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Abstract
Cross-domain few-shot segmentation (CD-FSS)
is proposed to pre-train the model on a source-
domain dataset with sufficient samples, and then
transfer the model to target-domain datasets
where only a few samples are available for ef-
ficient fine-tuning. There are majorly two chal-
lenges in this task: (1) the domain gap and (2)
fine-tuning with scarce data. To solve these chal-
lenges, we revisit the adapter-based methods, and
discover an intriguing insight not explored in
previous works: the adapter not only helps the
fine-tuning of downstream tasks but also naturally
serves as a domain information decoupler. Then,
we delve into this finding for an interpretation, and
find the model’s inherent structure could lead to a
natural decoupling of domain information. Build-
ing upon this insight, we propose the Domain Fea-
ture Navigator (DFN), which is a structure-based
decoupler instead of loss-based ones like current
works, to capture domain-specific information,
thereby directing the model’s attention towards
domain-agnostic knowledge. Moreover, to pre-
vent the potential excessive overfitting of DFN
during the source-domain training, we further de-
sign the SAM-SVN method to constrain DFN
from learning sample-specific knowledge. On tar-
get domains, we freeze the model and fine-tune
the DFN to learn target-specific knowledge spe-
cific. Extensive experiments demonstrate that our
method surpasses the state-of-the-art method in
CD-FSS significantly by 2.69% and 4.68% MIoU
in 1-shot and 5-shot scenarios, respectively.

1. Introduction
In recent years, advancements in large-scale annotated
datasets and deep neural networks (Chen et al., 2014; Long
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Figure 1: Cross-domain few-shot segmentation (CD-FSS)
aims to transfer the source-domain-trained model to tar-
get domains for efficient learning with scarce data. By
inserting adapters into the common network structure (e.g.,
HSNet) for CD-FSS, we find an insight not explored in
previous works: adapter naturally serves as a domain infor-
mation decoupler based on its structure instead of training
losses, which “grabs” domain information from the en-
coder+decoder structure and encourages the model to learn
domain-agnostic information on the source domain.

et al., 2015; Zhao et al., 2017; Yuan et al., 2020) have driven
the rapid progress of large vision models (Dosovitskiy et al.,
2020; Kirillov et al., 2023; Zhang et al., 2024), resulting in
impressive segmentation task outcomes. However, when
applied to downstream tasks, these models face significant
challenges when there is a substantial distributional differ-
ence between upstream pretraining data and downstream
data, where collecting downstream data may be difficult. To
address this issue, the Cross Domain Few-Shot Segmenta-
tion (CD-FSS) task (Lei et al., 2022) has been introduced
(see Figure 1 top). CD-FSS involves pre-train a model
on a source-domain dataset and then adapting it to gener-
ate pixel-level predictions for unseen categories in target-
domain datasets with only a few annotated samples, which
still remains challenging.

There are majorly two challenges in the CD-FSS task: (1) a
huge domain gap between source and target domains, mak-
ing it difficult for the generalization from the source dataset
to the target dataset; and (2) extremely limited target domain
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data, making it challenging for the model to adapt to the
distribution of the novel domain. To address the second
challenge, currently, a group of methods based on adapters
have been proposed (Houlsby et al., 2019; Mahabadi et al.,
2021; Hu et al., 2021), which fixes the backbone network
and only finetune the extra appended structures. In this pa-
per, we revisit the adapter-based methods, and discover an
intriguing insight not explored in prior works: adapters not
only help the fine-tuning on downstream tasks but also nat-
urally serves as a domain information decoupler. This
finding indicates that the adapter can address two challenges
simultaneously: (1) by decoupling the source domain in-
formation into a domain-agnostic part, which aids in gen-
eralizing from the source to the target domain, and (2) by
parameter-efficient fine-tuning to adapt to downstream data.

In this paper, we first delve into this phenomenon for an
interpretation. We first conduct experiments to verify which
factors determine the adapter serving as a decoupler, includ-
ing the adapter’s insertion position and structure. We find
this phenomenon holds only when adapters are inserted into
deeper layers of the backbone network with scratch training
and residual connections, without applying any domain-
decoupling loss. This indicates the structural design could
lead to the inherent capability of domain-information de-
coupling, which inspires us to design a structure-based do-
main decoupler, instead of the loss-based decoupler adopted
by current works (Tzeng et al., 2015; Motiian et al., 2017;
Kang et al., 2019; Lu et al., 2022).

Based on these findings and interpretations, we propose
the Domain Feature Navigator (DFN, Fig. 1), a structure-
based domain decoupler built on adapters with specific
structures and positions. In the source-domain phase, DFN
absorbs domain-specific knowledge without any domain-
decoupling losses, directing the model’s attention toward
acquiring domain-agnostic information. Then, during the
target-domain phase, we fine-tune the DFN to capture target-
specific features. The fusion of domain-specific features
with the model’s domain-agnostic features serves to align
the feature spaces for each domain.

However, the implicit absorption of domain information
could potentially lead to excessive overfitting of source-
domain samples, as the learning of domain information can
also be understood as a kind of overfitting (to the source do-
main), but there are no labels to guide the magnitude of over-
fitting like other loss-based decouplers. To further address
this problem, we introduce SAM-SVN to constrain the DFN
from excessive overfitting in source-domain training. Specif-
ically, we tailor the sharpness-aware minimization (Foret
et al., 2020) to apply it to the singular value matrix of the
DFN. By doing so, excessive overfitting is avoided but the
absorption of domain information is maintained.

To sum up, our primary contributions are as follows:

• To the best of our knowledge, we are the first to discover
the phenomenon that the adapter naturally serves as a
decoupler, which we then delve into for an interpretation.

• Building upon this finding and interpretation, we pro-
pose the DFN to decouple source domain information
into domain-agnostic knowledge and domain-specific one,
solely based on the adapter’s structure and position.

• We propose the SAM-SVN to avoid the potential exces-
sive overfitting introduced by source-domain training of
the DFN, while maintaining the DFN’s absorption of do-
main information.

• Extensive experiments show the effectiveness of our work
on four different CD-FSS scenarios. Our model signifi-
cantly outperforms the state-of-the-art method.

2. Adapter Naturally Serves as Decoupler:
Phenomenon and Interpretation

In this section, we conduct experiments to demonstrate that
an adapter can naturally act as a decoupler. Furthermore, we
examine which type of adapter is suitable for this role and
investigate the underlying reasons. Following the standard
CD-FSS setting, we use Pascal (Shaban et al., 2017) as the
source dataset and the other four datasets as target datasets.

2.1. Adapter Decouples Domain Information
The network structure studied in this paper is shown in Fig.2
(top), which consists of a backbone network, an encoder,
and a decoder. We choose this structure because it is widely
recognized as versatile architecture (Min et al., 2021). We
first attempt to attach a simple adapter (implemented as
a 1 × 1 convolution) to the backbone with the residual
connection, then train them jointly in the source domain.

Then, given ResNet50 (He et al., 2016) as the backbone, we
measure the domain similarity by the CKA1 (Kornblith et al.,
2019; Zou et al., 2022; Tong et al., 2024b; Zou et al., 2024c)
similarity (lower values indicate more domain-specific in-
formation) based on the backbone’s stage-4 output before
and after attaching the adapter (Fig.2). As shown in Table 1
(row1,2), after training with an adapter attached, the CKA
is lower, which means the adapter captures domain-specific
information, therefore decreasing the domain similarity.

Subsequently, we study the change that the adapter brings
to the output of the encoder (which is different from the
backbone network). We also measure the domain similarity
by the CKA similarity through the encoder’s output with
and without the adapter attached to the backbone network
(BKB). As shown in Table 1 (row 3,4), the CKA is higher
after the adapter is attached, which implies that the encoder
focuses more on the domain-agnostic information.

Without the adapter (Fig. 2 top), the encoder needs to si-

1See the Appendix B for detailed formulations.
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Figure 2: Network structure studied in this paper, we an-
alyze stage-4 and encoder outputs to study the absorbed
domain information by measuring the domain similarity.

datasets FSS-1000 Deepglobe ISIC ChestX

stage-4 (w/o adapter) 0.5371 0.4147 0.5266 0.4865
stage-4 (w/ adapter) 0.4605↓ 0.3426↓ 0.4459↓ 0.3875↓

encoder (w/o BKB adapter) 0.0709 0.0498 0.0678 0.0554
encoder (w/ BKB adapter) 0.0733↑ 0.0679↑ 0.0724↑ 0.0626↑

Table 1: Domain similarities for the output of stage-4 or
encoder between Pascal and target datasets with and without
adapter (Fig. 2). The adapter captures domain-specific infor-
mation, guiding the encoder and decoder to learn domain-
invariant knowledge. BKB: backbone network.

multaneously capture both domain-specific and domain-
agnostic information extracted by the feature extractor. Af-
ter attaching the adapter (Fig. 2 bottom), the adapter cap-
tures domain-specific information, therefore decreasing the
BKB’s domain similarity. Consequently, the encoder pa-
rameters could focus less on the domain-specific informa-
tion and pay more attention to the domain-agnostic one,
increasing the domain similarity. In other words, the adapter
decouples the domain information from the original model.

2.2. Why adapter can serve as a decoupler?
The above phenomenon inspires us to ask: Can all types of
adapters decouple features, and why are adapters able to
decouple features? In this section, we delve into this phe-
nomenon by exploring two factors that determine whether
an adapter can be a decoupler: position and structure.

2.2.1. POSITION

We categorize the insertion positions of adapters into three
types as shown in Fig 3: (1) shallow layers of the fixed back-
bone; (2) deep layers of the fixed backbone; (3) between
learnable encoder and decoder. We use CKA to assess if
position affects an adapter’s decoupling ability.

Following Table 1, if the CKA of the backbone output de-
creases and that of the encoder output increases, we can
recognize the attached adapter as a decoupler. As shown in
Table 2, the adapter can serve as a decoupler only when the
adapter is inserted into the deeper layers of the backbone.

Comparing the positions (2) and (3), the distinction is that

Figure 3: Three different positions for adapters.

Position
baseline(w/o adapter) BKB shallower BKB deeper between enc-dec
BKB encoder BKB encoder BKB encoder BKB encoder

FSS-1000 0.5371 0.0709 0.4679↓ 0.0737↑ 0.4788↓ 0.0733↑ 0.5371- 0.0695↓
Deepglobe 0.4147 0.0498 0.3736↓ 0.0452↓ 0.3687↓ 0.0679↑ 0.4147- 0.0469↓

ISIC 0.5266 0.0678 0.5028↓ 0.0633↓ 0.4653↓ 0.0724↑ 0.5266- 0.0658↓
Chest X-ray 0.4865 0.0554 0.4639↓ 0.0532↓ 0.4390↓ 0.0626↑ 0.4865- 0.0529↓

Table 2: Verify the impact of different insertion points of
the adapter on its decoupling ability by domain similarity.

(2) is positioned between the fixed, pretrained backbone and
subsequent learnable modules. The pretrained backbone is
fixed on the source domain, while the adapter is trained from
scratch. Such a difference guides the backbone network to
extract general features and leads the adapter to learn more
from the source domain to capture domain information.

Comparing insertion methods (1) and (2), the distinction is
that (2) is located in the deeper layers of the fixed backbone,
whereas (1) is positioned in the shallower layers. As is well
known, the deeper the neural network is, the more semantic
information its features can encompass. For cross-domain
tasks, the knowledge learned by deeper network layers tends
to be more domain-specific. To verify it, we first visualized
feature maps with different examples using insertion method
(2), and the results are shown in Fig.4. For each example,
the adapter outputs more complex features to focus on the
objects’ profile, such as the eagle’s wings, fish tail and fins,
and the clock face of the clock tower, which means that
inserting the adapter into deeper layers enables it to capture
features that are more semantic and complex.

Figure 4: The visualization results of the feature maps with
and without the adapter attached to the backbone network.

Furthermore, as shown in Table 3, we evaluate the CKA
similarity between features extracted at deep layers and that
of the first convolution layer (conv1) in the source domain
following (Zou et al., 2022). The higher the CKA similarity,
the simpler the features are. The row results indicate that the
deeper the layer is, the lower the CKA would be. This shows
high-level features are more complex, which means it could
be more overfitting to data, e.g., domain information. The
second row’s adapters are attached to the convolutional layer
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backbone conv1 conv3 4 conv4 6 conv5 3

conv output 1.0 0.8768 0.8496 0.8164
adapter output 1.0 0.8707 0.8364 0.7936

Table 3: Validate the complexity of different layers’ features
by the similarity with the first-layer feature.

in the first row. Comparing these two rows, we can see that
the CKA is lower after the feature passes through the adapter,
which means the adapters’ features are more complex and
could capture more domain-specific knowledge.

Conclusion for position: (1) The disparity between the
backbone network (pretrained, fixed) and the adapter (learn-
able, from scratch), enables the adapter to acquire specific
features during training. (2) The semantics become richer
in deeper layers, for cross-domain tasks, the knowledge
learned by deeper network layers tends to be more domain-
specific. These two factors enable the adapter to act as a
decoupler when it is inserted into the deeper layers of the
fixed, pretrained backbone network.

2.2.2. STRUCTURE

As shown in Figure 5, we explore two design structures, con-
ventional and LoRA, and two connection structures, serial
(ser) and residual (res). We adopt CKA to assess if structure
affects an adapter’s decoupling ability as shown in Table 4.

Figure 5: Two different design and connection structures.

structure
w/o adapter conventional+res LoRA+res conventional+ser

stage-4 enc adapter enc adapter enc adapter enc
FSS-1000 0.5371 0.0709 0.4605↓ 0.0733↑ 0.4529↓ 0.0752↑ 0.4906↓ 0.0623↓
Deepglobe 0.4147 0.0498 0.3426↓ 0.0679↑ 0.3503↓ 0.0628↑ 0.3932↓ 0.0415↓

ISIC 0.5266 0.0678 0.4459↓ 0.0724↑ 0.4537↓ 0.0705↑ 0.4752↓ 0.0653↓
ChestX 0.4865 0.0554 0.3875↓ 0.0626↑ 0.4021↓ 0.0597↑ 0.4210↓ 0.0506↓

Table 4: Assess the impact of different adapter structures on
their decoupling capabilities by domain similarity.

Both design structures lead to reduced CKA for features
passing through the adapter and increased CKA for features
through the encoder, indicating that the adapter learned
domain-specific knowledge while the encoder focused on
domain-agnostic information. However, changing the con-
nection from residual to serial leads to a decrease in the
encoder output feature’s CKA, making it more domain-
specific. This suggests that an adapter’s ability to decouple
domain information is independent of its design structure
and solely related to its connection structure.

We hold that this is because the residual connection explic-
itly separates and integrates the backbone feature (contain-
ing general information) and the adapter feature (contain-

ing domain information) to be transmitted to subsequent
modules. In contrast, the serial connection allows only the
adapter’s domain-specific features to be transmitted to the
subsequent learnable modules.

Conclusion for structure: the residual connection explic-
itly partitions the domain-specific features learned by the
adapter from the general features extracted by the backbone,
before jointly feeding them into subsequent learnable struc-
tures, thereby promoting subsequent modules to focus on
invariant information. Therefore, the residual connection is
crucial for an adapter to act as a decoupler, while structural
differences do not affect its decoupling capability.

Discussion. Inserting the adapter with residual connections
deep into the pre-trained and fixed backbone, and before
subsequent learnable modules, enables it to act as a domain
knowledge decoupler. The above findings and interpreta-
tions indicate the structural design of the feature extractor
can lead to the inherent capability of domain-information
decoupling, which is different from the decoupling achieved
by applying domain losses adopted by current works (Moti-
ian et al., 2017; Kang et al., 2019; Lu et al., 2022). This
inspires us to design a structure-based decoupler further to
make better use of such inherent capability.

Method FSS Deepglobe ISIC ChestX

Baseline 1.43 2.18 2.22 1.57
Baseline + adapter 1.76 2.33 3.12 2.03

Method loss fluc.

Baseline 0.398
Baseline+ad. 0.521

Table 5: Sharpness of loss landscapes measured by the
loss fluctuations, where higher sharpness means a higher
tendency of overfitting. Left: Perturbation by parameter
initialization. Right: Perturbation by Gaussian noises.

However, solely the structure-based decoupler can also lead
to problems: the implicit absorption of domain informa-
tion has no guarantee for its correctness. For example, the
adapter generally absorbs deeper and more complex patterns
that are more likely to be domain information, but it also en-
ables the model to overfit specific training samples by such
complex patterns, which is harmful for downstream general-
ization and adaptation. To validate this risk, we are inspired
by (Foret et al., 2020; Zou et al., 2024a) to test the sharp-
ness of the model’s loss landscapes to verify its tendency of
overfitting, as shown in Fig. 6 (Flatten loss landscape)2. The
perturbation is added in two ways: different initialization of
the model parameters in Tab. 5 (left) and random Gaussian
noise to the model parameters in Tab. 5 (right). We can
see both kinds of perturbation lead to increased sharpness
of loss landscapes, indicating a higher tendency to overfit
training samples. Since absorbing domain information can
also be understood as a kind of overfitting (to the source
domain), there are no specific criteria to determine whether
the overfitting is just for the domain instead of samples,

2See the Appendix D for a detailed explanation of sharpness.
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Figure 6: Overview of our method in a 1-shot example. After obtaining the pyramid features of support and query images,
DFN is introduced to accumulate the domain-specific knowledge then encouraging the model to learn domain-agnostic
parameters. Moreover, we propose SAM-SVN to eliminate potential excessive overfitting introduced by source domain
training on DFN. The internal structure of DFN and SVN-SAM is highlighted in green.

unlike the loss-based decoupler where the model is guided
by the domain labels. Therefore, during source-domain
training, we need to constrain the adapter from excessive
overfitting (to enhance stability during target-domain fine-
tuning), while also preserving its decoupling capability (to
address the domain gap).

3. Method
Building upon the insight that adapters can naturally serve
as decouplers, we propose DFN, a variant of adapters, to
simultaneously handle the domain gap and data scarcity
problem for CD-FSS. As in Fig 6, during the source-domain
training, the DFN is jointly trained with the base model, we
connect the DFN to low, middle, and high-level features
separately to ensure semantic consistency. Moreover, we
design SAM-SVN to prevent the risk of excessive overfitting
on DFN introduced by source-domain training that hinders
downstream generalization and fine-tuning.

3.1. Problem Definition

Given a source domain Ds = (P (Xs), Ys) and a target
domain Dt = (P (Xt), Yt), where P (X) represents input
data distribution and Y represents label space. Each class
cs ∈ Ds has sufficient labels while ct ∈ Dt has only limited
labels. Notably, the source domain Ds and target domain Dt

exhibit distinct input data distribution, with their respective
label spaces having no intersection, i.e., P (Xs) ̸= P (Xt),
Ys ∩ Yt = ∅. The model will be trained on the dataset from
the Ds, then applied to segment novel classes in the Dt.

3.2. DFN: Domain Feature Navigator

The role of DFN is to absorb domain information to encour-
age the model to acquire domain-agnostic information on
the source domain, and adapt the model to target domains.
Since in section 2 we have concluded under what condition
an adapter can be a decoupler, we term the adapter satisfying

such conditions as the proposed DFN.

Therefore, we use a feature extractor to extract features
and attach DFN to the features by residual connection (see
Figure.6 green box for DFN’s internal structure). Con-
cretely, let Nα denote the module DFN with parameters
α ∈ RC×C×1×1, i.e., Nα is implemented as a convolu-
tional operation with 1× 1 kernels. It maintains the same
number of input and output channels. fϕ denote the fea-
ture extractor, a sequence of L pairs of intermediate feature
maps {(F q

l , F
s
l )}Ll=1 is produced by fϕ. We then mask each

support feature map F s
l ∈ RCl×Hl×Wl using the support

mask Ms ∈ {0, 1}H×W to discard irrelevant activations for
reliable mask prediction:

F s
l = fϕl

(x), F̂ s
l = F s

l ⊙ ζl(M
s) (1)

where x ∈ RC×H×W is the input tensor, ⊙ is Hadamard
product, and ζl(∗) is a function that bilinearly interpolates
input tensor to the spatial size of the feature map F s

l at layer
l followed by expansion along channel dimension such that
ζl : RH×W → RCl×Hl×Wl .

The final outputs of navigated feature maps are:

{NFs
l }Ll=1 = {F̂ s

l }
L
l=1 +Nα({F̂ s

l }
L
l=1) (2)

{NFq
l }

L
l=1 = {F q

l }
L
l=1 +Nα({F q

l }
L
l=1) (3)

where NF∗
l is the feature that has been aligned to the target

domain feature space after passing through the Nα.

For the subsequent hypercorrection pyramid construction,
a pair of navigated query features and navigated masked
support features at each layer forms a 4D correlation tensor
Cl ∈ RHl×Wl×Hl×Wl using cosine similarity:

Cl(m,n) = ReLU(
NFq

l (m) · NFs
l (n)

∥NFq
l (m)∥∥NFs

l (n)∥
) (4)

where m, n denote 2D spatial positions of navigated feature
maps (i.e. have been decoupled by DFN) NFq

l and NFs
l
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respectively. Then, the Cl(m,n) is fed into the 4D convolu-
tional pyramid encoder and the 2D convolutional decoder
to obtain segmentation results, as shown in Figure 6.

3.3. SAM-SVN: Perturbing only the Singular Value of
the Domain Feature Navigator

The absorption of domain information by solely the
structure-based adapter could lead to problems: if DFN
learns overly complex patterns, it may overfit source sam-
ples rather than the source domain, represented as increased
sharpness against perturbations, as verified in Table 5.

To handle this problem, we are inspired by the Sharpness-
Aware Minimization (SAM) (Foret et al., 2020), which was
proposed to reduce the sharpness of minima and has been
shown to resist overfitting in various settings (Kaddour et al.,
2022; Mueller et al., 2023). However, simply resisting the
sharpness can also limit the absorption of domain informa-
tion, since the learning of domain information can also be
understood as a kind of overfitting (to the source domain).

To overcome this issue, inspired by SAM-ON (Mueller et al.,
2023), which perturbs only the normalization layers, and
building on BSP (Chen et al., 2019), which proposed that
singular values control the importance of different represen-
tations during transfer, we developed a tailored enhancement
for the DFN, called SAM-SVN (Fig.6, green box for SAM-
SVN). In essence, we first perform singular value decom-
position on the DFN, then apply SAM to the singular value
matrix. Since only the most overfitting-sensitive parameters
(singular values) are constrained, the remaining parameters
are still capable of absorbing domain information.

In detail, for a DFN Nα with Ci input channels, Co output
channels, and a kernel size of K×K, we first fold its weight
tensor α ∈ RCo×Ci×K×K into a matrix α′ ∈ RCo×CiK

2

,
then decompose the obtained matrix by applying SVD with
full-rank in subspaces (rank R = min(Co, CiK

2) ). Thus,

α′ = USV T (5)

where U ∈ RCo×R, S ∈ RR×R, and V T ∈ RR×CiK
2

. In
our setting, we have K = 1 and input channels as same as
output channels (i.e., Ci = Co). The obtained pair of matri-
ces V T and U construct two new convolution layers, and S
is a diagonal matrix with singular values on the diagonal.

Let’s redirect our attention towards the SAM. We consider a
neural network fw attached with the DFN Nα as our model
Mφ (φ = {w,α}). The training sample (x, y) consists of
input-output pairs are drawn from the source domain Ds.
Following HSNet (Min et al., 2021), we employ the standard
Binary Cross-Entropy (BCE) loss, denoted as L, to train
the modelM, aiming to minimize L over the training set.
Conventional SGD-like optimization methods minimize L
by stochastic gradient descent ∇. SAM aims at additionally
minimizing the worst-case sharpness of the training loss in

a neighborhood defined by an ℓp ball around matrix φ.

In practice, SAM uses p = 2 and approximates the inner
maximization by a single gradient step, yielding:

ϵ = ρ∇L(S)/∥∇L(S)∥2 (6)

and requiring an additional forward-backward pass com-
pared to SGD. The gradient is then re-evaluated at the per-
turbed point α+ ϵ , giving the actual weight update:

α̂ = U(S + ϵ)V T (7)
w ← w − β∇L(w, α̂) (8)
α← α− β∇L(w, α̂) (9)

In this endeavor, SAM is applied to the singular value matrix
S obtained through the SVD of DFN. The prediction BCE
loss L is calculated using the updated {w,α}.

During the target-domain finetuning stage, we fine-tune the
DFN to learn domain-specific features, the fusion of domain-
specific features with the model’s domain-agnostic features
serves to align the feature spaces for each domain.

4. Experiments
Datasets. We adopt the benchmark proposed by PATNet
(Lei et al., 2022) and follow the same data preprocessing pro-
cedures. We employ PASCAL (Shaban et al., 2017) , which
is an extended version of PASCAL VOC 2012 (Evering-
ham et al., 2010), as our source-domain dataset for training.
We regard FSS-1000 (Li et al., 2020), Deepglobe (Demir
et al., 2018), ISIC2018 (Codella et al., 2019; Tschandl et al.,
2018), and Chest X-ray (Candemir et al., 2013; Jaeger et al.,
2013) as target domains for evaluation.

Implementation Details. We employ ResNet-50 (He
et al., 2016) pre-trained on ImageNet (Russakovsky et al.,
2015) as our backbone, with its weights frozen during train-
ing, following HSNet (Min et al., 2021). To optimize mem-
ory usage and speed up training, we set the spatial sizes of
both support and query images to 400 × 400. The model is
trained using the Adam (Min et al., 2021) optimizer with
a learning rate of 1e-3. The hyperparameter ρ in SAM is
set to 0.5. We also implemented our method in the trans-
former architecture following FPTrans (Zhang et al., 2022),
employing ViT (Dosovitskiy et al., 2020) as the backbone.
The fine-tuning of DFN is performed using the Adam op-
timizer, with learning rates set at 1e-3 for FSS-1000, 5e-1
for Deepglobe, 5e-3 for ISIC and Chest X-ray. Each task
undergoes a total of 50 iterations.

4.1. Comparison with State-of-the-arts
In Table 6, we compare our method with several state-of-the-
art few-shot segmentation methods on benchmark proposed
by PATNet (Lei et al., 2022). The results reveal that the
performance of existing few-shot semantic segmentation
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Method Mark Backbone
FSS-1000 Deepglobe ISIC Chest X-ray Average

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
CaNet (Zhang et al., 2019) CVPR-19 Res-50 70.67 72.03 22.32 23.07 25.16 28.22 28.35 28.62 36.63 37.99
PANet (Wang et al., 2019) ECCV-20 Res-50 69.15 71.68 36.55 45.43 25.29 33.99 57.75 69.31 47.19 55.10

RPMMs (Yang et al., 2020) ECCV-20 Res-50 65.12 67.06 12.99 13.47 18.02 20.04 30.11 30.82 31.56 32.85
PFENet (Tian et al., 2020) TPAMI-20 Res-50 70.87 70.52 16.88 18.01 23.50 23.83 27.22 27.57 34.62 34.98

RePRI (Boudiaf et al., 2021) CVPR-21 Res-50 70.96 74.23 25.03 27.41 23.27 26.23 65.08 65.48 46.09 48.34
HSNet (Min et al., 2021) ICCV-21 Res-50 77.53 80.99 29.65 35.08 31.20 35.10 51.88 54.36 47.57 51.38
PATNet (Lei et al., 2022) ECCV-22 Res-50 78.59 81.23 37.89 42.97 41.16 53.58 66.61 70.20 56.06 61.99
PATNet (Lei et al., 2022) ECCV-22 ViT-base 72.03 - 22.37 - 44.25 - 76.43 - 53.77 -

RestNet (Huang et al., 2023) BMVC-23 Res-50 81.53 84.89 22.70 29.90 42.25 51.10 70.43 73.69 54.22 59.89
PerSAM (Zhang et al., 2024) ICLR-24 ViT-base 60.92 66.53 36.08 40.65 23.27 25.33 29.95 30.05 37.56 40.64
ABCDFSS (Herzog, 2024) CVPR-24 Res-50 74.60 76.20 42.60 45.70 45.70 53.30 79.80 81.40 60.67 64.97

APSeg (He et al., 2024) CVPR-24 ViT-base 79.71 81.90 35.94 39.98 45.43 53.98 84.10 84.50 61.30 65.09
APM (Tong et al., 2024b) NeurIPS-24 Res-50 79.29 81.83 40.86 44.92 41.71 51.76 78.25 82.81 60.03 65.18

DFN (Ours) Ours Res-50 80.73 85.80 45.66 47.98 36.30 51.13 85.21 90.34 61.98 68.81
DFN (Ours) Ours ViT-base 82.97 85.72 39.45 47.67 50.36 58.53 83.18 87.14 63.99 69.77

Table 6: MIoU of 1-shot and 5-shot results on the CD-FSS benchmark. The best and second-best results are in bold and
underlined, respectively. In the appendix E/F, we conduct experiments on hyper-parameters and computational complexity.

Figure 7: Qualitative results of our model for 1-shot setting.

methods degrades significantly under domain shifts. Table
6 indicates a significant advancement in cross-domain se-
mantic segmentation for both 1-shot and 5-shot tasks using
our proposed approach. Specifically, we surpass the per-
formance of the state-of-the-art APSeg by 2.69% (1-shot
Ave.) and 4.68% (5-shot Ave.), respectively. Furthermore,
we showcase qualitative results of the proposed method in
1-way 1-shot segmentation, as depicted in Figure 7.

4.2. Ablation Study
Effectiveness of each component. We analyze each pro-
posed component on the 1-shot and 5-shot settings to val-
idate the effectiveness of each design, including DFN and
SAM-SVN (SAM applied on the Singular Value Matrix of
Navigator, i.e., SAM and SVD shown in the table). The
results, presented in Table 7 (left), indicate that introduc-
ing DFN improved average MIoU by 12.32% for 1-shot
and 10.21% for 5-shot, while adding SAM-SVN further in-
creased it by 2.09% and 2.22%, respectively. These results
demonstrate that each design in our approach significantly
contributes to performance gains. (see appendix for ViT)

SAM perturbation targets. We explored the impact of ap-

DFN SAM SVD 1-shot 5-shot

47.57 51.38
✓ 59.89 66.59
✓ ✓ 60.65 67.74
✓ ✓ ✓ 61.98 68.81

apply SAM 1-shot 5-shot

Enc.+Dec.+DFN 60.04 66.98
DFN 60.65 67.74
SVN 61.98 68.81

Table 7: Ablation study on various designs (left) and apply
SAM on different modules (right). Enc: Encoder, Dec:
Decoder, SVN: Singular Value matrix of the DFN.

Figure 8: Our designs reduce the feature’s domain distance,
enhancing the model’s learning of agnostic knowledge.

plying SAM to different modules, detailed in Tab 7 (right).
SAM was applied to DFN, Encoder, and Decoder collec-
tively, exclusively to DFN, and on SVN. Results highlight
the effectiveness of SAM on SVN. SAM prevents DFN from
overfitting to the source domain, aiding fine-tuning, but it
may affect domain-specific knowledge capture. SAM-SVN
strikes a balance, preventing DFN from overfitting to the
source domain without compromising its ability to capture
domain-specific information during training.

Improvement in model generalization. We evaluate our
method’s impact on model output using Maximum Mean
Discrepancy (MMD3) (Gretton et al., 2012) to measure do-
main distance of target datasets with respect to the PASCAL.
A lower MMD indicates reduced domain distance, meaning
the model produces more agnostic features. Figure 8 shows

3The CKA measure is in the appendix showing similar results.
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Figure 9: Feature map visualization: (row 1) DFN guides
model’s attention to more distinctive features. (row 2) DFN
guides the model to perform more accurate segmentation.

that attaching DFN to the backbone reduces the MMD, and
further it decreases after applying SAM-SVN. This sug-
gests the model has acquired more agnostic representations,
reducing the distance between domains.

4.3. DFN Guiding Model Attention
During source-domain training, the DFN absorbs domain-
specific knowledge, directing the model’s attention toward
acquiring domain-agnostic insights. The impact of DFN is
demonstrated through feature map visualization (Figure 9).
In the first row, without DFN, the model focuses on general
features such as the dog’s head, limbs, and tail, and the
swan’s head. After passing through the DFN, the model
is guided to pay attention to more distinctive and specific
features, such as the dog’s head and tail, and the swan’s wing.
In the second row, the model focuses on various objects,
namely the bird and the tree branch. After passing through
the DFN, the model is guided to pay attention specifically
to the object we want to segment (the bird).

4.4. SAM-SVN Reduces Sharpness and Improve
Robustness to Domain Shifts

The motivation behind the SAM-SVN is primarily twofold:
1) to limit the DFN’s acquisition of excessive source-specific
knowledge; and 2) to avoid hindering the DFN’s decoupling
ability, as this might undermine the model’s learning of
invariant knowledge. The SAM-SVN can achieve both
goals by reducing the sharpness of the training loss against
DFN’s parameter, because (1) it can prevent DFN from
being vulnerable to domain shifts, and (2) it does not harm
the minimization of the training loss.

To verify the reduced sharpness and improved robustness
of domain shifts attributed to the SAM-SVN, as shown in
Figure 10, we adopted style transfer methods to superim-
pose target-domain styles as domain shifts (horizontal axis).
The lowered performance drop (vertical axis) validates the
flattened loss landscapes and the enhanced robustness to
domain shifts. We also measured the impact of SAM-SVN
on model’s performance stability, as shown in Table 8. By
constraining DFN from absorbing sample-specific informa-
tion (flatten DFN’s loss landscape) without affecting its ab-
sorption of domain-specific information, SAM-SVN helps
improve model stability (lower performance fluctuation).

Figure 10: After adopting SAM-SVN, the model exhibits re-
duced sharpness and enhanced robustness to domain shifts.

Method FSS-1000 Deepglobe ISIC ChestX

Only DFN 1.76 2.33 3.12 2.03
DFN + SAM 1.25 2.92 2.85 1.89

DFN + SAM-SVN 0.94 1.53 1.68 1.18

Table 8: Train five best checkpoints on the same device and
measure 1-shot performance fluctuations (best− worst).

5. Analysis of DFN Usage and Adapter Choice
Impact of DFN’s usage manner. We examined different
strategies for utilizing DFN: 1) using DFN in source domain
training only, removing it in target domain; 2) using DFN
during source training, but re-initializing its parameters and
re-trained from scratch during target domain finetuning. Ta-
ble 9 shows that even when DFN is removed in the target
domain, it still improves performance over the baseline
by guiding the model toward domain-agnostic representa-
tions. However, this remains suboptimal due to the lack
of adaptation to target-specific information. Re-initializing
and retraining DFN during target finetuning, performance
varies with the initialization method, yet remains consis-
tently strong across all variants. Our approach (i.e., DFN
+ SAM-SVN) is seen as using DFN to guide the model to
focus on domain-agnostic knowledge, while SAM-SVN pro-
vides DFN with a reasonable initialization value beneficial
for adapting to various domains.

1-shot Setting FSS1000 Deepglobe ISIC ChestX Mean
Baseline 77.53 29.65 31.20 51.88 47.57

DFN (remove in target) 78.16 38.21 34.12 76.92 56.85
DFN (scratch, Kaiming) 79.02 42.53 36.63 82.03 60.05
DFN (scratch, Xavier) 79.83 45.57 34.79 79.46 59.91

DFN (scratch, Gaussian) 78.97 38.75 33.82 78.59 57.53
DFN (Ours) 80.73 45.66 36.30 85.21 61.98

Table 9: Impact of DFN usage manner on performance.

Impact of adapter choice on sharpness We further mea-
sure the impact of different adapter choices on sharpness.
Consistent with Figure 3 and Figure 5, we analyze the re-
sults based on adapter position and structure (res: residual,
ser: serial, BKB: backbone, enc-dec: encoder-decoder). The
results in Table 10 and Table 11 show that, from the perspec-
tive of sharpness, significant changes in loss fluctuations
occur only when residual links are satisfied and the position
is deep within the backbone (with the adapter structure not
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Position Baseline BKB shallower BKB deeper Between enc-dec
Loss fluc. 0.398 0.402 0.521 0.405

Table 10: Impact of adapter position on loss fluctuations.

Structure Baseline conventional+res LoRA+res conventional+ser
Loss fluc. 0.398 0.521 0.533 0.399

Table 11: Impact of adapter structure on loss fluctuations.

being a determining factor), This indicates that the adapter
has captured domain-specific related information, which is
consistent with the conclusions drawn in section 2.

6. Theoretical Analysis for Adapter naturally
Serves as Information Decoupler

The behavior of adapters as domain information decouplers
can be analyzed through the Information Bottleneck (IB)
theory. The IB objective is given by:

LIB = I(X;Z)− βI(Z;Y ) (10)

where I(·; ·) denotes mutual information, X is the input, Y
is the final output label, Z is the intermediate representation,
and β is the trade-off parameter.

Assume input X can be decomposed into domain-invariant
and domain-specific components X = Xinv +Xspec, then
the IB objective becomes:

LIB = I(Xinv +Xspec;Z)− βI(Z;Y ) (11)

For encoder-decoder (ED) network with parameters θf and
a adapter with parameters θg where the adapter has a limited
capacity (i.e., θf ≫ θg). Due to the lower capacity of the
adapter (much smaller than the ED’s parameters), it tends to
absorb primarily the domain-specific signal, which is more
informative for the current training objective. This leads to:

I(Xspec;Zadapter)≫ I(Xinv;Zadapter) (12)

where Zadapter is the information processed or represented
by the adapter. It promotes gradient flow differentiation.
The forward function of the residual adapter structure is:

F (x) = f(x) + g(f(x)) (13)

where g(f(x)) is the output of the adapter. The gradient
w.r.t. the encoder-decoder parameters θf is:

∂L
∂θf

=
∂L

∂F (x)
· ∂F (x)

∂f(x)
· ∂f(x)

∂θf
(14)

Expanding the middle term:

∂F (x)

∂f(x)
= I+

∂g(f(x))

∂f(x)
(15)

where I is the identity matrix (from the direct residual path),
and the second term is the Jacobian matrix of the adapter
function with respect to f(x).

For the adapter parameters θg , the gradient is:

∂L
∂θg

=
∂L

∂F (x)
· ∂g(f(x))

∂θg
(16)

Differentiated gradients: Due to the adapter’s selective
absorption of domain-specific information and the residual
adapter structure, gradient flow naturally separates network
optimization into two complementary learning objectives.
(Detailed derivation in appendix A)

7. Related Work
Few-shot semantic segmentation FSS (Tong et al., 2024a)
aims to segment unseen semantic objects in query images
with only a few annotated samples. OSLSM (Shaban et al.,
2017) contributes to the first two-branch FSS model. Fol-
lowing this, PL (Dong & Xing, 2018) introduces a prototype
learning paradigm, where predictions leverage the cosine
similarity between pixels and prototypes. SG-One (Zhang
et al., 2020) adopt the masked average pooling operation to
enhance the extraction of support feature. HSNet (Min et al.,
2021) employs efficient 4D convolutions on multi-level fea-
ture correlations, significantly enhancing performance and
serving as the baseline for our work. However, these meth-
ods focus solely on segmenting novel classes within the
same domain and struggle to generalize to unseen domains.
Bridging the huge domain gap between source and target
domains with limited labeled data, remains a challenge.

Domain-invariant representation learning Domain-
invariant representation learning has been widely adopted
to address domain shifts. (Tzeng et al., 2015) introduces
domain confusion loss and soft label to render domains in-
distinguishable in feature space, promoting the learning of
domain-invariant features. (Motiian et al., 2017) implements
domain alignment and semantic alignment through CCSA
loss. DIFEX(Lu et al., 2022) maximizes both invariant and
domain-specific features through additional regularization
terms to better leverage invariant characteristics. These
methods aim to induce models to acquire invariant knowl-
edge through restrictive mechanisms such as losses and
regularization. Diverging from these loss-based approaches,
our work leverages the inherent properties of adapters to
propose a structure-based domain knowledge decoupler.

8. Conclusion
In this paper, we introduce a novel perspective: adapter natu-
rally serve as domain information decoupler. Based on this,
we propose the DFN to guide the model’s attention towards
acquiring domain-agnostic information. Additionally, we
introduce the SAM-SVN to prevent the potential excessive
overfitting on DFN introduced by source-domain training
that hinders the acquisition of domain-specific knowledge
during fine-tuning. Experimental results demonstrate the
effectiveness of our approach in bridging domain gaps.
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Appendix for Adapter Naturally Serves as Decoupler for Cross-Domain
Few-Shot Semantic Segmentation

A. Detailed Derivation of Adapter Naturally
Serves as Information Decoupler

Let the features f(x) from the ED be conceptually decom-
posable into domain-invariant finv(x) and domain-specific
fspec(x) components:

f(x) = finv(x) + fspec(x) (17)

We assume the existence of orthogonal projection opera-
tors Pinv and Pspec onto conceptual domain-invariant and
domain-specific subspaces, respectively, such that finv(x) ≈
Pinvf(x) and fspec(x) ≈ Pspecf(x), with Pinv + Pspec ≈ I
and PinvPspec ≈ 0.

Step 1: Decompose the gradient of the ED’s features f(x)
w.r.t. its parameters θf into contributions from changes in
invariant and specific feature components:

∂f(x)

∂θf
=

∂finv(x)

∂θf
+

∂fspec(x)

∂θf
(18)

This assumes that changes in θf can conceptually lead to
changes in both domain-invariant and domain-specific as-
pects of the features f(x).

Step 2: Adapter learns mainly from domain-specific signals.
As motivated by IB (Eq. 12), the adapter g primarily models
domain-specific information. Its parameters θg are updated
to capture domain-specific characteristics:

∂L
∂θg
≈ ∂L

∂F (x)
· ∂g(f(x))

∂θg
(19)

Step 3: The encoder-decoder receives gradients influenced
by both its direct path and the adapter path. Substituting Eq.
15 and Eq. 18 into Eq. 14:

∂L
∂θf

=
∂L

∂F (x)
·
[
I+

∂g(f(x))

∂f(x)

]
·
[
∂finv(x)

∂θf
+

∂fspec(x)

∂θf

]
(20)

Step 4: Adapter approximates the negative of the projected
domain-specific representation. The adapter g learns to
model domain-specific aspects. We hypothesize g(f(x)) ≈
−fspec(x). Using the projection, g(f(x)) ≈ −Pspecf(x).
Thus, the Jacobian of the adapter function is (assuming Pspec
acts as an approximately linear operator or its dependency
on f(x) is negligible for this derivative):

∂g(f(x))

∂f(x)
≈ −Pspec (21)

Step 5: Substituting the adapter’s Jacobian approximation:

∂L
∂θf
≈ ∂L

∂F (x)
·[I− Pspec]·

[
∂finv(x)

∂θf
+

∂fspec(x)

∂θf

]
(22)

Step 6: Expanding the terms involving the projection. Since
Pinv ≈ I− Pspec, we have:

∂L
∂θf
≈ ∂L

∂F (x)
· Pinv ·

[
∂finv(x)

∂θf
+

∂fspec(x)

∂θf

]
(23)

Expanding this:

∂L
∂θf
≈ ∂L

∂F (x)
·
[
Pinv

∂finv(x)

∂θf
+ Pinv

∂fspec(x)

∂θf

]
(24)

Step 7: Assuming approximate orthogonality of gradient
components. If changes to finv(x) due to θf (i.e., ∂finv(x)

∂θf
)

lie in the invariant subspace, then:

Pinv
∂finv(x)

∂θf
≈ ∂finv(x)

∂θf
(25)

If changes to fspec(x) due to θf (i.e., ∂fspec(x)
∂θf

) lie in the
specific subspace (orthogonal to the invariant one), then:

Pinv
∂fspec(x)

∂θf
≈ 0 (26)

Substituting Eq. 25 and Eq. 26 into Eq. 24:

∂L
∂θf
≈ ∂L

∂F (x)
·
[
∂finv(x)

∂θf
+ 0

]
=

∂L
∂F (x)

·∂finv(x)

∂θf
(27)

This derivation shows that, under these assumptions, the
gradient updates to the encoder-decoder parameters θf are
predominantly guided by the domain-invariant components
of the features. The adapter, by learning to approximate
−Pspecf(x), effectively filters or projects out the domain-
specific gradient components that would otherwise update
θf . Consequently, the ED network is primarily optimized
toward learning domain-invariant representations, while the
adapter itself (via Eq. 16) focuses on domain-specific adap-
tation. This provides a theoretical foundation for viewing
adapters as information decouplers.

B. Centered Kernel Alignment (CKA)
CKA (Kornblith et al., 2019) is a widely used metric for
comparing the similarity between two data representations
by normalizing the Hilbert-Schmidt Independence Criterion
(HSIC). This normalization mitigates the effects of scaling
differences between the two representations.
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B.1. Dot Product-Based Similarity

CKA builds on the concept of dot product-based similarity,
which relates inter-example similarities to feature similari-
ties. Given two representations X ∈ Rn×d and Y ∈ Rn×d,
the dot product similarity between examples is:

⟨vec(XX⊤), vec(YY⊤)⟩ = tr(XX⊤YY⊤) = ∥Y⊤X∥2F .
(28)

The terms XX⊤ and YY⊤ represent dot products between
pairs of examples in X and Y. The left-hand side measures
similarity between these structures, while the right-hand side
captures feature similarity through the squared dot products.

B.2. Hilbert-Schmidt Independence Criterion (HSIC)

HSIC generalizes dot product-based similarity by measuring
dependence between two sets of variables in reproducing
kernel Hilbert spaces (RKHS). For centered matrices X and
Y, Equation (1) implies:

1

(n− 1)2
tr(XX⊤YY⊤) = ∥cov(X⊤,Y⊤)∥2F . (29)

HSIC extends this to kernel methods, where Kij =
k(xi, xj) and Lij = l(yi, yj) are kernel matrices. The
empirical HSIC estimator is:

HSIC(K,L) =
1

(n− 1)2
tr(KHLH), (30)

with H being the centering matrix:

H = In −
1

n
11⊤, (31)

where In is the identity matrix and 1 is a vector of ones.
HSIC measures dependence between two distributions and
converges to the population value at a rate of 1/

√
n.

B.3. Centered Kernel Alignment (CKA)

To address the scaling issues inherent in HSIC, CKA nor-
malizes the dependence measure. CKA between two kernel
matrices K and L is defined as:

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K) · HSIC(L,L)
. (32)

The numerator measures the similarity between the two
kernel matrices, while the denominator normalizes this sim-
ilarity by accounting for the self-similarities within each
representation. This normalization ensures that CKA is in-
variant to isotropic scaling, making it robust to variations in
the magnitudes of the features.

We extract features from the source and target domains
through the feature extractor, treat them as two sets of rep-
resentations, and compute the domain similarity using the
CKA formula above.

C. Adapter Naturally Serves as Decoupler
The deeper the neural network is, the more semantic infor-
mation its features can encompass, meaning it can better
represent category information. Different categories exhibit
more distinctive semantic information at higher layers. We
validate it for CKA measure in paper, here, we further illus-
trate this perspective by visualizing feature maps. As shown
in Fig.11, the two examples illustrate that as the depth of the
layers increases, the model focuses more on specific objects,
extracting features that are more discriminative.

Figure 11: The deeper the neural network is, the more
semantic information its features can encompass.

The adapter is a network layer positioned deeper than each
layer of the backbone network, placing itself at a relatively
deeper level while the backbone is relatively shallower. In-
tuitively, the adapter serves as a natural boundary line for
domain features and always captures a level of semantics
higher than what the backbone learns, making it more spe-
cific. We validate it for CKA measure in paper, here, we
further illustrate this perspective by visualizing feature maps
at different levels, and the results are shown in Figure.12.
For each column, after attaching an adapter, these feature
maps contain more specific features like the bird’s profile
compared with the first row, which means the adapter assim-
ilates domain-specific information.

Figure 12: The adapter serves as a natural boundary line for
domain features and always captures a level of semantics
higher than what the backbone learns
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D. SAM: Flatten Loss Landscape
For any ρ > 0 and any distribution D , with probability 1−δ
over the choice of the training set S ∼ D ,

LD(w) ≤ max
∥ϵ∥2≤ρ

LS(w + ϵ)+ (33)√√√√√√k log

(
1 +

∥w∥2
2

ρ2

(
1 +

√
log(n)

k

)2
)

+
4 log n

δ +Õ(1)

n−1

n− 1
(34)

where n = |S|, k is the number of parameters and we
assumed LD(w) ≤ Eϵi∼N (0,ρ)[LD(w + ϵ)]. This condi-
tion implies that adding Gaussian perturbations should not
reduce the test error, which generally holds for the final
solution but not necessarily for all w.

Figure 13: Sharpness-Aware Minimization (SAM): flattens
the loss landscape of the DFN, limits its absorption of exces-
sive source-domain information (prevent overfitting to the
source-domain samples), thereby facilitating the fine-tuning
of DFN during target-domain stage.

The overview of the main text, we present the process dia-
gram of SAM and its effects. Here, we provide further de-
tailed explanations, as shown in Figure. 13. During source
domain training, the DFN absorbs domain-specific informa-
tion, leading to loss minima that are specific to the source
domain, i.e., source minima. When domain shift occurs,
the weights learned by the DFN become misaligned on
the target domain. If the loss landscape of the DFN is too
sharp, fine-tuning to the target minima becomes more diffi-
cult. Adopting SAM during training on the source domain
flattens the loss landscape of the DFN, making it easier to
fine-tune to the target minima when transferring to the target
domain.

E. The Analysis of Hyper-parameter
Fine-tuning of DFN is performed using the Adam optimizer,
with learning rates set at 1e-3 for FSS-1000, 5e-1 for Deep-
globe, 5e-3 for ISIC, and Chest X-ray. Each task undergoes
a total of 50 iterations. As shown in Fig.14, we evaluated the
fine-tuning performance on four target datasets at different
learning rates. We also present experiments on the hyper-
parameter ρ for Sharpness-Aware Minimization (SAM) as
shown in table 12 (left).

Figure 14: The Learning rate for the fine-tuning of four
target datasets.

Method
Complexity

Params(K) FLOPs(G)

baseline 26174 20.11
ours 31679 20.51

increase ratio 21% 0.02%

Table 12: (Left) The hyper-parameter ρ of the SAM. (Right)
The complexity analysis.

F. The Analysis of Computational Complexity
As shown in Table 12 (right), we present the results of the
complexity analysis, demonstrating that our method incurs
minimal overhead in terms of parameter count and training
time. We use a single 4090 GPU for training and testing.

The Computational Efficiency of SAM-SVN Our SAM-
SVN is used only during source domain training and not
during fine-tuning or inference, so it does not affect the
computational efficiency during inference. Regarding ef-
ficiency during training in the source domain, although it
requires double backpropagation, it is applied only to the sin-
gular value matrix of DFN, resulting in negligible additional
computation. As shown in Table 13, we demonstrate the
computational efficiency of SAM-SVN by measuring the
efficiency of the baseline, PATNet (which adopts the same
baseline as ours), SAM applied to the entire model, SAM
applied to DFN, and SAM applied to SVN (the singular
value matrix of DFN).

Method Baseline PATNet SAM-Whole SAM-DFN SAM-SVN
FLOPs (G) 20.11 22.62 26.82 22.68 20.51
Increase Ratio – 12.4% 33.35% 12.77% 1.99%

Table 13: Computational efficiency comparison of different
SAM variants.
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G. More Ablation Study Results
In the main text, we presented the average mIoU across
four target datasets to demonstrate our design effectiveness.
Table 14 provides detailed performance results for each
individual target dataset. While the main ablation studies
used ResNet-50 as the backbone, we supplement these find-
ings with additional experiments using ViT-Base (following
FPTrans (Zhang et al., 2022), Table 15).

DFN SAM SVD
FSS-1000 Deepglobe ISIC Chest X-ray

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

77.53 80.99 29.65 35.08 31.20 35.10 51.88 54.36

✓ 80.67 84.87 41.29 44.37 34.82 48.04 82.78 89.07

✓ ✓ 80.97 85.25 42.28 45.52 35.21 50.12 84.14 90.08

✓ ✓ ✓ 80.73 85.80 45.66 47.98 36.30 51.13 85.21 90.34

Table 14: (ResNet50): Ablation study on various designs,
observing the MIoU for 1-shot and 5-shot on four datasets.

DFN SAM SVD
FSS-1000 Deepglobe ISIC Chest X-ray

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

78.90 81.77 38.29 42.54 47.60 52.90 78.92 80.61

✓ 81.83 83.86 39.12 46.23 48.96 56.79 81.97 85.32

✓ ✓ 82.76 84.59 39.37 46.98 50.09 57.51 82.77 86.15

✓ ✓ ✓ 82.97 85.72 39.45 47.67 50.36 58.53 83.18 87.14

Table 15: (ViT-Base): Ablation study on various designs,
observing the MIoU for 1-shot and 5-shot settings.

We futher investigate how our method impacts the encoder’s
output. Using the relative CKA similarity (the ratio of
CKA between Pascal and target datasets to Pascal itself,
i.e., CKA/CKApascal). A higher value indicates a lower
domain similarity, meaning the encoder produces more ag-
nostic features. Figure 15 reveals that attaching DFN to the
backbone increases relative CKA, and further improvement
occurs after applying SAM-SVN. This suggests the model
has acquired more agnostic representations, reducing the
distance between domains.

Figure 15: Our designs increase encoder’s domain similarity,
enhancing the model’s learning of agnostic knowledge.

H. Comparison with More Methods under
Their Settings

Because the baseline SSP (Fan et al., 2022) used by the
IFA (Nie et al., 2024) aggregates all samples within a batch
when computing the foreground and background prototypes,

existing CD-FSS methods set the batch size to 1 during
testing. This is to avoid unfair comparisons that arise from
including information from other samples in the batch. How-
ever, IFA sets the batch size to 96 during testing. To ensure
a fair comparison, we conduct comparisons with IFA using
a batch size of 96.

Method
FSS-1000 Deepglobe ISIC Chest X-ray

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
IFA 80.1 82.4 50.6 58.8 66.3 69.8 74.0 74.6

Ours 82.6 87.9 51.3 59.2 68.5 71.4 86.1 91.6

Table 16: Comparison with IFA under it specific testing
setting. (Backbone: Res-50, Batch size: 96)

I. Related Work
Few-shot learning Few-shot learning focuses on developing
robust representations for novel concepts with limited anno-
tated samples (An et al., 2024a;b). Existing approaches can
be broadly categorized into three primary frameworks: met-
ric learning methods (Snell et al., 2017; Vinyals et al., 2016),
optimization-based methods (Finn et al., 2017), and graph-
based methods (Garcia & Bruna, 2017). Cross-domain
few-shot learning (Guo et al., 2020; Zou et al., 2024b) is
receiving increasing interest recently, there exist dispari-
ties not only in the data distribution but also in the label
space between the meta-testing stage and the meta-training
stage. A significant challenge in this field remains effec-
tively bridging the domain gap between source and target
domains when only a few labeled samples are available.

J. More Dataset Details

Figure 16: Example of segmentation for four datasets.

We adopt the benchmark (see Figure.16) proposed by PAT-
Net (Lei et al., 2022) and follow the same data preprocessing
procedures as the dataset it employs.

PASCAL-5i (Shaban et al., 2017) is an extended version of
PASCAL VOC 2012 (Everingham et al., 2010), incorporat-
ing supplementary annotation enhancement details from the
SDS dataset (Hariharan et al., 2011). We employ PASCAL-
5i as our source domain for training. Subsequently, we
assess the performance of the trained models across four
additional datasets.

FSS-1000 (Li et al., 2020) is a natural image dataset for few-
shot segmentation, containing 1000 categories, and each
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category has 10 samples. We follow the official split for
semantic segmentation in our experiment and present results
on the designated testing set, consisting of 240 classes and
2,400 images. We regard FSS-1000 as a target domain for
testing.

Deepglobe (Demir et al., 2018) comprises satellite images
with dense pixel-level annotations across 7 categories: ur-
ban, agriculture, rangeland, forest, water, barren, and un-
known. As ground-truth labels are only provided in the
training set, we rely on the official training dataset, consist-
ing of 803 images, to present our results. We adopt it as our
target domain for testing and we take the same processing
approach as PATNet.

ISIC2018 (Codella et al., 2019; Tschandl et al., 2018) is
designed for skin cancer screening, and comprises lesion
images, with each image containing precisely one primary
lesion. The dataset is processed and utilized in accordance
with the standards set by PATNet. And we regard ISIC2018
as a target domain for testing.

Chest X-ray (Candemir et al., 2013; Jaeger et al., 2013) is
an X-ray dataset for Tuberculosis, consisting of 566 images
(4020 × 4892 resolution). These images are derived from
58 Tuberculosis cases and 80 normal cases. To address
large image sizes, a common practice involves downsizing
to 1024 × 1024 pixels.
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