

000 001 002 003 UNIVID: THE OPEN-SOURCE UNIFIED VIDEO MODEL 004 005 006 007

008 **Anonymous authors**
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
190

control signals, while a diffusion video decoder renders high-fidelity frames from high-level visual tokens; recent works such as Transfusion (Zhou et al., 2024a) and Show-O (Xie et al., 2025a) follow this pattern. In this work, we adopt the hybrid route to retain high-quality rendering while leveraging an MLLM for semantic control and interpretability.

However, even within this hybrid setting, unified video modeling faces two key challenges. First, maintaining semantically faithful conditioning in video diffusion across the flow trajectory is difficult. Text prompts convey high-level intent but under-specify pixel-aligned details; in MM-DiT-style Esser et al. (2024) models, the cross-modal signal can be diluted by the numerical imbalance between few text tokens and many visual tokens, and the role of guidance is inherently timestep-dependent—early steps benefit more from strong semantic constraints, whereas later steps benefit from visual detail refinement, yielding prompt–video drift that worsens with longer, higher-resolution clips. Second, extending image-centric MLLMs to video faces two key challenges: the computational cost of temporal modeling (dedicated encoders, long-context handling, large-scale training) that risks destabilizing existing capabilities, and the mismatch between video’s vast temporal information and the typically small subset relevant to any question. Traditional approaches either process all frames uniformly, causing inefficiency and noise, or use fixed sampling that may miss critical evidence. Furthermore, different question types demand different strategies—static questions need distinctive keyframes while dynamic questions require understanding temporal transitions.

To address these challenges, our motivation is twofold. First, on the generation side, we leverage multimodal understanding to construct structure-aware tokens in the language space that encode both global semantics and localized cues; these tokens are used as faithful semantic conditioning for a diffusion video decoder, and we schedule cross-modal attention over flow steps so that early integration emphasizes textual intent while later steps emphasize visual refinement. Second, on the understanding side, we develop an adaptive evidence selection approach that extends image-centric MLLMs to video without substantial architectural changes. This requires a mechanism that can iteratively explore and refine the evidence set based on feedback, balance exploration of new frames with exploitation of current evidence, and learn from failure signals to improve future selections. This suggests a sequential decision-making framework, but rather than traditional parameter updates, we implement a form of verbal test-time reinforcement learning. We develop Pyramid Reflection, where policy improvement occurs through natural language refinement—the Reflector verbally adjusts search queries based on feedback, while SigLIP2 (Tschanne et al., 2025) enables query-driven keyframe selection that iteratively expands or prunes the evidence set.

Hence, we propose **UniVid**, a unified architecture that couples a multimodal LLM with a diffusion video decoder via a lightweight conditioning adapter: the LLM ingests text and salient visual evidence and outputs rich semantic understandable tokens that both support reasoning and condition the decoder for text/image-to-video generation. To stabilize guidance in MM-DiT (Esser et al., 2024), we introduce *Temperature Modality Alignment*, a timestep-aware, temperature-adjusted cross-modal attention schedule that emphasizes semantic intent early and visual refinement late, mitigating text suppression and improving prompt faithfulness. To enable efficient understanding with minimal change, we introduce *Pyramid Reflection*, which implements sequential decision-making through SigLIP2-based keyframe selection and an Actor–Evaluator–Reflector loop that verbally adjusts search strategies while progressively expanding or pruning context. Through extensive evaluation on standard benchmarks, we validate the superior capability of our unified approach, which consistently outperforms existing methods across multiple video-centric tasks, demonstrating the potential of unified modeling for comprehensive video intelligence.

Our contribution can be summarized below:

- We introduce **UniVid**, a unified paradigm that couples an MLLM with a diffusion video decoder via a lightweight conditioning adapter; the MLLM produces rich, understandable semantic tokens that both support reasoning and condition text/image-to-video generation.
- We propose *Temperature Modality Alignment*, a timestep-aware, temperature-adjusted cross-modal attention schedule in MM-DiT that strengthens early semantic guidance and later shifts emphasis to visual refinement; we further develop *Pyramid Reflection* with SigLIP2-based keyframe selection to enable efficient temporal reasoning with minimal architectural change and training.
- We conduct comprehensive experiments on MSVD-QA (Piergiovanni et al., 2022), MSRVTT-QA (Piergiovanni et al., 2022), TGIF-QA (Jang et al., 2017), and ActivityNet-QA (Yu et al.,

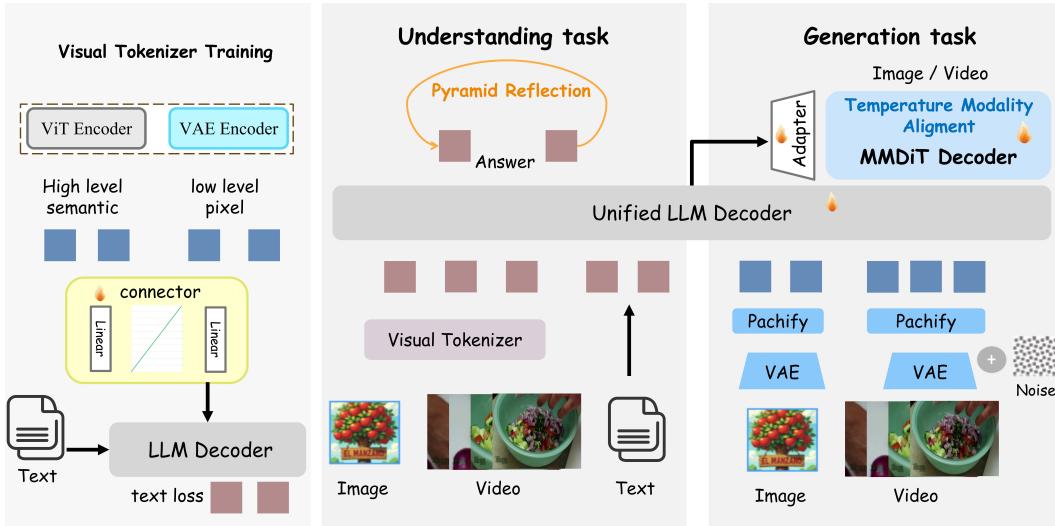


Figure 2: Overall architecture of our proposed UniVid for unified video understanding and generation. Notably, for the understanding task, we adopt only the ViT encoder to achieve a better efficiency–accuracy trade-off.

2018) for understanding, and on VBench for generation, demonstrating competitive performance and efficiency. Ablations verify the contribution of each component.

2 RELATED WORK

Video generation. Video generation has seen remarkable advancements with the rise of diffusion models and generative adversarial networks tailored for temporal data. Recent diffusion or flow based frameworks, such as Video Diffusion Models (Ho et al., 2022b), Imagen Video (Ho et al., 2022a), VideoCrafter2 (Chen et al., 2024a) and Stable Video Diffusion (Blattmann et al., 2023b), have produced high-fidelity clips with improved temporal consistency, enabling applications in creative generation and simulation (Liu et al., 2025; Shi et al., 2025). Latent diffusion techniques (Blattmann et al., 2023c) further improve efficiency by operating in compressed latent spaces, enabling scalable video generation. In parallel, GAN methods like MoCoGAN (Tulyakov et al., 2018) and StyleGAN-V (Skorokhodov et al., 2022) explore alternative formulations. Despite these advances, maintaining long-term temporal consistency in extended sequences remains challenging, as summarized by recent surveys and analyses (Melnik et al., 2024; Yin et al., 2025).

Video understanding. Recent progress in video understanding has been driven by transformer-based architectures and self-supervised learning paradigms that effectively model spatio-temporal relationships. Methods like MViT (Fan et al., 2021), Video Swin Transformer (Liu et al., 2022), TimeSformer (Bertasius et al., 2021) and ViViT (Arnab et al., 2021) have advanced the field by capturing long-range dependencies across video frames, achieving strong performance on datasets such as Kinetics-700 (Carreira et al., 2019). Beyond supervised training, self-supervised approaches—including masked modeling (VideoMAE (Tong et al., 2022), MaskFeat (Wei et al., 2022), OmniMAE (Girdhar et al., 2023)) and early contrastive methods (VideoMoCo (Pan et al., 2021))—leverage unlabeled videos to learn robust, transferable representations, reducing dependence on costly annotations and benefiting action recognition and video segmentation.

Unified multimodal models. Unified multimodal modeling has progressed from joint vision–language pretraining to architectures that support both understanding and generation across modalities. Foundational systems like CLIP (Radford et al., 2021) establish large-scale alignment, while BEiT-3 (Wang et al., 2023) and UnifiedMLM (Li et al., 2024) broaden task coverage. Pushing toward unified generation, Show-o (Xie et al., 2025a) integrates autoregression with discrete diffusion within a single Transformer to support VQA, text-to-image, and various editing tasks. In a complementary direction focused on robustness rather than general any-to-any generation, FLUID (Cuong et al., 2025) uses token-level distillation for cross-modal fusion. Open generalist systems

162 then aim to unify understanding and generation end-to-end: BAGEL (Deng et al., 2025) offers an
 163 open, decoder-only framework with parallel language and diffusion branches trained jointly, achieving
 164 competitive results across image-centric tasks, and BLIP3-o (Chen et al., 2025) releases a fully
 165 open family where a diffusion transformer is coupled to strong multimodal understanding, yielding
 166 unified image understanding and generation. Extending unification from images to video, Omni-
 167 Video (Tan et al., 2025) teaches an MLLM to emit continuous visual tokens that are adapted and
 168 consumed by a diffusion video decoder, enabling generation, editing, and understanding in one
 169 pipeline.

170

171 3 THE PROPOSED METHOD

172

173 3.1 OVERVIEW

174

175 Our goal is a unified multimodal video model that supports both generation and understanding within
 176 a single framework. To this end, we adopt a three-stage hierarchical training recipe that first aligns
 177 the conditioning between the MLLM and the generator, then finetunes the MLLM and introduces
 178 Pyramid Reflection, which augments the understanding branch with temporal cues, and finally co-
 179 adapts both branches end-to-end. Fig. 2 presents the overall UniVid architecture.

180

181 3.2 ARCHITECTURE

182

Multimodal architecture. The multimodal large language model serves as the core reasoning engine. Text inputs are processed through a standard tokenizer, while visual inputs follow different encoding paths depending on the target branch. For the generation branch, images are encoded using both ViT (Dosovitskiy et al., 2021) for semantic features and VAE (Kingma & Welling, 2019) for pixel-level details. For the understanding branch, only ViT encoding is employed, as video understanding tasks primarily rely on high-level semantic understanding rather than fine-grained pixel details. The encoded visual features are then projected into the textual token space and concatenated with text tokens, allowing the LLM to output unified multimodal representations.

189

Generation branch. The generation pathway employs a DiT-based model Wan 2.2 (Wang et al., 2025) conditioned on rich semantic representations extracted from MLLM outputs through a lightweight adapter. The system processes video generation in latent space using a 3D VAE (Zhao et al., 2024), with conditioning signals integrated via cross-attention mechanisms.

194

Understanding branch. For video understanding, multi-frame evidence is encoded by the ViT (Dosovitskiy et al., 2021) and fused with text; the LLM produces an initial textual answer. We then apply Pyramid Reflection, a query-driven, hierarchical loop that iteratively expands or prunes keyframe context via SigLIP2 (Tschanne et al., 2025) selection and refines the frame space via an Actor–Evaluator–Reflector process, yielding the final answer without modifying the backbone.

199

Conclusively, our generation builds on the MLLM’s strong comprehension, while video understanding uses Pyramid Reflection to leverage the MLLM and collaborate with an LLM for efficient and accurate answers.

202

203

204 3.3 CONDITIONAL GENERATION WITH TEMPERATURE MODALITY ALIGNMENT

205

206

Given fused tokens from the understanding path, the MLLM output Z_u is mapped to time-indexed conditions by a lightweight adapter g_ϕ :

207

$$C_t = g_\phi(Z_u, t) \in \mathbb{R}^{M_t \times d_c}, \quad (1)$$

209

where M_t is the number of conditioning tokens at timestep t and d_c is the conditioning dimension.

210

211

Let the 3D VAE define the latent trajectory $\{z_t\}$ along the flow, where $z_t \in \mathbb{R}^{H \times W \times F \times C}$ represents the latent representation with spatial dimensions $H \times W$, temporal frames F , and channels C . The Wan 2.2 DiT predicts the velocity field under cross-attention to C_t , then we integrate the probability–flow ODE to obtain \hat{z}_0 , which the VAE decoder converts to video frames.

214

215

Inspired by TACA (Lv et al., 2025), we adapt its finding that text is suppressed in MM-DiT (Esser et al., 2024) because (i) the softmax over a much larger pool of visual tokens ($N_{\text{vis}} \gg N_{\text{txt}}$) dilutes

Algorithm 1 Pyramid Reflection as Test-time RL

Require: video V , question q

```

1: Uniformly sample  $N=64$  frames; encode once and cache visual embeddings
2: From 16 frames, summarize into a global caption  $C_g$ 
3: Initialize state  $s_1 \leftarrow (q, C_g, W=\emptyset)$ , policy  $\pi$  with mode router expand/shrink
4: for  $r = 1$  to  $R \leq 3$  do
5:   Action:  $a_r \sim \pi(s_r)$ 
6:   expand: add frames most relevant to current search text
7:   shrink: prune to diverse key frames using cached similarities
8:   Update working set  $W$  accordingly using cached embeddings
9:   Actor: answer using ordered  $W$  conditioned on  $C_g$  (index-only change)
10:  Evaluator: score  $\hat{r}_r \in [0, 1]$  as confidence signal
11:  if  $\hat{r}_r \geq \tau$  then return answer
12:  elseReflector: refine the search text  $q \leftarrow$  short declarative cue
13:  Update state  $s_{r+1} \leftarrow (q, C_g, W)$  (verbal policy improvement)
14:  end if
15: end for
16: return fallback answer from  $C_g$ 

```

attention mass on text keys, and (ii) conditioning plays different roles across timesteps (early semantics, late detail). We therefore strengthen the visual-to-text path in Wan 2.2 (Wang et al., 2025) with a simple schedule:

$$\tilde{S}_{v \rightarrow t}(u) = \alpha_{\text{txt}}(u) S_{v \rightarrow t}, \quad u \in [0, 1], \quad (2)$$

where u is the normalized flow matching progress (0 early, 1 late), $S_{v \rightarrow t}$ denotes the visual-to-text attention scores, and $\tilde{S}_{v \rightarrow t}(u)$ represents the modulated attention scores. The modulation factor is defined as:

$$\alpha_{\text{txt}}(u) = \begin{cases} 1 + \frac{\lambda_{\text{txt}}}{2} \left(1 + \cos\left(\frac{\pi u}{0.4}\right) \right), & u \in [0, 0.4], \\ 1, & u \in (0.4, 1], \end{cases} \quad \lambda_{\text{txt}} = 0.3. \quad (3)$$

Thus, text guidance is strongest early and decays to neutral ($\alpha_{\text{txt}} \rightarrow 1$) late, improving prompt faithfulness without over-constraining details.

For reference-image that requires identity stability, we apply a small late-stage boost to visual cross-attention:

$$\tilde{S}_{v \rightarrow v}(u) = \alpha_{\text{img}}(u) S_{v \rightarrow v}, \quad (4)$$

where $S_{v \rightarrow v}$ represents visual cross-attention scores and

$$\alpha_{\text{img}}(u) = \begin{cases} 1, & u \in [0, 0.6], \\ 1 + \frac{\lambda_{\text{img}}}{2} \left(1 - \cos \left(\frac{\pi(u - 0.6)}{0.4} \right) \right), & u \in (0.6, 1], \end{cases} \quad \lambda_{\text{img}} = 0.3. \quad (5)$$

3.4 PYRAMID REFLECTION FOR UNDERSTANDING

Formulation. We cast video question answering as test-time reinforcement learning over a small, ordered evidence set. The state at round r is (s_r, W_r, C_g) , where s_r is a short search text, W_r is an ordered subset of frames, and C_g is a global caption distilled once from uniformly sampled seeds. The action is to reconfigure W_r given s_r , either by adding frames (expand) or by pruning to a diverse core (shrink). The policy π_s is a retrieval rule driven by text–image similarity and a diversity term; it maps s to a distribution over frame indices. The environment returns an answer a produced by the Actor and a scalar reward $r \in [0, 1]$ from the Evaluator. Policy improvement is carried out verbally: the Reflector emits a refined s_{r+1} that concentrates on disambiguating cues such as before/after, first/last, motion phase, color, or role. The loop stops early when r exceeds a confidence threshold.

Policy class. We instantiate π_s with a cached-embedding retriever. All N candidate frames are embedded once by a vision encoder; the text side uses $\phi(s)$. For expand we add the highest-scoring

270 Table 1: T2V performance on VBench-Long (Huang et al., 2024).
271

Method	Overall Scores			Technical Quality					Aesthetic Quality	
	Total Score↑	Quality↑	Semantic↑	Subject↑	Background↑	Temporal↑	Motion↑	Dynamic↑	Aesthetic↑	Imaging↑
EasyAnimateV5.1 (Fu et al., 2024b)	83.42	85.03	77.01	98.00	97.41	99.19	98.02	57.15	69.48	68.61
MiniMax-Video-01 (MiniMax, 2024)	83.41	84.85	77.65	97.51	97.05	99.10	99.22	64.91	63.03	67.17
Kling 1.6 (Technology, 2025)	83.40	85.20	76.99	97.40	96.84	99.64	99.13	62.22	64.81	69.70
Wan2.1-T2V-1.3B (Wang et al., 2025)	83.31	85.23	76.95	97.56	97.93	99.55	98.52	65.19	65.46	67.01
Wan2.2-T2V-5B (Wang et al., 2025)	83.59	85.64	76.53	97.66	98.03	99.10	98.71	65.76	65.52	67.51
JunyuanVideo (Kong et al., 2024)	83.24	85.86	75.82	97.32	97.93	99.49	98.99	70.83	60.36	67.56
Gen-3 (Runway, 2024)	82.32	84.11	75.17	97.01	96.62	99.61	99.23	60.14	63.34	66.82
Vchitect-2.0 (VEnhancer) (Fan et al., 2025)	82.24	83.54	77.06	96.83	96.66	98.97	98.98	63.89	60.41	65.35
CogVideoX1.5-5B (Yuan et al., 2024)	82.17	82.78	79.76	96.87	97.35	98.88	98.31	50.93	62.79	65.02
Omni-Video (Tan et al., 2025)	83.00	84.27	77.92	98.39	97.68	99.87	99.10	56.67	62.48	64.56
UniVid (Ours)	85.27	86.44	80.58	98.96	97.76	99.88	99.25	61.83	64.21	73.03
Method	Semantic Fidelity									
	Object↑	Multi-Obj↑	Action↑	Color↑	Spatial↑	Scene↑	Appearance↑	Temporal↑	Overall↑	
EasyAnimateV5.1 (Fu et al., 2024b)	89.57	66.85	95.60	77.86	76.11	54.31	23.06	24.61	26.47	
MiniMax-Video-01 (MiniMax, 2024)	97.83	76.04	92.40	90.36	75.50	50.68	20.06	25.63	27.10	
Kling 1.6 (Technology, 2025)	93.34	73.99	96.20	81.26	79.08	55.57	20.75	24.51	26.04	
Wan2.1-T2V-1.3B (Wang et al., 2025)	88.81	74.83	94.00	82.00	73.04	41.96	21.81	23.13	25.50	
Wan2.2-T2V-5B (Wang et al., 2025)	89.21	75.23	94.09	82.43	72.90	42.36	21.89	23.78	26.03	
JunyuanVideo (Kong et al., 2024)	86.10	71.66	93.42	91.60	68.09	53.69	19.80	23.89	26.44	
Gen-3 (Runway, 2024)	87.81	53.64	96.40	80.90	65.03	54.57	24.31	24.71	26.69	
Vchitect-2.0 (VEnhancer) (Fan et al., 2025)	86.61	68.84	97.20	87.04	57.55	56.57	23.73	25.01	27.57	
CogVideoX1.5-5B (Yuan et al., 2024)	87.47	69.65	97.20	87.55	80.25	52.91	24.89	25.19	27.30	
Omni-Video (Tan et al., 2025)	93.54	71.06	93.60	88.89	73.15	44.33	23.45	25.81	26.99	
UniVid (Ours)	94.52	77.45	94.20	92.10	80.70	46.66	23.57	25.91	27.60	

unseen frames by cosine similarity $\langle \mathbf{v}_i, \phi(s) \rangle$, which suits static questions whose evidence is sparse but distinctive. For shrink we start broad to preserve chronology, then apply a Maximal Marginal Relevance objective that balances relevance to $\phi(s)$ and pairwise dissimilarity within W , which suits dynamic questions where ordering, repetition, or transitions matter. In both regimes W is kept in temporal order so the Actor can compare events across $[t_1 \rightarrow t_k]$ rather than hallucinate transitions.

Value and critic signals. The Evaluator provides a calibrated confidence that serves as a value proxy. Its scalar reward r both triggers early stopping and conditions the Reflector. When r is low, the Reflector returns a short declarative refinement of s that encodes the suspected failure mode: missing entity, wrong time span, ambiguous referent, or occluded phase. This verbal update reshapes the retrieval distribution without touching model weights, yielding a form of policy gradient in the space of prompts. Our Pyramid Reflection procedure is summarized in Algorithm 1, and the high-level understanding pipeline is shown in Fig. 8. The theoretical details of Pyramid Reflection as test-time RL are provided in Appendix A.5.

The design achieves efficiency by caching frame embeddings once and reducing exploration to lightweight index updates, while the Actor reasons over compact, temporally ordered evidence with fixed global context to maintain scene priors under tight token budgets. The adaptive routing between expansion and MMR-based shrinking aligns retrieval strategies with question structure, enabling effective temporal reasoning at low computational cost.

Nevertheless, this efficiency-oriented retrieval scheme inherently operates on a sparse temporal subset rather than the full dense sequence. As a result, its ability to infer subtle motion cues, fine-grained temporal continuity, or high-frequency dynamics may be limited compared to methods that process all frames end-to-end. These dense approaches often provide more precise motion understanding and object interaction modeling, particularly in tasks where small spatial shifts or rapid temporal transitions are critical for accurate reasoning.

4 EXPERIMENTS

4.1 DATASET AND METRICS

Datasets. We evaluate UniVid on established benchmarks for both video generation and understanding. For generation, we train on curated samples from OpenVid-1M, a large-scale text-to-video dataset, and evaluate on VBench, a comprehensive benchmark suite for video generative models that provides fine-grained evaluation metrics across multiple dimensions. For understanding, we train on 20k samples from the ActivityNet-QA train dataset (Yu et al., 2018) and evaluate on four comprehensive video QA benchmarks: MSVD-QA (Piergiovanni et al., 2022) with 1,970 video clips and 50.5K QA pairs, MSRVTT-QA (Piergiovanni et al., 2022) with 10K videos, 243K QA pairs, TGIF-QA (Jang et al., 2017) containing 165K QA pairs for animated GIFs, and the ActivityNet-QA test

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
Table 2: Comparison on four video QA benchmarks (Piergiovanni et al., 2022; Jang et al., 2017; Yu et al., 2018).

Method	LLM size	Video QA Performance							
		MSVD-QA		MSRVTT-QA		TGIF-QA		ActivityNet-QA	
		Acc↑	Score↑	Acc↑	Score↑	Acc↑	Score↑	Acc↑	Score↑
FrozenBiLM (Yang et al., 2022)	1B	32.2	—	16.8	—	41.0	—	24.7	—
VideoChat (Li et al., 2023)	7B	56.3	2.8	45.0	2.5	34.4	2.3	—	2.2
LLaMA-Adapter (Zhang et al., 2023b)	7B	54.9	3.1	43.8	2.7	—	—	34.2	2.7
Video-LLAMA (Zhang et al., 2023a)	7B	51.6	2.5	29.6	1.8	—	—	12.4	1.1
Video-ChatGPT (Maaz et al., 2024)	7B	64.9	3.3	49.3	2.8	51.4	3.0	35.2	2.7
Chat-UniVi (Jin et al., 2024)	7B	65.0	3.6	54.6	3.1	60.3	3.4	45.8	3.2
Video-LLaVA (Lin et al., 2024)	7B	70.7	3.9	59.2	3.5	70.0	4.0	45.3	3.3
BT-Adapter (Liu et al., 2024)	7B	67.5	3.7	57.0	3.2	—	—	45.7	3.2
Valley-v3 (Luo et al., 2023)	7B	60.5	3.3	51.1	2.9	—	—	45.1	3.2
FreeVA (Wu, 2024)	7B	73.8	4.1	60.0	3.5	—	—	51.2	3.5
DeepStack-L (Meng et al., 2024)	7B	76.0	4.0	—	—	—	—	49.3	3.1
IG-VLM (LLaVA-v1.6) (Kim et al., 2024)	7B	78.8	4.1	63.7	3.5	—	4.0	54.3	3.4
SF-LLaVA-7B (Xu et al., 2024)	7B	79.1	4.1	65.8	3.6	78.7	4.2	55.5	3.4
UniVid (Ours)	7B	80.1	4.2	61.4	3.4	75.0	4.1	58.8	3.6

340 dataset (Yu et al., 2018) with 58,000 QA pairs on 5,800 complex web videos. These datasets cover
 341 diverse temporal reasoning scenarios across short to medium-length video clips, ranging from brief
 342 animated sequences to multi-minute activity videos.

343
 344 **Evaluation metrics.** For video generation, we evaluate on VBench across multiple fine-grained
 345 dimensions: Technical Quality metrics including Subject consistency, Background preservation,
 346 Temporal flickering, Motion smoothness, and Dynamic degree; Aesthetic Quality measures cov-
 347 ering overall visual appeal and imaging quality; and Semantic Fidelity metrics assessing Object
 348 accuracy, Multi-object handling, Action fidelity, Color accuracy, Spatial relationships, Scene con-
 349 sistency, Appearance preservation, and Temporal coherence. For video understanding, we report
 350 average accuracy and scores on each benchmark dataset.

351 4.2 IMPLEMENTATION DETAILS

352 We adopt a three-stage hierarchical training recipe. It initializes UniVid from strong public check-
 353 points to reduce compute. For generation, we couple the BAGEL-7B (Deng et al., 2025) with Wan
 354 2.2 5B TI2V model (Wang et al., 2025) via a textual adapter and LoRA on DiT (Peebles & Xie,
 355 2023), keeping other weights frozen. For understanding, we tune only the connector and the last
 356 two ViT blocks on ActivityNet QA (Yu et al., 2018) with dialog style supervision while the LLM
 357 remains frozen. Finally, we co-train both tasks to refine the connector and obtain additive gains.
 358 Sequence parallelism enables long high-resolution clips. For details, see Appendix A.2.

359
 360 For generation, we use a flow-matching ODE sampler with classifier-free guidance and a universal
 361 negative prompt. Unless noted, videos are sampled at 1280×704 resolution, 121 frames at 24
 362 fps; the guidance scale is set to 5.0 for both T2V and I2V with 50 inference steps. At input time,
 363 the LLM receives the text prompt together with image ViT embeddings and VAE latents; it outputs
 364 conditional textual tokens. During generation, Wan 2.2 consumes these conditional textual tokens
 365 and image via cross-attention. Our Temperature Modality Alignment schedule applies a cosine-
 366 scheduled text gain that transitions from $\alpha_{\text{txt}} = 1.3$ to 1.0 over the first 40% of denoising steps
 367 ($u \in [0, 0.4]$), then maintains $\alpha_{\text{txt}} = 1.0$ for the remaining steps. This enhances text guidance during
 368 early denoising when structural decisions are made, while allowing finer details to emerge in later
 369 stages.

370 For understanding, we uniformly sample a pool of $N = 64$ frames per video and cache their SigLIP2
 371 image embeddings; subsequent selection reuses cached features. Global context is a caption summa-
 372 rized from 16 uniformly spaced seed frames. Query–image ranking uses SigLIP2 cosine similarity
 373 with L2-normalized features and batch size 64. Static questions follow a $4 \rightarrow 8 \rightarrow 16$ keyframe
 374 schedule. Dynamic questions follow $64 \rightarrow 32 \rightarrow 16$ with MMR down-selection, $\lambda = 0.5$. Con-
 375 fidence is accepted when the Evaluator’s score is at least 0.7 or the verdict is accept, with at most
 376 $R \leq 3$ rounds. The LLM determines routing between static and dynamic modes. For implemen-
 377 tation, we use DeepSeek v3.1 to serve as the Evaluator and determine the type of questions and
 Qwen-plus to serve as the Reflector. Full prompt texts are listed in the Appendix A.4.

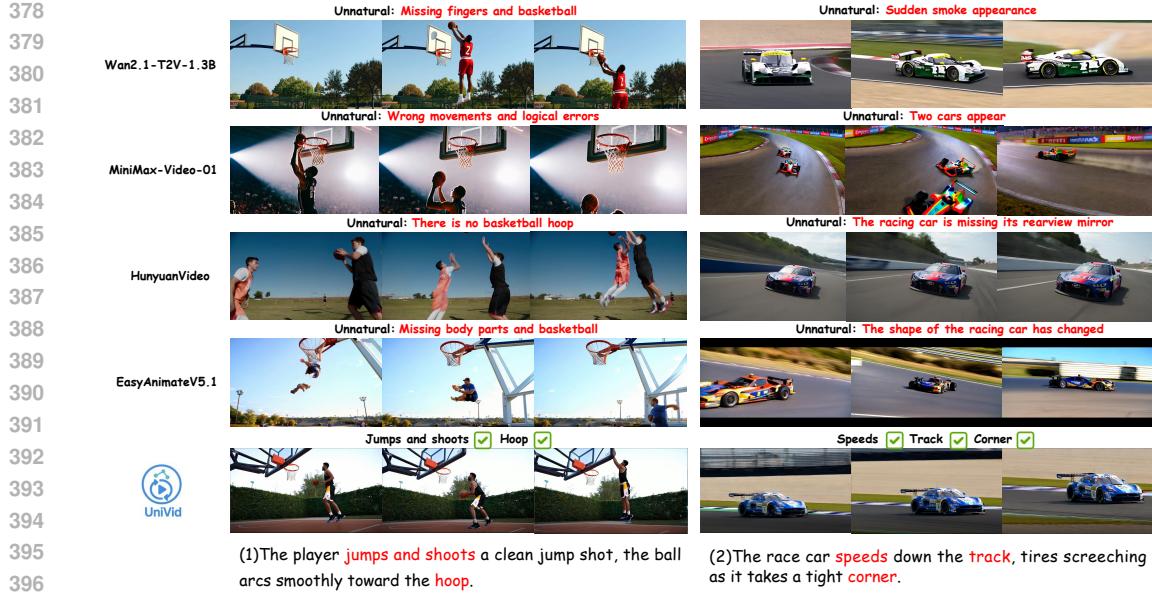


Figure 3: Comparisons with State-of-the-Art Video Generation Models (Wang et al., 2025; MiniMax, 2024; Kong et al., 2024; Fu et al., 2024b).

4.3 MAIN RESULTS

Generation quantitative results. We evaluate UniVid on the challenging V-Bench-Long benchmark (Huang et al., 2024). As shown in Tab. 1, UniVid establishes a new state of the art with an overall score of 85.27, outperforming prior leading systems such as EasyAnimateV5.1 (Fu et al., 2024b), MiniMax-Video-01 (MiniMax, 2024), and Kling 1.6 (Technology, 2025). In particular, UniVid exhibits clear advantages in semantic alignment (80.58), highlighting its superior capability in faithfully rendering objects, actions, and multi-object interactions. On the technical side, it attains near-perfect temporal (99.88) and motion (99.25) consistency, validating the effectiveness of our long-context dynamics module. Moreover, UniVid delivers the best imaging score (73.03), reflecting sharper details and more stable visual quality compared with prior systems, as shown in Fig. 1, which demonstrates high-quality visual generation.

Beyond overall scores, UniVid demonstrates consistent gains in semantic fidelity. As summarized in the Semantic Fidelity block of Tab. 1, it achieves leading results on multi-object reasoning (77.45), color faithfulness (92.10), and spatial grounding (80.70), while remaining competitive in action depiction and appearance consistency. These improvements suggest that our design choices—particularly the integration of hierarchical scene representation with dynamic frame alignment—substantially enhance both controllability and alignment with textual prompts. Taken together, the results indicate that UniVid pushes forward the frontier of long-horizon text-to-video generation by simultaneously ensuring high-fidelity semantics and strong technical as well as aesthetic quality. More examples of video generation can be seen in Appendix A.3.

Generation qualitative results. Fig. 3 compares UniVid with Wan2.1-T2V-1.3B (Wang et al., 2025), MiniMax-Video-01 (MiniMax, 2024), HunyuanVideo (Kong et al., 2024), and EasyAnimateV5.1 (Fu et al., 2024b). Competing models often show missing basketballs or distorted cars, while UniVid generates coherent jump shots and realistic racing scenes with stable dynamics and faithful semantics.

Understanding quantitative evaluation. Across MSVD-QA (Piergiovanni et al., 2022), MSRVTT-QA (Piergiovanni et al., 2022), TGIF-QA (Jang et al., 2017), and ActivityNet-QA (Yu et al., 2018), UniVid sets the 7B-scale state of the art on MSVD-QA and ActivityNet-QA and remains competitive on the other two (Tab. 2), despite a smaller post-training set and no test-time ensembling. Joint finetuning of generation and understanding with Pyramid Reflection strengthens the abilities these datasets emphasize: better action-entity binding and object or attribute grounding

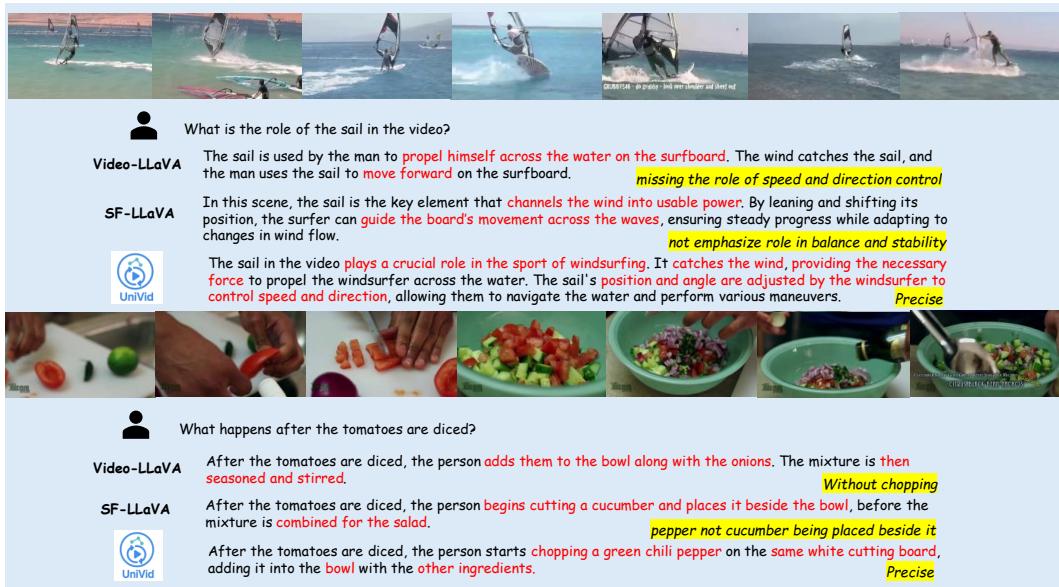


Figure 4: Comparisons of State-of-the-Art Video Understanding Models (Lin et al., 2024; Xu et al., 2024).

in short open-domain clips, stronger temporal reasoning over frame sequences, and more reliable long-range evidence retrieval in untrimmed videos.

As illustrated before, UniVid performs robust multi-frame reasoning with our Pyramid Reflection loop. Starting from a global caption and automatic type detection, the system first produces an initial answer, which is then scored by the evaluator; when evidence is insufficient, the reflector issues a refined, declarative query that re-ranks keyframes toward the true scene. This Pyramid Reflection steers attention from opening credits to the lane shots, yielding a consistent interpretation of roles (in the example of Fig. 8: bowler and nearby teammate/coach) grounded in the visual context rather than spurious cues. The dynamic keyframe schedule reduces the number of inspected frames while maintaining accuracy, demonstrating both evidence tracing and efficiency gains in short-clip understanding. More examples of video understanding can be seen in Appendix A.3.

Understanding qualitative results. We compare UniVid with Video-LLaVA (Lin et al., 2024) and SF-LLaVA (Xu et al., 2024) on video QA; as shown in Fig. 4, baselines often give plausible but incomplete statements. These examples highlight UniVid’s stronger action–entity binding, temporal reasoning, and resistance to distractor frames, yielding precise and concise answers. Additionally, we conduct systematic ablation experiments to validate the contributions of UniVid. The results and analyses are provided in the Appendix A.6.

5 CONCLUSION

We introduced UniVid, a unified video model that couples an MLLM with a diffusion decoder via a lightweight conditioning adapter to both understand and generate videos. Two key mechanisms enable this: Temperature Modality Alignment schedules cross-modal attention across flow steps to preserve prompt faithfulness while refining details, and Pyramid Reflection performs query-driven keyframe selection for efficient temporal reasoning. With these components, UniVid achieves state-of-the-art or competitive results on VBBench-Long and multiple video-QA benchmarks while avoiding costly retraining of image-centric backbones. We release UniVid to support research on practical, controllable, and truly unified video intelligence.

486 REFERENCES
487

488 Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and
489 Sumit Sanghai. GQA: training generalized multi-query transformer models from multi-head
490 checkpoints. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023*
491 *Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore,*
492 *December 6-10, 2023*, pp. 4895–4901. Association for Computational Linguistics, 2023. doi:
493 10.18653/V1/2023.EMNLP-MAIN.298. URL <https://doi.org/10.18653/v1/2023.emnlp-main.298>.
494

495 Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lucic, and Cordelia Schmid.
496 Vivit: A video vision transformer. In *2021 IEEE/CVF International Conference on Computer*
497 *Vision, ICCV 2021, Montreal, QC, Canada, October 10-17, 2021*, pp. 6816–6826, 2021.

498 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
499 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Ming-Hsuan Yang, Zhaohai Li, Jianqiang
500 Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen
501 Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report.
502 *CoRR*, abs/2502.13923, 2025.

503 Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time attention all you need for video
504 understanding? In *Proceedings of the 38th International Conference on Machine Learning, ICML*
505 *2021, 18-24 July 2021, Virtual Event*, pp. 813–824, 2021.

506 Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
507 Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, Varun Jampani, and Robin Rom-
508 bach. Stable video diffusion: Scaling latent video diffusion models to large datasets. *CoRR*,
509 abs/2311.15127, 2023a.

510 Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
511 Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
512 latent video diffusion models to large datasets. *arXiv preprint arXiv:2311.15127*, 2023b.

513 Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler,
514 and Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion
515 models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
516 pp. 22563–22575, 2023c.

517 Joao Carreira, Eric Noland, Chloe Hillier, and Andrew Zisserman. A short note on the kinetics-700
518 human action dataset. *arXiv preprint arXiv:1907.06987*, 2019.

519 Haoxin Chen, Yong Zhang, Xiaodong Cun, Menghan Xia, Xintao Wang, Chao Weng, and Ying
520 Shan. Videocrafter2: Overcoming data limitations for high-quality video diffusion models. In
521 *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024, Seattle, WA,*
522 *USA, June 16-22, 2024*, pp. 7310–7320, 2024a.

523 Juhai Chen, Zhiyang Xu, Xichen Pan, Yushi Hu, Can Qin, Tom Goldstein, Lifu Huang, Tianyi
524 Zhou, Saining Xie, Silvio Savarese, Le Xue, Caiming Xiong, and Ran Xu. Blip3-o: A family of
525 fully open unified multimodal models-architecture, training and dataset. *CoRR*, abs/2505.09568,
526 2025.

527 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shen-
528 glong Ye, Hao Tian, Zhaoyang Liu, Lixin Gu, Xuehui Wang, Qingyun Li, Yimin Ren, Zixuan
529 Chen, Jiapeng Luo, Jiahao Wang, Tan Jiang, Bo Wang, Conghui He, Botian Shi, Xingcheng
530 Zhang, Han Lv, Yi Wang, Wenqi Shao, Pei Chu, Zhongying Tu, Tong He, Zhiyong Wu, Huipeng
531 Deng, Jiaye Ge, Kai Chen, Min Dou, Lewei Lu, Xizhou Zhu, Tong Lu, Dahua Lin, Yu Qiao,
532 Jifeng Dai, and Wenhui Wang. Expanding performance boundaries of open-source multimodal
533 models with model, data, and test-time scaling. *CoRR*, abs/2412.05271, 2024b. doi: 10.48550/
534 ARXIV.2412.05271. URL <https://doi.org/10.48550/arXiv.2412.05271>.
535

536 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
537 Zhang, Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu, Yu Qiao, and Jifeng Dai. Intern VL:
538

540 scaling up vision foundation models and aligning for generic visual-linguistic tasks. In *IEEE/CVF*
 541 *Conference on Computer Vision and Pattern Recognition, CVPR 2024, Seattle, WA, USA, June*
 542 *16-22, 2024*, pp. 24185–24198. IEEE, 2024c.

543

544 Van Duc Cuong, Ta Dinh Tam, Tran Duc Chinh, and Nguyen Thi Hanh. Fluid: Flow-latent unified
 545 integration via token distillation for expert specialization in multimodal learning, 2025.

546

547 Chaorui Deng, Deyao Zhu, Kunchang Li, Chenhui Gou, Feng Li, Zeyu Wang, Shu Zhong, Wei-
 548 hao Yu, Xiaonan Nie, Ziang Song, Shi Guang, and Haoqi Fan. Emerging properties in unified
 549 multimodal pretraining. *CoRR*, 2025.

550

551 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 552 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
 553 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
 554 scale. In *9th International Conference on Learning Representations, ICLR 2021, Virtual Event,*
 555 *Austria, May 3-7, 2021*. OpenReview.net, 2021. URL <https://openreview.net/forum?id=YicbFdNTTy>.

556

557 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 558 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion En-
 559 glish, and Robin Rombach. Scaling rectified flow transformers for high-resolution image syn-
 560 thesis. In *Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria,*
 561 *July 21-27, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=FPnUhsQJ5B>.

562

563 Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li, Zhicheng Yan, Jitendra Malik, and
 564 Christoph Feichtenhofer. Multiscale vision transformers. In *Proceedings of the IEEE/CVF in-*
565 ternational conference on computer vision, pp. 6824–6835, 2021.

566

567 Weichen Fan, Chenyang Si, Junhao Song, Zhenyu Yang, Yinan He, Long Zhuo, Ziqi Huang, Ziyue
 568 Dong, Jingwen He, Dongwei Pan, et al. Vchitect-2.0: Parallel transformer for scaling up video
 569 diffusion models. *arXiv preprint arXiv:2501.08453*, 2025.

570

571 Xinyu Fang, Kangrui Mao, Haodong Duan, Xiangyu Zhao, Yining Li, Dahua Lin, and Kai Chen.
 572 Mmbench-video: A long-form multi-shot benchmark for holistic video understanding. *arXiv*
573 preprint arXiv:2406.14515, 2024.

574

575 Chaoyou Fu, Yuhan Dai, Yondong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu
 576 Zhou, Yunhang Shen, Mengdan Zhang, et al. Video-mme: The first-ever comprehensive evalua-
 577 tion benchmark of multi-modal llms in video analysis. *arXiv preprint arXiv:2405.21075*, 2024a.

578

579 Jaskie Fu, Kun-Hao Yeh, Zhaofan Zha, Xinyu Wang, Chenghao Li, Han-Yi Shaw, Chao-Yi Li, and
 580 Pin-Yu Chen. Easyanimate: An easy-to-use framework for creating high-quality and controllable
 581 videos from a single image. *arXiv preprint arXiv:2403.04416*, 2024b.

582

583 Rohit Girdhar, Alaaeldin El-Nouby, Mannat Singh, Kalyan Vasudev Alwala, Armand Joulin, and
 584 Ishan Misra. Omnimae: Single model masked pretraining on images and videos. In *Proceedings*
585 of the IEEE/CVF conference on computer vision and pattern recognition, pp. 10406–10417, 2023.

586

587 Dan Hendrycks, Collin Burns, Steven Basart, Andrew Critch, Jerry Li, Dawn Song, and Jacob
 588 Steinhardt. Aligning ai with shared human values. *Proceedings of the International Conference*
589 on Learning Representations (ICLR), 2021a.

590

591 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
 592 Steinhardt. Measuring massive multitask language understanding. *Proceedings of the Interna-
 593 tional Conference on Learning Representations (ICLR)*, 2021b.

594

595 Alex Henry, Prudhvi Raj Dachapally, Shubham Shantaram Pawar, and Yuxuan Chen. Query-key
 596 normalization for transformers. In Trevor Cohn, Yulan He, and Yang Liu (eds.), *Findings of*
 597 *the Association for Computational Linguistics: EMNLP 2020, Online Event, 16-20 November*
 598 *2020*, volume EMNLP 2020 of *Findings of ACL*, pp. 4246–4253. Association for Computational
 599 Linguistics, 2020. doi: 10.18653/v1/2020.FINDINGS-EMNLP.379. URL <https://doi.org/10.18653/v1/2020.findings-emnlp.379>.

594 Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey A. Gritsenko,
 595 Diederik P. Kingma, Ben Poole, Mohammad Norouzi, David J. Fleet, and Tim Salimans. Im-
 596 agen video: High definition video generation with diffusion models. *CoRR*, 2022a.
 597

598 Jonathan Ho, Tim Salimans, Alexey A. Gritsenko, William Chan, Mohammad Norouzi, and David J.
 599 Fleet. Video diffusion models. In *Advances in Neural Information Processing Systems 35: Annual
 600 Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA,
 601 USA, November 28 - December 9, 2022*, 2022b.

602 Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianx-
 603 ing Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark suite for
 604 video generative models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 605 Pattern Recognition*, pp. 21807–21818, 2024.

606 Yunseok Jang, Yale Song, Youngjae Yu, Youngjin Kim, and Gunhee Kim. TGIF-QA: toward spatio-
 607 temporal reasoning in visual question answering. In *2017 IEEE Conference on Computer Vision
 608 and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017*, pp. 1359–1367.
 609 IEEE Computer Society, 2017.

610 Peng Jin, Ryuichi Takanobu, Wancai Zhang, Xiaochun Cao, and Li Yuan. Chat-univi: Unified
 611 visual representation empowers large language models with image and video understanding. In
 612 *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024, Seattle, WA,
 613 USA, June 16-22, 2024*, pp. 13700–13710. IEEE, 2024. doi: 10.1109/CVPR52733.2024.01300.

614 Wonkyun Kim, Changin Choi, Wonseok Lee, and Wonjong Rhee. An image grid can be worth a
 615 video: Zero-shot video question answering using a vlm, 2024. URL <https://arxiv.org/abs/2403.18406>.

616 Diederik P. Kingma and Max Welling. An introduction to variational autoencoders. *Found. Trends
 617 Mach. Learn.*, 12(4):307–392, 2019. doi: 10.1561/2200000056. URL <https://doi.org/10.1561/2200000056>.

618 Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
 619 Bo Wu, Jianwei Zhang, et al. Hunyanvideo: A systematic framework for large video generative
 620 models. *arXiv preprint arXiv:2412.03603*, 2024.

621 Kunchang Li, Yinan He, Yi Wang, Yizhuo Li, Wenhui Wang, Ping Luo, Yali Wang, Limin Wang,
 622 and Yu Qiao. Videochat: Chat-centric video understanding. *CoRR*, abs/2305.06355, 2023.

623 Zhaowei Li, Wei Wang, YiQing Cai, Xu Qi, Pengyu Wang, Dong Zhang, Hang Song, Botian Jiang,
 624 Zhida Huang, and Tao Wang. Unifiedmllm: Enabling unified representation for multi-modal
 625 multi-tasks with large language model. *arXiv preprint arXiv:2408.02503*, 2024.

626 Bin Lin, Yang Ye, Bin Zhu, Jiaxi Cui, Munan Ning, Peng Jin, and Li Yuan. Video-llava: Learning
 627 united visual representation by alignment before projection. In Yaser Al-Onaizan, Mohit Bansal,
 628 and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural
 629 Language Processing, EMNLP 2024, Miami, FL, USA, November 12-16, 2024*, pp. 5971–5984.
 630 Association for Computational Linguistics, 2024.

631 Akide Liu, Zeyu Zhang, Zhixin Li, Xuehai Bai, Yizeng Han, Jiasheng Tang, Yuanjie Xing, Jichao
 632 Wu, Mingyang Yang, Weihua Chen, et al. Fpsattention: Training-aware fp8 and sparsity co-design
 633 for fast video diffusion. *arXiv preprint arXiv:2506.04648*, 2025.

634 Ruyang Liu, Chen Li, Yixiao Ge, Thomas H. Li, Ying Shan, and Ge Li. Bt-adapter: Video conver-
 635 sation is feasible without video instruction tuning. In *IEEE/CVF Conference on Computer Vision
 636 and Pattern Recognition, CVPR 2024, Seattle, WA, USA, June 16-22, 2024*, pp. 13658–13667.
 637 IEEE, 2024. doi: 10.1109/CVPR52733.2024.01296.

638 Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin, and Han Hu. Video swin trans-
 639 former. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 640 pp. 3202–3211, 2022.

648 Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu,
 649 and Jianfeng Gao. Chameleon: Plug-and-play compositional reasoning with large language mod-
 650 els. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey
 651 Levine (eds.), *Advances in Neural Information Processing Systems 36: Annual Conference on*
 652 *Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December*
 653 *10 - 16, 2023*, 2023.

654 Ruipu Luo, Ziwang Zhao, Min Yang, Junwei Dong, Minghui Qiu, Pengcheng Lu, Tao Wang, and
 655 Zhongyu Wei. Valley: Video assistant with large language model enhanced ability. *CoRR*,
 656 [abs/2306.07207](https://arxiv.org/abs/2306.07207), 2023.

658 Zhengyao Lv, Tianlin Pan, Chenyang Si, Zhaoxi Chen, Wangmeng Zuo, Ziwei Liu, and Kwan-
 659 Yee K. Wong. Rethinking cross-modal interaction in multimodal diffusion transformers, 2025.
 660 URL <https://arxiv.org/abs/2506.07986>.

661 Muhammad Maaz, Hanoona Abdul Rasheed, Salman Khan, and Fahad Khan. Video-chatgpt: To-
 662 wards detailed video understanding via large vision and language models. In Lun-Wei Ku, Andre
 663 Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Associa-
 664 tion for Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand,
 665 August 11-16, 2024*, pp. 12585–12602. Association for Computational Linguistics, 2024. doi:
 666 10.18653/V1/2024.ACL-LONG.679.

668 Andrew Melnik, Michal Ljubljjanac, Cong Lu, Qi Yan, Weiming Ren, and Helge J. Ritter. Video
 669 diffusion models: A survey. *Trans. Mach. Learn. Res.*, 2024.

670 Lingchen Meng, Jianwei Yang, Rui Tian, Xiyang Dai, Zuxuan Wu, Jianfeng Gao, and
 671 Yu-Gang Jiang. Deepstack: Deeply stacking visual tokens is surprisingly simple and
 672 effective for Imms. In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela
 673 Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *Advances in Neu-
 674 ral Information Processing Systems 38: Annual Conference on Neural Information Pro-
 675 cessing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,
 676 2024*, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/29cd7f8331d13ede6dc6d6ef3dfacb70-Abstract-Conference.html.

678 MiniMax. Minimax video generation api is now available. <https://www.minimaxi.com/en/news/video-generation-api>, October 2024. Accessed: 2025-07-24.

681 Tian Pan, Yibing Song, Tianyu Yang, Wenhao Jiang, and Wei Liu. Videomoco: Contrastive video
 682 representation learning with temporally adversarial examples. In *Proceedings of the IEEE/CVF*
 683 *conference on computer vision and pattern recognition*, pp. 11205–11214, 2021.

685 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *IEEE/CVF*
 686 *International Conference on Computer Vision, ICCV 2023, Paris, France, October 1-6, 2023*, pp.
 687 4172–4182. IEEE, 2023. doi: 10.1109/ICCV51070.2023.00387. URL <https://doi.org/10.1109/ICCV51070.2023.00387>.

689 A. J. Piergiovanni, Kairo Morton, Weicheng Kuo, Michael S. Ryoo, and Anelia Angelova. Video
 690 question answering with iterative video-text co-tokenization. In Shai Avidan, Gabriel J. Bros-
 691 tow, Moustapha Cissé, Giovanni Maria Farinella, and Tal Hassner (eds.), *Computer Vision -
 692 ECCV 2022 - 17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings,
 693 Part XXXVI*, volume 13696 of *Lecture Notes in Computer Science*, pp. 76–94. Springer, 2022.

694 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 695 Penna, and Robin Rombach. SDXL: improving latent diffusion models for high-resolution image
 696 synthesis. In *The Twelfth International Conference on Learning Representations, ICLR 2024,
 697 Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024.

699 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 700 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 701 models from natural language supervision. In *International conference on machine learning*, pp.
 8748–8763. PMLR, 2021.

702 Runway. Gen-3 alpha: A new frontier for video generation. Technical report, Runway, July 2024.
 703 Accessed: 2025-07-24.
 704

705 Noam Shazeer. GLU variants improve transformer. *CoRR*, abs/2002.05202, 2020. URL <https://arxiv.org/abs/2002.05202>.
 706

707 Jingwei Shi, Zeyu Zhang, Biao Wu, Yanjie Liang, Meng Fang, Ling Chen, and Yang Zhao. Presen-
 708 tagent: Multimodal agent for presentation video generation. *arXiv preprint arXiv:2507.04036*,
 709 2025.
 710

711 Zhan Shi, Xu Zhou, Xipeng Qiu, and Xiaodan Zhu. Improving image captioning with better use of
 712 captions, 2020. URL <https://arxiv.org/abs/2006.11807>.
 713

714 Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Re-
 715 flexion: language agents with verbal reinforcement learning. In Alice Oh, Tristan Nau-
 716 mann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), *Advances in Neural Infor-
 717 mation Processing Systems 36: Annual Conference on Neural Infor-
 718 mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
 719 2023*. URL http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html.
 720

721 Ivan Skorokhodov, Sergey Tulyakov, and Mohamed Elhoseiny. Stylegan-v: A continuous video
 722 generator with the price, image quality and perks of stylegan2. In *IEEE/CVF Conference on
 723 Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24,
 724 2022*, pp. 3616–3626, 2022.
 725

726 Jianlin Su, Murtadha H. M. Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer:
 727 Enhanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.
 728 doi: 10.1016/J.NEUCOM.2023.127063. URL <https://doi.org/10.1016/j.neucom.2023.127063>.
 729

730 Zhiyu Tan, Hao Yang, Luozheng Qin, Jia Gong, Mengping Yang, and Hao Li. Omni-video: Democ-
 731 ratizing unified video understanding and generation. *CoRR*, abs/2507.06119, 2025.
 732

733 Kuaishou Technology. Kling. <https://klingai.kuaishou.com/>, 2025. Accessed: 2025-
 734 07-24.
 735

736 Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. Videomae: Masked autoencoders are
 737 data-efficient learners for self-supervised video pre-training. In *Advances in Neural Infor-
 738 mation Processing Systems 35: Annual Conference on Neural Infor-
 739 mation Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022*,
 740 2022. *CoRR*, abs/2502.14786, 2025.
 741

742 Michael Tscharnann, Alexey A. Gritsenko, Xiao Wang, Muhammad Ferjad Naeem, Ibrahim Alab-
 743 dulmohsin, Nikhil Parthasarathy, Talfan Evans, Lucas Beyer, Ye Xia, Basil Mustafa, Olivier J.
 744 Hénaff, Jeremiah Harmsen, Andreas Steiner, and Xiaohua Zhai. Siglip 2: Multilingual vision-
 745 language encoders with improved semantic understanding, localization, and dense features.
 746 *CoRR*, abs/2502.14786, 2025.
 747

748 Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan Kautz. Mocogan: Decomposing motion
 749 and content for video generation. In *2018 IEEE Conference on Computer Vision and Pattern
 750 Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018*, pp. 1526–1535, 2018.
 751

752 Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu, Haiming Zhao,
 753 Jianxiao Yang, Jianyuan Zeng, Jiayu Wang, Jingfeng Zhang, Jingren Zhou, Jinkai Wang, Jixuan
 754 Chen, Kai Zhu, Kang Zhao, Keyu Yan, Lianghua Huang, Xiaofeng Meng, Ningyi Zhang, Pandeng
 755 Li, Pingyu Wu, Ruihang Chu, Ruili Feng, Shiwei Zhang, Siyang Sun, Tao Fang, Tianxing Wang,
 756 Tianyi Gui, Tingyu Weng, Tong Shen, Wei Lin, Wei Wang, Wei Wang, Wenmeng Zhou, Wente
 757 Wang, Wenting Shen, Wenyuan Yu, Xianzhong Shi, Xiaoming Huang, Xin Xu, Yan Kou, Yangyu
 758 Lv, Yifei Li, Yijing Liu, Yiming Wang, Yingya Zhang, Yitong Huang, Yong Li, You Wu, Yu Liu,
 759 Yulin Pan, Yun Zheng, Yuntao Hong, Yupeng Shi, Yutong Feng, Zeyinzi Jiang, Zhen Han, Zhi-
 760 Fan Wu, and Ziyu Liu. Wan: Open and advanced large-scale video generative models. *CoRR*,
 761 abs/2503.20314, 2025.

756 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 757 Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
 758 Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model's
 759 perception of the world at any resolution. *CoRR*, abs/2409.12191, 2024a.

760 Wenhui Wang, Hangbo Bao, Li Dong, Johan Bjorck, Zhiliang Peng, Qiang Liu, Kriti Aggarwal,
 761 Owais Khan Mohammed, Saksham Singhal, Subhajit Som, et al. Image as a foreign language:
 762 Beit pretraining for vision and vision-language tasks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 19175–19186, 2023.

763 Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan
 764 Zhang, Yueze Wang, Zhen Li, Qiying Yu, Yingli Zhao, Yulong Ao, Xuebin Min, Tao Li, Boya
 765 Wu, Bo Zhao, Bowen Zhang, Liangdong Wang, Guang Liu, Zheqi He, Xi Yang, Jingjing Liu,
 766 Yonghua Lin, Tiejun Huang, and Zhongyuan Wang. Emu3: Next-token prediction is all you
 767 need. *CoRR*, abs/2409.18869, 2024b.

768 Chen Wei, Haoqi Fan, Saining Xie, Chao-Yuan Wu, Alan L. Yuille, and Christoph Feichtenhofer.
 769 Masked feature prediction for self-supervised visual pre-training. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022*, pp. 14648–14658, 2022.

770 Wenhao Wu. Freeva: Offline MLLM as training-free video assistant. *CoRR*, abs/2405.07798, 2024.
 771 doi: 10.48550/ARXIV.2405.07798. URL <https://doi.org/10.48550/arXiv.2405.07798>.

772 Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin,
 773 Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer
 774 to unify multimodal understanding and generation. In *The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*, 2025a.

775 Jinheng Xie, Zhenheng Yang, and Mike Zheng Shou. Show-o2: Improved native unified multimodal
 776 models. *CoRR*, abs/2506.15564, 2025b. doi: 10.48550/ARXIV.2506.15564. URL <https://doi.org/10.48550/arXiv.2506.15564>.

777 Mingze Xu, Mingfei Gao, Zhe Gan, Hong-You Chen, Zhengfeng Lai, Haiming Gang, Kai Kang,
 778 and Afshin Dehghan. Slowfast-llava: A strong training-free baseline for video large language
 779 models, 2024. URL <https://arxiv.org/abs/2407.15841>.

780 An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
 781 Chengyuan Li, Dayiheng Liu, Fei Huang, Guantong Dong, Haoran Wei, Huan Lin, Jialong Tang,
 782 Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jingren
 783 Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang,
 784 Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,
 785 Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong
 786 Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing Liu,
 787 Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru
 788 Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report. *CoRR*, abs/2407.10671, 2024.
 789 doi: 10.48550/ARXIV.2407.10671. URL <https://doi.org/10.48550/arXiv.2407.10671>.

800 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 801 Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng
 802 Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang,
 803 Jian Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang, Le Yu,
 804 Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui Men,
 805 Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang Ren,
 806 Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yingqi Zhang,
 807 Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu.
 808 Qwen3 technical report. *CoRR*, abs/2505.09388, 2025. doi: 10.48550/ARXIV.2505.09388. URL
 809 <https://doi.org/10.48550/arXiv.2505.09388>.

810 Antoine Yang, Antoine Miech, Josef Sivic, Ivan Laptev, and Cordelia Schmid. Zero-shot video ques-
 811 tion answering via frozen bidirectional language models. In Sanmi Koyejo, S. Mohamed, A. Agar-
 812 wal, Danielle Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Information Processing*
 813 *Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022,*
 814 *New Orleans, LA, USA, November 28 - December 9, 2022*, 2022.

815 Zhiyu Yin, Kehai Chen, Xuefeng Bai, Ruili Jiang, Juntao Li, Hongdong Li, Jin Liu, Yang Xiang,
 816 Jun Yu, and Min Zhang. Asurvey: Spatiotemporal consistency in video generation, 2025.

817 Tianyu Yu, Zefan Wang, Chongyi Wang, Fuwei Huang, Wenshuo Ma, Zhihui He, Tianchi Cai, Weize
 818 Chen, Yuxiang Huang, Yuanqian Zhao, Bokai Xu, Junbo Cui, Yingjing Xu, Liqing Ruan, Luoyuan
 819 Zhang, Hanyu Liu, Jingkun Tang, Hongyuan Liu, Qining Guo, Wenhao Hu, Bingxiang He, Jie
 820 Zhou, Jie Cai, Ji Qi, Zonghao Guo, Chi Chen, Guoyang Zeng, Yuxuan Li, Ganqu Cui, Ning Ding,
 821 Xu Han, Yuan Yao, Zhiyuan Liu, and Maosong Sun. Minicpm-v 4.5: Cooking efficient mllms
 822 via architecture, data, and training recipe. *CoRR*, abs/2509.18154, 2025. doi: 10.48550/ARXIV.
 823 2509.18154. URL <https://doi.org/10.48550/arXiv.2509.18154>.

824 Zhou Yu, Dejing Xu, Jun Yu, Ting Yu, Zhou Zhao, Yueling Zhuang, and Dacheng Tao. Activitynet-
 825 qa: A dataset for understanding complex web videos via question answering. In *The Thirty-Third*
 826 *AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications*
 827 *of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational*
 828 *Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February*
 829 *1, 2019*, pp. 9127–9134. AAAI Press, 2018.

830 Zhen Yuan, Yifei Chen, Shuo Zhao, Wen yi Wang, Ming-Hao Zhang, Zhiping Wang, Le Zhang,
 831 Boxi Zhao, Jian Li, Zhi-Yuan Wu, Ming Ding, and Jie Tang. Cogvideox: A general-purpose
 832 video generation model. *arXiv preprint arXiv:2406.06511*, 2024.

833 Xiang Yue, Yuansheng Ni, Tianyu Zheng, Kai Zhang, Ruoqi Liu, Ge Zhang, Samuel Stevens,
 834 Dongfu Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao Yu, Ruibin Yuan, Renliang Sun,
 835 Ming Yin, Boyuan Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang, Huan Sun, Yu Su, and
 836 Wenhui Chen. MMMU: A massive multi-discipline multimodal understanding and reason-
 837 ing benchmark for expert AGI. In *IEEE/CVF Conference on Computer Vision and Pattern*
 838 *Recognition, CVPR 2024, Seattle, WA, USA, June 16-22, 2024*, pp. 9556–9567. IEEE, 2024.
 839 doi: 10.1109/CVPR52733.2024.00913. URL <https://doi.org/10.1109/CVPR52733.2024.00913>.

840 Biao Zhang and Rico Sennrich. Root mean square layer normalization. In Hanna M. Wallach,
 841 Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett
 842 (eds.), *Advances in Neural Information Processing Systems 32: Annual Conference on Neural*
 843 *Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,*
 844 *Canada*, pp. 12360–12371, 2019. URL <https://proceedings.neurips.cc/paper/2019/hash/1e8a19426224ca89e83cef47f1e7f53b-Abstract.html>.

845 Hang Zhang, Xin Li, and Lidong Bing. Video-llama: An instruction-tuned audio-visual language
 846 model for video understanding. In Yansong Feng and Els Lefever (eds.), *Proceedings of the*
 847 *2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023 - System*
 848 *Demonstrations, Singapore, December 6-10, 2023*, pp. 543–553. Association for Computational
 849 Linguistics, 2023a.

850 Renrui Zhang, Jiaming Han, Chris Liu, Aojun Zhou, Pan Lu, Yu Qiao, Hongsheng Li, and Peng Gao.
 851 Llama-adapter: Efficient fine-tuning of large language models with zero-initialized attention. In
 852 *The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,*
 853 *May 7-11, 2024*. OpenReview.net, 2023b.

854 Sijie Zhao, Yong Zhang, Xiaodong Cun, Shaoshu Yang, Muyao Niu, Xiaoyu Li, Wenbo
 855 Hu, and Ying Shan. CV-VAE: A compatible video VAE for latent generative video
 856 models. In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ul-
 857 rich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *Advances in Neural In-*
 858 *formation Processing Systems 38: Annual Conference on Neural Information Pro-*
 859 *cessing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,*

864 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/1787533e171dcc8549cc2eb5a4840eec-Abstract-Conference.html.
865
866

867 Chunting Zhou, Lili Yu, Arun Babu, Kushal Tirumala, Michihiro Yasunaga, Leonid Shamis, Ja-
868 cob Kahn, Xuezhe Ma, Luke Zettlemoyer, and Omer Levy. Transfusion: Predict the next token
869 and diffuse images with one multi-modal model, 2024a. URL <https://arxiv.org/abs/2408.11039>.
870

871 Junjie Zhou, Yan Shu, Bo Zhao, Boya Wu, Shitao Xiao, Xi Yang, Yongping Xiong, Bo Zhang,
872 Tiejun Huang, and Zheng Liu. Mlvu: A comprehensive benchmark for multi-task long video
873 understanding. *arXiv preprint arXiv:2406.04264*, 2024b.

874 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
875 Duan, Weijie Su, Jie Shao, Zhangwei Gao, Erfei Cui, Xuehui Wang, Yue Cao, Yangzhou
876 Liu, Xingguang Wei, Hongjie Zhang, Haomin Wang, Weiye Xu, Hao Li, Jiahao Wang, Ni-
877 anchen Deng, Songze Li, Yinan He, Tan Jiang, Jiapeng Luo, Yi Wang, Conghui He, Botian
878 Shi, Xingcheng Zhang, Wenqi Shao, Junjun He, Yingtong Xiong, Wenwen Qu, Peng Sun, Pen-
879 glong Jiao, Han Lv, Lijun Wu, Kaipeng Zhang, Huipeng Deng, Jiaye Ge, Kai Chen, Limin
880 Wang, Min Dou, Lewei Lu, Xizhou Zhu, Tong Lu, Dahua Lin, Yu Qiao, Jifeng Dai, and
881 Wenhui Wang. Internvl3: Exploring advanced training and test-time recipes for open-source
882 multimodal models. *CoRR*, abs/2504.10479, 2025. doi: 10.48550/ARXIV.2504.10479. URL
883 <https://doi.org/10.48550/arXiv.2504.10479>.
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918 A APPENDIX
919920 A.1 LLM USE DECLARATION
921922 Large Language Models (ChatGPT) were used exclusively to improve the clarity and fluency of
923 English writing. They were not involved in research ideation, experimental design, data analysis, or
924 interpretation. The authors take full responsibility for all content.
925926 A.2 HIERARCHICAL POST TRAINING
927928 **Initialization.** To avoid the prohibitive cost of training a unified video model from scratch, we
929 bootstrap UniVid from strong, publicly available checkpoints and finetune only small subsets of
930 parameters. Our architecture follows the BAGEL (Deng et al., 2025) design framework, adopting
931 its multimodal integration approach with three key components: Qwen2 (Yang et al., 2024) as the
932 LLM backbone with standard architectural choices such as RMSNorm (Zhang & Sennrich, 2019),
933 SwiGLU (Shazeer, 2020), RoPE (Su et al., 2024), GQA (Ainslie et al., 2023), and QK-Norm (Henry
934 et al., 2020) for training stability, SigLIP2-so400m/14 (Tschannen et al., 2025) as the ViT (Dosovitskiy
935 et al., 2021) encoder for visual understanding with NaViT support for native aspect ratios, and a
936 pre-trained FLUX VAE with 8x downsampling and frozen weights. The framework interleaves text,
937 ViT, and VAE tokens within the LLM using generalized causal attention, where tokens attend to all
938 preceding modality splits while maintaining appropriate attention patterns within each modality.
939940 **Data curation and formatting.** For understanding, we align our data format with the dialog style
941 used by Video-ChatGPT (Maaz et al., 2024). ActivityNet-QA annotations (`video_id, q, a`) are
942 converted into structured conversations. Specifically, each sample is represented as a JSON object
943 containing three fields: (1) an identifier, (2) a video reference, and (3) a conversations array
944 consisting of two turns, a user query and the corresponding model response. For generation, we curate
945 a subset of OpenVid-1M to form text/image to video pairs. Videos are uniformly sub-sampled and
946 preprocessed identically to inference.
947948 **Stage I generation branch alignment.** We couple the MLLM with Wan 2.2 and adapt the condition-
949 ing path so that MLLM-produced tokens can reliably steer synthesis. Concretely, we (i) insert a
950 textual adapter between the LLM tokens, with dynamic sequence length adaptation, and (ii) apply
951 LoRA to the DiT cross-attention layers; all other DiT/MLLM weights remain frozen. Training uses
952 a standard flow-matching objective with classifier-free guidance dropout on text, optimizing only
953 the context projector and LoRA parameters. This stage preserves MLLM’s native understanding
954 while aligning Wan’s generation to the rich semantics emitted by MLLM.
955956 **Stage II understanding adaptation.** We finetune for video QA on ActivityNet-QA using 20k
957 samples from the dataset. Each sample concatenates the question with a `<video>` placeholder,
958 and we feed a multi-frame clip obtained by uniform sampling. Frames are encoded by the ViT
959 into visual tokens and projected to the LLM space via the connector. We adopt instruction SFT
960 for video: compute autoregressive cross-entropy only on the assistant turns; user tokens are fully
961 masked to prevent label leakage. To keep compute moderate while injecting temporal cues, we
962 finetune only the last two ViT blocks and the connector for 4 epochs, keeping the LLM frozen.
963964 **Stage III joint training.** Finally, we co-train generation and understanding to let the two branches
965 benefit from each other. [During joint training, we gradually activate the VAE feature branch and alter-](#)
966 [nate which modules are trainable. In the initial phase, only the last few ViT layers and connector](#)
967 [are trainable and the adapter is frozen, so the MLLM is forced to encode features in ViT that are](#)
968 [beneficial for both understanding and generation. Next, we freeze the ViT and progressively intro-](#)
969 [duce VAE features into the adapter input, enabling the DiT LoRA to learn how to generate guided](#)
970 [by different mixing ratios of ViT and VAE features. Finally, we co-train both the ViT layers, con-](#)
971 [nector, adapter and DiT to fully exploit the complementary strengths of semantic ViT features and](#)
972 [detail-rich VAE features. On the understanding side, Fig. 10 shows that joint training leads to faster](#)
973 [convergence and consistently higher MSVD-QA \(Piergiovanni et al., 2022\) accuracy than single-](#)
974 [task training. On the generation side, Stage III further improves the VBench-Long overall score](#)

972

973

974

975

976

977

978

979

● who is laughing?

980

● The person **on the right** is laughing.

981

● What letterman interviewing comedic actor bill murray?

982

● The video shows a scene from **"The Tonight Show Starring David Letterman,"** where the host **David** Letterman is interviewing the comedic actor Bill Murray.

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

● What is the role of the sail in the video?

● The sail in the video plays a crucial role in the sport of windsurfing. It catches the wind, providing the necessary force to propel the windsurfer across the water. The sail's **position and angle are adjusted by the windsurfer to control speed and direction**, allowing them to navigate the water and perform various maneuvers.

● How safe is this game in the video?

● The game shown in the video is windsurfing, which can be considered relatively safe for experienced individuals. However, it **does carry some risks**, such as falling into the water, collisions with other windsurfers or objects, and potential injuries from the sail or board. It is important for participants to wear appropriate safety gear, such as life jackets and helmets, and to be aware of their surroundings and wind conditions. Additionally, taking lessons from a qualified instructor can help ensure a safer experience.

Figure 5: The qualitative results of the video understanding. Blue for static questions, green for dynamic questions.

from 79.28 to 85.27 and boosts most technical and semantic dimensions, as summarized in Tab. 6, confirming that better video understanding feedback translates into higher-quality video generation.

A.3 MORE EXAMPLES OF VIDEO GENERATION AND UNDERSTANDING.

We provide more examples of video understanding and generation in Fig. 5 and Fig. 6

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

A dolphin leaps out of the ocean, splashing water as it dives back in.

1038

1039

1040

1041

1042

1043

1044

Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlit stage.

1045

1046

1047

1048

1049

A futuristic drone weaves quickly between skyscrapers, lights glowing in the night sky.

1050

1051

1052

1053

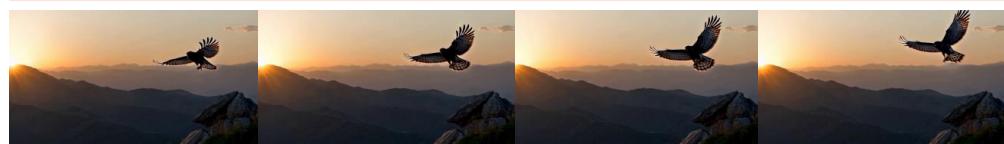
1054

1055

1056

A high-speed train rushes past the station, its motion blurring in the background.

Text and Image to Video



1057

1058

1059

1060

1061

1062

1063

A hawk soars above the mountains, wings spread wide against the sunset.
(from image)



1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Figure 6: The qualitative results of T2V and TI2V generation.

1080
1081

A.4 TEXT PROMPTS USED IN THE UNDERSTANDING

1082

Role. Classify a video question as static or dynamic. Output JSON only.

1083

Definitions.

1084

- dynamic: requires temporal reasoning such as counting, repetition, order, or changes over time (e.g., “how many times”, “before/after”, “first/last”).
- static: can be answered from a small set of unordered frames (identity, attribute, location, scene, one-shot action).

1085

Question. *{question}*

1086

Return. Single-line JSON with fields: qtype ("static" or "dynamic"), rationale (1–2 short phrases; no extra text).

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

Role. Summarize chronologically ordered frame notes into a compact global caption. Do not invent facts.

1097

Input. Frame-wise notes (earlier → later):

1098

- *{note_1}*

1099

- *{note_2}*

1100

...

1101

Write. One global caption (2–4 sentences) that connects multiple frames, focusing on: (1) moving entities with consistent appearance and actions across time; (2) static scene objects and their states; (3) temporal hints only if explicitly evidenced (e.g., “then”, “later”, “repeatedly”). Style: terse and factual; no bullet lists, storytelling, or frame-by-frame recitation.

1102

1103

1104

1105

1106

1107

1108

Role. Precise evaluator for video-QA. Return a *single-line* JSON only (no Markdown/code).

1109

Keys. score (float 0..1), verdict ("accept" if score ≥ 0.7 else "reject"), brief_reason (1–2 short bullets).

1110

Example user. *{one_shot_user}*

1111

Example assistant. *{one_shot_assistant}*

1112

Your task. Given the current case, output the JSON only.

1113

1114

1115

1116

1117

1118

3: Answer Evaluation Prompt

1119

1120

1121

Role. Reflector in a video-understanding pipeline. You receive the question, a global caption (from 16 uniformly sampled frames), the last answer (low confidence/rejected), and its evaluation JSON.

1122

Objective. Analyze why the answer likely fails (missing object, wrong span, ambiguity, etc.) and produce a single short *declarative* retrieval text for the next round of keyframe selection.

1123

1124

1125

1126

1127

1128

Strict rules. (1) Output JSON only with key refined_query. (2) refined_query ≤ 25 tokens, declarative statement (not a question), capturing disambiguating cues (entities, attributes, actions, temporal hints, viewpoint). (3) If confidence is already good (score ≥ 0.7 or verdict="accept"), return an empty string. (4) Prefer concrete visual cues (colors, clothing, object names, motion phase, timestamps, left/right, first/last). (5) No speculation or unseen entities.

1129

Inputs. Question: *{question}* Global caption: *{global_caption}* Last answer: *{last_answer}* Evaluation JSON: *{eval_json}*

1130

Return. *{"refined_query": "..."}*

1131

1132

1133

4: Reflection Prompt

1134 Table 3: Ablation study of UniVid on VBench-Long. *w/o* means “without”. Best results are **bold**.
1135

Model	Overall Scores			Technical Quality				Aesthetic Quality		
	Total Score↑	Quality↑	Semantic↑	Subject↑	Background↑	Temporal↑	Motion↑	Dynamic↑	Aesthetic↑	Imaging↑
UniVid (base)	76.25	77.11	72.82	93.82	93.43	94.15	94.04	57.16	58.47	65.65
UniVid (w/o MLLM)	77.82	78.69	74.32	94.55	94.78	95.19	94.79	58.08	59.88	66.01
UniVid (w/o TMA)	80.42	81.51	76.04	96.55	95.91	97.12	96.25	59.98	62.08	67.10
UniVid (Full)	85.27	86.44	80.58	98.96	97.76	99.88	99.25	61.83	64.21	73.03

Model	Semantic Fidelity								
	Object↑	Multi-Obj↑	Action↑	Color↑	Spatial↑	Scene↑	Appearance↑	Temporal↑	Overall↑
UniVid (base)	89.53	73.32	89.41	87.86	76.13	42.32	19.03	21.60	22.48
UniVid (w/o MLLM)	90.80	74.37	90.12	87.99	76.63	43.32	20.57	22.26	22.98
UniVid (w/o TMA)	91.51	75.42	91.53	89.33	77.58	44.61	21.03	23.62	24.13
UniVid (Full)	94.52	77.45	94.20	92.10	80.70	46.66	23.57	25.91	27.60

1140 Table 4: Ablation study on TMA schedules on VBench-Long. *w/o* means “without”. Best results
1141 are **bold**.
1142

Model	Overall Scores			Technical Quality				Aesthetic Quality		
	Total Score↑	Quality↑	Semantic↑	Subject↑	Background↑	Temporal↑	Motion↑	Dynamic↑	Aesthetic↑	Imaging↑
UniVid (w/o TMA)	80.42	81.51	76.04	96.55	95.91	97.12	96.25	59.98	62.08	67.10
UniVid (Constant)	82.72	83.96	77.78	97.81	96.41	98.12	98.01	60.11	63.47	70.65
UniVid (Step)	82.80	84.35	76.59	97.32	96.74	98.15	98.54	59.71	63.91	71.19
UniVid (Linear)	83.30	84.51	78.47	97.45	96.78	98.20	98.76	60.01	63.88	71.01
UniVid (Consine)	85.27	86.44	80.58	98.96	97.76	99.88	99.25	61.83	64.21	73.03

Model	Semantic Fidelity								
	Object↑	Multi-Obj↑	Action↑	Color↑	Spatial↑	Scene↑	Appearance↑	Temporal↑	Overall↑
UniVid (w/o TMA)	91.51	75.42	91.53	89.33	77.58	44.61	21.03	23.62	24.13
UniVid (Constant)	92.52	76.81	92.40	90.81	79.13	45.29	22.01	24.19	25.41
UniVid (Step)	91.78	75.81	91.41	89.88	78.13	44.89	21.78	23.54	24.31
UniVid (Linear)	92.80	76.32	92.11	90.98	79.61	45.25	22.56	24.21	26.91
UniVid (Consine)	94.52	77.45	94.20	92.10	80.70	46.66	23.57	25.91	27.60

1162 **Role.** Assist video understanding via per-frame analysis. Describe the main objects and actions
1163 in *this single frame* concisely.

1164 **Focus.** (1) Living entities: distinct entities (appearance, clothing, color, species), likely roles,
1165 and what each is doing (verb phrases). (2) Static objects & scene: salient items and states (color,
1166 shape, on/off, open/closed, broken/intact), plus scene context (indoor/outdoor, location hints).

1167 **Style.** Specific but brief; no speculation; 2–4 short sentences.

5: Single-Frame Analysis Prompt

1172 **Role.** Answer concisely using only the question and the global video caption.

1173 **Inputs.** Question: $\{question\}$ Global caption (may miss fine details): $\{global_caption\}$

1174 **Instruction.** Produce one short answer (1–2 sentences). If information is insufficient, reply:
1175 “*Not enough evidence from global caption.*”

6: Global Answer Prompt

A.5 PYRAMID REFLECTION AS TEST-TIME RL

1182 We cast Pyramid Reflection as a test-time reinforcement learning procedure operating on an ordered
1183 evidence set. At round r , the state is $x_r = (s_r, W_r, C_g)$, where s_r is a short search text, W_r is the
1184 ordered working set of frames, and C_g is a global caption distilled once from uniformly sampled
1185 seeds. The action reconfigures W_r given s_r via an expand or shrink policy. The Actor answers from
1186 (W_r, C_g) , and the Evaluator returns a score $R_r \in [0, 1]$ and a verdict that controls early stopping.
1187 All frame embeddings are computed once and cached; later rounds update indices and similarity or
1188 diversity scores only.

1188
1189
1190 Table 5: **Ablation study of the generation branch of UniVid to verify the effectiveness of encoder**
1191 **setting. w/o means “without”. Best results are bold.**

Model	Overall Scores			Technical Quality					Aesthetic Quality	
	Total Score↑	Quality↑	Semantic↑	Subject↑	Background↑	Temporal↑	Motion↑	Dynamic↑	Aesthetic↑	Imaging↑
UniVid (w/o ViT)	48.53	57.16	46.37	74.51	72.91	74.02	74.23	46.91	47.01	55.10
UniVid (w/o VAE)	71.78	71.90	71.75	89.43	88.75	90.19	89.80	57.23	58.86	67.12
UniVid (Ours, VAE & ViT Encoder)	85.27	86.44	80.58	98.96	97.76	99.88	99.25	61.83	64.21	73.03

Model	Semantic Fidelity									
	Object↑	Multi-Obj↑	Action↑	Color↑	Spatial↑	Scene↑	Appearance↑	Temporal↑	Overall↑	
UniVid (w/o ViT)	72.41	54.41	75.51	74.31	58.68	32.69	14.12	15.63	17.15	
UniVid (w/o VAE)	87.23	69.54	87.34	88.92	74.32	39.27	20.54	21.61	22.12	
UniVid (Ours, VAE & ViT Encoder)	94.52	77.45	94.20	92.10	80.70	46.66	23.57	25.91	27.60	

1194
1195
1196
1197
1198 Table 6: Stage I vs Stage III performance on VBench-Long to verify the effect of hierarchical joint
1199 training on video generation. w/o means “without”. Best results are bold.

Model	Overall Scores			Technical Quality					Aesthetic Quality	
	Total Score↑	Quality↑	Semantic↑	Subject↑	Background↑	Temporal↑	Motion↑	Dynamic↑	Aesthetic↑	Imaging↑
UniVid (Satge I)	79.28	80.38	74.90	94.23	94.19	95.31	96.32	58.98	61.91	70.11
UniVid (Joint, Stage III)	85.27	86.44	80.58	98.96	97.76	99.88	99.25	61.83	64.21	73.03

Model	Semantic Fidelity									
	Object↑	Multi-Obj↑	Action↑	Color↑	Spatial↑	Scene↑	Appearance↑	Temporal↑	Overall↑	
UniVid (Stage I)	90.12	75.59	90.98	89.91	77.52	44.57	20.51	21.12	24.01	
UniVid (Joint, Stage III)	94.52	77.45	94.20	92.10	80.70	46.66	23.57	25.91	27.60	

1209
1210 Frame selection uses a vision–language retriever with cosine similarity. Let $\phi(s)$ be the text embedding
1211 and $\{\mathbf{v}_i\}_{i=1}^N$ the cached frame embeddings:

$$\text{sim}(i, s) = \langle \hat{\mathbf{v}}_i, \hat{\phi}(s) \rangle. \quad (6)$$

1212
1213 We define a soft retrieval policy over the pool P :

$$\pi(i | s) = \frac{\exp(\text{sim}(i, s) / \tau)}{\sum_{j \in P} \exp(\text{sim}(j, s) / \tau)}. \quad (7)$$

1218 Sampling sequentially without replacement with joint probability $\prod_{\ell=1}^K \pi(i_\ell | s, i_{<\ell})$ and respecting
1219 chronology yields W_s .

1220 In the expand mode, at target size K_t we add the top m unseen frames by similarity (no duplicates):

$$\Delta_t = \arg \max_{i \in P \setminus S_{\text{sel}}}^m \text{sim}(i, s_{t-1}), \quad S_{\text{sel}} \leftarrow S_{\text{sel}} \cup \Delta_t, \quad m = K_t - |S_{\text{sel}}|. \quad (8)$$

1224 In the shrink mode, with current S_{sel} and target $K_t \in \{32, 16\}$, we apply Maximal Marginal Rele-
1225 vance:

$$S_{\text{sel}} = \arg \max_{S \subseteq S_{\text{sel}}, |S|=K_t} \sum_{i \in S} \left[\lambda \text{sim}(i, s_{t-1}) - (1 - \lambda) \max_{j \in S \setminus \{i\}} \text{sim}(i, j) \right]. \quad (9)$$

1228 We adopt a verbal policy–improvement view (Shinn et al., 2023). Let the objective be the expected
1229 Evaluator value under the retrieval policy:

$$J(s) = \mathbb{E}_{i_{1:K} \sim \pi(\cdot | s)} [V(W_s)], \quad (10)$$

1232 with

$$V(W_s) = \mathbb{E}[R | W_s, C_g]. \quad (11)$$

1234 Using the likelihood–ratio identity with a baseline b yields

$$\nabla_s J(s) = \mathbb{E} \left[\left(\sum_{t=1}^K \nabla_s \log \pi(i_t | s, i_{<t}) \right) (R - b) \right]. \quad (12)$$

1239 A single ascent step motivates a verbal update to the search text:

$$s_{r+1} = s_r + \eta \left(\sum_{t=1}^K \nabla_s \log \pi(i_t | s_r, i_{<t}) \right) (R_r - b), \quad (13)$$

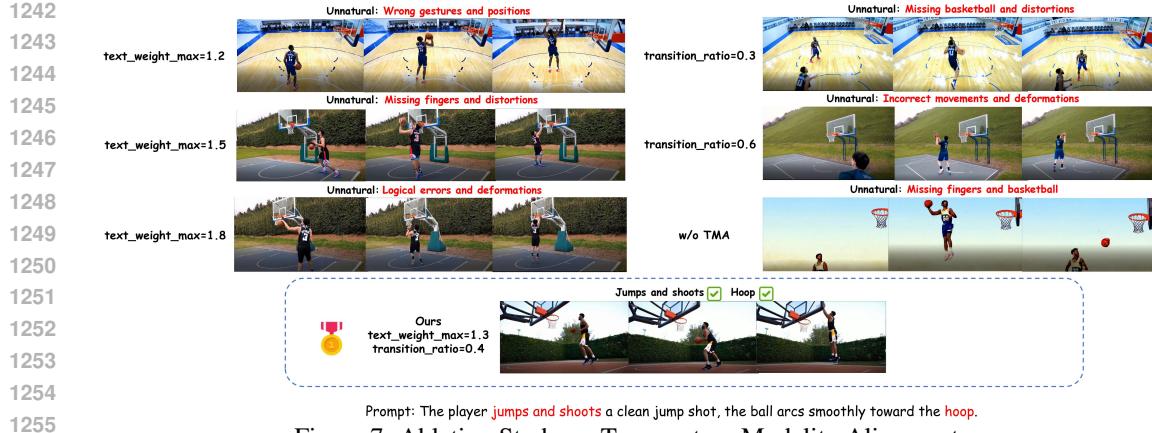


Figure 7: Ablation Study on Temperature Modality Alignment.

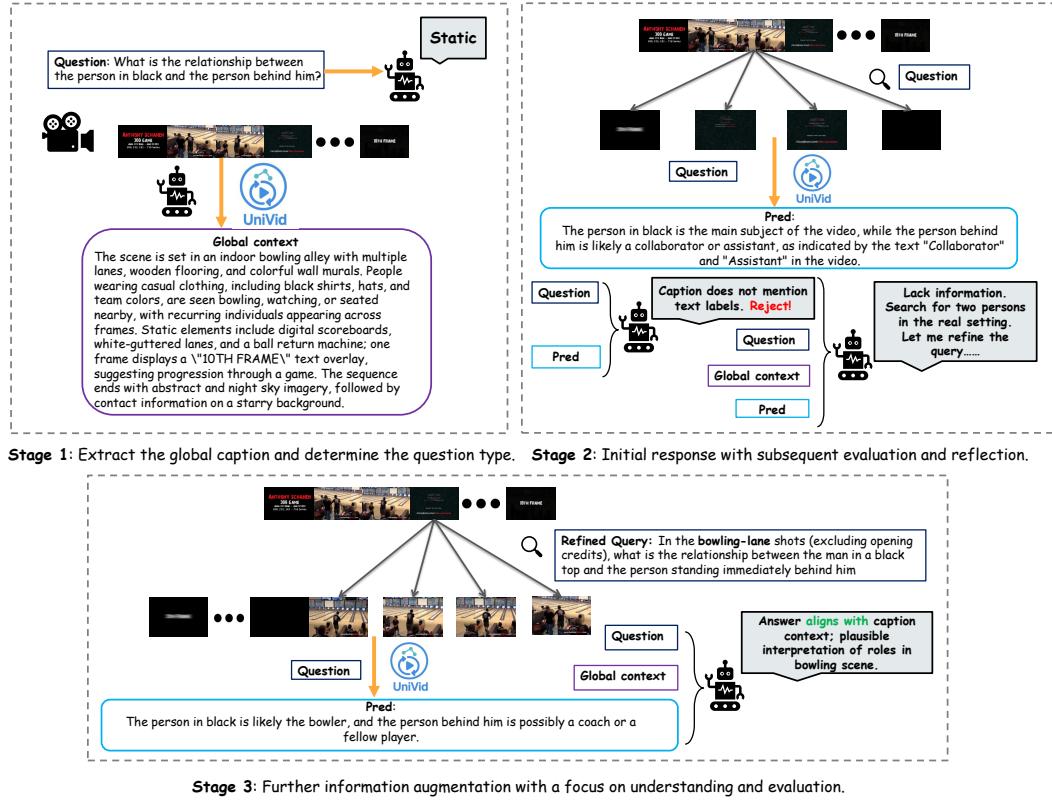


Figure 8: The pipeline of the video understanding.

where we use the softmax score function with $g_i(s) := \nabla_s \text{sim}(i, s)$ and $\bar{g}(s) := \mathbb{E}_{j \sim \pi(\cdot|s)} g_j(s)$: $\nabla_s \log \pi(i | s) = \tau^{-1}(g_i(s) - \bar{g}(s))$, so the edit in s aligns with frames that explain higher return through the text encoder $\phi(\cdot)$. Practically, the reflector inserts temporally and semantically discriminative cues (entities, colors, viewpoints, before/after, first/last, motion phase), which increases $\text{sim}(i, s)$ for diagnostic frames and decreases it for distractors, implementing Eq. 13 in language space without parameter updates.

To connect the update with both expand and shrink, we use a piecewise-smooth set surrogate that trades relevance against redundancy (subgradients at ties):

$$\tilde{V}(W_s) = \frac{1}{K} \sum_{i \in W_s} \text{sim}(i, s) - \gamma \max_{i \neq j \in W_s} \text{sim}(i, j). \quad (14)$$

Figure 9: Categorized Failure Modes in Video Generation.

Table 7: Ablation study of UniVid on four video QA benchmarks. Acc. denotes accuracy (%), Score denotes average rating (0–5). Best results are **bold**.

Methods	MSVD-QA		MSRVTT-QA		TGIF-QA		ActivityNet-QA	
	Acc↑	Score↑	Acc↑	Score↑	Acc↑	Score↑	Acc↑	Score↑
UniVid (Base)	64.1	3.3	48.9	2.8	54.2	3.0	39.8	3.0
UniVid (w/o finetune)	71.1	3.9	52.2	3.0	63.5	3.6	46.5	3.2
UniVid (w/o Reflection)	73.1	4.0	55.0	3.1	64.6	3.6	52.0	3.4
UniVid (Full)	80.1	4.2	61.4	3.4	75.0	4.1	58.8	3.6

1327 Since $\partial \text{sim}(i, s) / \partial s$ points toward \mathbf{v}_i via $\phi(s)$, the gradient $\nabla_s \tilde{V}(W_s)$ is aligned with the direction
1328 in Eq. 12. If the reflector’s edit correlates with the advantage $A_r = R_r - b$, then for a sufficiently
1329 small step size η the expected first-order improvement satisfies

$$\mathbb{E}[J(s_{r+1}) - J(s_r)] \approx \eta \mathbb{E} \left[\left\langle \sum_t \nabla_s \log \pi(i_t | s_r, i_{<t}), s_{r+1} - s_r \right\rangle A_r \right] \geq 0. \quad (15)$$

1330 Early stopping is triggered when the Evaluator score exceeds a fixed threshold:

$$\text{stop at round } r \text{ if } R_r \geq \tau, \quad \tau = 0.7. \quad (16)$$

1336 With cached features, each round requires only similarity and diversity scoring together with
1337 reasoning over a compact, temporally ordered W_r , which concentrates the Actor on temporal relations
1338 under a tight token budget and improves video understanding with low computational cost.

A.6 ABLATION STUDY

1341 **Ablation on video generation.** Tab. 3 presents an ablation on VBench-Long disentangling the
1342 roles of our two main components. Removing the multi-level language modeling module (w/o
1343 MLLM) mainly hurts the semantic-fidelity metrics that require precise spatial layout and appearance
1344 preservation, while the low-level technical quality remains relatively stable. In contrast, disabling
1345 Temperature Modality Alignment (w/o TMA) leads to a clear drop in temporal and motion-related
1346 scores, indicating that the denoising process becomes less stable over long horizons even though per-
1347 frame quality is still high. The full UniVid model consistently achieves the best performance across
1348 technical, aesthetic, and semantic dimensions, suggesting that multi-level language modeling and
1349 TMA are complementary: the former strengthens multi-object, spatial, and appearance grounding,
1350 whereas the latter enforces temporally coherent, prompt-faithful dynamics during generation.

1350
1351 Table 8: **Ablation on Evaluator/Reflector Model Size** (Hereafter, we use E to denote the Evaluator
1352 and R to denote the Reflector). Acc. denotes accuracy (%), Score denotes average rating (0–5).
1353

Methods	MSVD-QA		MSRVTT-QA		TGIF-QA		ActivityNet-QA	
	Acc↑	Score↑	Acc↑	Score↑	Acc↑	Score↑	Acc↑	Score↑
UniVid (Qwen2-7B E&R)	76.9	3.9	57.4	3.2	71.8	3.9	56.7	3.5
UniVid (LLaMA-3 8B E and LLaVA-1.6 7B R)	78.2	4.0	59.1	3.3	72.4	4.0	56.8	3.5
UniVid (Qwen2-7B R)	78.5	4.0	59.0	3.3	71.8	3.9	57.6	3.5
UniVid (Qwen2-7B E)	77.4	3.9	58.4	3.2	72.2	3.9	57.3	3.5
UniVid (Ours)	80.1	4.2	61.4	3.4	75.0	4.1	58.8	3.6

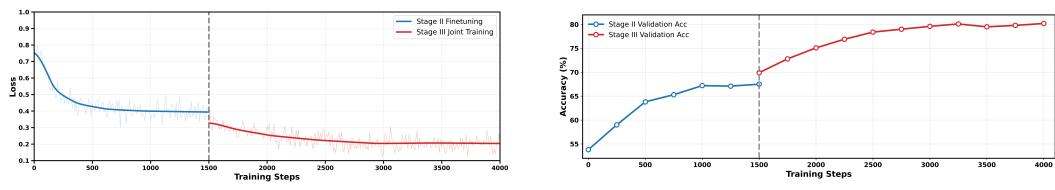
1354
1355 Table 9: **Ablation study of the understanding branch of UniVid to verify the effectiveness of encoder
1356 setting.** Acc. denotes accuracy (%), Score denotes average rating (0–5). w/o means “without”. Best
1357 results are **bold**.
1358

Methods	MSVD-QA		MSRVTT-QA		TGIF-QA		ActivityNet-QA	
	Acc↑	Score↑	Acc↑	Score↑	Acc↑	Score↑	Acc↑	Score↑
UniVid (VAE Encoder)	49.1	3.2	44.7	2.7	52.9	2.9	38.5	3.0
UniVid (VAE & ViT Encoder)	78.6	4.1	56.9	3.2	72.8	3.9	57.1	3.5
UniVid (Ours, ViT only)	80.1	4.2	61.4	3.4	75.0	4.1	58.8	3.6

1360
1361 Tab. 4 shows that removing TMA causes a noticeable drop in temporal stability, motion smoothness,
1362 and imaging quality, confirming its necessity for coherent long-horizon generation. Among
1363 different scheduling strategies, the cosine scheme consistently performs best. Its smooth transition
1364 from stronger early text guidance to later visual refinement yields better semantic fidelity and more
1365 stable dynamics than constant, step, or linear variants, highlighting the importance of a well-shaped
1366 modulation schedule.
13671368 Fig. 7 visualizes these issues: without TMA, generated players exhibit unnatural fingers, distorted
1369 poses, and implausible ball trajectories, whereas the full UniVid produces coherent jump shots with
1370 realistic ball arcs. Qualitative comparisons in Fig. 3 confirm that UniVid consistently avoids missing
1371 objects and deformations that plague prior models, achieving both semantic plausibility and
1372 temporal stability.
13731374 **Ablation on video understanding.** Tab. 7 compares four variants: a lightweight base model with-
1375 out our training or reasoning additions, a version w/o finetune that removes Stage-II video-QA
1376 finetuning, a version w/o Reflection that keeps finetuning but disables the Pyramid Reflection loop,
1377 and the Full UniVid. Finetuning the understanding branch on ActivityNet-QA style instruction
1378 data already yields clear gains over the base, indicating that modest, task-aligned supervision sub-
1379 stantially improves cross-modal grounding. Adding Pyramid Reflection further boosts accuracy,
1380 with similar trends in the QA scores, confirming that query-driven keyframe selection plus the Ac-
1381 tor–Evaluator–Reflector loop improves temporal coherence and evidence retrieval. Overall, the full
1382 system combines data-efficient tuning with iterative reasoning to deliver competitive results across
1383 all four benchmarks.
13841385 Furthermore, we investigate the impact of scaling down the Evaluator and Reflector. Specifically,
1386 we replace the originally used large-scale language model (LLM) with a more lightweight 7B LLM.
1387 As shown in Tab. 8, the results demonstrate only a marginal performance drop. This is because
1388 the primary reasoning and semantic alignment are handled by the MLLM, while the Evaluator and
1389 Reflector mainly serve to refine information selection, a process that does not heavily rely on strong
1390 reasoning capability or extensive prior knowledge. This indicates that Pyramid Reflection can be
1391 efficiently executed using smaller models, achieving a favorable trade-off between efficiency and
1392 accuracy. Notably, when we only substitute the Evaluator and Reflector with smaller LLMs while
1393 keeping the MLLM unchanged, performance degradation remains minimal, which further supports
1394 the above conclusion. Additionally, to mitigate potential understanding-evaluation(reflection) bias
1395 caused by using the same model family, we adopt different model types for Evaluator and Reflector,
1396 leading to moderate but consistent performance improvements.
13971398 Moreover, we evaluate our model on several recent benchmarks designed for unified video under-
1399 standing, including MMLU (Hendrycks et al., 2021a;b), MMMU (Yue et al., 2024), MME (Fu
1400 et al., 2024a), MMBench (Fang et al., 2024), and MLVU (Zhou et al., 2024b). These datasets cover
1401 diverse multimodal reasoning tasks and reflect models’ comprehensive understanding capabilities.
1402 We compare our unified model with its understanding-only models and latest Open-Source Unified
1403 Video Model to highlight our model’s performance. As shown in Tab. 10, our method achieves com-

Table 10: Comparison of Und.Only and Unified Models across major video benchmarks (Hendrycks et al., 2021a;b; Fu et al., 2024a; Fang et al., 2024; Zhou et al., 2024b; Yue et al., 2024). The best results are highlighted in **bold**, and the second-best are underlined. Notably, all methods are evaluated under a unified frame-setting for fair comparison and our method can utilize **at most** unified setting frames.

Model	MMLU↑	MMMU↑	MME↑	MME(S&M)↑	MMBench↑	MLVU↑
Frame Num	32	32	64	64	64	64
Und.Only Models						
Qwen2-VL-7B (Wang et al., 2024a)	21.02	41.26	59.7	72.1	1.45	62.34
Qwen2.5-VL-7B (Bai et al., 2025)	24.17	47.44	62.8	75.9	1.49	62.052
Qwen3-VL-8B (Yang et al., 2025)	71.6	69.9	71.4	89.7	2.55	78.1
LLaVA-Video-7B (Lin et al., 2024)	15.89	36.11	63.7	78.1	1.6	67.66
MiniCPM-V-2.6-7B (Yu et al., 2025)	–	–	59.7	74.7	1.7	52.82
InternVL2.5-8B (Chen et al., 2024b)	52.47	43	63.7	77	1.68	63.94
InternVL3-8B (Zhu et al., 2025)	<u>57.71</u>	47.97	66	<u>79.5</u>	1.69	67.964
Unified Models						
Omni-Video-7B (Tan et al., 2025)	41.28	51.62	59.43	71.43	1.59	67.24
Emu3-8B (Wang et al., 2024b)	40.33	49.73	60.98	68.76	1.54	66.77
Show-o2-7B (Xie et al., 2025b)	45.77	53.99	<u>66.87</u>	76.62	1.67	68.92
Ours-7B	49.88	<u>59.41</u>	62.68	78.4	<u>1.85</u>	<u>70.77</u>



(a) Training loss curve across dual stages.

(b) Validation accuracy during training.

Figure 10: Training loss (left) and validation accuracy (right) curves for UniVid’s understanding branch. Notably, red line refers to co-training period in Stage III.

petitive results on most benchmarks, particularly outperforming existing unified models. It is also worth noting that Video-MME includes longer videos (>10 min), for which we further report results under short-video (S) and mid-length (M) subsets. Our unified model shows more significant advantages on short-video scenarios, consistent with its design characteristics, while still maintaining strong overall comprehension capabilities.

Ablation on encoding mechanism. We study the internal encoding mechanism of UniVid. During training, we employ both a ViT and a VAE to encode visual information, where the ViT excels at capturing high-level semantics and the VAE is more effective in representing pixel-level details. We conduct ablation studies for both generation and understanding tasks to examine the role of each encoder.

For video generation, Tab. 5 shows that using only the ViT or only the VAE leads to significant degradation across almost all VBench-Long dimensions. In contrast, combining both encoders yields large improvements in overall score and boosts technical, aesthetic, and semantic fidelity metrics. This confirms that high-level semantic encoding and low-level detail encoding are complementary for long-horizon video synthesis.

For video understanding, Tab. 9 indicates that ViT alone is sufficient to achieve strong performance, while adding the VAE brings marginal or no further improvement. This aligns with the intuition that understanding tasks rely more on semantic abstraction than pixel-level reconstruction. Together, these results demonstrate that UniVid benefits from a hybrid encoding design for generation, while semantic encoders dominate in understanding.

1458 A.7 LIMITATION AND FUTURE WORK
14591460 While UniVid unifies an autoregressive MLLM with a DiT-based video diffusion decoder, the cur-
1461 rent interaction between the two modules remains relatively shallow. Most MLLM parameters are
1462 frozen, and the diffusion branch only receives limited semantic guidance, restricting the potential
1463 mutual benefits between understanding and generation. As a consequence, the MLLM gains little
1464 improvement in deeper reasoning, and the generation branch relies primarily on data-driven priors
1465 rather than task-aware adaptive conditioning.1466 These limitations manifest in characteristic failure modes during generation, as illustrated in Fig. 9
1467 UniVid can exhibit temporal inconsistencies in long sequences (e.g., static lightning), loss of fine-
1468 grained details in distant regions, and occasional structural artifacts such as missing body parts in
1469 anthropomorphized characters. These reflect inherent challenges of long-horizon diffusion sampling
1470 and the lack of stronger semantic-structural feedback between the two branches.1471 In future work, we plan to develop deeper bidirectional coupling mechanisms that allow MLLM
1472 reasoning signals to shape the diffusion trajectory dynamically, while generated visual feedback
1473 reinforces semantic learning. Another promising direction is integrating native dense video encoders
1474 to support substantially longer videos with richer motion dynamics. Although these extensions
1475 require greater training resources, they offer the potential for more stable long-range generation and
1476 more emergent capabilities from cross-modal co-training.1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511