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Abstract001

From a linguistic perspective, negation is a002
unique and inherently compositional opera-003
tor. In this study, we investigate whether004
the bert-large-cased Pretrained Language005
Model (PLM) properly encodes this composi-006
tional aspect of negation when embedding a007
token that falls within the scope of negation.008
To explore this, we train two external Multi-009
Layer Perceptrons to modify contextual embed-010
dings in a controlled manner. The goal is to011
reverse the polarity information encoded in the012
embedding while preserving all other token-013
related information. The first MLP, called the014
Negator, transforms a negative polarity into a015
positive one, while the second, the Affirmator,016
performs the reverse transformation. We then017
conduct a series of evaluations to assess the018
effectiveness of these operators. Our results019
indicate that while the Negator/Affirmator is020
functional, it only partially simulates the nega-021
tion operator. Specifically, applying it recur-022
sively does not allow us to recover the original023
polarity, suggesting an incomplete representa-024
tion of negation within the PLM’s embeddings.025
In addition, a downstream evaluation on the026
Negated LAMA dataset reveals that the modi-027
fications introduced by the Negator/Affirmator028
lead to a slight improvement in the model’s029
ability to account for negation in its predictions.030
However, applying the Negator/Affirmator re-031
cursively results in degraded representations,032
further reinforcing the idea that negation is not033
fully compositional within PLM embeddings.034

1 Introduction035

In this work, we aim to investigate how well Pre-036

trained Language Models (PLMs) handle composi-037

tionality, by focusing on the possibility of defining038

a “negation operator.”039

From a logical and linguistic perspective, nega-040

tion provides a typical example of semantic compo-041

sitionalism: its effect is systematic and independent042

of the specific meaning of the clause to which it043

applies: negation simply reverses the truth value of 044

a statement. 045

To put it differently, the meaning of a negation 046

word (such as not) in a sentence does not depend 047

on the particular verb used in the sentence, nor on 048

the original polarity (i.e., whether the sentence was 049

initially affirmative or negative). Instead, it follows 050

a general rule: it systematically flips the sentence’s 051

polarity. 052

PLMs, however, do not construct the meaning 053

of a sentence by recursively decomposing it into 054

meaningful constituents. Instead, they generate 055

contextual embeddings, so that the representation 056

of a word depends on the surrounding words in 057

the sentence. Given this, our goal is to identify 058

a transformation (a function) that acts as a "nega- 059

tion operator" on embeddings. In other words, we 060

want to find a way to manipulate the numerical 061

representation of a word such that, after applying 062

this transformation, we obtain an embedding that 063

closely resembles what the model would have pro- 064

duced if the same word had occurred in a sentence 065

with the opposite polarity. 066

For example, given an affirmative sentence 067

like (1-a), we want to define an operation such 068

that, when applied to the embedding that a PLM 069

associates with the main verb buy in an affirmative 070

context (noted Vp), it yields an embedding (noted 071

Vp→) that is as close as possible to the embedding 072

that the same PLM would assign to the token buy 073

in a negative context (1-b) (noted Vn). 074

(1) a. Sam will buy a new car. 075

b. Sam will not buy a new car. 076

In the remainder of this paper, we will refer to 077

a pair of sentences such as (1) as a minimal pair 078

(keeping implicit the fact that the difference be- 079

tween the two sentences necessarily involves nega- 080

tion). 081

Our reasoning is as follows: if a PLM contains 082
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a compositional negation operator, then the differ-083

ence between the embeddings Vp and Vn should084

be learnable, regardless of the lexical properties of085

the verb and the polarity of its context.086

We therefore try in this work to learn a polarity087

inversion function that can operate on verb em-088

beddings and that is sufficiently general to work089

on verbs whose lemmas were not seen at training,090

and on verbs occurring in affirmative or negative091

contexts.092

We show that it is indeed possible to learn an093

operator (a Negator) that produces from Vp embed-094

dings new embeddings Vp→ close enough to their095

corresponding Vn, and such that it generalizes cor-096

rectly to lemmas not seen during training. This sug-097

gests that it is possible to locate in the embeddings098

distinct encodings for lexical representation and099

polarity. It is also possible to learn an Affirmator100

that produces an appropriate embedding Vn+ even101

for lemmas not seen at training (section 3). How-102

ever, it turns out that these two operators cannot be103

used one for another: a Negator (trained only with104

embeddings occurring in affirmative contexts) does105

not succeed at “inverting” the embedding of a verb106

occurring in a positive context (similarly for the Af-107

firmator). This indicates that they do not generalize108

to a true polarity inversion operation independent109

of the direction of the inversion, which is contrary110

to the classical logical and linguistic interpreta-111

tion of negation (they are not involutions, i.e., they112

are not their own inverse: Negator(Negator(x)) ↑=113

x and Affirmator(Affirmator(x)) ↑= x). On114

the contrary, we show (in section 4) that they115

are indeed reciprocal functions of each other:116

Affirmator(Negator(x)) ↓ x.117

It is worth studying further the properties of118

these two operators, even though they don’t behave119

exactly as is expected from a logical perspective.120

Since they are not involutions, we study in section 5121

the effect of their multiple application, and in par-122

ticular a possible (non-linguistic) effect of "polarity123

reinforcement", usable to improve the processing124

of negation by a PLM.125

Finally, in the last section of this paper (§ 6), we126

study the impact of the integration of our Negator127

into the processing pipeline of the negated LAMA128

task.129

Our experiments show that the integration of130

the Negator leads to a slight improvement in the131

model’s predictions. This suggests that modifying132

embeddings with the Negator allows the language133

modeling head to differentiate a little bit better be-134

tween positive and negative embeddings, enabling 135

it to adjust its predictions more accurately. How- 136

ever, the operator is applied several times (“recur- 137

sively”), the predictions of the model become very 138

unnatural, which is another way to show that our 139

operators do not restrain their action to the strict 140

encoding of polarity in the embeddings. 141

2 Related works 142

Negation in PLMs The presence of contextual 143

polarity information in contextual embeddings gen- 144

erated by PLMs has been investigated by Ce- 145

likkanat et al. (2020), who specifically looked for 146

“traces” of negation. By analyzing contextual em- 147

beddings produced by a PLM, they showed that it is 148

possible to predict whether the main verb of a sen- 149

tence is negated or not. Building on this, Kletz et al. 150

(2023b) showed that the encoding of such informa- 151

tion is itself dependent on the syntactic position 152

of the token used as input, in particular whether it 153

falls or not within the scope of a negation. 154

Beyond encoding, the ability of models to con- 155

sider negation in their predictions within a Masked 156

Language Model (MLM) setup has also been ex- 157

plored. Kassner and Schütze (2020) and Ettinger 158

(2020) examined how negating the main verb of a 159

clause affects its truth value. Specifically, they in- 160

vestigated the capability of masked language mod- 161

els to adjust their predictions for a masked position 162

when confronted with factual world knowledge (Li 163

et al., 2016). 164

Kassner and Schütze (2020) constructed the 165

negated LAMA dataset by negating sentences from 166

the original LAMA dataset (Petroni et al., 2019). 167

They then analyzed the behavior of masked PLMs 168

when processing negated cloze-style sentences. 169

Their findings revealed a similarity between model 170

predictions in affirmative and negative contexts, 171

leading them to conclude that “PLMs do not distin- 172

guish positive and negative sentences.” 173

Similarly, Ettinger (2020) used sentences origi- 174

nally designed by Fischler et al. (1983) to observe 175

how human expectations about sentence continu- 176

ation shift when negation is introduced. The lack 177

of corresponding adjustments in PLM predictions 178

led her to a similar conclusion that PLMs exhibit 179

insensitivity to negation. 180

However, other approaches (Gubelmann and 181

Handschuh (2022) and Kletz et al. (2023a)), de- 182

cided to avoid factual statements. They constructed 183

examples with two sentences, where a particular 184

2



word was either highly plausible (in positive cases)185

or semantically ruled out (in negative cases) at a186

masked position in the second sentence, given the187

context provided by the first. The fact that larger188

PLMs adjusted their predictions based on sentence189

polarity led these authors to a different conclusion190

that certain PLMs are indeed capable of consider-191

ing negation.192

Hosseini et al. (2021) proposed improving the193

predictions of bert-base-cased in negative con-194

texts by fine-tuning it into a new model called195

BERTNOT. They created a dataset of 40,000 concate-196

nated sentence pairs, each consisting of a premise197

(sourced from Wikipedia) and a hypothesis where a198

noun dependent on the main verb was selected and199

masked. Half of these pairs retained the hypoth-200

esis unchanged, while the other half contained a201

negated version of the premise, created by negating202

the main verb. The fine-tuning process involved203

two key objectives: one function aimed to prevent204

the model from predicting the selected token in205

sequences where the second sentence was negated,206

while another function ensured that the masked to-207

ken distribution remained unchanged for the other208

20,000 sequences. BERTNOT was subsequently eval-209

uated using NLI datasets and Negated LAMA. The210

evaluation results indicated that BERTNOT made far211

fewer factually incorrect predictions than bert212

-base-cased.213

Compositionality in PLMs In general, the eval-214

uation of compositionality in language models fo-215

cuses on compositional behaviors (McCurdy et al.,216

2024) and the ability of PLMs to generalize. Re-217

search in this area typically tests models through218

external tasks, where successful resolution implies219

the ability to generalize compositionally—either220

lexically (as in COGS (Kim and Linzen, 2020) and221

SCAN (Lake and Baroni, 2018)) or structurally (as222

in SLOG (Li et al., 2023)).223

Kim and Linzen (2020) reported disappointing224

performance from tested models on generalization225

sets, concluding that these models struggle with226

both lexical and structural compositional general-227

ization. However, more recent studies have shown228

that using models with pretraining strategies fo-229

cused on meta-learning (Conklin et al., 2021) or230

employing newer transformer-based architectures231

(Sun et al., 2023; Tay et al., 2021; Raffel et al.,232

2020) significantly improves compositional gen-233

eralization, surpassing the capabilities of smaller234

transformer models.235

3 Inverting polarity : training a Negator 236

and Affirmator 237

In this section, we learn mathematical functions 238

(MLPs) to modify contextualized embeddings so 239

as to mimic the difference between embeddings 240

originating from the two clauses of a minimal pair. 241

We will talk of the "polarity of an embedding" 242

for short. Hence for instance, in I wish war didn’t 243

exist, the polarity of the embedding of exist or war 244

is negative, whereas the polarity of the embedding 245

of I or wish is positive. 246

More precisely, we consider embeddings of tar- 247

get verbs. The basic principle for our Negator func- 248

tion (resp. Affirmator) is to take as input the contex- 249

tualized embedding of an affirmative verb, noted 250

Vp (Vn for a negative verb) and output the corre- 251

sponding embedding as if the verb was in a negative 252

(resp. affirmative) context (Vp→, resp. Vn+)1. 253

The Negator (resp. Affirmator) consists in a MLP 254

trained on (Vp,Vn) pairs (resp. (Vn,Vp) pairs). The 255

evaluation consists in comparing Vp→ to the orig- 256

inal Vn, and Vn+ to the original Vp. For short 257

we will talk of the original embeddings (Vp or 258

Vn) and their corresponding reversed embeddings 259

(Vn+ and Vp→). 260

Data We took as a starting point a set of 20,000 261

minimal pairs provided by Hosseini et al. (2021), 262

formed with 20,000 sentences from Wikipedia, 263

where the direct object of a target verb has been 264

masked, along with a version where the target verb 265

is negated. 266

We have deduplicated the 20,000 pairs, and re- 267

moved pairs containing either zero or more than 268

one masked position (resulting from errors in the 269

masking process), and those where the target verb 270

is tokenized into several subwords when encoded 271

by the PLM we test (namely bert-large-cased). 272

This brought the dataset down to ↔15,000 pairs. 273

For our purposes, we restored the masked object, 274

and identified the target verb2, left unmasked. 275

We then split this data into 11,708 training pairs 276

and 2,927 test pairs, each set corresponding to dis- 277

joint sets of target verb lemmas. 278

1We did try to obtain the Affirmator by defining the recip-
rocal function of the Negator. However, the learned parameter
square matrices turned out to be non-invertible (details in
Appendix A).

2To this end, we parsed the sentences using stanza (Qi
et al., 2020), and took the closest verbal ancestor node of the
direct object, in the dependency tree.
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Architecture and training The MLPs for Nega-279

tor and Affirmator have the same architecture: 4280

hidden layers of same size as input contextualized281

embeddings, namely 1024, with LeakyRELU acti-282

vation (with a negative slope of 10→2) for the first283

3 layers and ELU for the last layer (ω = 1).284

We train the Negator on the training (Vp,Vn)285

pairs using the MSE loss, and simply switched to286

(Vn,Vp) pairs to train the Affirmator3.287

Evaluation metrics We measure the quality of288

the Negator (resp. Affirmator) using two direct289

metrics and two indirect metrics, each comparing290

the original embeddings to their corresponding re-291

versed embeddings (hence comparing Vp→ to Vn,292

and Vn+ to the original Vp). The two direct met-293

rics are simply cosine similarity and mean square294

error (MSE). The two indirect metrics compare295

the probability distributions output by the language296

modeling head of the PLM, when fed with an origi-297

nal embedding vs. when fed with the corresponding298

reversed one. More precisely, if we note Pn the299

distribution obtained with the original Vn embed-300

ding, and Pp→ that obtained from Vp→, we use the301

KL-divergence DKL(Pp→ ||Pn) averaged over302

each evaluated pair, and the proportion of evaluated303

pairs for which the top-1 prediction is the same in304

Pn and Pp→ (and accordingly for the Affirmator305

case), hereafter same-top-1. Among these four306

metrics, higher cosines and same-top-1 will mean307

better quality, while it is the opposite for MSE and308

KL divergences.309

Moreover, while same-top-1 can be interpreted310

in isolation, for the other three metrics, we need311

reference values for comparison. To this effect,312

we compute cosine, MSE and KL-divergence for313

sets of various pairs of embeddings, obtained by314

encoding sentence pairs from our dataset, with315

bert-large-cased. These pairs of embeddings316

either concern the same token from a pair of sen-317

tences varying in polarity (V p, V n), or different to-318

kens from the same sentence, or two tokens in two319

different sentences but corresponding to the same320

word form, and finally two embeddings from two321

random tokens taken from two random sentences322

from the affirmative sentences of our dataset.323

The reference values are provided in Table 1.324

The first row concerns Vp and Vn pairs, and pro-325

vide the reference values for embeddings differing326

3We use the Adam optimizer. We tuned the learning rate
(103) and the number of epochs (4) using cross-validation on
the training set.

sent. pol. token MSE Cosine KL-div
= →= = 0.02 0.96 0.05
= = →= 0.30 0.50 8.17
→= ? = 0.46 0.23 9.21
→= + ? 0.57 0.14 20.74

Table 1: Calibration of metrics: reference values for
MSE, cosine and KL-divergence metrics, when using
various kinds of pairs of embeddings. The pairs are
either embeddings from the same sentence (when ignor-
ing polarity) (first column), from sentences with equal,
different, irrelevant (?) or positive polarity (pol. col-
umn), and from the same word or not (token column).
The first row compares (V p, V n).

only in polarity, and we will refer to these values 327

to evaluate our Negator and Affirmator. As all the 328

metrics show, all other tested pairs of embeddings 329

show a much higher divergence. Note that two 330

distinct tokens of the same sentence (second row) 331

have much closer embeddings than the embeddings 332

of the same word in two different sentences (third 333

row). 334

3.1 Results 335

MSE cosine KL-div same-top-1
Vp vs. Vn+ 0.12 0.80 0.66 83.9
Vn vs. Vp↑ 0.13 0.79 0.80 81.5

Table 2: Evaluation of the Affirmator (first row) and
Negator (second row) on the test set: comparison met-
rics for pairs of original vs reversed embeddings.

We provide the evaluation results of the Negator 336

and Affirmator, computed on the test set, in Table 2. 337

The same-top-1 results are above 80%. Interpreting 338

the three other metrics requires to compare them to 339

the reference values in Table 1. The same trend is 340

observed for MSE, cosine and KL-divergence: al- 341

though the results comparing original and reversed 342

embeddings are less good than when comparing the 343

original (V p, V n) pair (first row of Table 1), they 344

are a lot better than when comparing other kinds of 345

pairs of embeddings (last 3 rows of Table 1). These 346

observations tend to show that our trained polarity 347

inversion operations lead to embeddings that are 348

(i) close to the corresponding original embedding 349

(Vn+ close to Vp, Vp→ close to Vn); and (ii) close 350

enough to appropriately feed the original language 351

modeling head, resulting in a probability distribu- 352

tion over the vocabulary that is close to the original 353

one. 354
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Generalization across verbs Since the training355

and test set contain disjoint sets of verb lemmas, the356

previous observations tend to show a good general-357

ization to verbs unseen during training. To further358

check this generalization, we would also like to ver-359

ify that the averaging applied in the metrics does360

not hide a disparity in performance, and in partic-361

ular that errors are not concentrated on a specific362

set of verbs. To this end we calculate the same-363

top-1 proportion per lemma, and count the number364

of verbal lemmas for which the proportion is very365

low (top-1 accuracy below 20%), indicating a total366

failure of inverting the polarity of embeddings for367

these verbs. We restrict ourselves to lemmas with368

at least 5 occurrences in the test set.369

The results are provided in table 3. We observe370

only 3 lemmas with a same-top-1 proportion of less371

than 20% for Affirmator, and none for Negator. We372

can thus conclude that there are practically no lem-373

mas for which polarity re-encoding systematically374

fails.375

This further confirms that it is indeed possible to376

learn a polarity transformation of a verbal embed-377

ding, independently of the corresponding verb, a378

first step towards a compositional polarity inversion379

operator (cf. section 1).380

Model # tested lemmas Cases w/ rate <20%
Affirmator 277 3
Negator 271 0

Table 3: Total number of unique lemmas tested, and
number with same-top-1 proportion below 20%.

Generalization across polarities The second381

necessary condition was that the learnt polarity382

inversion operations should generalize across polar-383

ity. In our case, it means firstly that the Negator and384

Affirmator should actually correspond to the same385

(or a close) mathematical function, performing a386

polarity inversion independently of the polarity of387

its input. Secondly, given the logical interpreta-388

tion of negation, both the Negator and Affirmator389

should be an involution, namely their own recipro-390

cal function, hence Negator(Negator(V )) should391

be close to V . We report on this investigation in392

section 5.393

4 Evaluation via a polarity probe394

In order to further assess the effectiveness of395

the Negator/Affirmator, we employ a MLP probe396

trained to predict the polarity of verbal embeddings.397

Importantly, the probe is trained exclusively on Vp 398

and Vn, without exposure to reversed embeddings 399

(V p→ and V n+). 400

Training of the probe The trained probe is an 401

MLP consisting of a hidden layer of the same size 402

as the input (1024), with sigmoid activation. It is 403

trained for 5 epochs with a learning rate of 0.3. 404

As training data we reuse the dataset used to 405

train our Affirmators/Negators: we keep at random 406

one sentence from each pair, which yields ↗14,000 407

sentences balanced with respect of their polarity. 408

We split them into 11708/2927 for training and 409

testing, keeping a balanced polarity in each set. 410

Evaluation on original embeddings The accu- 411

racy of the probe on the test set is provided in the 412

“Original” columns of Table 4. 413

Embedding

Original Reversed Reinforced
inp. exp. acc. inp. exp. acc. inp. exp. acc.
Vn n 95.9 Vn+ p 99.9 Vn↑ n 99.9
Vp p 96.6 Vp↑ n 99.9 Vp+ p 99.8

Table 4: Accuracies of the polarity-predicting probe,
on the verbal embeddings of the test set, using either
the Original embeddings (Vn or Vp), the Reversed

ones (V n+ or V p→), and the Reinforced ones (V p+
or V n→). Columns inp.: type of input embedding;
Columns exp.: expected polarity label; Columns acc.:
probe accuracy

We observe that the probe has a very high accu- 414

racy to predict the polarity of original embeddings 415

(first three columns, above 95%), although not per- 416

fect. 417

Evaluation on reversed embeddings We now 418

check how the probe behave when fed with re- 419

versed embeddings. Results of applying the probe 420

on these are provided in the "Reversed" columns 421

of Table 4. We observe almost perfect accuracy 422

for both the Negator and the Affirmator. This con- 423

stitutes a further evaluation of the quality of the 424

Negator/Affirmator, since they allow to better pre- 425

dict the polarity of an embedding. 426

5 Polarity inversion or reinforcement? 427

In this section, we examine the effects of apply- 428

ing the Negator to a verbal embedding originating 429

from a negated verb (which, following our nota- 430

tion, results in V n→). Similarly, we analyze V p+ 431

cases, where the Affirmator is applied to a verbal 432

embedding originally not negated. 433
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In this case, if the Negator/Affirmator is the same434

transformation, applying a real inversion of polarity435

independently of the polarity of their argument,436

then V n→ should be close to Vp and have positive437

polarity. V p+ should be close to Vn and have438

negative polarity.439

If on the contrary the Negator/Affirmator are dis-440

tinct, each "moving" the polarity of their argument441

on a "polarity scale" in opposite directions, then we442

anticipate a reinforcement of the encoding of the443

polarity (and we will use the term reinforced em-444

bedding for V n→ and V p+ types of embeddings).445

The results are provided in the "Reinforced"446

columns of Table 4, the accuracy being calculated447

when expecting a reinforcement rather than an in-448

version. We can see that the accuracies are almost449

perfect for both the Negator and Affirmator. So as450

the name "reinforced" hinted, we observe a rein-451

forcement of the polarity instead of an inversion452

independent of input polarity.453

Note though that the accuracy on the Reinforced454

cases is similar to that of the Reversed cases. So455

while it shows that the Negator/Affirmator does456

strengthen the polarity encoding, it is surprising it457

cannot surpass the reversed cases.458

Error analysis We further study the counts of459

well-classified/misclassified cases, and whether460

the polarity inversion or reinforcement introduces461

new errors. Table 4 provides the exact counts of462

correct/incorrect polarity prediction by the probe,463

when fed by original, reversed and reinforced em-464

beddings. After polarity inversion, we count 179465

corrected errors and only 3 introduced errors (resp.466

177 and 3 after reinforcement).467

The very low number of new errors introduced468

by the Negator/Affirmator further assesses their469

ability to inverse/reinforce polarity encoding in em-470

beddings, without altering it.471

Orig. Count After modif. Rev. Reinf.
↭ re

ω↓↭ 4589 4589
ω↓ x 3 3

x 180
ω↓ ↭ 179 177
ω↓ x 1 3

Table 5: Counts of correct/incorrect labels after applying
the polarity probe on original, reversed and reinforced
embeddings.

6 Using the Negator to enhance bert 472

-large-cased’s predictions 473

We now propose to use the Negator for a dif- 474

ferent objective: rather than studying the possi- 475

bility of learning a compositional negation op- 476

erator, we investigate whether the negator can 477

help to improve the negation "understanding" of a 478

bert-large-cased model, in a downstream task. 479

We choose the negatedLAMA task, which Kassner 480

and Schütze (2020) designed to assess the ability 481

of bert to adapt its language modeling predictions 482

to the presence of negation (cf. section 2). 483

6.1 The negated LAMA data and task 484

The negated LAMA dataset (Kassner and Schütze, 485

2020) is a negated version of LAMA (Petroni et al., 486

2019), itself developed to assess the factual knowl- 487

edge stored in PLMs. It consists of factual state- 488

ments derived from various encyclopedic sources4, 489

in which a token is masked (e.g. dog (2)), hereafter 490

the original affirmative token). 491

The negated LAMA dataset is constructed by 492

associating each affirmative factual statement (p) 493

from LAMA with their negated counterpart (n). 494

(2) Op (Original): A beagle is a type of dog. 495

Mp A beagle is a type of [MASK]. 496

Mn A beagle is not a type of [MASK]. 497

The original affirmative token should be the top-1 498

prediction for the affirmative sentences, but this to- 499

ken becomes factually wrong in the negative coun- 500

terparts, hence these pairs provide a way to assess 501

a model’s sensitivity to polarity changes. 502

Since the negated LAMA data is not explicitly 503

available, we reconstructed the dataset, and the 504

details of this process can be found in Appendix B. 505

Consequently, although we made every effort to 506

ensure accuracy, the version of the dataset we use 507

differs from the ones employed by Kassner and 508

Schütze (2020) and Hosseini et al. (2021). 509

To measure performances of the model, we use 510

the stability rate of Kassner and Schütze (2020), 511

which measures the percentage of identical top-1 512

predictions for (Mp,Mn) pairs. The lower the sta- 513

bility rate is, the more the model is sensitive to 514

negation. Note that this measure does not take into 515

consideration the cases where the top-1 prediction 516

for Mp is not identical to the original affirmative 517

4Google-RE (Google, 2013), T-REX (Elsahar et al., 2018),
ConceptNet (Speer and Havasi, 2012), and SQuAD (Rajpurkar
et al., 2016).
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token: if, for example in (2), a model has mam-518

mal as its top-1 prediction, what matters for the519

stability rate is whether this token is still the top-1520

prediction in the negative case Mn. Hence, we521

also introduce a metric to quantify the average rate522

of factually incorrect predictions, referred to as the523

fipa rate5. The fipa rate measures the proportion524

of top-1 predictions for negated sentences that still525

match the original affirmative token. A lower fipa526

rate suggests that the model is better at generating527

factually correct predictions under negation6.528

6.2 Setup529

We propose to integrate the Negator into the lan-530

guage modeling prediction pipeline of a bert531

-large-cased model, by applying the Negator to a532

token’s representation at last layer, before feeding533

the language modeling head (see Figure 1).534

Figure 1: Inserting the Negator in the language model-
ing task.

Training We retrain a Negator using the encod-535

ings of the original masked tokens of Hosseini et al.536

(2021)’s dataset, not being unmasked (using our537

notation scheme, we consider Mp, Mp→, Mn,538

Mn→, under the same conditions as described in539

Section 3).540

Application to negated LAMA The use of the541

Negator allows us to make two comparisons: be-542

tween original, reversed and reinforced embed-543

dings (Mn, Mp-, Mn-).544

Furthermore, inspired by Ravfogel et al. (2021),545

we apply the Negator recursively multiple times,546

progressively even more reinforcing the encod-547

ing of negation polarity (e.g., Mp ↘ Mp→ ↘548

Mp → → ↘ Mp → →→ etc.). We will call these549

super-reinforced embeddings, and note Mnk→550

the result of applying k times the Negator to Mn.551

5This metric may correspond to the average top-1 error
rate used by Hosseini et al. (2021). However, since they do
not explicitly define it, we cannot confirm this equivalence.

6Note each above cited work use only one of these two
metrics, which clearly gives an incomplete evaluation.

6.3 Quantitative analysis 552

The results for the fipa rate and stability rate are 553

presented in Table 6. 554

The prediction shifts of the PLM are highly de- 555

pendent on the dataset subset used, with no subset 556

enabling the PLM to achieve a stability rate below 557

30%. 558

The insertion of the Negator into the process- 559

ing pipeline under a polarity inversion configura- 560

tion (line 2) alters the model’s predictions. How- 561

ever, the stability and fipa rates do not show any 562

improvement—often remaining similar or even 563

worse—compared to directly negating the input 564

sentence. The insertion of the Negator into the 565

processing pipeline under a polarity reinforcement 566

configuration (line 3) is the first combination to 567

yield an improvement, reducing fipa rate by 5% to 568

20% and increasing the stability rate from 14% to 569

26%. 570

The use of super-reinforced embeddings leads 571

to the most significant improvements in evalua- 572

tion quality, both in polarity reinforcement and 573

inversion configurations. The fipa rate decreases, 574

ranging from 65% to 79%, and the stability rate 575

improves between 71% and 84%. 576

Compared to other models, the model incorpo- 577

rating super-reinforced embeddings surpasses the 578

performance of bert-large-cased, as tested by Kass- 579

ner and Schütze (2020). Additionally, it outper- 580

forms BERTNOT (Hosseini et al., 2021), 7 achiev- 581

ing lower fipa rates than those reported by Hosseini 582

et al. (2021). Furthermore, a comparison between 583

line 1 and line 4 reveals that the reduction in fipa 584

rate is even more significant than the improvement 585

achieved by BERTNOT. 586

6.4 Qualitative analysis 587

To ensure that the representations are not degraded 588

by the application of the Negator and that only the 589

encoding of polarity is affected, we now conduct a 590

complementary qualitative analysis. 591

We analyze the top-1 predictions of our architec- 592

ture. For comparison, we revisit the four examples 593

highlighted in Hosseini et al. (2021) and the eight 594

examples from Kassner and Schütze (2020). The 595

results are presented in Table 7. 596

Semantic and syntactic constraints are preserved 597

in the Mn→ configuration.8 However, the model’s 598

7For this comparison, we refer to Table 12 in the Appendix
of their paper, as the results presented in the main text—while
higher—were obtained using a BERT-base-cased model.

8For instance, in the sentence “Charles Nodier did not die

7



fipa rate stability rate

subset SQUAD conceptnet Google-re T-rex SQUAD conceptnet Google-re T-rex
Mn 11.2 2.7 22.2 57.7 43.4 31.6 60.3 90.0
Mp- 15.5 3.3 22.5 58.3 59.5 59.0 61.1 84.8
Mn- 8.9 2.4 20.2 54.5 32.6 23.5 44.1 77.4
Mn5- 2.3 0.8 6.4 19.8 9.5 7.3 11.6 25.3

Mp5- 5.3 1.4 11.9 23.1 18.4 14.6 25.3 31.4

Table 6: Percentage of cases where the top-1 prediction when feeding the LM head with embedding in column 1 is
(left) identical to the expected factual answer for the Vp case, and (right) identical to the top-1 prediction for the Vp
case; each broken down for each LAMA subset.

Paper Sentence Representation received by the LM head

Mn Mn- Mn5-

H iOS is not developed by [MASK]. Apple (0.22) Apple (0.19) it (0.05)

H The majority of the amazon forest is not in [MASK]. cultivation (0.43) cultivation (0.13) forest (0.04)

H Charles Nodier did not die in [MASK]. battle (0.29) battle (0.14) prison (0.13)

H Mac OS is not developed by [MASK]. Apple (0.73) Apple (0.64) Apple (0.19)

K&S Marcel Oopa did not die in the city of [MASK]. Paris (0.09) Paris (0.08) residence (0.04)

K&S Anatoly Alexine was not born in the city of [MASK]. Moscow (0.31) Moscow (0.28) town (0.05)

K&S Platonism is not named after [MASK]. Plato (0.78) Plato (0.35) himself (0.48)

K&S Lexus is not owned by [MASK]. Toyota (0.18) Google (0.07) it (0.03)

K&S Birds cannot [MASK]. fly (0.76) fly (0.33) property (0.01)

K&S A beagle is not a type of [MASK]. dog (0.83) dog (0.72) person (0.53)

K&S Quran is not a [MASK] text. religious (0.32) religious (0.23) valid (0.13)

K&S Isaac’s chains are not made out of [MASK]. iron (0.22) iron(0.16) stone (0.08)

Table 7: Qualitative analysis of predictions on embeddings modified by Negator. Column ‘Paper’: ‘H’ refers to
sentences from Hosseini et al. (2021) ‘K&S’ refers to sentences from Kassner and Schütze (2020). Each cell
indicates the prediction. The associated probability is given in parentheses.

predictions frequently remain unchanged from the599

original, which are often factually incorrect.600

Incorporating super-reinforced embeddings does601

lead to modifications in predictions. However, with602

the super-reinforced embeddings, the generated603

sentences often appear unnatural, ultimately com-604

promising the quality of the predictions.605

These observations suggest that this method can-606

not serve to enhance negation interpretation of607

bert-large-cased.608

7 Conclusions609

In this paper, we explored the compositional-610

ity of negation within PLMs by investigating611

whether a transformation, which we call the “Nega-612

tor/Affirmator,” could reverse the polarity of a613

verb’s embedding. Our results show that it is pos-614

sible to learn such a function and that it can gener-615

alize to unseen lemmas. However, a complemen-616

tary study reveals that the simple application of the617

Negator is not sufficient to significantly improve618

in [MASK].”, the masked position is syntactically constrained
to be filled by a noun, noun phrase, or temporal expression,
while semantically, it must refer to a place or time of death.

the predictions of bert-large-cased in the pres- 619

ence of negation, while multiple applications of 620

the Negator improve the treatment of negation at 621

the expense of a degradation of the embeddings. 622

Even though a negation operation seems therefore 623

learnable, its use for improving the predictions of a 624

PLM still remains problematic. 625

Looking ahead, it would be interesting to extend 626

this work by isolating operations that encode other 627

compositional operators. This could help deter- 628

mine whether the handling of negation by PLMs 629

is specific or if it is part of a broader pattern in the 630

treatment of compositional operations. 631
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