, Cg

]
. (11)

Using the likelihood–ratio identity with a baseline b yields

∇sJ(s) = E

[( K∑
t=1

∇s log π(it | s, i<t)
)
(R− b)

]
. (12)

A single ascent step motivates a verbal update to the search text:

sr+1 = sr + η
( K∑

t=1

∇s log π(it | sr, i<t)
)
(Rr − b), (13)
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Figure 7: Ablation Study on Temperature Modality Alignment.

Question: What is the relationship between 
the person in black and the person behind him?

Static

Global context
The scene is set in an indoor bowling alley with multiple 
lanes, wooden flooring, and colorful wall murals. People 
wearing casual clothing, including black shirts, hats, and 
team colors, are seen bowling, watching, or seated 
nearby, with recurring individuals appearing across 
frames. Static elements include digital scoreboards, 
white-guttered lanes, and a ball return machine; one 
frame displays a \"10TH FRAME\" text overlay, 
suggesting progression through a game. The sequence 
ends with abstract and night sky imagery, followed by 
contact information on a starry background.

Stage 1: Extract the global caption and determine the question type.

Question

Question

Pred: 
The person in black is the main subject of the video, while the person behind 

him is likely a collaborator or assistant, as indicated by the text "Collaborator" 
and "Assistant" in the video.

Caption does not mention 
text labels. Reject!

Question Lack information. 
Search for two persons 

in the real setting.
Let me refine the 

query…… 
Question

Stage 2: Initial response with subsequent evaluation and reflection.

Refined Query: In the bowling-lane shots (excluding opening 
credits), what is the relationship between the man in a black 
top and the person standing immediately behind him

Question

Pred: 
The person in black is likely the bowler, and the person behind him is possibly a coach or a 

fellow player.

Answer aligns with caption 
context; plausible 

interpretation of roles in 
bowling scene.

Question

Global context

Stage 3: Further information augmentation with a focus on understanding and evaluation.

Global context

Pred

Pred

Figure 8: The pipeline of the video understanding.

where we use the softmax score function with gi(s) := ∇ssim(i, s) and ḡ(s) := Ej∼π(·|s)gj(s):
∇s log π(i | s) = τ−1

(
gi(s) − ḡ(s)

)
, so the edit in s aligns with frames that explain higher return

through the text encoder ϕ(·). Practically, the reflector inserts temporally and semantically dis-
criminative cues (entities, colors, viewpoints, before/after, first/last, motion phase), which increases
sim(i, s) for diagnostic frames and decreases it for distractors, implementing Eq. 13 in language
space without parameter updates.

To connect the update with both expand and shrink, we use a piecewise-smooth set surrogate that
trades relevance against redundancy (subgradients at ties):

Ṽ (Ws) =
1

K

∑
i∈Ws

sim(i, s) − γ max
i̸=j∈Ws

sim(i, j). (14)
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1s 7s 14sTimestep

Unatural:  The lightning remains still.

Unatural:  Details of people in the distance are indistinct.

Unatural:  The anthropomorphized figure lacks a tail.

Temporal 
inconsistency

Long-range 
detail loss

Structural 
inconsistency

Figure 9: Categorized Failure Modes in Video Generation.

Table 7: Ablation study of UniVid on four video QA benchmarks. Acc. denotes accuracy (%), Score
denotes average rating (0–5). Best results are bold.

Methods MSVD-QA MSRVTT-QA TGIF-QA ActivityNet-QA
Acc↑ Score↑ Acc↑ Score↑ Acc↑ Score↑ Acc↑ Score↑

UniVid (Base) 64.1 3.3 48.9 2.8 54.2 3.0 39.8 3.0
UniVid (w/o finetune) 71.1 3.9 52.2 3.0 63.5 3.6 46.5 3.2
UniVid (w/o Reflection) 73.1 4.0 55.0 3.1 64.6 3.6 52.0 3.4
UniVid (Full) 80.1 4.2 61.4 3.4 75.0 4.1 58.8 3.6

Since ∂ sim(i, s)/∂s points toward vi via ϕ(s), the gradient∇sṼ (Ws) is aligned with the direction
in Eq. 12. If the reflector’s edit correlates with the advantage Ar = Rr − b, then for a sufficiently
small step size η the expected first-order improvement satisfies

E[J(sr+1)− J(sr)] ≈ η E

[〈∑
t

∇s log π(it | sr, i<t), sr+1 − sr

〉
Ar

]
≥ 0. (15)

Early stopping is triggered when the Evaluator score exceeds a fixed threshold:

stop at round r if Rr ≥ τ, τ = 0.7. (16)

With cached features, each round requires only similarity and diversity scoring together with rea-
soning over a compact, temporally ordered Wr, which concentrates the Actor on temporal relations
under a tight token budget and improves video understanding with low computational cost.

A.6 ABLATION STUDY

Ablation on video generation. Tab. 3 presents an ablation on VBench-Long disentangling the
roles of our two main components. Removing the multi-level language modeling module (w/o
MLLM) mainly hurts the semantic-fidelity metrics that require precise spatial layout and appearance
preservation, while the low-level technical quality remains relatively stable. In contrast, disabling
Temperature Modality Alignment (w/o TMA) leads to a clear drop in temporal and motion-related
scores, indicating that the denoising process becomes less stable over long horizons even though per-
frame quality is still high. The full UniVid model consistently achieves the best performance across
technical, aesthetic, and semantic dimensions, suggesting that multi-level language modeling and
TMA are complementary: the former strengthens multi-object, spatial, and appearance grounding,
whereas the latter enforces temporally coherent, prompt-faithful dynamics during generation.
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Table 8: Ablation on Evaluator/Reflector Model Size (Hereafter, we use E to denote the Evaluator
and R to denote the Reflector). Acc. denotes accuracy (%), Score denotes average rating (0–5).

Methods MSVD-QA MSRVTT-QA TGIF-QA ActivityNet-QA
Acc↑ Score↑ Acc↑ Score↑ Acc↑ Score↑ Acc↑ Score↑

UniVid (Qwen2-7B E&R ) 76.9 3.9 57.4 3.2 71.8 3.9 56.7 3.5
UniVid (LLaMA-3 8B E and LLaVA-1.6 7B R) 78.2 4.0 59.1 3.3 72.4 4.0 56.8 3.5
UniVid (Qwen2-7B R) 78.5 4.0 59.0 3.3 71.8 3.9 57.6 3.5
UniVid (Qwen2-7B E) 77.4 3.9 58.4 3.2 72.2 3.9 57.3 3.5
UniVid (Ours) 80.1 4.2 61.4 3.4 75.0 4.1 58.8 3.6

Table 9: Ablation study of the understanding branch of UniVid to verify the effectiveness of encoder
setting. Acc. denotes accuracy (%), Score denotes average rating (0–5). w/o means “without”. Best
results are bold.

Methods MSVD-QA MSRVTT-QA TGIF-QA ActivityNet-QA
Acc↑ Score↑ Acc↑ Score↑ Acc↑ Score↑ Acc↑ Score↑

UniVid (VAE Encoder) 49.1 3.2 44.7 2.7 52.9 2.9 38.5 3.0
UniVid (VAE & ViT Encoder) 78.6 4.1 56.9 3.2 72.8 3.9 57.1 3.5
UniVid (Ours, ViT only) 80.1 4.2 61.4 3.4 75.0 4.1 58.8 3.6

Tab. 4 shows that removing TMA causes a noticeable drop in temporal stability, motion smooth-
ness, and imaging quality, confirming its necessity for coherent long-horizon generation. Among
different scheduling strategies, the cosine scheme consistently performs best. Its smooth transition
from stronger early text guidance to later visual refinement yields better semantic fidelity and more
stable dynamics than constant, step, or linear variants, highlighting the importance of a well-shaped
modulation schedule.

Fig. 7 visualizes these issues: without TMA, generated players exhibit unnatural fingers, distorted
poses, and implausible ball trajectories, whereas the full UniVid produces coherent jump shots with
realistic ball arcs. Qualitative comparisons in Fig. 3 confirm that UniVid consistently avoids miss-
ing objects and deformations that plague prior models, achieving both semantic plausibility and
temporal stability.

Ablation on video understanding. Tab. 7 compares four variants: a lightweight base model with-
out our training or reasoning additions, a version w/o finetune that removes Stage-II video-QA
finetuning, a version w/o Reflection that keeps finetuning but disables the Pyramid Reflection loop,
and the Full UniVid. Finetuning the understanding branch on ActivityNet-QA style instruction
data already yields clear gains over the base, indicating that modest, task-aligned supervision sub-
stantially improves cross-modal grounding. Adding Pyramid Reflection further boosts accuracy,
with similar trends in the QA scores, confirming that query-driven keyframe selection plus the Ac-
tor–Evaluator–Reflector loop improves temporal coherence and evidence retrieval. Overall, the full
system combines data-efficient tuning with iterative reasoning to deliver competitive results across
all four benchmarks.

Furthermore, we investigate the impact of scaling down the Evaluator and Reflector. Specifically,
we replace the originally used large-scale language model (LLM) with a more lightweight 7B LLM.
As shown in Tab. 8, the results demonstrate only a marginal performance drop. This is because
the primary reasoning and semantic alignment are handled by the MLLM, while the Evaluator and
Reflector mainly serve to refine information selection, a process that does not heavily rely on strong
reasoning capability or extensive prior knowledge. This indicates that Pyramid Reflection can be
efficiently executed using smaller models, achieving a favorable trade-off between efficiency and
accuracy. Notably, when we only substitute the Evaluator and Reflector with smaller LLMs while
keeping the MLLM unchanged, performance degradation remains minimal, which further supports
the above conclusion. Additionally, to mitigate potential understanding-evaluation(reflection) bias
caused by using the same model family, we adopt different model types for Evaluator and Reflector,
leading to moderate but consistent performance improvements.

Moreover, we evaluate our model on several recent benchmarks designed for unified video under-
standing, including MMLU (Hendrycks et al., 2021a;b), MMMU (Yue et al., 2024), MME (Fu
et al., 2024a), MMBench (Fang et al., 2024), and MLVU (Zhou et al., 2024b). These datasets cover
diverse multimodal reasoning tasks and reflect models’ comprehensive understanding capabilities.
We compare our unified model with its understanding-only models and latest Open-Source Unified
Video Model to highlight our model’s performance. As shown in Tab. 10, our method achieves com-
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Table 10: Comparison of Und.Only and Unified Models across major video benchmarks (Hendrycks
et al., 2021a;b; Fu et al., 2024a; Fang et al., 2024; Zhou et al., 2024b; Yue et al., 2024). The
best results are highlighted in bold, and the second-best are underlined. Notably, all methods are
evaluated under a unified frame-setting for fair comparison and our method can utilize at most
unified setting frames.

Model MMLU↑ MMMU↑ MME↑ MME(S&M)↑ MMBench↑ MLVU↑

Frame Num 32 32 64 64 64 64

Und.Only Models

Qwen2-VL-7B (Wang et al., 2024a) 21.02 41.26 59.7 72.1 1.45 62.34
Qwen2.5-VL-7B (Bai et al., 2025) 24.17 47.44 62.8 75.9 1.49 62.052
Qwen3-VL-8B (Yang et al., 2025) 71.6 69.9 71.4 89.7 2.55 78.1
LLaVA-Video-7B (Lin et al., 2024) 15.89 36.11 63.7 78.1 1.6 67.66
MiniCPM-V-2.6-7B (Yu et al., 2025) – – 59.7 74.7 1.7 52.82
InternVL2 5-8B (Chen et al., 2024b) 52.47 43 63.7 77 1.68 63.94
InternVL3-8B (Zhu et al., 2025) 57.71 47.97 66 79.5 1.69 67.964

Unified Models

Omni-Video-7B (Tan et al., 2025) 41.28 51.62 59.43 71.43 1.59 67.24
Emu3-8B (Wang et al., 2024b) 40.33 49.73 60.98 68.76 1.54 66.77
Show-o2-7B (Xie et al., 2025b) 45.77 53.99 66.87 76.62 1.67 68.92
Ours-7B 49.88 59.41 62.68 78.4 1.85 70.77

(a) Training loss curve across dual stages. (b) Validation accuracy during training.
Figure 10: Training loss (left) and validation accuracy (right) curves for UniVid’s understanding
branch. Notably, red line refers to co-training period in Stage III.

petitive results on most benchmarks, particularly outperforming existing unified models. It is also
worth noting that Video-MME includes longer videos (>10 min), for which we further report results
under short-video (S) and mid-length (M) subsets. Our unified model shows more significant ad-
vantages on short-video scenarios, consistent with its design characteristics, while still maintaining
strong overall comprehension capabilities.

Ablation on encoding mechanism. We study the internal encoding mechanism of UniVid. During
training, we employ both a ViT and a VAE to encode visual information, where the ViT excels at
capturing high-level semantics and the VAE is more effective in representing pixel-level details. We
conduct ablation studies for both generation and understanding tasks to examine the role of each
encoder.

For video generation, Tab. 5 shows that using only the ViT or only the VAE leads to significant degra-
dation across almost all VBench-Long dimensions. In contrast, combining both encoders yields
large improvements in overall score and boosts technical, aesthetic, and semantic fidelity metrics.
This confirms that high-level semantic encoding and low-level detail encoding are complementary
for long-horizon video synthesis.

For video understanding, Tab. 9 indicates that ViT alone is sufficient to achieve strong performance,
while adding the VAE brings marginal or no further improvement. This aligns with the intuition that
understanding tasks rely more on semantic abstraction than pixel-level reconstruction. Together,
these results demonstrate that UniVid benefits from a hybrid encoding design for generation, while
semantic encoders dominate in understanding.
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A.7 LIMITATION AND FUTURE WORK

While UniVid unifies an autoregressive MLLM with a DiT-based video diffusion decoder, the cur-
rent interaction between the two modules remains relatively shallow. Most MLLM parameters are
frozen, and the diffusion branch only receives limited semantic guidance, restricting the potential
mutual benefits between understanding and generation. As a consequence, the MLLM gains little
improvement in deeper reasoning, and the generation branch relies primarily on data-driven priors
rather than task-aware adaptive conditioning.

These limitations manifest in characteristic failure modes during generation, as illustrated in Fig. 9
UniVid can exhibit temporal inconsistencies in long sequences (e.g., static lightning), loss of fine-
grained details in distant regions, and occasional structural artifacts such as missing body parts in
anthropomorphized characters. These reflect inherent challenges of long-horizon diffusion sampling
and the lack of stronger semantic–structural feedback between the two branches.

In future work, we plan to develop deeper bidirectional coupling mechanisms that allow MLLM
reasoning signals to shape the diffusion trajectory dynamically, while generated visual feedback
reinforces semantic learning. Another promising direction is integrating native dense video encoders
to support substantially longer videos with richer motion dynamics. Although these extensions
require greater training resources, they offer the potential for more stable long-range generation and
more emergent capabilities from cross-modal co-training.
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