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ABSTRACT

Recently, reinforcement learning from human feedback (RLHF) has demonstrated
remarkable efficiency in fine-tuning large language models (LLMs), fueling a
surge of interest in KL regularization. Yet, the theoretical foundations of KL
regularization remain underexplored. Many prior works employ either explicit
online exploration strategies—such as UCB, Thompson sampling, and forced
sampling—or optimism-embedded optimization techniques (e.g., Xie et al. 2024)
in addition to KL regularization to achieve sublinear regret in online RLHF. In
this paper, we show, for the first time to our best knowledge, that such additional
exploration strategies are unnecessary if KL regularization is already included.
That is, KL regularization alone suffices to guarantee sublinear regret. We propose
KL-EXP (and its RLHF variant, OEPO), an algorithm that achieves logarithmic
KL-regularized regret—the standard objective in KL-regularized contextual ban-
dits and RLHF—while also attaining Õp

?
T q unregularized regret, both under

general function approximation. As a special case, in linear contextual bandits,
we establish a Õp

?
dT logNq bound on the unregularized regret, where d is the

feature dimension and N is the number of arms. To our best knowledge, this is the
first Õp

?
dT logNq-type regret bound achieved without resorting to supLin-type

algorithms, making it substantially more practical. Our experiments on linear and
neural bandits, as well as on LLM fine-tuning with RLHF, demonstrate that our
algorithms significantly outperform the baselines while remaining practical.

1 INTRODUCTION

The Kullback–Leibler (KL)-regularized contextual bandit problem (Langford & Zhang, 2007; Neu
et al., 2017; Xiong et al., 2023; Xie et al., 2024) has recently attracted considerable attention due to its
remarkable empirical success in fine-tuning large language models (LLMs), an application commonly
referred to as reinforcement learning from human feedback (RLHF) (Christiano et al., 2017; Bai
et al., 2022; Ouyang et al., 2022). This framework uses KL regularization as a key mechanism to
balance reward optimization with distributional stability.

Despite these practical successes, the theoretical understanding of KL-regularization remains limited,
particularly in the context of online learning. Online exploration is crucial for efficiently gathering
informative feedback and addressing user preferences in RLHF. In this vein, many prior works
have leveraged additional mechanisms to promote exploration, such as Upper Confidence Bound
(UCB) (Xiong et al., 2023; 2024; Zhao et al., 2025), forced sampling (Zhao et al., 2024), and value-
incentivized policy optimization (Xie et al., 2024; Cen et al., 2024). Building on these strategies,
Xiong et al. (2023); Ye et al. (2024); Xie et al. (2024); Xiong et al. (2024); Cen et al. (2024) established
Op

?
T q bounds on KL-regularized regret (or Op1{ϵ2q sample complexity). More recently, Zhao et al.

(2024; 2025) achieved the first logarithmic KL-regularized regret (or Op1{ϵq sample complexity).

However, optimizing the KL-regularized objective (Equation 1) already yields a randomized policy
of the Gibbs distribution form (Equation 2). This implies that KL-regularization induces inherent
exploration. Therefore, a natural question arises:

Can logarithmic KL-regularized regret be achieved without extra exploration techniques
in contextual bandits and RLHF when KL-regularization is used?
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Beyond this, we raise a more fundamental question: is achieving sublinear KL-regularized regret,
by itself, truly sufficient? To the best of our knowledge, the tightest bound to date is Opη log T q,
established by Zhao et al. (2025), where η is the KL-regularization parameter. A direct implication
of this result is that by choosing η to be sufficiently small, one can always guarantee an arbitrarily
small KL-regularized regret. Indeed, a small η indicates that the KL-regularized optimal policy π‹

η
remains very close to the reference policy πref, which makes this result appear reasonable. However,
when π‹

η « πref, the learner gains little to no improvement, which is undesirable since the goal is to
discover a strictly better policy than the reference policy. To address this, we also consider the notion
of unregularized regret (Equation 3), as in standard bandit settings. This regret can be large when
the policy remains close to πref (i.e., for small η) but far from the unregularized optimal policy π‹.
Minimizing the unregularized regret allows us to directly pursue the unregularized optimal policy π‹,
rather than being limited to the KL-regularized solution π‹

η . This naturally raises the hypothesis that η
should be chosen carefully to minimize the unregularized regret, which leads to our second question:

By choosing η appropriately, can we achieve sublinear unregularized regret, still without
additional exploration techniques?

In this paper, we answer these questions affirmatively. We begin by analyzing the KL-regularized
(adversarial) contextual bandit setting and then extend our analysis to RLHF. To consider general
algorithms, we assume access to an online regression oracle (Foster & Rakhlin, 2020), while the
offline regression oracle is discussed in Appendix F. Our main contributions are summarized as:

• KL-regularized regret. In KL-regularized contextual bandits, we establish a KL-regularized
regret bound of OpηRegSqpT q ` η logp1{δqq, where η is the regularization parameter, RegSqpT q

is the online regression oracle bound, and δ is the failure probability (Theorem 1). This result
is achieved solely through KL-regularization, without relying on any additional exploration
techniques. To our best knowledge, this is the first result to show the provable efficiency of
the KL-regularization-only approach. Since RegSqpT q “ Oplog T q can be attained by suitable
regression oracles for a wide range of reward functions—including linear, generalized linear, and
bounded eluder-dimension function classes—we achieve logarithmic KL-regularized regret.

• Unregularized regret. By setting η “ Θ
`

?
DT {pRegSqpT q ` log δ´1q

˘

, we obtain an unregu-
larized regret of Op

?
DT pRegSqpT q ` log δ´1qq, where D “ 1

T

řT
t“1 KL

`

π‹p¨}xtq}πrefp¨}xtq
˘

(Theorem 1). To the best of our knowledge, this is the first unregularized regret bound for
KL-regularized contextual bandits attained solely through KL-regularization-induced exploration.

• Õp
a

dT logNq regret in linear contextual bandits. By setting πref to the uniform random
policy and choosing η “ Θp

a

T logN{pd log T qq, we obtain an (unregularized) regret bound of
Õp

?
dT logNq for linear contextual bandits (Theorem 2), where d is the feature dimension, N

is the number of arms, and Õp¨q hides constant and logarithmic factors (excluding those in N ).
To the best of our knowledge, this is the first Õp

?
dT logNq-type regret achieved without using

on supLin-type algorithms (Auer, 2002; Chu et al., 2011; Li et al., 2019), which are known to
be impractical. Hence, this is the first practical algorithm to achieve minimax optimal regret for
finite-armed linear contextual bandits.

• Extension to RLHF. We further establish similar regret bounds in the RLHF setting, with only an
additional factor due to the non-linearity of the Bradley–Terry model (Theorems 3 and E.1).

2 RELATED WORKS

Online RLHF. Early works in online RLHF trace back to the dueling bandits literature (Yue et al.,
2012; Zoghi et al., 2015; Saha & Gopalan, 2018; Bengs et al., 2021) and were later extended to
the reinforcement learning setting (Xu et al., 2020; Novoseller et al., 2020; Chen et al., 2022; Saha
et al., 2023; Zhan et al., 2023b; Wu & Sun, 2023). More recently, Xiong et al. (2023); Ye et al.
(2024) introduced provably efficient algorithms under the KL-regularized objective using UCB-style
exploration. These were further refined by methods that employ optimistically biased optimization
targets (Xie et al., 2024; Liu et al., 2024; Cen et al., 2024). The most closely related works are Zhao
et al. (2024; 2025), which also study the KL-regularized objective and establish Opη log T q KL-
regularized regret (or Opη{ϵq suboptimality gap). However, all of these prior approaches depend on
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additional exploration mechanisms. In contrast, our work demonstrates—for the first time, to the
best of our knowledge—that KL-regularization alone suffices to achieve sublinear regret in both the
regularized and unregularized forms. For additional related work, see Appendix A.

3 PROBLEM SETUP

Notations. Given a set X , we use |X | to denote its cardinality. For a positive integer, n, we denote
rns :“ t1, 2, . . . , nu. Let N denote the size of the action space. We write Op¨q for asymptotics up to
constants and Õp¨q when also hiding logarithmic factors (except in N ). For a function class F , we
denote by NF pϵq its ϵ-covering number.

3.1 KL-REGULARIZED CONTEXTUAL BANDITS

In the KL-regularized contextual bandits, at each round t P rT s, the learner observes a context xt P X
(which may be provided adversarially) and then selects an action at P A, where X is the context
space and A is the action space. The learner then receives a reward rt P r0, 1s, given by:

rt “ R‹pxt, atq ` ϵt,

where R‹pxt, atq is the unknown expected reward function, and ϵt is independent, zero-mean, and 1-
sub-Gaussian. In this paper, we consider a general reward function class R Ď tR : X ˆA Ñ r0, 1su,
which can be a class of parametric functions, nonparametric functions, neural networks, etc. We
assume the standard realizability (Chu et al., 2011; Agarwal et al., 2012; Foster et al., 2018a; Foster
& Rakhlin, 2020; Simchi-Levi & Xu, 2022) throughout the paper, including the RLHF setting.
Assumption 1 (Realizability). The true reward function is contained in R, i.e., R‹ P R.

KL-Regularized Objective. We consider a KL-regularized reward objective, defined for a regular-
ization parameter η ą 0, as:

Jη
t pπ,Rq :“ Ea„πp¨|xtq rRpxt, aqs ´

1

η
KL

`

πp¨|xtq}πrefp¨|xtq
˘

, @t ě 1, (1)

where πref is the reference policy known to the learner. When πref is uniform, Equation 1 reduces to
the entropy-regularized objective that encourages diverse actions and enhances robustness (Williams,
1992; Levine & Koltun, 2013; Levine et al., 2016; Haarnoja et al., 2018), which is also closely-related
to the generative flow networks (GFlowNets) (Bengio et al., 2021; 2023; Tiapkin et al., 2024). When
πref is instead chosen as a base model, KL regularization has been widely adopted for RL fine-tuning
of large language models (Ouyang et al., 2022; Rafailov et al., 2023). It has also been studied in
online learning (Cai et al., 2020; He et al., 2022) and convex optimization (Neu et al., 2017).

Following prior work (Peters & Schaal, 2007; Rafailov et al., 2023; Zhang, 2023), it is straightforward
to show that the optimal solution to the objective in Equation 1 has the following form:

πη
Rpa|xq “

1

ZRpxq
πrefpa|xq exppηRpx, aqq , (2)

where ZRpxq :“ Ea„πrefp¨|xq exppηRpx, aqq is the normalization constant. A full derivation can be
found in Appendix A.1 of Rafailov et al. (2023).

3.2 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK (RLHF)

In the RLHF problem (Ouyang et al., 2022)—more specifically, the contextual dueling bandit
problem with a KL-regularized objective—the learner at each round t P rT s observes a context
xt P X (possibly provided adversarially) and selects two actions a1t , a

2
t P A, where X is the context

space and A the action space. The learner then receives relative preference feedback between the two
actions, rather than a scalar reward. In this paper, we consider the Bradley-Terry Model (Bradley &
Terry, 1952), where the probability of a1 is preferred over a2 (denoted by a1 ą a2) is given by

Ppa1 ą a2|x, a1, a2q “ σ
`

R‹px, a1q ´ R‹px, a2q
˘

,

where σpxq “ 1
1`e´x is the sigmoid function, and R‹ : X ˆ A Ñ r0, 1s the unknown true reward

function. We denote R Ď tR : X ˆ A Ñ r0, 1su as the class of reward functions. To capture
the non-linearity of the sigmoid function, we define κ :“ supRPR,xPX ,aPA 1{ 9σpRpx, aqq. As in the
bandit setting, we update the policy by optimizing the KL-regularized reward objective (Equation 1).
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3.3 KL-REGULARIZED AND UNREGULARIZED REGRET

We study two types of regret to more comprehensively evaluate the performance of our algorithm.

KL-regularized regret. Let π‹
ηp¨|xtq “ argmaxπ J

η
t pπ,R‹q denote the KL-regularized optimal

policy. Our objective is to minimize the cumulative regret, defined as:

RegretKLpT, ηq :“
T
ÿ

t“1

`

Jη
t pπ‹

η, R
‹q ´ Jη

t pπt, R
‹q
˘

.

This KL-regularized regret has been extensively studied in the prior literature (Xiong et al., 2023; Ye
et al., 2024; Song et al., 2024; Zhao et al., 2024; 2025).

Unregularized regret. Beyond the KL-regularized regret, we also measure performance relative
to the unregularized optimal policy π‹p¨|xtq “ argmaxπ Ea„πp¨|xtqrR‹pxt, aqs, and define the
corresponding regret as follows:

RegretpT q :“
T
ÿ

t“1

`

Ea„π‹p¨|xtqrR‹pxt, aqs ´ Ea„πtp¨|xtqrR‹pxt, aqs
˘

. (3)

The notion of this regret is standard in conventional bandit problems. This metric enables a more
direct evaluation of how closely the learned policies approach the unregularized optimal policy.

4 KL-REGULARIZED CONTEXTUAL BANDITS

In this section, we consider KL-regularized contextual bandit problems. We introduce the notion of
an online regression oracle (Subsection 4.1), present our algorithm KL-EXP together with its regret
bounds (Subsection 4.2), and provide a proof sketch (Subsection 4.3).

4.1 SQUARED-LOSS ONLINE REGRESSION ORACLE.

We assume access to a squared-loss online regression oracle (Foster & Rakhlin, 2020), denoted by
OracleSq. At each round t, OracleSq outputs a reward estimator

pRt Ð OracleSqtppxt, atq; px1, a1, r1q, . . . , pxt´1, at´1, rt´1qq. (4)

Its prediction error is assumed to be bounded with respect to the true reward R‹.
Assumption 2 (Guarantee of OracleSq). We assume that, for every sequence x1:T , a1:T , r1:T , there
exists regret bound RegSqpT q such that the regression oracle OracleSq satisfies

T
ÿ

t“1

`

pRtpxt, atq ´ rt
˘2

´

T
ÿ

t“1

`

R‹pxt, atq ´ rt
˘2

ď RegSqpT q.

An important advantage of Assumption 2 is that it places no restriction on how the estimator pRt is
obtained; in particular, it does not require solving ERM exactly. Instead, pRt can be computed via
iterative methods such as (stochastic) gradient descent and implemented in an online or streaming
manner, which is crucial for large-scale modern machine learning. Under realizability, Assumption 2
is weaker than Assumption 2a in Foster & Rakhlin (2020), since we compete only against the fixed
R‹, whereas they compete against the best predictor over the sequence.

The online squared-loss regression problem is well studied, with efficient algorithms and regret
guarantees for many function classes.
Example 1 (Linear classes). When R‹ P R and the reward function class R is linear, i.e., R “

tR : R “ ϕpx, aqJθ, θ P Rd, }θ}2 ď 1u, where ϕpx, aq P Rd is a known feature map satisfying
}ϕpx, aq}2 ď 1, choosing OracleSq as the Vovk–Azoury–Warmuth forecaster (Vovk, 1997; Azoury
& Warmuth, 2001) yields RegSqpT q “ Opd logpT {dqq.

Example 2 (Generalized linear models (GLMs)). For a fixed non-decreasing 1-Lipschitz link function
µ : R Ñ r0, 1s, define the reward function class R “ tR : R “ µpϕpx, aqJθq, θ P Rd, }θ}2 ď 1u,
where ϕpx, aq P Rd is a known feature map with }ϕpx, aq}2 ď 1. If R‹ P R, then the GLMtron
algorithm (Kakade et al., 2011) guarantees RegSqpT q “ Opκ2

µd logpT {dqq, where 1{ 9µ ď κµ.

4
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Algorithm 1 KL-EXP (KL-regularized EXPonential-weights algorithm) Ź OEPO if RLHF

1: Inputs: regularization parameter η, reference policy πref, online regression oracle OracleSq.
2: Initialize: choose any pR1 P R.
3: for round t “ 1 to T do
4: Observe context xt P X .
5: Compute policy πtp¨|xtq 9 πrefp¨|xtq exp

`

η pRtpxt, ¨q
˘

via Equation 2.
6: Sample action at „ πtp¨|xtq and receive reward rt. Ź or a1t , a

2
t „ πtp¨|xtq if RLHF

7: Update pRt`1 using OracleSq via Equation 4. Ź or update using OracleLog if RLHF
8: end for

Example 3 (Bounded eluder dimension, Russo & Van Roy, 2013). When R‹ P R and the reward
function class R has bounded eluder dimension, the empirical risk minimization (ERM) algorithm
achieves, with probability at least 1 ´ δ, RegSqpT q “ O

`

dE logpNRpϵqT q
˘

(Lemma C.2).

For additional examples, the reader is referred to Foster & Rakhlin (2020) for high-dimensional linear
models, Banach spaces, and RKHS, and to Deb et al. (2024) for neural networks.

4.2 ALGORITHM AND MAIN RESULTS

We present our KL-regularized EXPonential-weights algorithm, KL-EXP, in Algorithm 1. At each
round t P rT s, the algorithm observes the context xt P X and computes the policy πt by solving the
KL-regularized objective in Equation 1, which admits the closed-form solution given in Equation 2.
The algorithm then samples an action at „ πtp¨|xtq and receives a reward rt. Finally, it updates the
reward estimator pRt`1 for the next round using the squared-loss online regression oracle (Equation 4).
The main guarantees for the algorithm are stated below, with the proof deferred to Appendix B.

Theorem 1 (Regret of KL-EXP). Let D :“ 1
T

řT
t“1 KL

`

π‹p¨}xtq}πrefp¨}xtq
˘

. Under Assumption 2,
for any δ ą 0, with probability at least 1 ´ δ, KL-EXP (Algorithm 1) guarantees

RegretKLpT, ηq “ O
´

ηRegSqpT q ` η logp1{δq

¯

and

RegretpT q “ O
ˆ

ηRegSqpT q ` η logp1{δq `
DT

η

˙

.

Result 1: Logarithmic KL-regularized regret. Theorem 1 shows that the KL-regularized regret of
KL-EXP scales with RegSqpT q, resulting in logarithmic regret in T across a broad range of function
classes. For example, when δ “ ΘpT´1q, we obtain Opηd log T q for linear classes (Example 1),
Opηκ2

µd log T q for generalized linear models (Example 2), and OpηdE logpNRpϵqT qq for function
classes with bounded eluder dimension (Russo & Van Roy, 2013) (Example 3). Hence, Theorem 1
shows that logarithmic KL-regularized regret in T can be achieved without the auxiliary exploration
methods (e.g., UCB-based strategies). In contrast, prior works such as Xiong et al. (2023; 2024);
Xie et al. (2024) obtained Op

?
T q KL-regularized regret (or Op1{ϵ2q sample complexity), and

more recently, Zhao et al. (2024; 2025) established Opη log T q KL-regularized regret (or Opη{ϵq
sample complexity), all of which depend on the additional exploration strategies. To the best of
our knowledge, this is the first result that achieves logarithmic KL-regularized regret without any
additional exploration, highlighting the key insight that the KL-regularized objective alone provides
sufficient exploration in contextual dueling bandits and RLHF.

Remark 1 (Comparison with Zhao et al. (2025)). For classes with bounded eluder dimension, we
recover the regret bound of Zhao et al. (2025), O

`

ηdE logpNRpϵqT q
˘

. Unlike Zhao et al. (2025),
however, our algorithm does not require prior knowledge of the eluder dimension (Russo & Van Roy,
2013), which is typically unknown in practice. The full proof is provided in Appendix C.

Result 2: Unregularized regret and its tightness. With the choice of the regularization parameter
η “ Θ

`

?
DT {pRegSqpT q ` log δ´1q

˘

, we obtain RegretpT q “ Op
?
DT pRegSqpT q ` log δ´1qq.

The result provides an interesting insight: with appropriately chosen η, it is possible to achieve a?
T -type regret bound even in conventional (unregularized) contextual bandit problems. To the best

5
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of our knowledge, this is the first unregularized regret bound in KL-regularized contextual bandits
achieved purely via KL-regularization–induced exploration.
Remark 2 (Ease of implementation and computational efficiency). KL-EXP is simple and practical:
it admits a closed-form solution (Equation 2) and, unlike prior approaches (Russo & Van Roy, 2013;
Jiang et al., 2017; Jin et al., 2021; Zhao et al., 2025), avoids the explicit computation of exploration
terms (e.g., UCB), which can be intractable for large models such as transformers. It is also
computationally efficient—for instance, in linear contextual bandits (ignoring oracle computations),
the per-round cost is only OpNq, compared to Opd2Nq for LinUCB and LinTS.

To demonstrate the tightness of our bound, we consider the uniform reference policy πref “ UnifpAq,
under which KLpπ}πrefq ď logN holds for any policy π. In this setting, for linear (adversarial)
contextual bandits, we obtain the first Õp

?
dT logNq-type regret bound, to the best of our knowledge.

Theorem 2 (Unregularized regret under linear classes). We denote N “ |A|. Under the setting of
Theorem 1 with Assumption 1, if we set πref “ UnifpAq and η “ Θp

a

T logN{pd log T qq, then with
probability at least 1 ´ 1

T , we have RegretpT q “ O
`?

dT logN log T
˘

.
Remark 3 (Minimax-optimality under linear classes). The proof of Theorem 2 follows directly
from two facts: RegSqpT q “ Opd logpT {dqq (Example 1) and KLpπ‹}πrefq ď logN when πref “

UnifpAq. We highlight that, in linear contextual bandits, our regret bound O
`?

dT logN log T
˘

is
minimax-optimal, matching the order previously attained by supLin-type algorithms (Auer, 2002;
Chu et al., 2011; Li et al., 2019). To the best of our knowledge, this is the first Õp

?
dT logNq-

type regret bound for linear (adversarial) contextual bandits that avoids the impractical “layered
data partitioning” technique and explicit UCB computations. Moreover, it matches the lower
bound Ω

`
a

dT logN logpT {dq
˘

(Li et al., 2019) up to logarithmic d factors, underscoring both the
statistical and computational efficiency of our approach.

Further examples for specific function classes are provided in Appendix B.4.

4.3 PROOF SKETCH OF THEOREM 1

1) Second-order regret decomposition. The regret decomposition is similar to the recent work
of Zhao et al. (2025), which establishes logarithmic KL-regularized regret. Define the function
fpx,Rq :“ ´ 1

η logZRpxq ` Eπη
R

rRpx, aq ´ R‹px, aqs. Since R‹px, aq “ 1
η log exp pηR‹px, aqq,

we obtain

Jη
t pπ‹

η, R
‹q ´ Jη

t pπt, R
‹q “

1

η
logZR‹ pxq ´

1

η
logZ

pRt
pxq ` Ea„πtp¨|xtq

”

pRtpx, aq ´ R‹px, aq

ı

“ fpx, pRtq ´ fpx,R‹q.

In Zhao et al. (2025), the decomposition takes the alternative form Jη
t pπ‹

η, R
‹q ´ Jη

t pπt, R
‹q “

fpx, R̃tq ´ fpx,R‹q, where R̃tpx, aq :“ pRtpx, aq ` btpx, aq is the UCB. They then apply the mean
value theorem to this expression and leverage optimism to bound fpx, R̃tq ´ fpx,R‹q.

In contrast, our analysis shows that it suffices to work directly with the oracle estimator pRt. Instead
of invoking the mean value theorem, we use the exact second-order Taylor expansion of f .

fpx, pRtq ´ fpx,R‹q “
ÿ

aPA

Bfpx,R‹q

BRpx, aq
loooomoooon

“0

∆Rtpx, aq

`

ż 1

0

p1 ´ αq

«

ÿ

aPA

ÿ

a1PA
∆Rtpx, aq

B2fpx,R‹ ` α∆Rtq

BRpx, a1qBRpx, aq
∆Rtpx, a

1q

ff

dα

ď ηEa„πtp¨|xtq

„

´

pRtpxt, aq ´ R‹pxt, aq

¯2
ȷ

, (5)

where ∆Rt “ pRt ´ R‹. Note that in the equation, Bfpx,R‹
q

BRpx,aq
“ 0, which is one of our key theoretical

findings. This result shows that it is unnecessary to rely on optimistic estimators such as UCB. The
remaining steps then follow directly from straightforward calculus (see Lemma B.2 for details).

6
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2) Conversion to regression oracle bound. By summing over t P rT s in Equation 5 and applying
Freedman’s inequality together with Lemma 4 of Foster & Rakhlin 2020, we obtain

RegretKLpT, ηq ď η
T
ÿ

t“1

Eat„πtp¨|xtq

„

´

pRtpxt, atq ´ R‹pxt, atq
¯2
ȷ

ď 2ηRegSqpT q ` 16η log
1

δ
.

This completes the proof of the KL-regularized regret bound.

3) Unregularized regret bound. From the definitions of Jη
t and π‹

η , together with the non-negativity
of the KL divergence, we can bound the unregularized regret as follows:

RegretpT q “ Ea„π‹p¨|xtqrR‹pxt, aqs ´ Ea„πtp¨|xtqrR‹pxt, aqs

ď Jη
t pπ‹

η, R
‹q ´ Jη

t pπt, R
‹q `

1

η
KL

`

π‹p¨}xtq}πrefp¨}xtq
˘

.

Summing over t P rT s and applying the KL-regularized regret bound established above, we complete
the proof of Theorem 1.

5 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK

5.1 LOG-LOSS ONLINE REGRESSION ORACLE.

Similar to the KL-regularized contextual bandit setting, we assume access to a log-loss online
regression oracle (Foster & Krishnamurthy, 2021), denoted by OracleLog. First, we define the
binary logarithmic/cross-entropy loss function (“log-loss”) at round t as

ℓtpRq :“ ´

”

yt log σ
`

Rpxt, a
1
t q ´ Rpxt, a

2
t q
˘

` p1 ´ ytq log σ
`

Rpxt, a
2
t q ´ Rpxt, a

1
t q
˘

ı

, (6)

where yt denote the binary preference label, where yt “ 1 if a1t is preferred over a2t (i.e., a1t ą a2t )
and yt “ 0 otherwise At each round t, OracleLog returns

pRt Ð OracleLogtppxt, a
1
t , a

2
t q; px1, a

1
1, a

2
1, y1q, . . . , pxt´1, a

1
t´1, a

2
t´1, yt´1qq. (7)

Analogous to Assumption 2, we assume that the prediction error of OracleLog is bounded as follows:
Assumption 3 (Guarantee of log-loss regression oracle). We assume that, for every (possibly adap-
tively chosen) sequence x1:T , a

1
1:T , a

2
1:T , y1:T , there exists regret bound RegLogpT q such that the

regression oracle OracleLog satisfies
T
ÿ

t“1

ℓtp pRtq ´

T
ÿ

t“1

ℓtpR
‹q ď RegLogpT q.

Example 4 (Linear classes under log-loss). When R‹ P R and the reward function class R is linear,
we can use the algorithm from Foster et al. (2018b) to obtain RegLogpT q “ Opd logpT {dqq.

Similar guarantees are available for kernels, generalized linear models, and many other nonparametric
classes, as in the case of the squared-loss online regression oracle (Foster & Krishnamurthy, 2021).

5.2 ALGORITHM AND MAIN RESULTS

We now introduce an algorithm for RLHF problems, OEPO, outlined in the comments of Algorithm 1
and fully described in Algorithm D.1. The overall flow is similar to KL-EXP; however, at each
round t P rT s, the current policy samples two actions, a1t , a

2
t „ πtp¨|xtq, and receives preference

feedback between them. Another key difference is that the reward estimator pRt`1 is updated using the
log-loss online regression oracle OracleLog (Equation 7). When OracleLog is implemented with a
gradient-based method (e.g., SGD or Adam), OEPO recovers the practical online RLHF algorithm.

The regret guarantees for OEPO are presented below, with the proofs deferred to Appendix D.

Theorem 3 (Regret of OEPO). Let D :“ 1
T

řT
t“1 KL

`

π‹p¨}xtq}πrefp¨}xtq
˘

and κ :“

supR,x,a
1

9σpRpx,aqq
. Under Assumption 2, for δ ą 0, with probability at least 1 ´ δ, OEPO ensures

RegretKLpT, ηq “ O
´

ηκ2RegLogpT q ` ηκ2 logp1{δq

¯

and

RegretpT q “ O
ˆ

ηκ2RegLogpT q ` ηκ2 logp1{δq `
DT

η

˙

.
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Discussion of Theorem 3. We obtain regret bounds comparable to Theorem 1, up to a κ factor
(and differences in oracle prediction error). Such κ-dependence is standard and largely unavoidable
in RLHF and dueling bandits (Saha, 2021; Saha et al., 2023; Zhu et al., 2023; Xiong et al., 2023;
Zhan et al., 2023b; Das et al., 2024; Xie et al., 2024; Zhao et al., 2024). With the choices η “

Θ
`

?
DT {pκ2RegLogpT qq

˘

and πref “ UnifpAq, OEPO achieves unregularized regret RegretpT q “

Opκ
?
DTRegLogpT qq. As in Theorem 1, this yields Õp

?
T q regret guarantees for a broad range of

function classes (see Foster & Krishnamurthy (2021) for bound on RegLogpT q).

Remark 4 (Extension to DPO, Rafailov et al., 2023). The DPO-variant algorithm (Algorithm E.1)
achieves the same-order regrets, up to differences in the oracle’s prediction error (see Appendix E).

6 EXPERIMENTS

6.1 LINEAR CONTEXTUAL BANDITS

In the linear bandit experiments, we consider linear reward function class, i.e., R “ tR : R “

ϕpx, aqJθ, θ P Rd, }θ}2 ď 1u. For each instance we sample the true parameter θ‹ „ N p0, Idq and
normalize it so that }θ‹}2 ď 1. At each round t, a context xt P X is drawn uniformly at random, with
feature vector ϕpxt, aq P Rd lying in the unit ball. We set d P t10, 20u and N “ |A| P t50, 100u.
We report cumulative regret averaged over 20 runs, with standard errors.

We compare the performance of our algorithm KL-EXP against four baselines: (i) LinUCB (Li
et al., 2010), (ii) LinTS (Agrawal & Goyal, 2013), (iii) LinPHE (Kveton et al., 2020), and (iv)
SupLinUCB (Chu et al., 2011). For all baselines, we set the confidence bound to

?
d log T . For

KL-EXP, we use πref “ UnifpAq and choose η “
?
T , which yields the Õp

?
T q unregularized regret.

Figure 1 shows that our algorithm consistently and significantly outperforms the baselines across
varying d and N , while also achieving faster per-round computation than the others (see Table H.1).

6.2 NEURAL CONTEXTUAL BANDITS

In the neural bandit experiments, we use the neural network reward class R, instantiated as a two-
layer network with input dimension 80 and hidden width 100, equipped with ReLU activations.
We evaluate four types of true reward functions: (i) linear: R‹px, aq “ ϕpx, aqJθ‹, (ii) quadratic:
R‹px, aq “ pϕpx, aqJθ‹q2, (iii) cosine: R‹px, aq “ cospπϕpx, aqJθ‹q, and (iv) neural network:
R‹ P R. Training is performed with squared loss via SGD (batch size 100, learning rate 0.005). We
set N “ 20, and report cumulative regret averaged over 10 runs with standard errors.

We compare our algorithm KL-EXP against two baselines: (i) NeuralUCB (Zhou et al., 2020) and (ii)
NeuralTS (Zhang et al., 2020). For the baselines, we tune the confidence bounds via grid search
over t1.0, 5.0, 10.0u. For KL-EXP, we tune η using grid search over t50, 100, 500u, and adopt the
uniform random reference policy. Figure 2 shows that our algorithm outperforms the baselines across
diverse reward structures while running about 10ˆ faster (see Table H.2).

6.3 LLM FINE-TUNING WITH RLHF

In this subsection, we validate our key theoretical insight in the LLM fine-tuning task: properly tuning
the regularization parameter η alone is sufficient to induce exploration. Our DPO-variant algorithm,
ODPO, coincides with OnlineDPO (Guo et al., 2024) when the regression oracle OracleDPO (defined
in Equation E.2) is instantiated using the original DPO optimizer settings (optimizer, batch size,
learning rate, and training steps). Since we adopt these original settings, we report the algorithm as
OnlineDPO (in Figure 3) rather than ODPO, to avoid confusion.

For experimental details, we follow the iterative DPO pipeline (Xu et al., 2023; Tran et al., 2023;
Dong et al., 2024; Xie et al., 2024) from Dong et al. (2024), running T “ 3 total iterations with large
batches of pairs sampled from πt. We use the same base model (Llama-3-8B-Flow-SFT1 ), prompt
sets for each iteration2 , and true preference model for generating feedback3 as in Dong et al. (2024);

1https://huggingface.co/RLHFlow/LLaMA3-SFT
2https://huggingface.co/datasets/RLHFlow/iterative-prompt-v1-iter2-20K
3https://huggingface.co/RLHFlow/pair-preference-model-LLaMA3-8B

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000 5000
Round (t)

0

100

200

300

400

500
Cu

m
ul

at
iv

e 
Re

gr
et

N=50, d=5

0 1000 2000 3000 4000 5000
Round (t)

N=100, d=5

0 1000 2000 3000 4000 5000
Round (t)

N=50, d=20

0 1000 2000 3000 4000 5000
Round (t)

N=100, d=20
LinUCB LinTS LinPHE SupLinUCB KL-EXP (ours)

Figure 1: Cumulative regret in linear bandits with d P t10, 20u and N “ |A| P t50, 100u.
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Figure 2: Cumulative regret in neural bandits under different true reward functions.

Llama-3-8B-Flow
-SFT

Llama-3-8B-Flow
-Final

XPO OnlineDPO (η “ 12.5)

iter1 iter2 iter3 iter1 iter2 iter3

Accuracy (%) 59.11 60.47 61.03 61.23 61.55 61.49 61.83 62.09

Figure 3: Average accuracy (%) over 17 benchmarks: OnlineDPO (η “ 12.5, a special case of ODPO)
vs. existing algorithms that use additional exploration techniques.

Xie et al. (2024), ensuring our results are directly comparable to theirs. Across all three iterations, we
fix the reference policy πref to the base model Llama-3-8B-Flow-SFT.

We consider three baselines: (i) Llama-3-8B-Flow-SFT, the reference model; (ii) Llama-3-8B-Flow-
Final, the final model from Dong et al. (2024), released on Hugging Face4 ; and (iii) XPO (Xie et al.,
2024). To induce exploration, Llama-3-8B-Flow-Final constructs preference pairs by maximizing
heuristic uncertainty, while XPO augments the DPO objective with an additional exploration term that
encourages the policy to behave optimistically. We evaluate all algorithms on 17 academic and chat
benchmarks (Zhong et al., 2023; Nie et al., 2019; Hendrycks et al., 2020; Cobbe et al., 2021; Rein
et al., 2024; Chen et al., 2021; Zellers et al., 2019; Sakaguchi et al., 2021; Clark et al., 2018; Lin et al.,
2021; Mihaylov et al., 2018; Zellers et al., 2018; Sap et al., 2019; Pilehvar & Camacho-Collados,
2018; Levesque et al., 2012; Socher et al., 2013) and report their average accuracies. Table 3
shows that with a properly chosen η “ 12.5, OnlineDPO (or ODPO) outperforms other baseline
algorithms that rely on auxiliary exploration methods. This supports our main theoretical finding that
additional exploration techniques are not essential in online RLHF. See Appendix H.3 for additional
experimental details, per-benchmark results, and results with other values of η.

7 CONCLUSION

We show, for the first time to our knowledge, that KL-regularization alone is sufficient for achieving
sublinear regrets. In particular, the KL-regularized regret scales with the regression oracle bound,
which can be logarithmic in T for many function classes. Moreover, by carefully choosing the
regularization parameter η, we achieve Õp

?
T q unregularized regret, demonstrating that the policy

can be improved beyond the KL-regularized optimum. This highlights the pivotal role of η in attaining
sublinear unregularized regret. We leave further refinements of η, such as time-varying schedules, as
an important direction for future work.

4https://huggingface.co/RLHFlow/LLaMA3-iterative-DPO-final
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Gergely Neu, Anders Jonsson, and Vicenç Gómez. A unified view of entropy-regularized markov
decision processes. arXiv preprint arXiv:1705.07798, 2017.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and Douwe Kiela. Adversarial
nli: A new benchmark for natural language understanding. arXiv preprint arXiv:1910.14599, 2019.

Ellen Novoseller, Yibing Wei, Yanan Sui, Yisong Yue, and Joel Burdick. Dueling posterior sampling
for preference-based reinforcement learning. In Conference on Uncertainty in Artificial Intelligence,
pp. 1029–1038. PMLR, 2020.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Jan Peters and Stefan Schaal. Reinforcement learning by reward-weighted regression for operational
space control. In Proceedings of the 24th international conference on Machine learning, pp.
745–750, 2007.

Mohammad Taher Pilehvar and Jose Camacho-Collados. Wic: the word-in-context dataset for
evaluating context-sensitive meaning representations. arXiv preprint arXiv:1808.09121, 2018.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728–53741, 2023.

Alexander Rakhlin and Karthik Sridharan. Online non-parametric regression. In Conference on
Learning Theory, pp. 1232–1264. PMLR, 2014.

Siddartha Y Ramamohan, Arun Rajkumar, and Shivani Agarwal. Dueling bandits: Beyond condorcet
winners to general tournament solutions. Advances in Neural Information Processing Systems, 29,
2016.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling, 2024.

Daniel Russo and Benjamin Van Roy. Eluder dimension and the sample complexity of optimistic
exploration. In Advances in Neural Information Processing Systems, pp. 2256–2264, 2013.

Aadirupa Saha. Optimal algorithms for stochastic contextual preference bandits. Advances in Neural
Information Processing Systems, 34:30050–30062, 2021.

Aadirupa Saha and Aditya Gopalan. Battle of bandits. In UAI, pp. 805–814, 2018.

Aadirupa Saha and Akshay Krishnamurthy. Efficient and optimal algorithms for contextual dueling
bandits under realizability. In International Conference on Algorithmic Learning Theory, pp.
968–994. PMLR, 2022.

Aadirupa Saha, Tomer Koren, and Yishay Mansour. Adversarial dueling bandits. In International
Conference on Machine Learning, pp. 9235–9244. PMLR, 2021.

13

https://openreview.net/forum?id=2cQ3lPhkeO


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Aadirupa Saha, Aldo Pacchiano, and Jonathan Lee. Dueling rl: Reinforcement learning with trajectory
preferences. In International conference on artificial intelligence and statistics, pp. 6263–6289.
PMLR, 2023.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Commonsense
reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

Ayush Sawarni, Nirjhar Das, Siddharth Barman, and Gaurav Sinha. Generalized linear bandits with
limited adaptivity. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=FTPDBQuT4G.

Ayush Sekhari, Karthik Sridharan, Wen Sun, and Runzhe Wu. Contextual bandits and imitation
learning with preference-based active queries. Advances in Neural Information Processing Systems,
36:11261–11295, 2023.

David Simchi-Levi and Yunzong Xu. Bypassing the monster: A faster and simpler optimal algorithm
for contextual bandits under realizability. Mathematics of Operations Research, 47(3):1904–1931,
2022.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empirical methods in natural language processing, pp.
1631–1642, 2013.

Yuda Song, Gokul Swamy, Aarti Singh, J Bagnell, and Wen Sun. The importance of online data:
Understanding preference fine-tuning via coverage. Advances in Neural Information Processing
Systems, 37:12243–12270, 2024.

Daniil Tiapkin, Nikita Morozov, Alexey Naumov, and Dmitry P Vetrov. Generative flow networks
as entropy-regularized rl. In International Conference on Artificial Intelligence and Statistics, pp.
4213–4221. PMLR, 2024.

Hoang Tran, Chris Glaze, and Braden Hancock. Iterative dpo alignment. Technical report, Technical
report, Snorkel AI, 2023.

Volodya Vovk. Competitive on-line linear regression. Advances in Neural Information Processing
Systems, 10, 1997.

Yuanhao Wang, Qinghua Liu, and Chi Jin. Is rlhf more difficult than standard rl? a theoretical
perspective. Advances in Neural Information Processing Systems, 36:76006–76032, 2023.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229–256, 1992.

Huasen Wu and Xin Liu. Double thompson sampling for dueling bandits. Advances in neural
information processing systems, 29, 2016.

Runzhe Wu and Wen Sun. Making rl with preference-based feedback efficient via randomization.
arXiv preprint arXiv:2310.14554, 2023.

Yue Wu, Tao Jin, Hao Lou, Farzad Farnoud, and Quanquan Gu. Borda regret minimization for
generalized linear dueling bandits. arXiv preprint arXiv:2303.08816, 2023.

Tengyang Xie, Dylan J Foster, Akshay Krishnamurthy, Corby Rosset, Ahmed Awadallah, and
Alexander Rakhlin. Exploratory preference optimization: Harnessing implicit q*-approximation
for sample-efficient rlhf. arXiv preprint arXiv:2405.21046, 2024.

Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong Zhang.
Iterative preference learning from human feedback: Bridging theory and practice for rlhf under
kl-constraint. arXiv preprint arXiv:2312.11456, 2023.

14

https://openreview.net/forum?id=FTPDBQuT4G


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Wei Xiong, Chengshuai Shi, Jiaming Shen, Aviv Rosenberg, Zhen Qin, Daniele Calandriello, Misha
Khalman, Rishabh Joshi, Bilal Piot, Mohammad Saleh, et al. Building math agents with multi-turn
iterative preference learning. arXiv preprint arXiv:2409.02392, 2024.

Jing Xu, Andrew Lee, Sainbayar Sukhbaatar, and Jason Weston. Some things are more cringe than
others: Preference optimization with the pairwise cringe loss. CoRR, 2023.

Yichong Xu, Ruosong Wang, Lin Yang, Aarti Singh, and Artur Dubrawski. Preference-based
reinforcement learning with finite-time guarantees. Advances in Neural Information Processing
Systems, 33:18784–18794, 2020.

Chenlu Ye, Wei Xiong, Yuheng Zhang, Nan Jiang, and Tong Zhang. A theoretical analysis of nash
learning from human feedback under general kl-regularized preference. CoRR, 2024.

Yisong Yue, Josef Broder, Robert Kleinberg, and Thorsten Joachims. The k-armed dueling bandits
problem. Journal of Computer and System Sciences, 78(5):1538–1556, 2012.

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin Choi. Swag: A large-scale adversarial dataset
for grounded commonsense inference. arXiv preprint arXiv:1808.05326, 2018.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Wenhao Zhan, Masatoshi Uehara, Nathan Kallus, Jason D Lee, and Wen Sun. Provable offline
preference-based reinforcement learning. arXiv preprint arXiv:2305.14816, 2023a.

Wenhao Zhan, Masatoshi Uehara, Wen Sun, and Jason D Lee. Provable reward-agnostic preference-
based reinforcement learning. arXiv preprint arXiv:2305.18505, 2023b.

Tong Zhang. Mathematical analysis of machine learning algorithms. Cambridge University Press,
2023.

Weitong Zhang, Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural thompson sampling. arXiv
preprint arXiv:2010.00827, 2020.

Heyang Zhao, Chenlu Ye, Quanquan Gu, and Tong Zhang. Sharp analysis for kl-regularized contextual
bandits and rlhf. arXiv preprint arXiv:2411.04625, 2024.

Heyang Zhao, Chenlu Ye, Wei Xiong, Quanquan Gu, and Tong Zhang. Logarithmic regret for online
kl-regularized reinforcement learning. arXiv preprint arXiv:2502.07460, 2025.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied, Weizhu
Chen, and Nan Duan. Agieval: A human-centric benchmark for evaluating foundation models.
arXiv preprint arXiv:2304.06364, 2023.

Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural contextual bandits with ucb-based exploration.
In International Conference on Machine Learning, pp. 11492–11502. PMLR, 2020.

Banghua Zhu, Michael Jordan, and Jiantao Jiao. Principled reinforcement learning with human
feedback from pairwise or k-wise comparisons. In International Conference on Machine Learning,
pp. 43037–43067. PMLR, 2023.

Masrour Zoghi, Shimon Whiteson, Remi Munos, and Maarten Rijke. Relative upper confidence
bound for the k-armed dueling bandit problem. In International conference on machine learning,
pp. 10–18. PMLR, 2014.

Masrour Zoghi, Zohar S Karnin, Shimon Whiteson, and Maarten De Rijke. Copeland dueling bandits.
Advances in neural information processing systems, 28, 2015.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Appendix

Table of Contents
A Further Related Work 16

B Proof of Theorem 1 17
B.1 Main Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
B.2 Proofs of Lemmas for Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . 19
B.3 Supporting Results for Lemma B.2 . . . . . . . . . . . . . . . . . . . . . . . . 23
B.4 Discussion on Specific Function Classes . . . . . . . . . . . . . . . . . . . . . 24

C Case: R with Bounded Eluder Dimension (Remark 1) 25

D Proof of Theorem 3 27
D.1 Main Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
D.2 Proofs of Lemmas for Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . 28

E Extension to Direct Preference Optimization (DPO) 30
E.1 Comparison to Lower Bound in Proposition 2.1 of Xie et al. (2024) . . . . . . . 31

F KL-Regularized Contextual Bandits with Offline Regression Oracle 32
F.1 Offline Regression Oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
F.2 Algorithm and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
F.3 Main Proof of Theorem F.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

G Technical Lemmas 34

H Additional Experimental Results 35
H.1 Computation Cost in Linear Bandits . . . . . . . . . . . . . . . . . . . . . . . . 35
H.2 Computation Cost in Neural Bandits . . . . . . . . . . . . . . . . . . . . . . . 35
H.3 RLHF Experiments: Details and Additional Results . . . . . . . . . . . . . . . 35

A FURTHER RELATED WORK

In this section, we provide additional related work that complements Section 2.

Dueling bandits. The dueling bandit problem, first introduced by Yue et al. (2012), generalizes the
classical multi-armed bandit by replacing direct reward observations with pairwise comparisons: in
each round t, the learner chooses two arms and only observes which one is preferred. A challenge in
this setting is that there may not exist a single arm that dominates all others under arbitrary preference
structures. To deal with this, the literature has proposed several notions of “winners,” such as the
Condorcet winner (Zoghi et al., 2014; Komiyama et al., 2015), Copeland winner (Zoghi et al., 2015;
Wu & Liu, 2016; Komiyama et al., 2016), Borda winner (Jamieson et al., 2015; Falahatgar et al., 2017;
Heckel et al., 2018; Saha et al., 2021; Wu et al., 2023), and von Neumann winner (Ramamohan et al.,
2016; Dudı́k et al., 2015; Balsubramani et al., 2016), each of which comes with its own performance
criterion.

To incorporate contextual information, Saha (2021) introduced the contextual dueling bandit with
a Bradley–Terry–Luce (BTL) model (Bradley & Terry, 1952), where pairwise preferences are
determined by latent arm rewards. Building on this line, Bengs et al. (2022) analyzed a contextual
linear stochastic transitivity model, and Di et al. (2023) proposed a layered algorithm with variance-
sensitive regret guarantees.
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Another line of research avoids parametric reward models and instead assumes that preferences are
generated by a more general function class. For instance, Saha & Krishnamurthy (2022) developed
an algorithm with optimal regret guarantees for K-armed contextual dueling bandits, and Sekhari
et al. (2023) further extended the framework with algorithms that provide theoretical guarantees not
only on regret but also on query complexity.

However, existing dueling bandit frameworks do not consider the KL-regularized objective, which is
the main focus of our work.

RLHF theory. Motivated by the remarkable success of RLHF in fine-tuning LLMs, its theoretical
foundations have recently become an active research topic. Much of the existing work focuses on
the offline RLHF setting (Zhu et al., 2023; Zhan et al., 2023a), which is complementary to ours.
Another line of research studies hybrid RLHF, where offline data are incorporated into an online RL
procedure (Xiong et al., 2023; Gao et al., 2024; Chang et al., 2024).

In the context of online RLHF, much of the prior work (Xu et al., 2020; Novoseller et al., 2020;
Saha et al., 2023; Xiong et al., 2023; Wu & Sun, 2023) has focused on the special case of tabular
MDPs or linear MDPs (or linear reward models when the horizon length is 1), establishing sample
complexity or regret bounds in this setting. The exploration bonuses used in these algorithms are
specifically designed for linear structures and thus do not extend naturally to the more general function
approximation regime we study (e.g., for LLMs).

To go beyond linear models, Chen et al. (2022); Wang et al. (2023); Ye et al. (2024) investigate general
function approximation under the assumption of prior knowledge of the eluder dimension (Russo
& Van Roy, 2013), which is notoriously difficult to quantify in practice, especially for LLMs.
More recently, Zhao et al. (2025) leveraged the properties of KL-regularization to establish the first
Opη log T q KL-regularized regret bound, again assuming prior knowledge of the eluder dimension.
These approaches also require solving a complex optimization problem to compute the exploration
terms, raising concerns about their practicality for large-scale language models. In parallel, Zhao et al.
(2024) achieved a Opη{ϵq KL-regularized suboptimality gap by relying on a forced exploration phase,
whose length depends on the coverage coefficient—another quantity that is difficult to determine in
practice.

To improve practicality under general function approximation, Xie et al. (2024); Liu et al. (2024);
Cen et al. (2024) proposed value-incentivized exploration methods that optimize the policy against
optimistically biased targets. However, the optimization problems in these approaches do not admit
closed-form solutions, and they introduce an additional exploration parameter α that must be tuned,
which can make implementation sensitive to hyperparameter choices.

To the best of our knowledge, all existing online RLHF works rely on auxiliary exploration methods
beyond KL-regularization. In contrast, our algorithm KL-EXP relies solely on KL-regularization.
Moreover, it requires no prior knowledge of any complexity measure, admits a closed-form solu-
tion Equation 2, and is thus easy to implement.

B PROOF OF THEOREM 1

In this section, we present the proof of Theorem 1.

B.1 MAIN PROOF OF THEOREM 1

Define Mt :“ p pRtpxt, atq ´ rtq
2 ´ pR‹pxt, atq ´ rtq

2 and Zt :“ ErMt | Ft´1s ´ Mt, where
Ft´1 “ σpx1, a1, r1, . . . , xt´1, at´1, rt´1, xtq is the filtration up to round t ´ 1. The following
lemma establishes that these random variables are both bounded and self-bounding.

Lemma B.1 (Lemma 4 of Foster & Rakhlin 2020). Let Ft´1 be the filtration up to round t ´ 1, i.e.,
Ft´1 “σpx1, a1, r1, . . . , xt´1, at´1, rt´1, xtq. Define Mt :“ p pRtpxt, atq´rtq

2´pR‹pxt, atq´rtq
2

and Zt :“ ErMt | Ft´1s ´ Mt. Then, the following properties hold:

• |Zt| ď 1.

• ErMt | Ft´1s “ Ea„πtp¨|xtq

”

p pRtpxt, atq ´ R‹pxt, atqq2
ı

.
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• ErZ2
t | Ft´1s ď 4ErMt | Ft´1s.

We now present a key lemma that is central to the proof of Theorem 1 and crucial for establishing
regret guarantees without any additional exploration.
Lemma B.2 (Second-order regret decomposition). For any t P rT s, we have

Jη
t pπ‹

η, R
‹q ´ Jη

t pπt, R
‹q ď ηEa„πtp¨|xtq

„

´

pRtpxt, aq ´ R‹pxt, aq

¯2
ȷ

.

The proof is deferred to Appendix B.2.1.
Remark B.1 (Comparison with Zhao et al. (2024)). Unlike Lemma 3.9 of Zhao et al. (2024),
which bounds the regret Jη

t pπ‹
η, R

‹q ´ Jη
t pπt, R

‹q in terms of the unknown policy πη
fγ

(where

fγ “ γ pRt ` p1 ´ γqR‹ for some unknown γ P p0, 1q), Lemma B.2 shows that our regret bound
depends only on the known current policy πt. Note that in Zhao et al. (2024), handling the unknown
policy πη

fγ
requires a forced sampling phase, and the minimum number of forced sampling rounds

depends on difficult-to-estimate quantities such as the data coverage coefficient (Definition 4.5
therein) and the ϵ-covering number of the reward function class. In contrast, our algorithm does not
rely on such quantities.
Remark B.2 (Comparison with Zhao et al. (2025)). Unlike Lemma A.1 of Zhao et al. (2025),
Lemma B.2 does not rely on the optimism event. Consequently, our algorithm does not require
computing the Upper Confidence Bound (UCB) term, which is generally intractable for general
function classes.
Lemma B.3 (Unregularized regret decomposition). For any t P rT s, we have

RegretpT q “ Ea„π‹p¨|xtqrR‹pxt, aqs ´ Ea„πtp¨|xtqrR‹pxt, aqs

ď Jη
t pπ‹

η, R
‹q ´ Jη

t pπt, R
‹q `

1

η
KL

`

π‹p¨}xtq}πrefp¨}xtq
˘

.

The proof is deferred to Appendix B.2.2.

We are now ready to provide the proof of Theorem 1.

Proof of Theorem 1. By Lemma B.2, we can bound the regret as follows:

RegretKLpT, ηq “

T
ÿ

t“1

Jη
t pπ‹

η, R
‹q ´ Jη

t pπt, R
‹q

ď η
T
ÿ

t“1

Eat„πtp¨|xtq

„

´

pRtpxt, atq ´ R‹pxt, atq
¯2
ȷ

. (B.1)

Let Ft´1 “σpx1, a1, r1, . . . , xt´1, at´1, rt´1, xtq be the filtration up to round t ´ 1. Define Mt :“

p pRtpxt, atq´rtq
2´pR‹pxt, atq´rtq

2 and Zt :“ ErMt | Ft´1s´Mt. Then, by applying Freedman’s
inequality (Lemma G.1) with β “ 1{8, with probability at least 1 ´ δ, we have

T
ÿ

t“1

ErMt | Ft´1s ď

T
ÿ

t“1

Mt `
1

8

T
ÿ

t“1

ErZ2
t | Ft´1s ` 8 log

1

δ

“

T
ÿ

t“1

Mt `
1

2

T
ÿ

t“1

ErMt | Ft´1s ` 8 log
1

δ
(Lemma B.1)

ď RegSqpT q `
1

2

T
ÿ

t“1

ErMt | Ft´1s ` 8 log
1

δ
,

where the last inequality holds because
T
ÿ

t“1

Mt “

T
ÿ

t“1

p pRtpxt, atq ´ rtq
2 ´

T
ÿ

t“1

pR‹pxt, atq ´ rtq
2 ď RegSqpT q. (Assumption 2)
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This directly implies

T
ÿ

t“1

ErMt | Ft´1s ď 2RegSqpT q ` 16 log
1

δ
. (B.2)

Plugging Equation B.2 into Equation B.1, we obtain

RegretKLpT, ηq ď η
T
ÿ

t“1

Eat„πtp¨|xtq

„

´

pRtpxt, atq ´ R‹pxt, atq
¯2
ȷ

“ η
T
ÿ

t“1

ErMt | Ft´1s (Lemma B.1)

ď 2ηRegSqpT q ` 16η log
1

δ
. (Equation B.2)

This concludes the proof of the regret bound for the KL-regularized objective.

We now provide the proof of the unregularized regret bound. By summing over t P rT s on both sides
of the result in Lemma B.3, we directly obtain

RegretpT q ď

T
ÿ

t“1

`

Jη
t pπ‹

η, R
‹q ´ Jη

t pπt, R
‹q
˘

`
1

η

T
ÿ

t“1

KL
`

π‹p¨}xtq}πrefp¨}xtq
˘

“ RegretKLpT, ηq `
1

η

T
ÿ

t“1

KL
`

π‹p¨}xtq}πrefp¨}xtq
˘

(Definition of RegretKLpT, ηq)

“ RegretKLpT, ηq `
DT

η
(D :“ 1

T

řT
t“1 KL

`

π‹p¨}xtq}πrefp¨}xtq
˘

)

“ O
ˆ

ηRegSqpT q ` η logp1{δq `
DT

η

˙

.

Hence, the proof of Theorem 1 is complete.

B.2 PROOFS OF LEMMAS FOR THEOREM 1

B.2.1 PROOF OF LEMMA B.2

Proof of Lemma B.2. For simplicity, we use the shorthand Eπr¨s “ Ea„πp¨|xqr¨s. Noting that
R‹px, aq “ 1

η log exp pηR‹px, aqq, we have

Eπ‹
η

„

R‹px, aq ´
1

η
log

π‹
ηpa|xq

πrefpa|xq

ȷ

´ Eπt

„

R‹px, aq ´
1

η
log

πtpa|xq

πrefpa|xq

ȷ

“
1

η
Eπ‹

η

„

log
πrefpa|xq ¨ exp pηR‹px, aqq

π‹
ηpa|xq

ȷ

´
1

η
Eπt

„

log
πrefpa|xq ¨ exp pηR‹px, aqq

πtpa|xq

ȷ

“
1

η
Eπ‹

η

„

log
πrefpa|xq ¨ exp pηR‹px, aqq

π‹
ηpa|xq

ȷ

´
1

η
Eπt

»

–log
πrefpa|xq ¨ exp

´

η pRpx, aq

¯

πtpa|xq

fi

fl

` Eπt

”

pRtpx, aq ´ R‹px, aq

ı

“
1

η
logZR‹ pxq ´

1

η
logZ

pRt
pxq ` Eπt

”

pRtpx, aq ´ R‹px, aq

ı

, (B.3)

where the last equality holds because

πrefpa|xq ¨ exp pηR‹px, aqq

π‹
ηpa|xq

“
πrefpa|xq ¨ exp pηR‹px, aqq

πrefpa|xq ¨ exp pηR‹px, aqq {ZR‹ pxq
“ ZR‹ pxq,
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and

πrefpa|xq ¨ exp pηR‹px, aqq

πtpa|xq
“

πrefpa|xq ¨ exp
´

η pRtpx, aq

¯

πrefpa|xq ¨ exp
´

η pRtpx, aq

¯

{Z
pRt

pxq

“ Z
pRt

pxq,

Define the function f : X ˆ R Ñ R as follows:

fpx,Rq :“ ´
1

η
logZRpxq `

ÿ

aPA

πrefpa|xq ¨ exp pηRpx, aqq

ZRpxq
looooooooooooooomooooooooooooooon

“πη
Rpa|xq

¨ pRpx, aq ´ R‹px, aqq

“ ´
1

η
logZRpxq ` Eπη

R
rRpx, aq ´ R‹px, aqs . (B.4)

Then, since πt “ πη
pRt

, the right-hand side of Equation B.3 can be written as:

1

η
logZR‹ pxq ´

1

η
logZ

pRt
pxq ` Eπt

”

pRtpx, aq ´ R‹px, aq

ı

“ fpx, pRtq ´ fpx,R‹q.

First, we present the lemma that gives the derivatives of πη
R and ZR, with the proof given in

Appendix B.3.1.

Lemma B.4. For any px, aq P X ˆ A, we have

Bπη
Rpx, a1q

BRpx, aq
“

"

ηπη
Rpx, aq ´ ηπη

Rpx, aq2, if a “ a1,

´ηπη
Rpx, a1qπη

Rpx, aq, if a ‰ a1.

BZRpxq

BRpx, aq
“ ηπrefpa|xq exppηRpx, aqq,

BµRpxq

BRpx, aq
“ ηπη

Rpx, aq
`

Rpx, aq ´ R‹px, aq ´ µRpxq
˘

` πη
Rpx, aq,

where µRpxq :“ Ea„πη
Rp¨|xq rRpx, aq ´ R‹px, aqs.

Then, we compute the derivative of fpx,Rq as follows:

Bfpx,Rq

BRpx, aq
“ ´

1

η

B

BRpx, aq
logZRpxq `

B

BRpx, aq
Eπη

R
rRpx, aq ´ R‹px, aqs

“ ´
1

η

1

ZRpxq

BZRpxq

BRpx, aq
`

B

BRpx, aq

“

πη
Rpa|xq ¨

`

Rpx, aq ´ R‹px, aq
˘‰

`
B

BRpx, aq

«

ÿ

a1‰a

πη
Rpa1|xq ¨

`

Rpx, a1q ´ R‹px, a1q
˘

ff

“ ´πη
Rpx, aq ` πη

Rpx, aq `
Bπη

Rpa|xq

BRpx, aq
¨
`

Rpx, aq ´ R‹px, aq
˘

`
ÿ

a1‰a

Bπη
Rpa1|xq

BRpx, aq
¨
`

Rpx, a1q ´ R‹px, a1q
˘

(Lemma B.4)

“ ηπη
Rpa|xq ¨

´

Rpx, aq ´ R‹px, aq ´ Ea2„πη
Rp¨|xq

“

Rpx, a2q ´ R‹px, a2q
‰

¯

(Lemma B.4)

“ ηπη
Rpa|xq ¨ pRpx, aq ´ R‹px, aq ´ µRpxqq ,

where µRpxq :“ Ea2„πη
Rp¨|xq rRpx, a2q ´ R‹px, a2qs. Note that when R “ R‹, we have µR‹ pxq “

0, which implies

Bfpx,R‹q

BRpx, aq
“ 0.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Moreover, the second-order gradient of f can be expressed as:

B2fpx,Rq

BRpx, a1qBRpx, aq

“
B

BRpx, a1q

´

ηπη
Rpa|xq ¨

`

Rpx, aq ´ R‹px, aq ´ µRpxq
˘

¯

“ η
Bπη

Rpa|xq

BRpx, a1q
¨
`

Rpx, aq ´ R‹px, aq ´ µRpxq
˘

` ηπη
Rpa|xq ¨

ˆ

1a“a1 ´
BµRpxq

BRpx, a1q

˙

“ η2πη
Rpa|xq

`

1a“a1 ´ πη
Rpa1|xq

˘ `

Rpx, aq ´ R‹px, aq ´ µRpxq
˘

` ηπη
Rpa|xq

`

1a“a1 ´ ηπη
Rpx, a1q

`

Rpx, a1q ´ R‹px, a1q ´ µRpxq
˘

` πη
Rpx, a1q

˘

(Lemma B.4)

“ ηπη
Rpa|xq

`

1a“a1 ´ πη
Rpa1|xq

˘

` η2πη
Rpa|xq

”

`

1a“a1 ´ πη
Rpa1|xq

˘

pRpx, aq ´ R‹px, aq ´ µRpxqq

´ πη
Rpa1|xq

`

Rpx, a1q ´ R‹px, a1q ´ µRpxq
˘

ı

.

For simplicity let ∆Rt “ pRt ´ R‹ and vαt px, aq “ α∆Rtpx, aq ´ µR‹`α∆Rt
pxq “ α∆Rtpx, aq ´

αEπη

R‹`α∆Rt

r∆Rtpx, a
2qs. Then, using the exact second-order Taylor expansion, we have

fpx, pRtq ´ fpx,R‹q “ fpx,R‹ ` α∆Rtq ´ fpx,R‹q

“

ż 1

0

p1 ´ αq

«

ÿ

aPA

ÿ

a1PA
∆Rtpx, aq

B2fpx,R‹ ` α∆Rtq

BRpx, a1qBRpx, aq
∆Rtpx, a

1q

ff

dα ( Bfpx,R‹
q

BRpx,aq
“ 0)

“

ż 1

0

p1 ´ αq

«

η
ÿ

aPA
πη
R‹`α∆Rt

pa|xq p∆Rtpx, aqq
2

´ η

˜

ÿ

aPA
πη
R‹`α∆Rt

pa|xq∆Rtpx, aq

¸2

` η2
ÿ

aPA
πη
R‹`α∆Rt

pa|xqvαt px, aq p∆Rtpx, aqq
2

´ 2η2

˜

ÿ

aPA
πη
R‹`α∆Rt

pa|xqvαt px, aq∆Rtpx, aq

¸˜

ÿ

a1PA
πη
R‹`α∆Rt

pa1|xq∆Rtpx, a
1q

¸ff

dα.

(B.5)

Plugging vαt px, aq “ α∆Rtpx, aq ´ αEπη

R‹`α∆Rt

r∆Rtpx, a
2qs into the right-hand side, we can

further simplify the second and third terms as follows:

η2
ÿ

aPA
πη
R‹`α∆Rt

pa|xqvαt px, aq p∆Rtpx, aqq
2

´ 2η2

˜

ÿ

aPA
πη
R‹`α∆Rt

pa|xqvαt px, aq∆Rtpx, aq

¸˜

ÿ

a1PA
πη
R‹`α∆Rt

pa1|xq∆Rtpx, a
1q

¸

“ η2α

«

ÿ

aPA
πη
R‹`α∆Rt

pa|xq p∆Rtpx, aqq
3

´ 3Eπη

R‹`α∆Rt

r∆Rtpx, a
2qs

ÿ

aPA
πη
R‹`α∆Rt

pa|xq p∆Rtpx, aqq
2

` 2
´

Eπη

R‹`α∆Rt

r∆Rtpx, a
2qs

¯3
ff

(ErpX ´ ErXsqXs “ ErX2s ´ pErXsq2)

“ η2α
ÿ

aPA
πη
R‹`α∆Rt

pa|xq

´

∆Rtpx, aq ´ Eπη

R‹`α∆Rt

r∆Rtpx, a
2qs

¯3

.

(ErpX ´ ErXsq3s “ ErX3s ´ 3ErXsErX2s ` 2pErXsq3)

Using this, we can rewrite the right-hand side of Equation B.5 as follows:

fpx, pRtq ´ fpx,R‹q “

ż 1

0

p1 ´ αq
“

ηVarαt pxq ` η2αMα
t pxq

‰

dα, (B.6)
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where we define

Varαt pxq :“
ÿ

aPA
πη
R‹`α∆Rt

pa|xq p∆Rtpx, aqq
2

´

˜

ÿ

aPA
πη
R‹`α∆Rt

pa|xq∆Rtpx, aq

¸2

Mα
t pxq :“

ÿ

aPA
πη
R‹`α∆Rt

pa|xq

´

∆Rtpx, aq ´ Eπη

R‹`α∆Rt

r∆Rtpx, a
2qs

¯3

.

The following lemma is a useful tool for calculating the right-hand side of Equation B.6. Its proof is
presented in Appendix B.3.2.

Lemma B.5. Let παpa|xq :“ πrefpa|xq exppηRαpx,aqq

Zαpxq
, where Rα “ R‹ `α∆R with R‹,∆R P R, and

Zαpxq “
ř

aPA πrefpa|xq exp pηRαpx, aqq. Then, for any px, aq P X ˆ A, we have
d

dα
παpa|xq “ ηπαpa|xq

`

∆Rpx, aq ´ Eπα
r∆Rpx, aqs

˘

,

d

dα
Eπα

r∆Rpx, aqs “ ηEπα

”

p∆Rpx, aq ´ Eπα
r∆Rpx, aqsq

2
ı

,

d

dα
Eπα

r∆Rpx, aq2s “ η
`

Eπα
r∆Rpx, aq3s ´ Eπα

r∆Rpx, aq2sEπα
r∆Rpx, aqs

˘

.

Then, by Lemma B.5, we show that
d

dα
Varαt pxq

“
d

dα

ˆ

Eπη

R‹`α∆Rt

“

p∆Rtpx, aqq2
‰

´

´

Eπη

R‹`α∆Rt

r∆Rtpx, aqs

¯2
˙

“
d

dα
Eπη

R‹`α∆Rt

“

p∆Rtpx, aqq2
‰

´ 2Eπη

R‹`α∆Rt

r∆Rtpx, aqs ¨
d

dα
Eπη

R‹`α∆Rt

r∆Rtpx, aqs

“ η

ˆ

Eπη

R‹`α∆Rt

“

p∆Rtpx, aqq3
‰

´ Eπη

R‹`α∆Rt

r∆Rtpx, aqsEπη

R‹`α∆Rt

“

p∆Rtpx, aqq2
‰

´ 2Eπη

R‹`α∆Rt

r∆Rtpx, aqs ¨ Varαt pxq

˙

(Lemma B.5)

“ η

ˆ

Eπη

R‹`α∆Rt

“

p∆Rtpx, aqq3
‰

´ 3Eπη

R‹`α∆Rt

r∆Rtpx, aqsEπη

R‹`α∆Rt

“

p∆Rtpx, aqq2
‰

` 2
´

Eπη

R‹`α∆Rt

r∆Rtpx, aqs

¯3
˙

(Definition of Varαt pxq)

“ ηMα
t pxq. (Definition of Mα

t pxq)
Therefore, Equation B.6 can be further simplified as:

fpx, pRtq ´ fpx,R‹q “

ż 1

0

p1 ´ αq
“

ηVarαt pxq ` η2αMα
t pxq

‰

dα

“ η

„
ż 1

0

p1 ´ αqVarαt pxqdα `

ż 1

0

α
d

dα
Varαt pxqdα

ȷ

“ η

„
ż 1

0

p1 ´ αqVarαt pxqdα ` rαVarαt pxqs
1
0 ´

ż 1

0

Varαt pxqdα

ȷ

(integration by parts)

“ η

„

Varα“1
t pxq ´

ż 1

0

αVarαt pxqdα

ȷ

“ ηEπη
xRt

„

´

∆Rtpx, aq ´ Eπη
xRt

r∆Rtpx, aqs

¯2
ȷ

´ η

ż 1

0

αVarαt pxqdα

ď ηEπη
xRt

„

´

∆Rtpx, aq ´ Eπη
xRt

r∆Rtpx, aqs

¯2
ȷ

(Varαt pxq ě 0)

ď ηEπη
xRt

”

p∆Rtpx, aqq
2
ı

(ErpX ´ ErXsq2s ď ErX2s)

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Recall that πt “ πη
pRt

and ∆Rt “ pRt ´ R‹. Hence, we obtain

Jη
t pπ‹

η, R
‹q ´ Jη

t pπt, R
‹q ď ηEa„πtp¨|xtq

„

´

pRtpxt, aq ´ R‹pxt, aq

¯2
ȷ

.

This concludes the proof of Lemma B.2.

B.2.2 PROOF OF LEMMA B.3

Proof of Lemma B.3. For simple presentation, we write Eπr¨s “ Ea„πp¨|xqr¨s. Then, for any t P rT s,
we have

Ea„π‹p¨|xtqrR‹pxt, aqs “ Jη
t pπ‹, R‹q `

1

η
KL

`

π‹p¨}xtq}πrefp¨}xtq
˘

(Definition of Jη
t )

ď Jη
t pπ‹

η, R
‹q `

1

η
KL

`

π‹p¨}xtq}πrefp¨}xtq
˘

. (Definition of π‹
η)

Moreover, since the KL divergence is always non-negative, we get

Ea„πtp¨|xtqrR‹pxt, aqs ě Ea„πtp¨|xtqrR‹pxt, aqs ´
1

η
KL

`

πtp¨}xtq}πrefp¨}xtq
˘

“ Jη
t pπt, R

‹q.

Combining the above two results, we obtain

Ea„π‹p¨|xtqrR‹pxt, aqs ´ Ea„πtp¨|xtqrR‹pxt, aqs

ď Jη
t pπ‹

η, R
‹q ´ Jη

t pπt, R
‹q `

1

η
KL

`

π‹p¨}xtq}πrefp¨}xtq
˘

,

which concludes the proof of Lemma B.3.

B.3 SUPPORTING RESULTS FOR LEMMA B.2

B.3.1 PROOF OF LEMMA B.4

Proof of Lemma B.4. First, we compute the derivative of the policy πη
Rpx, aq. For any px, aq P X ˆA,

we have

Bπη
Rpx, aq

BRpx, aq
“

B

BRpx, aq

ˆ

1

ZRpxq
πrefpa|xq exppηRpx, aqq

˙

“
ηπrefpa|xq exppηRpx, aqq

ZRpxq
´

πrefpa|xq exppηRpx, aqq

ZRpxq2
¨

BZRpxq

BRpx, aq

“
ηπrefpa|xq exppηRpx, aqq

ZRpxq
´

πrefpa|xq exppηRpx, aqq

ZRpxq2
¨ ηπrefpa|xq exppηRpx, aqq

“ ηπη
Rpx, aq ´ ηπη

Rpx, aq2.

Moreover, for any px, a, a1q P X ˆ A ˆ A with a1 ‰ a, we obtain

Bπη
Rpx, a1q

BRpx, aq
“ πrefpa

1|xq exp
`

ηRpx, a1q
˘

¨
B

BRpx, aq

ˆ

1

ZRpxq

˙

“ ´
πrefpa

1|xq exppηRpx, a1qq

ZRpxq2
¨ ηπrefpa|xq exppηRpx, aqq

“ ´ηπη
Rpx, a1qπη

Rpx, aq.

Next, we compute the derivative of ZRpxq. For any px, aq P X ˆ A, we get

BZRpxq

BRpx, aq
“

B

BRpx, aq
pEπref rexppηRpx, aqqsq “ ηπrefpa|xq exppηRpx, aqq,
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Finally, we compute the derivative of µRpxq “ Ea„πη
Rp¨|xq rRpx, aq ´ R‹px, aqs. For any px, aq P

X ˆ A, we have

BµRpxq

BRpx, aq
“

ÿ

a1PA

Bπη
Rpa1|xq

BRpx, aq

`

Rpx, a1q ´ R‹px, a1q
˘

` πη
Rpa|xq

“ ηπη
Rpa|xq

ÿ

a1PA

`

1a“a1 ´ πη
Rpa1|xq

˘

¨
`

Rpx, a1q ´ R‹px, a1q
˘

` πη
Rpa|xq

“ ηπη
Rpx, aq

`

Rpx, aq ´ R‹px, aq ´ µRpxq
˘

` πη
Rpx, aq.

Thus, we conclude the proof of Lemma B.4.

B.3.2 PROOF OF LEMMA B.5

Proof of Lemma B.5. For the first property, a simple calculation gives

d

dα
παpa|xq “

πrefpa|xq exp pηRαpx, aqq ¨ η∆Rpx, aqZαpxq ´ πrefpa|xq exp pηRαpx, aqq ¨
dZαpxq

dα

Zαpxq2

“
πrefpa|xq exp pηRαpx, aqq

Zαpxq

„

η∆Rpx, aq ´
1

Zαpxq

dZαpxq

dα

ȷ

“ παpa|xq

„

η∆Rpx, aq ´
1

Zαpxq

dZαpxq

dα

ȷ

. (B.7)

Moreover, we get

dZαpxq

dα
“

ÿ

aPA
πrefpa|xq exp pηRαpx, aqq ¨ η∆Rpx, aq “ ηZαpxq

ÿ

aPA
παpa|xq∆Rpx, aq

“ ηZαpxqEπαr∆Rpx, aqs. (B.8)

Plugging Equation B.8 into Equation B.7, we obtain the first property.

Now, we prove the second property.

d

dα
Eπαr∆Rpx, aqs “

ÿ

aPA

dπαpa|xq

dα
∆Rpx, aq

“ η
ÿ

aPA
παpa|xq

`

∆Rpx, aq ´ Eπα
r∆Rpx, aqs

˘

∆Rpx, aq (first property)

“ η
´

Eπαr∆Rpx, aq2s ´ pEπαr∆Rpx, aqsq
2
¯

“ ηEπα

”

p∆Rpx, aq ´ Eπαr∆Rpx, aqsq
2
ı

.

Similarly, substituting ∆Rpx, aq with ∆Rpx, aq2 in the above analysis, we obtain

d

dα
Eπα

r∆Rpx, aq2s “ η
ÿ

aPA
παpa|xq

`

∆Rpx, aq ´ Eπα
r∆Rpx, aqs

˘

∆Rpx, aq2 (first property)

“ η
`

Eπαr∆Rpx, aq3s ´ Eπαr∆Rpx, aq2sEπαr∆Rpx, aqs
˘

,

which proves the last property.

B.4 DISCUSSION ON SPECIFIC FUNCTION CLASSES

In this subsection, we supplement the result of Theorem 1 by providing a more detailed discussion
of the tightness of our (unregularized) regret bound for several special function classes. We set
the reference policy to be uniform, i.e., πref “ UnifpAq. Then, for any policy π, it holds that
KLpπ}πrefq “

ř

a

`

πpaq log πpaq ´ πpaq log 1
|A|

˘

ď log |A| “ logN . Hence, KL-EXP yields the
following regret bounds for special function classes:
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1. Linear classes: When R‹ P R and the reward function class R is linear, i.e., R “

tR : R “ ϕpx, aqJθ, θ P Rd, }θ}2 ď 1u, where ϕpx, aq P Rd is a known feature map sat-
isfying }ϕpx, aq}2 ď 1, the Vovk–Azoury–Warmuth forecaster (Vovk, 1997; Azoury & War-
muth, 2001) guarantees RegSqpT q “ Opd logpT {dqq (Example 1), which implies RegretpT q “

O
`?

dT logN log T
˘

. As stated in Remark 3, this bound is minimax-optimal, matching the lower
bound Ω

`
a

dT logN logpT {dq
˘

(Li et al., 2019) up to logarithmic d factors. It is remarkable that we
obtain this Õp

?
dT logNq-type regret bound without relying on the difficult-to-implement “layered

data partitioning” technique required in prior works (Auer, 2002; Chu et al., 2011; Li et al., 2019). Our
algorithm is simple to implement: it only requires solving the KL-regularized objective in Equation 1
(with the closed-form solution in Equation 2) using the reward estimator pRt returned by the online
regression oracle. We believe this opens a promising direction for developing algorithms that are
both practical and statistically optimal in linear contextual bandits.

2. Multi-armed bandits (MABs): The MAB case follows directly from the linear case by setting
d “ N . We achieve RegSqpT q “ OpN logpT {Nqq and RegretpT q “ O

`
a

NT logN logpT {Nq
˘

.

3. Generalized linear models (GLMs): For GLM reward function class, i.e., R “ tR : R “

µpϕpx, aqJθq, θ P Rd, }θ}2 ď 1u, where µ : R Ñ r0, 1s is a fixed non-decreasing 1-Lipschitz
link function and ϕpx, aq P Rd is a known feature map with }ϕpx, aq}2 ď 1, if R‹ P R, the
GLMtron algorithm (Kakade et al., 2011) guarantees RegSqpT q “ Opκ2

µd logpT {dqq, where 1{ 9µ ď

κµ. This, in turn, implies RegretpT q “ O
`

κµ

?
dT logN log T

˘

, which is tighter than the bound
O
`

κµplog T q1.5
?
dT logN

˘

(Li et al., 2017) by a factor of log T . On the other hand, Lee et al.

(2024); Sawarni et al. (2024) establish a κµ-improved regret bound of Õ
´

d
b

T {κ‹
µ

¯

, where κ‹
µ :“

1
9µppx‹qJθ‹q

, though with a looser dependence on
?
d than ours. It remains an open question whether a

Õp
?
dT logNq-type regret bound can be attained while simultaneously improving the dependence

on κµ.

4. Bounded eluder dimension: Under the realizability assumption (Assumption 1), i.e., R‹ P R,
and the reward function class R has bounded eluder dimension (Definition C.1), the empiri-
cal risk minimization (ERM) algorithm achieves, with probability at least 1 ´ δ, RegSqpT q “

O
`

dE logpNRpϵqT q
˘

(Lemma C.2). Consequently, we obtain the unregularized regret bound
RegretpT q “ O

`
a

dET logN logpNRpϵqT q
˘

. In comparison, the existing bound of Russo &
Van Roy (2013) is O

`
a

dET logpNRpϵqT q
˘

, which shows that our result is tight up to a
?
logN

factor.

C CASE: R WITH BOUNDED ELUDER DIMENSION (REMARK 1)

In this subsection, we analyze the setting where the reward function class R has bounded eluder
dimension (Russo & Van Roy, 2013), in order to enable a direct comparison with prior work (Zhao
et al., 2025).

We define the uncertainty and eluder dimension, following Zhao et al. (2025).
Definition C.1. For any sequence Dt “ tpxs, asqu

t´1
s“1, we define the uncertainty of px, aq with

respect to R as:

UR,λpx, a;Dtq :“ sup
R1,R2PR

|R1px, aq ´ R2px, aq|
b

λ `
řt´1

s“1

`

R1pxs, asq ´ R2pxs, asq
˘2

.

And the eluder dimension is defined as:

dE :“ sup
x1:T ,a1:T

T
ÿ

t“1

min
␣

1, UR,λpxt, at;Dtq
2
(

. (C.1)

We also define the confidence set Rt as follows:

Rt :“

#

R P R :
t´1
ÿ

s“1

`

Rpxs, asq ´ pRtpxs, asq
˘2

` λ ď β2
T “ 16 logpNRpϵqT {δq

+

,
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where λ ą 0. We can then bound the estimation error using the following lemma.

Lemma C.1 (Lemma 4.5 of Zhao et al. 2025). Let pRt be the empirical risk minimizer (ERM), i.e.,
pRt Ð argminRPR

řt´1
s“1pRpxs, asq ´ ysq2. Then, under Assumption 1 and the condition that the

noises ϵt are conditional 1-subGaussian, we have with probability at least 1 ´ δ, for all t P rT s, we
have

pRtpx, aq ´ R‹px, aq ď min t1, βT ¨ URt,λpx, a;Dtqu , @px, aq P X ˆ A.

The following lemma is useful for the subsequent analysis.

Lemma C.2. Under Assumption 1, if OracleSq is chosen as the standard ERM algorithm, then with
probability at least 1 ´ δ we obtain

T
ÿ

t“1

`

pRtpxt, atq ´ rt
˘2

´

T
ÿ

t“1

`

R‹pxt, atq ´ rt
˘2

“ O
`

dE logpNRpϵqT q
˘

.

Proof of Lemma C.2. Let Mt :“ p pRtpxt, atq ´ rtq
2 ´ pR‹pxt, atq ´ rtq

2 and Zt :“ Mt ´ ErMt |

Ft´1s. We define the filtration Ft´1 “σpx1, a1, r1, . . . , xt´1, at´1, rt´1, xtq. Then, by Lemma B.1
and Freedman’s inequality (Lemma G.1) with β “ 1{8, with probability at least 1 ´ δ, we have

T
ÿ

t“1

Mt ď

T
ÿ

t“1

ErMt|Ft“1s `
1

8

T
ÿ

t“1

ErZ2
t |Ft´1s ` 8 log

1

δ
(Lemma G.1, w.p. 1 ´ δ)

ď
3

2

T
ÿ

t“1

ErMt | Ft´1s ` 8 log
1

δ
(Lemma B.1)

“
3

2

T
ÿ

t“1

Ea„πt

”

p pRtpxt, atq ´ R‹pxt, atqq2 | Ft´1

ı

` 8 log
1

δ

ď 3
T
ÿ

t“1

`

pRtpxt, atq ´ R‹pxt, atq
˘2

` 16 log
2

δ
. (Lemma G.2, w.p. 1 ´ δ)

Hence, we derive

T
ÿ

t“1

`

pRtpxt, atq ´ rt
˘2

´

T
ÿ

t“1

`

R‹pxt, atq ´ rt
˘2

ď 3
T
ÿ

t“1

`

pRtpxt, atq ´ R‹pxt, atq
˘2

` 16 log
2

δ

ď 3β2
T

T
ÿ

t“1

min
␣

1, URt,λpxt, at;Dtq
2
(

` 16 log
2

δ
(Lemma C.1, w.p. 1 ´ δ)

ď 48dE logpNRpϵqT {δq ` 16 log
2

δ
.

By setting δ Ð δ
3 , the proof is complete.

We now present the claim in Remark 1 more formally.

Proposition C.1 (Regret under bounded eluder dimension). Suppose the eluder dimension defined
in Equation C.1 is finite. Let the online regression oracle OracleSq be the ERM predictor. Under
Assumptions 1 and 2, for any δ ą 0, KL-EXP (Algorithm 1) guarantees that with probability at least
1 ´ δ,

RegretKLpT, ηq “ O
`

ηdE log pNRpϵqT q
˘

, and RegretpT q “ O
ˆ

ηdE log pNRpϵqT q `
DT

η

˙

,

where D :“ 1
T

řT
t“1 KL

`

π‹p¨}xtq}πrefp¨}xtq
˘

.
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Algorithm D.1 OEPO (Oracle-Efficient Policy Optimization)

1: Inputs: regularization parameter η, reference policy πref, online regression oracle OracleLog.
2: Initialize: choose any pR1 P R.
3: for round t “ 1 to T do
4: Observe context xt P X .
5: Compute policy πtp¨|xtq 9 πrefp¨|xtq exp

`

η pRtpxt, ¨q
˘

via Equation 2.
6: Sample action a1t , a

t
2 „ πtp¨|xtq and receive preference feedback yt.

7: Update pRt`1 for the next round using OracleLog via Equation 7.
8: end for

Proof of Proposition C.1. Then, following a similar analysis to the proof of Theorem 1, we can
bound the regret as follows:

RegretKLpT, ηq “

T
ÿ

t“1

Jη
t pπ‹

η, R
‹q ´ Jη

t pπt, R
‹q

ď η
T
ÿ

t“1

Eat„πtp¨|xtq

„

´

pRtpxt, atq ´ R‹pxt, atq
¯2
ȷ

(Lemma B.2)

ď 2η

«

T
ÿ

t“1

`

pRtpxt, atq ´ rt
˘2

´

T
ÿ

t“1

`

R‹pxt, atq ´ rt
˘2

ff

` 16 log
1

δ

(Lemma G.1 and B.1 w.p. 1 ´ δ)

“ O
`

ηdE log pNRpϵqT q
˘

. (Lemma C.2 w.p. 1 ´ δ)

Setting δ Ð δ
2 yields the bound for RegretKLpT, ηq.

The bound for RegretpT q then follows directly from Lemma B.3. Thus, the proof of Proposition C.1
is complete.

D PROOF OF THEOREM 3

In this section, we present the proof of Theorem 3.

D.1 MAIN PROOF OF THEOREM 3

We begin by introducing the key lemmas used to prove Theorem 3.

Lemma D.1. With probability at least 1 ´ δ, we have

T
ÿ

t“1

´

rR‹pxt, a
1
t q ´ pRtpxt, a

1
t qs ´ rR‹pxt, a

2
t q ´ pRtpxt, a

2
t qs

¯2

ď κ2

˜

T
ÿ

t“1

ℓtp pRtq ´

T
ÿ

t“1

ℓtpR
‹q

¸

` 2κ2 log
1

δ
.

The proof is deferred to Appendix D.2.1.

Lemma D.2 (Second-order regret decomposition with baseline). For any t P rT s and any g : X Ñ R,
we have

Jη
t pπ‹

η, R
‹q ´ Jη

t pπt, R
‹q ď ηEa„πtp¨|xtq

„

´

pRtpxt, aq ´ R‹pxt, aq ` gpxtq

¯2
ȷ

.

The proof is deferred to Appendix D.2.2.

We now provide the proof of Theorem 3.
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Proof of Theorem 3. By applying Lemma D.2 with setting

gtpxq “ ´Ea2„πtp¨|xq

”

pRtpx, a
2q ´ R‹px, a2q

ı

,

we have

RegretKLpT, ηq “

T
ÿ

t“1

Jη
t pπ‹

η, R
‹q ´ Jη

t pπt, R
‹q

ď η
T
ÿ

t“1

Ea1,a2„πtp¨|xtq

„

´

pRtpxt, a
1q ´ R‹pxt, a

1q ´
`

pRtpxt, a
2q ´ R‹pxt, a

2q
˘

¯2
ȷ

(Lemma D.2)

ď 2η
T
ÿ

t“1

´

pRtpxt, a
1
t q ´ R‹pxt, a

1
t q ´

`

pRtpxt, a
2
t q ´ R‹pxt, a

2
t q
˘

¯2

` 32η log
2

δ

(Lemma G.2, w.p. 1 ´ δ)

ď 2ηκ2

˜

T
ÿ

t“1

ℓtp pRtq ´

T
ÿ

t“1

ℓtpR
‹q

¸

` 4ηκ2 log
1

δ
` 32η log

2

δ
(Lemma D.1, w.p. 1 ´ δ)

ď 2ηκ2RegLogpT q ` 4ηκ2 log
1

δ
` 32η log

2

δ
. (Assumption 3)

By setting δ Ð δ
2 , we establish the bound for RegretKLpT, ηq.

Furthermore, the bound on RegretpT q follows immediately from Lemma B.3, using the same analysis
as in the proof of Theorem 1. Hence, this completes the proof of Theorem 3.

D.2 PROOFS OF LEMMAS FOR THEOREM 3

D.2.1 PROOF OF LEMMA D.1

Proof of Lemma D.1. The proof of Lemma D.1 follows the analysis of Lemma D.1 in Zhao et al.
(2024). However, unlike Zhao et al. (2024), where the estimator pR is fixed for all t, our setting
accommodates a time-varying sequence t pRtu

T
t“1.

For completeness, we present the full proof below.

For simplicity, we write p‹
t “ σ

`

R‹pxt, a
1
t q ´ R‹pxt, a

2
t q
˘

and pt “ σ
´

pRtpxt, a
1
t q ´ pRtpxt, a

2
t q

¯

.
We define

Xt :“
1

2

´

ℓtpR
‹q ´ ℓtp pRtq

¯

“ ´
1

2

ˆ

yt log
p‹
t

pt
` p1 ´ ytq log

1 ´ p‹
t

1 ´ pt

˙

.
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Then, by Lemma G.3, with probability at least 1 ´ δ, we have

1

2

˜

T
ÿ

t“1

ℓtpR
‹q ´

T
ÿ

t“1

ℓtp pRtq

¸

“

T
ÿ

t“1

Xt ď

T
ÿ

t“1

log
`

Et´1reXts
˘

` log
1

δ
(Lemma G.3)

“

T
ÿ

t“1

log

˜

p‹
t

ˆ

p‹
t

pt

˙´1{2

` p1 ´ p‹
t q

ˆ

1 ´ p‹
t

1 ´ pt

˙´1{2
¸

` log
1

δ

“

T
ÿ

t“1

log
´

a

p‹
tpt `

a

p1 ´ p‹
t qp1 ´ ptq

¯

` log
1

δ

ď

T
ÿ

t“1

´

a

p‹
tpt `

a

p1 ´ p‹
t qp1 ´ ptq ´ 1

¯

` log
1

δ

(log x ď x ´ 1, for x ą 0)

“ ´
1

2

T
ÿ

t“1

„

´

a

p‹
t ´

?
pt

¯2

`

´

a

1 ´ p‹
t ´

a

1 ´ pt

¯2
ȷ

` log
1

δ

(1 “ 1
2 pp‹

t ` p1 ´ p‹
t q ` pt ` p1 ´ ptqq)

ď ´
1

2

T
ÿ

t“1

pp‹
t ´ ptq

2
` log

1

δ
. (D.1)

where the last inequality follows from the fact that, for any p, q P r0, 1s, p
?
p ´

?
qq2 ` p

?
1 ´ p ´

?
1 ´ qq2 ě pp ´ qq2.

Now, consider the term p‹
t ´ pt. For simplicity, let ∆‹

t “ R‹pxt, a
1
t q ´ R‹pxt, a

2
t q and ∆t “

pRtpxt, a
1
t q ´ pRtpxt, a

2
t q. Then, by the mean value theorem, we obtain

p‹
t ´ pt “ σp∆‹

t q ´ σp∆tq

“ p∆‹
t ´ ∆tq

ż 1

0

9σ p∆t ` τp∆‹
t ´ ∆tqqdτ (mean value theorem)

ě
1

κ
p∆‹

t ´ ∆tq . ( 9σpzq ě 1
κ , Definition of κ)

Hence, substituting the above result into Equation D.1 and rearranging terms, we obtain

T
ÿ

t“1

´

rR‹pxt, a
1
t q ´ R‹pxt, a

2
t qs ´ r pRtpxt, a

1
t q ´ pRtpxt, a

2
t qs

¯2

ď κ2

˜

T
ÿ

t“1

ℓtp pRtq ´

T
ÿ

t“1

ℓtpR
‹q

¸

` 2κ2 log
1

δ
,

which concludes the proof.

D.2.2 PROOF OF LEMMA D.2

Proof of Lemma D.2. Recall the definition of f : X ˆ R Ñ R in equation B.4:

fpx,Rq :“ ´
1

η
logZRpxq ` Eπη

R
rRpx, aq ´ R‹px, aqs .

Note f is invariant to adding any action-independent baseline g : X Ñ R.

fpx,R ` gq “ ´
1

η
logZR`gpxq ` Eπη

R`g
rRpx, aq ` gpxq ´ R‹px, aqs

“ ´
1

η
plogZRpxq ` ηgpxqq ` Eπη

R
rRpx, aq ` gpxq ´ R‹px, aqs (πη

R`g “ πη
R)

“ ´
1

η
logZRpxq ` Eπη

R
rRpx, aq ´ R‹px, aqs “ fpx,Rq,
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Algorithm E.1 ODPO (Oracle-efficient Direct Policy Optimization)

1: Inputs: regularization parameter η, reference policy πref, online regression oracle OracleLog.
2: Initialize: choose any π1 P Π.
3: for round t “ 1 to T do
4: Observe context xt P X .
5: Sample action a1t , a

t
2 „ πtp¨|xtq and receive preference feedback yt.

6: Update πt`1 for the next round using OracleDPO via Equation E.2.
7: end for

where the second equality holds because

ZR`gpxq “
ÿ

aPA
πrefpa|xqeηpRpx,aq`gpxqq “ eηgpxq

ÿ

aPA
πrefpa|xqeηRpx,aq “ eηgpxqZRpxq,

and

πη
R`gpa|xq “

πrefpa|xq ¨ eηpRpx,aq`gpxqq

ZR`gpxq
“

πrefpa|xq ¨ eηRpx,aq ¨ eηgpxq

eηgpxqZRpxq
“ πη

Rpa|xq.

Therefore, by substituting pRtpx, aq Ð pRtpx, aq`gpxq and the following the proof from Equation B.4
in Lemma B.2, we derive

Jη
t pπ‹

η, R
‹q ´ Jη

t pπt, R
‹q ď ηEa„πtp¨|xtq

„

´

pRtpxt, aq ´ R‹pxt, aq ` gpxtq

¯2
ȷ

.

which concludes the proof.

E EXTENSION TO DIRECT PREFERENCE OPTIMIZATION (DPO)

In this section, we extend our method to the DPO objective (Rafailov et al., 2023). The problem
setup is identical to the RLHF setting (Subsection 3.2), except that DPO bypasses reward learning
and directly optimizes the policy within the policy class Π. Rearranging Equation 2, we can express
the reward function as follows:

Rpx, aq “
1

η
log

πpa|xq

πrefpa|xq
`

1

η
logZRpxq. (E.1)

Accordingly, the Bradley–Terry model for preference feedback takes the form

Ppa1 ą a2|x, a1, a2q “ σ

ˆ

1

η
log

πpa1|xq

πrefpa1|xq
´

1

η
log

πpa2|xq

πrefpa2|xq

˙

,

where σpxq “ 1
1`e´x is the sigmoid function. Finally, the DPO loss at round t is defined as

ℓDPO
t pπq :“ ´ log σ

ˆ

1

η
log

πpa1t |xtq

πrefpa1t |xtq
´

1

η
log

πpa2t |xtq

πrefpa2t |xtq

˙

.

Note that ℓDPO
t pπq is exactly the same as ℓtpRq defined in Equation 6.

Similar to Subsection 3.2, we assume access to an online DPO regression oracle, denoted by
OracleDPO. At each round t, rather than estimating a reward function, this oracle directly returns a
policy:

πt Ð OracleDPOtppxt, a
1
t , a

2
t q; px1, a

1
1, a

2
1, y1q, . . . , pxt´1, a

1
t´1, a

2
t´1, yt´1qq. (E.2)

We assume that the prediction error of OracleDPO is bounded with respect to the policy class Π.
Assumption E.1 (Guarantee of online DPO regression oracle). We assume that, for every (possibly
adaptively chosen) sequence x1:T , a

1
1:T , a

2
1:T , y1:T , there exists regret bound RegDPOpT q such that

the regression oracle OracleDPO satisfies
T
ÿ

t“1

ℓDPO
t pπtq ´

T
ÿ

t“1

ℓDPO
t pπ‹

ηq ď RegDPOpT q.
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Using this oracle, we establish the following regret bound, analogous to Theorem 3.

Theorem E.1 (Regret of ODPO). Let κ :“ supR,x,a
1

9σpRpx,aqq
. Under Assumption E.1, for any δ ą 0,

ODPO guarantees that with probability at least 1 ´ δ,

RegretKLpT, ηq “ O
`

ηκ2RegDPOpT q ` ηκ2 logp1{δq
˘

, and

RegretpT q “ O
ˆ

ηκ2RegDPOpT q ` ηκ2 logp1{δq `
DT

η

˙

,

where D :“ 1
T

řT
t“1 KL

`

π‹p¨}xtq}πrefp¨}xtq
˘

.

Proof of Theorem E.1. By Lemma D.1, together with the fact that ℓDPO
t pπq “ ℓtpRq and the reward

reformulation in Equation E.1, we obtain

Corollary E.1. With probability at least 1 ´ δ, we have

T
ÿ

t“1

˜

1

η
log π‹

ηpa1t |xtq ´
1

η
log πtpa

1
t |xtq´

ˆ

1

η
log π‹

ηpa2t |xtq ´
1

η
log πtpa

2
t |xtq

˙

¸2

ď κ2

˜

T
ÿ

t“1

ℓDPO
t pπtq ´

T
ÿ

t“1

ℓDPO
t pπ‹

ηq

¸

` 2κ2 log
1

δ
.

Then, by Lemma D.2, we get

RegretKLpT, ηq “

T
ÿ

t“1

Jη
t pπ‹

η, R
‹q ´ Jη

t pπt, R
‹q

ď η
T
ÿ

t“1

Ea1,a2„πtp¨|xtq

„

´

pRtpxt, a
1q ´ R‹pxt, a

1q ´
`

pRtpxt, a
2q ´ R‹pxt, a

2q
˘

¯2
ȷ

(Lemma D.2 with gtpxtq “ ´Ea2„πtp¨|xtq

”

pRtpxt, a
2q ´ R‹pxt, a

2q

ı

)

ď 2η
T
ÿ

t“1

´

pRtpxt, a
1
t q ´ R‹pxt, a

1
t q ´

`

pRtpxt, a
2
t q ´ R‹pxt, a

2
t q
˘

¯2

` 32η log
2

δ

(Lemma G.2, w.p. 1 ´ δ)

“ 2η
T
ÿ

t“1

˜

1

η
log πtpa

1
t |xtq ´

1

η
log π‹

ηpa1t |xtq ´

ˆ

1

η
log πtpa

2
t |xtq ´

1

η
log π‹

ηpa2t |xtq

˙

¸2

` 32η log
2

δ
(Equation E.1)

ď 2ηκ2

˜

T
ÿ

t“1

ℓDPO
t pπtq ´

T
ÿ

t“1

ℓDPO
t pπ‹

ηq

¸

` 4ηκ2 log
1

δ
` 32η log

2

δ
(Corollary E.1, w.p. 1 ´ δ)

ď 2ηκ2RegDPOpT q ` 4ηκ2 log
1

δ
` 32η log

2

δ
. (Assumption E.1)

By setting δ Ð δ
2 , we obtain the bound for RegretKLpT, ηq.

In addition, the bound for RegretpT q follows directly from Lemma B.3, by applying the same
reasoning as in the proof of Theorem 1. This concludes the proof of Theorem E.1.

E.1 COMPARISON TO LOWER BOUND IN PROPOSITION 2.1 OF XIE ET AL. (2024)

A careful reader might wonder whether the logarithmic KL-regularized regret established in Theo-
rem E.1 contradicts the lower bound in Proposition 2.1 of Xie et al. (2024). This is not the case: their
analysis considers only the restricted policy class Π “ tπref, π

‹
ηu, rather than the full family of Gibbs

policies (Equation 2), so their lower bound does not apply to our setting. For clarity, we first restate
Proposition 2.1 from Xie et al. (2024).
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Proposition E.1 (Necessity of deliberate exploration, Proposition 2.1 of Xie et al. 2024). Fix
η ą 8

log 2 , and consider the two-armed bandit setting of X “ H, and |A| “ N “ 2. Let
Π “ tπref, π

‹
ηu. There exists a reference policy πref such that for all T ď 1

2 exp
`

η
8

˘

, with constant
probability, all of policies π1, . . . , πT`1 produced by OnlineDPO satisfiy

max
πPΠ

Jη
t pπ,Rq ´ Jη

t pπt, Rq ě
1

8
, @t P rT ` 1s.

As is clear, this proposition only applies to the restricted class Π “ tπref, π
‹
ηu, where the learner can

update its policy only by switching between these two candidates. In contrast, our analysis permits
the learner to choose from the full family of Gibbs policies—beyond just tπref, π

‹
ηu—with the choice

adaptively guided by data collected through online interactions. Therefore, their lower bound is not
directly comparable to our upper bound.

F KL-REGULARIZED CONTEXTUAL BANDITS WITH OFFLINE REGRESSION
ORACLE

In this section, we assume access to an offline regression oracle instead of the online regression
oracle defined in Equation 4. Note that an online regression oracle must provide robust guarantees
against arbitrary data sequences generated by an adaptive adversary, which becomes challenging
to implement when the function class R is complex. While the minimax regret rates for online
regression with general function classes are well understood (Rakhlin & Sridharan, 2014), to the best
of our knowledge, computationally efficient algorithms are only known for specific function classes.

Unlike the online regression oracle setting, where contexts may be chosen adversarially, we now
adopt a stochastic context assumption.

Assumption F.1 (Stochastic context). At each round t, the context xt P X is drawn i.i.d. from an
unknown but fixed distribution ρ.

In this section, we redefine the KL-regularized and unregularized regrets in the stochastic contextual
setting as follows (we use the same regret notations for simplicity):

RegretKLpT, ηq :“
T
ÿ

t“1

Ext„ρ

“

Jη
t pπ‹

η, R
‹q ´ Jη

t pπt, R
‹q
‰

and

RegretpT q :“
T
ÿ

t“1

Ext„ρ

“

Ea„π‹p¨|xtqrR‹pxt, aqs ´ Ea„πtp¨|xtqrR‹pxt, aqs
‰

.

F.1 OFFLINE REGRESSION ORACLE

We now introduce the notion of an offline regression oracle. Given a reward function class R, an
offline regression oracle associated with R, denoted by OracleOff, is a procedure that produces a
predictor pR : X ˆ A Ñ R based on input data. In statistical learning theory, the performance of
pR is typically evaluated in terms of its out-of-sample error, that is, its expected error on random,
unseen test data. Similar to online regression setting, we assume the statistical learning guarantees of
OracleOff.

Assumption F.2 (Guarantee of offline regression oracle). Let π : X Ñ ∆pAq be an arbitrary
policy. Given n training samples px1:n, a1:n, r1:nq where xi „ ρ and ai „ πp¨ | xiq i.i.d., the offline
regression oracle OracleOff returns a reward estimator pR : X ˆ A Ñ R. For any δ ą 0, with
probability at least 1 ´ δ, we have

Ex„ρ,a„πp¨|xq

„

´

pRpx, aq ´ R‹px, aq

¯2
ȷ

ď Eδpnq.

Under the realizability assumption (Assumption 1), this squared distance corresponds to the estimation
error or excess risk of pR.
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Algorithm F.1 KL-EXP-Off
1: Inputs: regularization parameter η, reference policy πref, offline regression oracle OracleOff,

epoch schedule 0 “ τ0 ă τ1 ă τ2 ă ¨ ¨ ¨ .
2: Initialize: choose any pR1 P R.
3: for epoch m “ 1, 2, . . . ,mpT q do
4: for round t “ τm´1 ` 1, ¨ ¨ ¨ , τm do
5: Observe context xt P X .
6: Compute policy πtp¨|xtq 9 πrefp¨|xtq exp

`

η pRmpxt, ¨q
˘

via Equation 2.
7: Sample action at „ πtp¨|xtq and receive reward rt.
8: end for
9: Feed only the data in epoch m ´ 1 into OracleOff and obtain pRm`1 .

10: end for

F.2 ALGORITHM AND RESULTS

We provide an algorithm KL-EXP-Off in Algorithm F.1. Unlike Algorithm 1, which updates the
predictor at every round, KL-EXP-Off adopts an epoch-based learning protocol, updating the reward
estimator only once per epoch via the offline regression oracle. In addition, rather than feeding all
past data into the oracle, we restrict its input to the data collected in the immediately preceding epoch
(m ´ 1). As a consequence of this strategy, the algorithm proceeds in gradually increasing epochs,
i.e., τm “ 2m.

Let mpT q denote the total number of epochs. We then establish the following regret bound under the
offline regression oracle.
Theorem F.1 (Regret of KL-EXP-Off). Consider an epoch schedule τm “ 2m for m ď mpT q. Then,
with probability at least 1 ´ δ, the regret of KL-EXP-Off is bounded by

RegretKLpT, ηq “ O
`

ηEδ{ log T pT q ¨ T
˘

, and

RegretpT q “ O
ˆ

ηEδ{ log T pT q ¨ T `
DT

η

˙

,

where D :“ 1
T

řT
t“1 KL

`

π‹p¨}xtq}πrefp¨}xtq
˘

.
Remark F.1 (Computational efficiency). The algorithm KL-EXP-Off requires only Oplog T q calls
to the offline regression oracle.
Example F.1 (Linear classes). When Assumption 1 holds and the reward function class R is linear (re-
fer Example 1), by using the least squares regression oracle, KL-EXP-Off achieves RegretKLpT, ηq “

Opηd log T q and RegretpT q “ O
`?

dDT log T
˘

, with the choice η “ Θ
´b

DT
d log T

¯

. Moreover, by

setting πref to be uniform random, we have RegretpT q “ O
`?

dT logN log T
˘

since D ď logN .
This upper bound matches the lower bound Ω

`
a

dT logN logpT {dq
˘

established by Li et al. (2019),
up to logarithmic d factors.
Example F.2 (Neural Networks). Let Assumption 1 hold and R “ GN , where G denotes the class
of Multi-Layer Perceptrons (MLPs) as described in Section 2.1 of Farrell et al. (2021). For each
px, aq P X ˆ A, let the reward function be R‹px, aq “ g‹

apxq. Assume the context distribution ρ is
continuous over r´1, 1sd, and that g‹

1 , . . . , g
‹
N lie in a Sobolev ball with smoothness β P N. Then,

by Theorem 1 of Farrell et al. (2021), the deep MLP-ReLU network estimator attains O
´

n´
β

β`d

¯

estimation error. Consequently, by using this estimator as the offline regression oracle, KL-EXP-Off
achieves RegretKLpT, ηq “ Õ

´

ηT
d

β`d

¯

and RegretpT q “ Õ
´

T
β`2d
2β`2d

¯

(ignoring dependence on

other parameters) with the parameter choice η “ Θ̃
´

T
β

2β`2d

¯

. Our derived unregularized regret,

Õ
´

T
β`2d
2β`2d

¯

, has the same order as the regret established by Simchi-Levi & Xu (2022).

F.3 MAIN PROOF OF THEOREM F.1

In this subsection, we present the proof of Theorem F.1.
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Proof of Theorem F.1. For any t P rT s, by Lemma B.2, we have

RegretKLpT, ηq “

T
ÿ

t“1

Ext„ρ

“

Jη
t pπ‹

η, R
‹q ´ Jη

t pπt, R
‹q
‰

ď η
T
ÿ

t“1

Ext„ρEat„πtp¨|xtq

„

´

pRmpxt, atq ´ R‹pxt, atq
¯2
ȷ

(Lemma B.2)

Let Ft :“ σpx1, a1, r1, . . . , xt, rt, atq be the filtration up to round t. We introduce the following
lemma to further bound the regret.

Lemma F.1 (Lemma 2 of Simchi-Levi & Xu 2022). For all m ě 2 and all t P tτm´2`1, ¨ ¨ ¨ , τm´1u,
with probability at least 1 ´ δ{p2m2q, we have

Ext„ρ,at„πtp¨|xtq

„

´

pRmpxt, atq ´ R‹pxt, atq
¯2

| Ft´1

ȷ

ď Eδ{p2m2qpτm´1 ´ τm´2q.

By applying Lemma F.1, with probability 1 ´ δ, we obtain

RegretKLpT, ηq ď η
T
ÿ

t“1

Ext„ρEat„πtp¨|xtq

„

´

pRmptqpxt, atq ´ R‹pxt, atq
¯2
ȷ

“ η
T
ÿ

t“1

Ext„ρEat„πtp¨|xtq

„

´

pRmptqpxt, atq ´ R‹pxt, atq
¯2

| Ft´1

ȷ

ď η
T
ÿ

t“τ1`1

Eδ{p2mptq2qpτmptq´1 ´ τmptq´2q ` τ1

“ η

mpT q
ÿ

m“2

Eδ{p2m2qpτm´1 ´ τm´2q ¨ pτm ´ τm´1q ` τ1

“ O
`

ηEδ{ log T pT q ¨ T
˘

.

This completes the proof of the upper bound on the KL-regularized regret. Moreover, the bound for
the unregularized regret follows directly from the same analysis as in the proof of Theorem 1.

G TECHNICAL LEMMAS

Lemma G.1 (Freedman’s inequality, Freedman, 1975). Let pZtqtďT be a real-valued martingale
difference sequence adapted to a filtration Ft´1, and let Etr¨s “ Er¨ | Ft´1s. If |Zt| ď B almost
surely, then for any β P p0, 1{Bq, it holds that, with probability at least 1 ´ δ,

T
ÿ

t“1

Zt ď β
T
ÿ

t“1

Et´1rZ2
t s `

B logp1{δq

β
.

Lemma G.2 (Lemma A.3 of Foster et al. 2021). Let pXtqtďT be a sequence of random variables
adapted to a filtration pFtqtďT . If 0 ď Xt ď B almost surely, then with probability at least 1 ´ δ,

T
ÿ

t“1

Xt ď
3

2

T
ÿ

t“1

Et´1rXts ` 4B log
2

δ
,

and
T
ÿ

t“1

Et´1rXts ď 2
T
ÿ

t“1

Xt ` 8B log
2

δ
.

Lemma G.3 (Lemma A.4 of Foster et al. 2021). For any sequence of real-valued random variables
pXtqtďT adapted to a filtration pFtqtďT , it holds that with probability at least 1 ´ δ, for all T 1 ď T ,

T 1
ÿ

t“1

Xt ď

T 1
ÿ

t“1

log
`

Et´1reXts
˘

` log
1

δ
.
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H ADDITIONAL EXPERIMENTAL RESULTS

H.1 COMPUTATION COST IN LINEAR BANDITS

N d LinUCB LinTS LinPHE SupLinUCB KL-EXP (ours)

50 5 0.321 0.274 0.862 0.203 0.173
100 5 0.465 0.336 0.927 0.225 0.190
50 20 1.414 1.504 1.877 1.274 1.227
100 20 1.616 1.546 1.942 1.378 1.253

Table H.1: Average per-round computation time (µs) for linear bandits with d P t10, 20u and
N P t50, 100u.

H.2 COMPUTATION COST IN NEURAL BANDITS

NeuralUCB NeuralTS KL-EXP (ours)

0.0507 0.0665 0.0048

Table H.2: Average per-round computation time (s) for neural bandits.

H.3 RLHF EXPERIMENTS: DETAILS AND ADDITIONAL RESULTS

In this section, we present the RLHF experimental setup in detail and provide additional results.

Implementation details. For fair comparison, we follow the experimental setup of Dong et al.
(2024); Xie et al. (2024). In each iteration, we fix the base model (Llama-3-8B-Flow-SFT) as the
reference model πref and set the regularization parameter to η “ 10.0. Training is performed with a
global batch size of 16, a learning rate of 5 ˆ 10´7 with cosine scheduling, 2 epochs per iteration,
and a warmup ratio of 0.03. For XPO, following Xie et al. (2024), we set π̃t “ πt and Doptt “ Dpreft ,
and use their exploration schedule α P t1 ˆ 10´5, 5 ˆ 10´6, 0u across the three iterations(see their
definitions). All experiments were conducted on 8ˆ Nvidia H100 GPUs.

Additional results. Table H.3 reports the accuracies of the algorithms on all 17 academic and chat
benchmarks (Zhong et al., 2023; Nie et al., 2019; Hendrycks et al., 2020; Cobbe et al., 2021; Rein
et al., 2024; Chen et al., 2021; Zellers et al., 2019; Sakaguchi et al., 2021; Clark et al., 2018; Lin et al.,
2021; Mihaylov et al., 2018; Zellers et al., 2018; Sap et al., 2019; Pilehvar & Camacho-Collados,
2018; Levesque et al., 2012; Socher et al., 2013), as well as the performance of OnlineDPO (or ODPO)
with varying regularization parameters η P t5.0, 8.5, 10.0, 12.5, 20.0u. The bold values represent the
best performance for each benchamrk. The results show that OnlineDPO with a carefully chosen η
(“ 12.5) outperforms other baselines that rely on additional exploration techniques.
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Model η iteration AGIEval ANLI MMLU GSM8K GPQA HumanEval HellaSwag WinoGrande ARC-C

Llama-3-8B-Flow-SFT 10.0 39.33 40.51 62.63 74.15 34.34 54.27 59.89 76.48 53.50

Llama-3-8B-Flow-Final 10.0 41.75 46.29 63.36 74.75 31.31 54.88 61.22 76.95 52.73

XPO 10.0
iter 1 39.32 43.69 63.08 80.21 34.85 56.10 62.20 75.61 56.40
iter 2 39.91 45.77 63.27 80.59 30.81 57.93 62.57 76.32 56.57
iter 3 40.14 46.07 63.37 82.18 32.83 57.93 62.95 76.48 56.57

OnlineDPO

5.0
iter 1 39.33 45.54 63.10 80.97 33.84 56.10 62.12 76.32 56.14
iter 2 40.08 46.13 63.26 82.41 35.35 57.93 62.61 76.24 56.31
iter 3 40.29 46.57 63.15 82.71 33.33 59.75 62.92 76.24 56.66

8.5
iter 1 39.56 45.69 63.22 81.35 31.82 57.32 62.49 76.48 56.31
iter 2 40.17 47.19 63.27 82.79 33.33 58.25 62.97 75.85 56.06
iter 3 40.36 48.73 63.31 82.87 32.32 59.73 63.36 76.72 55.80

10.0
iter 1 39.34 44.55 63.25 81.96 32.83 57.93 62.63 76.01 56.14
iter 2 40.37 48.13 63.37 82.34 32.83 57.32 63.24 76.16 55.80
iter 3 40.74 48.84 63.25 83.40 32.32 57.93 63.56 76.40 56.06

12.5
iter 1 39.53 45.98 63.26 81.50 31.82 59.76 62.71 76.09 56.06
iter 2 40.53 47.82 63.30 83.62 31.82 58.54 63.36 76.87 55.12
iter 3 40.87 48.92 63.30 83.09 33.33 58.54 63.59 76.32 55.29

20.0
iter 1 39.72 46.32 63.21 82.87 32.32 56.71 62.98 76.01 55.80
iter 2 40.70 47.80 63.12 82.79 31.82 57.93 63.68 75.93 53.92
iter 3 41.10 46.29 63.18 83.17 31.31 57.32 63.74 76.40 54.35

Model η iteration ARC-E TruthfulQA OpenBookQA SWAG Social IQa WiC WSC273 SST-2 Average

Llama-3-8B-Flow-SFT 10.0 83.33 45.38 35.40 58.07 52.35 56.74 87.55 90.94 59.11

Llama-3-8B-Flow-Final 10.0 81.94 53.71 37.20 58.15 52.10 62.54 87.18 91.97 60.47

XPO 10.0
iter 1 84.09 48.53 37.20 59.30 54.25 64.11 87.91 90.71 61.03
iter 2 84.26 51.32 37.80 59.65 53.43 62.54 87.55 90.60 61.23
iter 3 83.92 52.20 38.20 59.85 53.12 61.76 88.28 90.60 61.55

OnlineDPO

5.0
iter 1 84.47 49.41 37.60 59.30 54.09 62.23 87.55 90.48 61.09
iter 2 84.51 51.97 37.20 59.63 53.84 61.44 87.91 90.60 61.61
iter 3 84.43 53.48 37.00 59.81 53.43 62.85 89.38 91.40 61.96

8.5
iter 1 84.22 51.38 37.40 59.53 53.94 62.54 88.28 90.71 61.31
iter 2 84.09 54.42 37.40 59.81 53.38 62.38 87.55 91.51 61.79
iter 3 84.09 55.30 37.60 60.00 52.81 61.13 89.01 90.94 62.01

10.0
iter 1 84.55 52.01 37.40 59.50 53.58 61.91 88.28 90.83 61.33
iter 2 84.13 54.86 37.20 59.91 53.12 61.60 88.64 91.06 61.77
iter 3 83.75 56.22 37.40 60.11 52.35 61.29 88.64 91.17 61.97

12.5
iter 1 84.39 52.46 37.40 59.65 53.07 62.07 88.64 90.94 61.49
iter 2 83.54 55.32 37.00 59.95 52.30 61.76 88.64 91.63 61.83
iter 3 83.16 56.70 37.00 60.20 51.84 62.23 89.01 92.20 62.09

20.0
iter 1 84.09 53.71 37.20 59.73 52.51 62.07 89.01 91.06 61.49
iter 2 82.70 56.94 37.40 60.13 51.59 60.50 89.01 91.86 61.64
iter 3 82.66 57.18 37.20 60.22 51.64 61.44 88.64 92.15 61.65

Table H.3: Full benchmark evaluation of OnlineDPO with varying η P t5.0, 8.5, 10.0, 12.5, 20.0u

and of other algorithms that use additional exploration strategies. Bold values indicate the best
performance.
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