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ABSTRACT

Recently, reinforcement learning from human feedback (RLHF) has demonstrated
remarkable efficiency in fine-tuning large language models (LLMs), fueling a
surge of interest in KL regularization. Yet, the theoretical foundations of KL
regularization remain underexplored. Many prior works employ either explicit
online exploration strategies—such as UCB, Thompson sampling, and forced
sampling—or optimism-embedded optimization techniques (e.g., Xie et al.[2024)
in addition to KL regularization to achieve sublinear regret in online RLHF. In
this paper, we show, for the first time to our best knowledge, that such additional
exploration strategies are unnecessary if KL regularization is already included.
That is, KL regularization alone suffices to guarantee sublinear regret. We propose
KL-EXP (and its RLHF variant, OEPO), an algorithm that achieves logarithmic
KL-regularized regret—the standard objective in KL-regularized contextual ban-
dits and RLHF—while also attaining O(/T) unregularized regret, both under
general function approximation. As a special case, in linear contextual bandits,
we establish a O(+/dT log N ) bound on the unregularized regret, where d is the
feature dimension and NV is the number of arms. To our best knowledge, this is the
first O(v/dT log N )-type regret bound achieved without resorting to supLin-type
algorithms, making it substantially more practical. Our experiments on linear and
neural bandits, as well as on LLM fine-tuning with RLHF, demonstrate that our
algorithms significantly outperform the baselines while remaining practical.

1 INTRODUCTION

The Kullback-Leibler (KL)-regularized contextual bandit problem (Langford & Zhang, [2007; Neu
et al.,[2017; | Xiong et al., [2023; | Xie et al., 2024) has recently attracted considerable attention due to its
remarkable empirical success in fine-tuning large language models (LLMs), an application commonly
referred to as reinforcement learning from human feedback (RLHF) (Christiano et al.l 2017} Bai
et al.}2022; |Ouyang et al., [2022). This framework uses KL regularization as a key mechanism to
balance reward optimization with distributional stability.

Despite these practical successes, the theoretical understanding of KL-regularization remains limited,
particularly in the context of online learning. Online exploration is crucial for efficiently gathering
informative feedback and addressing user preferences in RLHF. In this vein, many prior works
have leveraged additional mechanisms to promote exploration, such as Upper Confidence Bound
(UCB) (Xiong et al.l2023;2024; Zhao et al.,|2025)), forced sampling (Zhao et al., 2024), and value-
incentivized policy optimization (Xie et al., 2024} (Cen et al., [2024). Building on these strategies,
Xiong et al.|(2023); Ye et al.[(2024)); Xie et al.|(2024); Xiong et al.|(2024); Cen et al.|(2024) established
O(v/T) bounds on KL-regularized regret (or O(1/€%) sample complexity). More recently, Zhao et al.
(20245 2025) achieved the first logarithmic KL-regularized regret (or O(1/¢) sample complexity).

However, optimizing the KL-regularized objective (Equation [I)) already yields a randomized policy
of the Gibbs distribution form (Equation[Z). This implies that KL-regularization induces inherent
exploration. Therefore, a natural question arises:

Can logarithmic KL-regularized regret be achieved without extra exploration techniques
in contextual bandits and RLHF when KL-regularization is used?
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Beyond this, we raise a more fundamental question: is achieving sublinear KL-regularized regret,
by itself, truly sufficient? To the best of our knowledge, the tightest bound to date is O(nlogT),
established by [Zhao et al.|(2025)), where 7 is the KL-regularization parameter. A direct implication
of this result is that by choosing 7 to be sufficiently small, one can always guarantee an arbitrarily
small KL-regularized regret. Indeed, a small 7 indicates that the KL-regularized optimal policy 77,
remains very close to the reference policy ¢, which makes this result appear reasonable. However,
when 7}, & Ter, the learner gains little to no improvement, which is undesirable since the goal is to
discover a strictly better policy than the reference policy. To address this, we also consider the notion
of unregularized regret (Equation[3), as in standard bandit settings. This regret can be large when
the policy remains close to 7 (i.€., for small 1) but far from the unregularized optimal policy m*.
Minimizing the unregularized regret allows us to directly pursue the unregularized optimal policy 7*,
rather than being limited to the KL-regularized solution 7. This naturally raises the hypothesis that 7
should be chosen carefully to minimize the unregularized regret, which leads to our second question:

By choosing 1 appropriately, can we achieve sublinear unregularized regret, still without
additional exploration techniques?

In this paper, we answer these questions affirmatively. We begin by analyzing the KL-regularized
(adversarial) contextual bandit setting and then extend our analysis to RLHF. To consider general
algorithms, we assume access to an online regression oracle (Foster & Rakhlinl [2020), while the
offline regression oracle is discussed in Appendix [F] Our main contributions are summarized as:

¢ KL-regularized regret. In KL-regularized contextual bandits, we establish a KL-regularized
regret bound of O(nRegs, (T') + nlog(1/0)), where 7 is the regularization parameter, Regg, (7')
is the online regression oracle bound, and § is the failure probability (Theorem [I)). This result
is achieved solely through KL-regularization, without relying on any additional exploration
techniques. To our best knowledge, this is the first result to show the provable efficiency of
the KL-regularization-only approach. Since Regg,(7") = O(logT') can be attained by suitable
regression oracles for a wide range of reward functions—including linear, generalized linear, and
bounded eluder-dimension function classes—we achieve logarithmic KL-regularized regret.

* Unregularized regret. By setting n = @(\/ DT /(Regg,(T) + logd ~1)), we obtain an unregu-

larized regret of O(vV/ DT (Regg,(T)) +log 5~')), where D = £ S KL (7 () | et (- 20))
(Theorem [I)). To the best of our knowledge, this is the first unregularized regret bound for
KL-regularized contextual bandits attained solely through KL-regularization-induced exploration.

@(«/dT log N) regret in linear contextual bandits. By setting . to the uniform random
policy and choosing 7 = ©(1/T log N/(dlog T')), we obtain an (unregularized) regret bound of
@(\/m ) for linear contextual bandits (Theorem , where d is the feature dimension, N
is the number of arms, and O(-) hides constant and logarithmic factors (excluding those in N).

To the best of our knowledge, this is the first O(+1/dT log N )-type regret achieved without using
on supLin-type algorithms (Auer, 2002; |Chu et al., 2011; |Li et al., 2019), which are known to
be impractical. Hence, this is the first practical algorithm to achieve minimax optimal regret for
finite-armed linear contextual bandits.

Extension to RLHF. We further establish similar regret bounds in the RLHF setting, with only an
additional factor due to the non-linearity of the Bradley—Terry model (Theorems [3|and [E. ).

2 RELATED WORKS

Online RLHF. Early works in online RLHF trace back to the dueling bandits literature (Yue et al.,
2012} [Zoghi et al., 2015} [Saha & Gopalan, [2018}; [Bengs et al., 2021)) and were later extended to
the reinforcement learning setting (Xu et al.,[2020; Novoseller et al., [2020; |Chen et al., [2022; |Saha
et al., 2023 |Zhan et al., |2023b; Wu & Sun| [2023). More recently, |Xiong et al.| (2023)); Ye et al.
(2024) introduced provably efficient algorithms under the KL-regularized objective using UCB-style
exploration. These were further refined by methods that employ optimistically biased optimization
targets (Xie et al., [2024; Liu et al.| 2024} (Cen et al.,[2024). The most closely related works are |[Zhao
et al|(2024; [2025), which also study the KL-regularized objective and establish O(nlogT) KL-
regularized regret (or O(n/e) suboptimality gap). However, all of these prior approaches depend on
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additional exploration mechanisms. In contrast, our work demonstrates—for the first time, to the
best of our knowledge—that KL-regularization alone suffices to achieve sublinear regret in both the
regularized and unregularized forms. For additional related work, see Appendix [A]

3 PROBLEM SETUP

Notations. Given a set X', we use |X| to denote its cardinality. For a positive integer, n, we denote
[n] :={1,2,...,n}. Let N denote the size of the action space. We write O(-) for asymptotics up to
constants and O(-) when also hiding logarithmic factors (except in V). For a function class F, we
denote by Nz (e) its e-covering number.

3.1 KL-REGULARIZED CONTEXTUAL BANDITS

In the KL-regularized contextual bandits, at each round ¢ € [T'], the learner observes a context x; € X
(which may be provided adversarially) and then selects an action a; € A, where X’ is the context
space and A is the action space. The learner then receives a reward r; € [0, 1], given by:
re = R*(xhat) + €t,

where R*(x¢, a;) is the unknown expected reward function, and ¢; is independent, zero-mean, and 1-
sub-Gaussian. In this paper, we consider a general reward function class R < {R : X x A — [0,1]},
which can be a class of parametric functions, nonparametric functions, neural networks, etc. We
assume the standard realizability (Chu et al., [2011} |/Agarwal et al.l 2012; [Foster et al., 2018a; [Foster
& Rakhlin) 20205 [Simchi-Levi & Xul [2022) throughout the paper, including the RLHF setting.

Assumption 1 (Realizability). The true reward function is contained in R, i.e., R* € 'R.

KL-Regularized Objective. We consider a KL-regularized reward objective, defined for a regular-
ization parameter ) > 0, as:

1
Jt77(7r, R) = EGNW('|$z) [R(,’Et, a)] — ;KL(W('|5L‘,§)H7Tref('|1‘t))7 Vt > 1, (1)

where T is the reference policy known to the learner. When ¢ is uniform, Equation [Treduces to
the entropy-regularized objective that encourages diverse actions and enhances robustness (Williams),
1992} Levine & Koltun, 2013} |Levine et al.l | 2016;|Haarnoja et al.| [2018]), which is also closely-related
to the generative flow networks (GFlowNets) (Bengio et al., [2021;2023}; |Tiapkin et al.,|2024). When
Tt 18 instead chosen as a base model, KL regularization has been widely adopted for RL fine-tuning
of large language models (Ouyang et al., 2022; Rafailov et al.,|2023)). It has also been studied in
online learning (Cai et al.,|[2020; |He et al., |2022)) and convex optimization (Neu et al., [2017).

Following prior work (Peters & Schaal, 2007; |Rafailov et al.|[2023}; Zhang]| 2023), it is straightforward
to show that the optimal solution to the objective in Equation [I| has the following form:
mr(alz) =

#@)ﬂmf(abc) exp(nR(z,a)), 2)

where Zp(x) := Eqr (o) exp(nR(, a)) is the normalization constant. A full derivation can be
found in Appendix A.1 of Rafailov et al.| (2023)).

3.2 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK (RLHF)

In the RLHF problem (Ouyang et al. |2022)—more specifically, the contextual dueling bandit
problem with a KL-regularized objective—the learner at each round ¢ € [T'] observes a context
x; € X (possibly provided adversarially) and selects two actions a},a? € A, where X is the context
space and A the action space. The learner then receives relative preference feedback between the two
actions, rather than a scalar reward. In this paper, we consider the Bradley-Terry Model (Bradley &
Terry, |1952), where the probability of a! is preferred over a? (denoted by a' > a?) is given by
P(a' > a®|z,a',a®) = o(R*(z,a") — R*(2,a%)) ,

where o(z) = H% is the sigmoid function, and R* : X x A — [0, 1] the unknown true reward
function. We denote R < {R : X x A — [0, 1]} as the class of reward functions. To capture
the non-linearity of the sigmoid function, we define  := SUpper sex.aea 1/0(R(7,a)). Asin the
bandit setting, we update the policy by optimizing the KL-regularized reward objective (Equation [1).



Under review as a conference paper at ICLR 2026

3.3 KL-REGULARIZED AND UNREGULARIZED REGRET

We study two types of regret to more comprehensively evaluate the performance of our algorithm.

KL-regularized regret. Let 7 (-|z;) = argmax, J;'(7, R*) denote the KL-regularized optimal
policy. Our objective is to minimize the cumulative regret, defined as:
T
RegretKL(Tv 77) = Z (Jtn(’ﬂ_:]ﬂ R*) - Jtn(ﬂ_ta R*))
t=1
This KL-regularized regret has been extensively studied in the prior literature (Xiong et al., 2023} Ye
et al.,[2024; [Song et al.l 2024; Zhao et al., {2024} [2025)).

Unregularized regret. Beyond the KL-regularized regret, we also measure performance relative
to the unregularized optimal policy 7*(-|x;) = argmax, E, (|5, [R*(2¢,a)], and define the
corresponding regret as follows:

T
Regret(T) := > (Eqors (o) [R (21, 0)] = B, (o [R* (21, 0)]) - 3)
t=1

The notion of this regret is standard in conventional bandit problems. This metric enables a more
direct evaluation of how closely the learned policies approach the unregularized optimal policy.

4 KL-REGULARIZED CONTEXTUAL BANDITS

In this section, we consider KL-regularized contextual bandit problems. We introduce the notion of
an online regression oracle (Subsection . T), present our algorithm KL-EXP together with its regret
bounds (Subsection[4.2)), and provide a proof sketch (Subsection[d.3)).

4.1 SQUARED-LOSS ONLINE REGRESSION ORACLE.

We assume access to a squared-loss online regression oracle (Foster & Rakhlin|, |2020), denoted by
OracleSq. At each round ¢, OracleSq outputs a reward estimator

Ry < OracleSq,((z¢,a¢); (x1,a1,71), ..oy (Te—1,00-1,74-1))- )
Its prediction error is assumed to be bounded with respect to the true reward R*.

Assumption 2 (Guarantee of OracleSq). We assume that, for every sequence x1.7,a1.7,71.1, there
exists regret bound RegSq (T') such that the regression oracle OracleSq satisfies

2 (T4, ap) Z *(xe, ar) )2 < Regg, (7).

An important advantage of Assumption |2 I is that it places no restriction on how the estimator Rt is
obtained; in particular, it does not require solving ERM exactly. Instead, Rt can be computed via
iterative methods such as (stochastic) gradient descent and implemented in an online or streaming
manner, which is crucial for large-scale modern machine learning. Under realizability, Assumption
is weaker than Assumption 2a in [Foster & Rakhlin|(2020)), since we compete only against the fixed
R*, whereas they compete against the best predictor over the sequence.

The online squared-loss regression problem is well studied, with efficient algorithms and regret
guarantees for many function classes.

Example 1 (Linear classes). When R* € R and the reward function class R is linear, i.e., R =
{R:R = ¢(x,a)70,0 € R%, |02 < 1}, where ¢(x,a) € RY is a known feature map satisfying
[¢(x,a)|2 < 1, choosing OracleSq as the Vovk-Azoury—Warmuth forecaster (Vovk, |1997 |Azoury
& Warmuth, 2001) yields Regg,(T') = O(dlog(T/d)).

Example 2 (Generalized linear models (GLMs)). For a fixed non-decreasing I1-Lipschitz link function
w:R—[0,1], deﬁne the reward function class R = {R: R = p(¢(x,a)"0),0 € R, 0]z < 1},
where ¢(z,a) € R is a known feature map with ||¢(z,a)|s < 1. If R* € R, then the GLMtron
algorithm (Kakade et al.,\2011) guarantees Regg (1) = O(k >dlog(T/d)), where 1/fi < r..

4
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Algorithm 1 KL-EXP (KL-regularized EXPonential-weights algorithm) = OEPO if RLHF

1: Inputs: regularization parameter 7, reference policy 7, online regression oracle OracleSq.

2: Initialize: choose any R; € R.
3: forroundt = 1to 7T do

4 Observe context x; € X. R

5 Compute policy ¢ (- |1:f) o et (+|2¢) exp(nRy(zy, -)) via Equation

6:  Sample action a; ~ m;(-|z;) and receive reward r;. > ora},a; ~ m(-|z;) if RLHF
7 Update Rtﬂ using OracleSq via Equatlon = or update using OracleLog if RLHF
8: end for

Example 3 (Bounded eluder dimension, Russo & Van Roy, 2013). When R* € R and the reward
function class R has bounded eluder dimension, the empirical risk minimization (ERM) algorithm
achieves, with probability at least 1 — 4, Regg (T') = O(dg log(Nr(€)T)) (Lemma

For additional examples, the reader is referred to[Foster & Rakhlin| (2020) for high-dimensional linear
models, Banach spaces, and RKHS, and toDeb et al.| (2024) for neural networks.

4.2 ALGORITHM AND MAIN RESULTS

We present our KL-regularized EXPonential-weights algorithm, KL-EXP, in Algorithm[I] At each
round ¢ € [T'], the algorithm observes the context z; € X and computes the policy 7; by solving the
KL-regularized objective in Equation [I] which admits the closed-form solution given in Equation 2]
The algorithm then samples an action a; ~ 7¢(+|2;) and receives a reward r;. Finally, it updates the

reward estimator }AEtH for the next round using the squared-loss online regression oracle (Equation @)
The main guarantees for the algorithm are stated below, with the proof deferred to Appendix

Theorem 1 (Regret of KL-EXP). Let D:= 1 ST KL(m*(-|2¢) | mer(-|2) )- UnderAssumption
for any & > 0, with probability at least 1 — &, KL-EXP (Algorithm[I) guarantees

Regrety, (T, n) = O(nRegsq(T) + nlog(l/d)) and

Regret(T') = O(nRegSq(T) + nlog(1/6) + DnT) .

Result 1: Logarithmic KL-regularized regret. Theorem|[I|shows that the KL-regularized regret of
KL-EXP scales with Regsq(T), resulting in logarithmic regret in 7" across a broad range of function

classes. For example, when § = ©(T~1), we obtain O(ndlog T') for linear classes (Example [1),
O(nk;,dlog T) for generalized linear models (Example [2), and O(ndg log(Nr (€)T')) for function
classes with bounded eluder dimension (Russo & Van Roy, 2013) (Example E]) Hence, Theorem E]
shows that logarithmic KL-regularized regret in 7" can be achieved without the auxiliary exploration
methods (e.g., UCB-based strategies). In contrast, prior works such as|Xiong et al.| (2023} [2024);
Xie et al.| (2024) obtained O(+/T) KL-regularized regret (or O(1/e?) sample complexity), and
more recently, [Zhao et al.[(2024; 2025) established O(nlogT') KL-regularized regret (or O(n/e)
sample complexity), all of which depend on the additional exploration strategies. To the best of
our knowledge, this is the first result that achieves logarithmic KL-regularized regret without any
additional exploration, highlighting the key insight that the KL-regularized objective alone provides
sufficient exploration in contextual dueling bandits and RLHF.

Remark 1 (Comparison with Zhao et al.|(2025)). For classes with bounded eluder dimension, we
recover the regret bound of Zhao et al.(2025), O (ndglog(Nw(€)T)). Unlike|Zhao et al|(2025),
however, our algorithm does not require prior knowledge of the eluder dimension (Russo & Van Roy,
2013), which is typically unknown in practice. The full proof is provided in Appendix|C]

Result 2: Unregularized regret and its tightness. With the choice of the regularization parameter

= O(VDT/(Regg,(T) +log6~")). we obtain Regret(T) = O(V DT (Regs,(T) + logd~1)).
The result provides an interesting insight: with appropriately chosen 7, it is possible to achieve a
/T-type regret bound even in conventional (unregularized) contextual bandit problems. To the best
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of our knowledge, this is the first unregularized regret bound in KL-regularized contextual bandits
achieved purely via KL-regularization—induced exploration.

Remark 2 (Ease of implementation and computational efficiency). KL-EXP is simple and practical:
it admits a closed-form solution (Equation[2) and, unlike prior approaches (Russo & Van Roy| 2013
Jiang et al.| 2017} Jin et al.| 2021} |Zhao et al.| [2025)), avoids the explicit computation of exploration
terms (e.g., UCB), which can be intractable for large models such as transformers. It is also
computationally efficient—for instance, in linear contextual bandits (ignoring oracle computations),
the per-round cost is only O(N'), compared to O(d?N) for LinUCB and LinTS.

To demonstrate the tightness of our bound, we consider the uniform reference policy 7yf = Unif(.A),
under which KL(7|m.f) < log N holds for any policy 7. In this setting, for linear (adversarial)

contextual bandits, we obtain the first @( +/dT log N )-type regret bound, to the best of our knowledge.

Theorem 2 (Unregularized regret under linear classes). We denote N = |A|. Under the setting of
Theoremwith Assumption|l| if we set Tt = Unif (A) and n = ©(/T log N/(dlogT)), then with
probability at least 1 — 7, we have Regret(T) = O(+/dT'log N logT).

Remark 3 (Minimax-optimality under linear classes). The proof of Theorem 2| follows directly
from two facts: Regg,(T') = O(dlog(T/d)) (Example and KL(7*||7ef) < log N when mer =
Unif(.A). We highlight that, in linear contextual bandits, our regret bound O(\/m ) is
minimax-optimal, matching the order previously attained by supLin-type algorithms (Auer, 2002}
Chu et al., 2011} |Li et al.| [2019). To the best of our knowledge, this is the first O(v/dT log N)-

type regret bound for linear (adversarial) contextual bandits that avoids the impractical “layered
data partitioning” technique and explicit UCB computations. Moreover, it matches the lower

bound Q(\/dT log N log(T/d)) (Li et al.||2019) up to logarithmic d factors, underscoring both the
statistical and computational efficiency of our approach.

Further examples for specific function classes are provided in Appendix [B.4}

4.3 PROOF SKETCH OF THEOREM[I]

1) Second-order regret decomposition. The regret decomposition is similar to the recent work
of [Zhao et al.| (2025), which establishes logarithmic KL-regularized regret. Define the function
f(z,R) = —% log Zg(x) + Epn [R(z,a) — R*(z,a)]. Since R*(z,a) = %log exp (NR*(x, a)),
we obtain '

Ji (w3, RY) = J{! (e, R”)

1 1 A .
5log Zp+(x) — 5log Z}%t (@) + Eqer, (-|22) [Rt(x, a)— R (x,a)]

f(:C, Rt) - f(xa R*)

In |Zhao et al.[(2025), the decomposition takes the alternative form J;' (7, R*) — J/ (7, R*) =
f(z, Ry) — f(z, R*), where Ry(z,a) := Ry(z,a) + b:(x, a) is the UCB. They then apply the mean
value theorem to this expression and leverage optimism to bound f(x, R;) — f(x, R*).

In contrast, our analysis shows that it suffices to work directly with the oracle estimator f{t. Instead
of invoking the mean value theorem, we use the exact second-order Taylor expansion of f.

of (z, R*)
= OR(x,a)

=0

! 2 f(x, R* + aARy) ,
+L(1—a)l2 Z ARy(z,a) 2R(z.a)oR(x. ) ARi(z,d') | da

flz,Ry) — f(z,R*) = AR(z,a)

acAa’e A
~ 2
< Baniiog | (Relarea) = B (er,) . 0
where AR; = }ABt — R*. Note that in the equation, aafzg(c:}i*)) = 0, which is one of our key theoretical

findings. This result shows that it is unnecessary to rely on optimistic estimators such as UCB. The
remaining steps then follow directly from straightforward calculus (see Lemma [B.2]for details).
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2) Conversion to regression oracle bound. By summing over ¢ € [T] in Equation [5|and applying
Freedman’s inequality together with Lemma 4 of [Foster & Rakhlin/|2020, we obtain

T N 2 1
RegretKL(Tv 7]) <7 Z Eaz~m(v\m) [(Rt(xtv at) - R*(xtv at)) ] < 277RegSq(T) + 1677 IOg S
t=1

This completes the proof of the KL-regularized regret bound.

3) Unregularized regret bound. From the definitions of .J;’ and ,, together with the non-negativity
of the KL divergence, we can bound the unregularized regret as follows:

Regret(T) = ]EGNW*(“xt)[R*(ﬁt, a)] - ]Ea~7rt(~|wt)[R*(‘rt7 a)]
* * * 1 *
< S (g, BY) = J{ (me, RY) + EKL(W (o) et (-[l2))-

Summing over ¢ € [T] and applying the KL-regularized regret bound established above, we complete
the proof of Theorem I}

5 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK

5.1 LOG-LOSS ONLINE REGRESSION ORACLE.

Similar to the KL-regularized contextual bandit setting, we assume access to a log-loss online
regression oracle (Foster & Krishnamurthy, 2021)), denoted by OracleLog. First, we define the
binary logarithmic/cross-entropy loss function (“log-loss™) at round ¢ as

4(R) = —[yt loga(R(a:t, atl) — R(x4, af)) + (1 —y) logo(R(gct7 af) — R(xy, atl)) ], 6)
where y; denote the binary preference label, where y; = 1 if a} is preferred over a? (i.e., a} > a?
and y; = 0 otherwise At each round ¢, OracleLog returns

Rt < OraC]-ELOQt((wtv (L%, (L%), (xla a}a a?a yl)v ey (xtflv aiflv a?q» ytfl))' (7)
Analogous to Assumption[2] we assume that the prediction error of OracleLog is bounded as follows:

Assumption 3 (Guarantee of log-loss regression oracle). We assume that, for every (possibly adap-
tively chosen) sequence x1.r,a} 1, a3, y1.1, there exists regret bound Reg ., (T) such that the
regression oracle OracleLog satisfies

T T
Z et (Rt) - Z gt (R*) < RegLog(T)'
t=1 t=1

Example 4 (Linear classes under log-loss). When R* € R and the reward function class R is linear,
we can use the algorithm from|Foster et al.|(2018b) to obtain Reg; .,(T') = O(dlog(T'/d)).

Similar guarantees are available for kernels, generalized linear models, and many other nonparametric
classes, as in the case of the squared-loss online regression oracle (Foster & Krishnamurthy, [2021])).

5.2 ALGORITHM AND MAIN RESULTS

We now introduce an algorithm for RLHF problems, OEPO, outlined in the comments of Algorithm [T]
and fully described in Algorithm The overall flow is similar to KL-EXP; however, at each
round ¢ € [T, the current policy samples two actions, a;,a? ~ m(-|z;), and receives preference

feedback between them. Another key difference is that the reward estimator R, ; is updated using the
log-loss online regression oracle OracleLog (Equation[7). When OracleLog is implemented with a
gradient-based method (e.g., SGD or Adam), OEPO recovers the practical online RLHF algorithm.

The regret guarantees for OEPO are presented below, with the proofs deferred to Appendix

Theorem 3 (Regret of OEPO). Ler D := AT KL(7*(:|z0)|mer(-|z:)) and s :=
SUPR 4 q m Under Assumptionfor 0 > 0, with probability at least 1 — §, OEPO ensures

Regret; (T, 1) = O(nﬁzRegLOg(T) + nK? log(l/é)) and

DT
Regret(T) = O(nmzRegLOg(T) + nk?log(1/8) + > .
n
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Discussion of Theorem [3} We obtain regret bounds comparable to Theorem [T} up to a « factor
(and differences in oracle prediction error). Such x-dependence is standard and largely unavoidable
in RLHF and dueling bandits (Saha, [2021}; [Saha et al., |2023}; Zhu et al., |2023}; | Xiong et al., 2023}
Zhan et al., 2023b} |Das et al., [2024; Xie et al. 2024} [Zhao et al., 2024). With the choices n =

O (VDT/(k’Reg, ., (T))) and s = Unif(A), OEPO achieves unregularized regret Regret(T') =
O(kV DTReg,(T)). Asin Theoremm this yields O (/T regret guarantees for a broad range of
function classes (see |Foster & Krishnamurthy|(2021) for bound on Reg; . (7).

Remark 4 (Extension to DPO, Rafailov et al.,[2023). The DPO-variant algorithm (Algorithm
achieves the same-order regrets, up to differences in the oracle’s prediction error (see Appendix|E).

6 EXPERIMENTS

6.1 LINEAR CONTEXTUAL BANDITS

In the linear bandit experiments, we consider linear reward function class, i.e., R = {R: R =
é(x,a)"0,0 € R, |02 < 1}. For each instance we sample the true parameter 0* ~ A(0, I;) and
normalize it so that |6*||2 < 1. At each round ¢, a context z; € X is drawn uniformly at random, with
feature vector ¢(z¢,a) € RY lying in the unit ball. We set d € {10,20} and N = |A| € {50,100}.
We report cumulative regret averaged over 20 runs, with standard errors.

We compare the performance of our algorithm KL-EXP against four baselines: (i) LinUCB (Li
et al.l 2010), (ii) LinTS (Agrawal & Goyal, [2013), (iii) LinPHE (Kveton et al., |2020), and (iv)
SupLinUCB (Chu et al. 2011). For all baselines, we set the confidence bound to /dlogT'. For
KL-EXP, we use 7s = Unif(.A) and choose 7 = +/T, which yields the O(\/T ) unregularized regret.
Figure [I] shows that our algorithm consistently and significantly outperforms the baselines across
varying d and N, while also achieving faster per-round computation than the others (see Table [H.T).

6.2 NEURAL CONTEXTUAL BANDITS

In the neural bandit experiments, we use the neural network reward class R, instantiated as a two-
layer network with input dimension 80 and hidden width 100, equipped with ReL.U activations.
We evaluate four types of true reward functions: (i) linear: R*(z, aT) ¢ x,a) T&* (ii) quadratic:
R*(z,a) = (¢(z,a)"6*)2, (iii) cosine: R*(z,a) = cos(ro(x and (iv) neural network:
R* € R. Training is performed with squared loss via SGD (batch s1ze 100 learning rate 0.005). We
set N = 20, and report cumulative regret averaged over 10 runs with standard errors.

We compare our algorithm KL-EXP against two baselines: (i) NeuralUCB (Zhou et al., [2020) and (ii)
NeuralTsS (Zhang et al.l 2020). For the baselines, we tune the confidence bounds via grid search
over {1.0,5.0,10.0}. For KL-EXP, we tune 7 using grid search over {50, 100,500}, and adopt the
uniform random reference policy. Figure [2]shows that our algorithm outperforms the baselines across
diverse reward structures while running about 10 x faster (see Table[H.2)).

6.3 LLM FINE-TUNING WITH RLHF

In this subsection, we validate our key theoretical insight in the LLM fine-tuning task: properly tuning
the regularization parameter n alone is sufficient to induce exploration. Our DPO-variant algorithm,
ODPO, coincides with On1ineDPO (Guo et al.,2024) when the regression oracle OracleDPO (defined
in Equation [E.2) is instantiated using the original DPO optimizer settings (optimizer, batch size,
learning rate, and training steps). Since we adopt these original settings, we report the algorithm as
OnlineDPO (in Figure|3)) rather than ODPO, to avoid confusion.

For experimental details, we follow the iterative DPO pipeline (Xu et al.| [2023} Tran et al., 2023}
Dong et al.| 2024} [Xie et al.,|2024) from |Dong et al.[(2024), running 7' = 3 total iterations with large
batches of pairs sampled from 7;. We use the same base model (Llama-3- 8B Flow- SFT|T|) prompt
sets for each iterationf’|, and true preference model for generating feedbac as inDong et al|(2024);

"https://huggingface.co/RLHFlow/LLaMA3-SFT
Zhttps://huggingface.co/datasets/RLHFlow/iterative-prompt-v 1 -iter2-20K
*https://huggingface.co/RLHFlow/pair-preference-model-LLaMA3-8B
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Figure 1: Cumulative regret in linear bandits with d € {10, 20} and N = |.A| € {50, 100}.
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Figure 2: Cumulative regret in neural bandits under different true reward functions.
Llama-3-8B-Flow Llama-3-8B-Flow XPO OnlineDPO (1 = 12.5)
-SFT -Final iterl iter2  iter3  iterl iter2 iter3
Accuracy (%) 59.11 60.47 61.03 61.23 6155 6149 61.83 62.09

Figure 3: Average accuracy (%) over 17 benchmarks: OnlineDPO (1 = 12.5, a special case of ODPO)
vs. existing algorithms that use additional exploration techniques.

Xie et al.| (2024)), ensuring our results are directly comparable to theirs. Across all three iterations, we
fix the reference policy 7 to the base model Llama-3-8B-Flow-SFT.

We consider three baselines: (i) Llama-3-8B-Flow-SFT, the reference model; (ii) Llama-3-8B-Flow-
Final, the final model from Dong et al. (2024), released on Hugging Faceﬁ; and (iii) XPO (Xie et al.,
2024). To induce exploration, Llama-3-8B-Flow-Final constructs preference pairs by maximizing
heuristic uncertainty, while XPO augments the DPO objective with an additional exploration term that
encourages the policy to behave optimistically. We evaluate all algorithms on 17 academic and chat
benchmarks (Zhong et al.l 2023} Nie et al., 2019; Hendrycks et al., 2020} |Cobbe et al.| 2021} [Rein
et al., [2024; |Chen et al.| [2021; |Zellers et al.,|2019; Sakaguchi et al.| 2021} |Clark et al., 2018} |Lin et al.,
2021; Mihaylov et al., [2018} |Zellers et al., 2018} |Sap et al., [2019 |Pilehvar & Camacho-Collados|
2018}, [Levesque et al., 2012} [Socher et al., [2013) and report their average accuracies. Table |3|
shows that with a properly chosen = 12.5, OnlineDPO (or ODPO) outperforms other baseline
algorithms that rely on auxiliary exploration methods. This supports our main theoretical finding that
additional exploration techniques are not essential in online RLHF. See Appendix for additional
experimental details, per-benchmark results, and results with other values of 7.

7 CONCLUSION

We show, for the first time to our knowledge, that KL-regularization alone is sufficient for achieving
sublinear regrets. In particular, the KL-regularized regret scales with the regression oracle bound,
which can be logarithmic in 7" for many function classes. Moreover, by carefully choosing the
regularization parameter 7, we achieve (’3( v/T) unregularized regret, demonstrating that the policy
can be improved beyond the KL-regularized optimum. This highlights the pivotal role of 7 in attaining
sublinear unregularized regret. We leave further refinements of 7, such as time-varying schedules, as
an important direction for future work.

*https://huggingface.co/RLHFlow/LLaMA3-iterative-DPO-final
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A FURTHER RELATED WORK

In this section, we provide additional related work that complements Section ]2}

Dueling bandits. The dueling bandit problem, first introduced by (2012), generalizes the
classical multi-armed bandit by replacing direct reward observations with pairwise comparisons: in
each round ¢, the learner chooses two arms and only observes which one is preferred. A challenge in
this setting is that there may not exist a single arm that dominates all others under arbitrary preference
structures. To deal with this, the literature has proposed several notions of “winners,” such as the
Condorcet winner (Zoghi et al.} 2014} [Komiyama et al., 2015), Copeland winner (Zoghi et al., 2015
[Wu & Liu} 2016; Komiyama et al.,[2016), Borda winner (Jamieson et al.| 2015; [Falahatgar et al.l 2017
Heckel et al., Saha et al.| Wu et al.} [2023)), and von Neumann winner (Ramamohan et al.
2016}, [Dudik et al.} 2015}, [Balsubramani et al., [2016)), each of which comes with its own performance

criterion.

To incorporate contextual information, [Saha) (2021)) introduced the contextual dueling bandit with
a Bradley-Terry-Luce (BTL) model (Bradley & Terry}, [1952), where pairwise preferences are
determined by latent arm rewards. Building on this line, Bengs et al.|(2022) analyzed a contextual
linear stochastic transitivity model, and [Di et al.| (2023) proposed a layered algorithm with variance-
sensitive regret guarantees.
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Another line of research avoids parametric reward models and instead assumes that preferences are
generated by a more general function class. For instance, |Saha & Krishnamurthy|(2022) developed
an algorithm with optimal regret guarantees for /-armed contextual dueling bandits, and |Sekhari
et al.| (2023) further extended the framework with algorithms that provide theoretical guarantees not
only on regret but also on query complexity.

However, existing dueling bandit frameworks do not consider the KL-regularized objective, which is
the main focus of our work.

RLHF theory. Motivated by the remarkable success of RLHF in fine-tuning LLMs, its theoretical
foundations have recently become an active research topic. Much of the existing work focuses on
the offline RLHF setting (Zhu et al., 2023} Zhan et al., [2023a), which is complementary to ours.
Another line of research studies hybrid RLHF, where offline data are incorporated into an online RL
procedure (Xiong et al.| [2023; |Gao et al.; 2024} [Chang et al., 2024)).

In the context of online RLHF, much of the prior work (Xu et al., 2020; Novoseller et al., [2020;
Saha et al., 2023} |Xiong et al.| [2023; [Wu & Sun, [2023) has focused on the special case of tabular
MDPs or linear MDPs (or linear reward models when the horizon length is 1), establishing sample
complexity or regret bounds in this setting. The exploration bonuses used in these algorithms are
specifically designed for linear structures and thus do not extend naturally to the more general function
approximation regime we study (e.g., for LLMs).

To go beyond linear models, |Chen et al.|(2022); [Wang et al.|(2023); Ye et al.[(2024) investigate general
function approximation under the assumption of prior knowledge of the eluder dimension (Russo
& Van Royl [2013)), which is notoriously difficult to quantify in practice, especially for LLMs.
More recently, |Zhao et al.|(2025)) leveraged the properties of KL-regularization to establish the first
O(nlogT) KL-regularized regret bound, again assuming prior knowledge of the eluder dimension.
These approaches also require solving a complex optimization problem to compute the exploration
terms, raising concerns about their practicality for large-scale language models. In parallel,[Zhao et al.
(2024) achieved a O(n/e) KL-regularized suboptimality gap by relying on a forced exploration phase,
whose length depends on the coverage coefficient—another quantity that is difficult to determine in
practice.

To improve practicality under general function approximation, Xie et al.| (2024); Liu et al.| (2024);
Cen et al.|(2024) proposed value-incentivized exploration methods that optimize the policy against
optimistically biased targets. However, the optimization problems in these approaches do not admit
closed-form solutions, and they introduce an additional exploration parameter « that must be tuned,
which can make implementation sensitive to hyperparameter choices.

To the best of our knowledge, all existing online RLHF works rely on auxiliary exploration methods
beyond KL-regularization. In contrast, our algorithm KL-EXP relies solely on KL-regularization.
Moreover, it requires no prior knowledge of any complexity measure, admits a closed-form solu-
tion Equation 2] and is thus easy to implement.

B PROOF OF THEOREM (1]

In this section, we present the proof of Theorem

B.1 MAIN PROOF OF THEOREM[I]

Define Mt = (}Aft(xt,at) — ’I"t)Q — (R*(wt,at) — Tt)2 and Zt = ]E[Mt | ]:tfl] — Mt, where
Fi—1 =o0(x1,a1,71,. .., Ti—1,0t—1,7t—1,2¢) is the filtration up to round ¢ — 1. The following
lemma establishes that these random variables are both bounded and self-bounding.

Lemma B.1 (Lemma 4 of |[Foster & Rakhlin|2020). Let F;_1 be the filtration up to round t — 1, i.e.,
Fi1 20(331, 1,715+, Tt—1,At—1,Tt—1, CUt)- Define M := (Rt(xh at)_rt)2 —(R*(xt, at)_rt)2
and Zy := E[M; | Fi—1] — My. Then, the following properties hold:

. |Zt| < 1

* E[M; | Fior] = Eqr, (o) | (Rel@e,a0) = R* (20, 00))* .
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E[th | ]‘—tfl] < 4]E[Mt | ftfl].
We now present a key lemma that is central to the proof of Theorem [I|and crucial for establishing
regret guarantees without any additional exploration.

Lemma B.2 (Second-order regret decomposition). For any t € [T'], we have
~ 2
JZ](’IT;, R*) — JZ?(’]Tt, R*) < nEa~m(~|wt) [(Rt(xt,a) — R*(xtv (L)) :| .

The proof is deferred to Appendix[B.2.1]
Remark B.1 (Comparison with |Zhao et al.| (2024)). Unlike Lemma 3.9 of |[Zhao et al.| (2024),
which bounds the regret J}'(my, R*) — J|'(m¢, R*) in terms of the unknown policy 7T;I’Y (where

fy = "yﬁt + (1 — y)R* for some unknown vy € (0,1)), Lemma shows that our regret bound
depends only on the known current policy 7;. Note that in|Zhao et al.| (2024)), handling the unknown
policy ’/T?W requires a forced sampling phase, and the minimum number of forced sampling rounds

depends on difficult-to-estimate quantities such as the data coverage coefficient (Definition 4.5
therein) and the e-covering number of the reward function class. In contrast, our algorithm does not
rely on such quantities.

Remark B.2 (Comparison with |Zhao et al.| (2025)). Unlike Lemma A.1 of |Zhao et al.| (2025|),
Lemma [B.2] does not rely on the optimism event. Consequently, our algorithm does not require
computing the Upper Confidence Bound (UCB) term, which is generally intractable for general
function classes.

Lemma B.3 (Unregularized regret decomposition). For any t € [T], we have
Regret(T) = ]Ea~7r"(-\zt) [R* (Itv CL)] - ]Ea~7rt(-|:1:t) [R* (Ita a)]
* * * 1 *
< J{(my, RY) = J(m, R) + ;KL(F Clo)mrer(-e))-

The proof is deferred to Appendix[B.2.2]

We are now ready to provide the proof of Theorem I}

Proof of Theorem(l] By Lemma[B.2] we can bound the regret as follows:

T
Regret,; (T, 1) Z J( — J (7, RY)
t=1

T

Z ag~ms (-|ae) [(ﬁt(mt,at) — R*(xt,at))2:| . (B.1)

Let F;—1=0(x1,a1,71,...,&4—1,01—1,Tt—1, ;) be the filtration up to round ¢ — 1. Define M; :=
(Ry(wy,as)—1)?—(R* (x4, ar) —7¢)% and Z; := E[M; | F;_1]— M;. Then, by applying Freedman’s
inequality (Lemma|G.1) with 5 = 1/8, with probability at least 1 — §, we have

T T 1T 1
E[M, | Fiiq]l <Y My+ =Y E[Z%| Fe 8log =
;[H t—1] Z t+8;[t| —1] + 085

T
1 1
=3 M, + - Z E[M; | Fi_1] + 8log = (Lemma[B.1)
2 & 5

where the last inequality holds because

T
2 M, = Z Ri(zy,a0) — 74)* — Z(R*(mt,at) —11)* < Regg, (T). (Assumption2)
t=1
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This directly implies
L 1
Z [M; | Fio1] < 2Regg,(T) + 16log 5 (B.2)

Plugging Equation [B.2]into Equation [B.I] we obtain

e

~ 2
RegretKL(T7 T]) < ]Eat’VTrt(-léL’t) [(Rt(xhat) - R*(xtyat)) :|

-
I
—_

Il
e

E[M; | Fi—1] (Lemma [B.T)
t=1
1
< 2nRegg, (T') + 167 log 5 (Equation B.2)

This concludes the proof of the regret bound for the KL-regularized objective.

We now provide the proof of the unregularized regret bound. By summing over ¢ € [T'] on both sides
of the result in Lemma[B.3] we directly obtain

T
Regret(T) < ) (J{(m), R*) = J{' (7, R Z *Cllae) e (- le))

1=

#
Il
—

Regret,, (T,7) Z KL (7*(-|2¢) | et (-|2¢))  (Definition of Regrety; (T, 7))

DT
= Regret, (T,7) + - (D=2 YT KL(* (o) | mee(-|20)))

DT
= O(nRegsq(T) +nlog(1/6) + 77> .
Hence, the proof of Theorem I]is complete. O

B.2 PROOFS OF LEMMAS FOR THEOREM(]]

B.2.1 PROOF oF LEMMA [B.2]

Proof of Lemma[B.2] For simplicity, we use the shorthand E,[-] = Eqx(.
R*(z,a) = %log exp (nR*(x,a)), we have

Enr; [R*(x, a) -~ log W"wx)] —En, [R*(a:, a) = Liog ”t(am]

»)[-]. Noting that

n Trer(alz) n Trer(alz)

_ EEW* log Tref(a] ) -c;xp (nR (m,a))] 3 lEm [log Tet(alz) - exp (nR*(z, a))]
nor L m,(alz) U mi(alz)
[ . * T f(a’"r) - €Xp nﬁ(xaa)
_ EEW* log 7Tref(a'lx) (ixp (UR (Z‘, (l)):| _ lEﬂ't 1Og ¢ ( )
nor L m,(alz) U mi(alz)
+ E‘n't _ét(xa a) - R*(Iv a’):|
1 1 ~ .
- ;log Zp(x) — ;log Zp () + Er, [Rt(x, a) — R*(x, a)] , (B.3)
where the last equality holds because
Trer(alz) - exp (nR*(z, a)) _ Trei(a|z) - exp (nR*(z,a)) = Zp(2)
™ (alz) Tret(alz) - exp (nR*(x,a)) /Zp= (x) ’
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and

Ter(alz) - exp (nR*(z,)) _ Teilalz) - exp Q) _
mi(alz) Tet(alz) - exp (nﬁ’t(x, a)) /Zg (@)

Define the function f : X x R — R as follows:

f(z,R) = f% log Zr(z) + Y. Ter(a]2) - exp (n7i(x, a)) -(R(z,a) — R*(z,a))

acA ZR(J;)
=my(alz)
1
= log Zg(z) + Eqn [R(z,a) — R (z,a)]. (B.4)

Then, since m; = W% , the right-hand side of Equation can be written as:
t

~

%bg T () — %bg Z5,(@) + Ex, [Rile.0) ~ B (2.0)| = fla, R) — f(r. ).

First, we present the lemma that gives the derivatives of 7}, and Zg, with the proof given in

Appendix[B.3.1]

Lemma B.4. Forany (z,a) € X x A, we have

aﬂ-z(x’al) _ {77”%(33’@) - nﬂ-%('xaa)Qa ifa = CLI,
a

OR(z,a) —nrh(x,a )y (2, a), ifa #a.
(’m = nﬂref(ahf) eXp(nR(a:, a)),
m = nrh(z,a) (R(z,a) — R*(z,a) — pr(x)) + 74(z, a),

where 11 (¢) = Eqxp (1) [R(z,a) — B (2, a)].

Then, we compute the derivative of f(z, R) as follows:

of(z, R) 1 0 0

OR(z,a) 1 oR(x,q) log Zg(x) + W]E”% [R(z,a) — R*(z,a)]
= 1 1 aZR(:E) + a [7‘(}7;{(0,|$) . (R(m7a) _ R*((E,a))]

"y Zp(z) 0R(z,a) = OR(z,a)

d [Z mh(d|z) - (R(x,d’) —R*(x,a’))}

" m a’#a
= —mp(x,a) + mh(z,a) + (m - (R(z,a) — R*(z,qa))
* Z m - (R(z,d") — R*(z,d")) (Lemma[B-4)
a'#a ’

(Lemma[B.4)
= nrg(alz) - (R(z,a) — R*(z,a) — pr(z)),
where g (z) 1= Eqrpn 12y [R(x,a") — R*(z,a")]. Note that when R = R*, we have i+ (z) =
0, which implies

of (x, R*)

OR(x,a)
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Moreover, the second-order gradient of f can be expressed as:

?f(z,R)
O0R(x,a’)0R(z,a)

(mr%(abc) - (R(z,a) — R*(z,a) — uR(x))>

= )
_ m (R(z,a) — R*(z,a) — pr(z)) + nrh(alz) - <1a=a, _ %)

= 11’1 (alr) (Lama — 7R (d'|2)) (R(2,0) — R* (2, a) — pig(z))

+ UWR(Q\I) (la:a/ - 77”7{(% al) (R(JE, a,) - R*(I, a’l) - MR(J:)) + W?%(xa al))
(Lemma[B.4)

= ale) (Lamar — wha|2))
e (alo)]| (Lomw - wy '[2)) (R(z,a) ~ R*(,0) — p(a))
7) (R(x,d) = R (2.) = pr(a)) |.

For simplicity let AR, = R, — R* and v¥(z,a) = aARy(x,a) — prr+anr, () = 0AR(z,a) —
alE n [AR¢(x,a")]. Then, using the exact second-order Taylor expansion, we have
t

mr(a

flz,R) — f(z,R*) = f(z,R* + aAR,) — f(z, R")

3 1 32f($,R* + aARt> / of(x,R*) _
- fo = L;al Q;A AR a) OR(z,a')0R(x,a) Afty(w. ) | do ( OR(w a) -V

acA acA

+12 ) Ty ang, (@l2)vf (x, ) (ARy(z, a))
ac A

= JO (1-a) ln Z Tr;’%*-&-aARt (alz) (ARt(ﬂv,a))2 -7 (Z 77;]%*+aARt (alx) AR (x, a))

— o (Z 7TR*+aAR (alx)vi(z,a) AR (x, a ) (Z 7TR*+QAR |$)ARt($,a’)> 1da.

aceA a’eA
(B.5)
Plugging v{(x,a) = aARi(x,a) — o, T oan [AR;(x,a")] into the right-hand side, we can
further simplify the second and third terms as follows:
0’ Y e ranr, (@l0)0f (z,a) (AR (x,a))”
aeA
— 22 (Z Thesanr, (@2)0f (2, 0) AR (z,a ) (Z Thetanr, ( sc)ARt(x,a’)>
aeA a’eA
= ngal D) Thesanr, (@lz) (ARy(z,a))’
acA
" 3
SE g*‘FLXARf I:ARt z, a ZA/NR*JFOLAR (a|$) (ARt( L, )) (E ?{*+o¢ARt [ARt(Iaa’ )])
ae
E[(X - E[X])X] = E[X?] - (E[X])*)
2 n " 3
= P Y 7 onr, (al2) (ARt(x,a) Ery., oo [ARi(z0 )]) .

acA
E[(X - E[X])°] = E[X°] - 3E[X]E[X?] + 2(E[X])*)
Using this, we can rewrite the right-hand side of Equation[B.3]as follows:
1

flx,Ry) — f(z,R*) = fo (1—a)[nVard(z) + UQQM{’(QJ)] de, (B.6)
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where we define

2
Varg (z) = 3 T ann, (al2) (ARi(z,0))” - (Z W?z*MAR,,(aII)ARt(I,a))

aeA aeA
@ n " 3
M (z) = ZAWR”FQARt (a|z) (ARt(ama) —Eﬂ}npmARt [AR¢(z,a )]) .
ae

The following lemma is a useful tool for calculating the right-hand side of Equation[B.6} Its proof is

presented in Appendix
Lemma B.5. Let 7, (a|z) := Mt (ale) eXp(n)R“ @.9) ‘\where Ry = R* + aAR with R*, AR € R, and

o(T

Zo(x) = 2 pea Tret(a|r) exp (NRo(x, a)). Then, for any (x,a) € X x A, we have

%ﬁa(a\m) = nma(alz) (AR(z,a) — Ex [AR(z,a)]),

< B [AR(r,0)] = 7, [(AR(r, ) ~ Er, [AR(0)]?]
o
diE”“ [AR(z,a)?] = n (Er,[AR(z,a)’] — Ex, [AR(z,a)*]Ex, [AR(z,a)]).
o
Then, by Lemma[B.3] we show that
d a
T Var{' (x)
d (g AR 2 E AR ’
= @ ”7%*+QARt [( t<x7a)) ] - ( ﬂ'g*-mARt [ t(m’a)])
d d
= @ ﬂ—T}]%*-*-aARt [(ARt(x7 a>)2] - QET";;*-;.QARt [ARI‘/(:E’ a)] ' @Eﬂj};*-H»ARt [ARt(xa a)]

— <]E7r7173*+o¢ARt [(ARt (x’ a))s] N EWE"#»&ARt [ARt (m7 a)] Eﬂ?%*#»aARt [(ARt (x, a))Q]
— 2B, [AR:(z,a)] ~Varf(a¢)) (Lemma[B.3)
(B, (AR =38y, ISRy, [(AR(20)?)
3
+2 (IEW;”r o [AR(x, a)]) > (Definition of Vary'(x))
= nM{(z). (Definition of M (z))

Therefore, Equation [B.6]can be further simplified as:

e Ry) — fla, BY) = j (1 - a) [ Varl(z) + e (z)] da

= _L (1 — ) Vary (z)da + f

0

'od
ar Var§ (gc)da]

el 1
=7 f (1 — ) Vary (z)da + [« Varf‘(x)](l) - f Varf(m)da]
LJo 0

(integration by parts)

r 1

= | Var ™ (@) - |

L 0

a Vary (m)da}

=B [(ARt(x, @)~ Enn [ARt(m,a)])Q] e J o Vart (n)do

t

< nIE,T% [(ARt(x, a) — ]E”z% [ARt(ac,a)]>2] (Varf' (x) = 0)

<1 |(AR(r,a))] (E[(x — E[X])*] < E[X?])

R
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Recall that m; = w% and AR; = ﬁt — R*. Hence, we obtain

~ 2
J;](TF;;,R*) — Jg(’frt,R*) < nEa~‘ﬂ't('|l‘t) [(Rt(xha) — R*(xtya)) :| .

This concludes the proof of Lemma B2} O

B.2.2 PROOF OF LEMMA B3|

Proof of Lemma[B.3] For simple presentation, we write Er[-] = Eqr(.|z)[-]. Then, for any ¢ € [T7],
we have

* * * 1 * ..
Eors (o) [R* (21, a)] = J (7", R*) + BKL(W (llze) e (- |4)) (Definition of J;")
1 o
< Jj(m, R*) + p KL(7* (-] @) [ et (-] 22)) - (Definition of 7)
Moreover, since the KL divergence is always non-negative, we get

Buvr, (0B (@0,0)] > Bavr, (0 [R (@0,0)] = KL (o) (1)
= J{(m, RY).
Combining the above two results, we obtain
Eore (o) [B* (24, 0)] = Equr, (o) [R* (2, a)]
< J{(m, RY) = J(m, RY) + %KL(W*('th)H7Tref("|xt))7

which concludes the proof of Lemma [B.3] O

B.3 SUPPORTING RESULTS FOR LEMMA [B.2]
B.3.1 PROOF OF LEMMA B4

Proof of Lemma First, we compute the derivative of the policy 7} (x, a). Forany (z,a) € X' x A,
we have
aﬂ-?% (Qf, a) 0 1
B R
GR(r,a) ~ oR(z.a) \ Zn(a) @) PR, 0))

_ mei(alz) exp(nR(z,a))  mei(alr) exp(nR(z,a)) = 0Zg(x)

Zr(x) Zr(x)? O0R(x,a)
- ) TR (o) xplate. )

= nl(a,a) — (e, a)

Moreover, for any (z,a,a’) € X x A x A with a’ # a, we obtain
orh(x,a’)
OR(z,a)

0
= 7Tref(a/|'r) eXp(nR(x’ al)) ’ 8R(:ZJ, a) (ZRl(x))

_ Wref(a/|x)Z€;<(Paf)772R(I’ @) . net(alz) exp(nR(x, a))

= —nrj(z,d)mh(z, a).
Next, we compute the derivative of Z (). For any (z,a) € X x A, we get

aZR(Z‘) 0

o) = 3T a) Erelesp(R(,a))]) = ns(ale) exp(nA(r, ),
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Finally, we compute the derivative of fig(z) = Eqwrn |2y [12(2,a) — R*(2,a)]. For any (z,a) €
X x A, we have

aMR(I) = (77r” (al‘x) / * ’ n
o) ~ 2, Tl ()~ R lo)) 4 ()

= nrplalz) Y, (Loma — mp(d]2) - (R(z,d) = R (2,d")) + wp(al2)

a’e A
— () (R(z,0) — B (2,0) - pa(a)) + wh(a.a).
Thus, we conclude the proof of Lemma[B.4] O

B.3.2 PROOF OF LEMMA [B.3

Proof of Lemma|B.5] For the first property, a simple calculation gives

4 (al) = mef(alz) exp (MR (2, a)) - NAR(z, a) Zo () — mef(alz) exp (NRa(z, a)) - dZ#fw)
da Zo(x)?
Tret(alx) exp (NRq(x, a)) 1 dZ,(x)
- Zo(x) [nAR(az,a) " Zo(z)  da ]
= mq(alx) [nAR(a:, a) — Zal(x) dZ(;OSx)] (B.7)

Moreover, we get

dZ,(z)

0 - Z Tref(a|z) exp (NRu(x, a)) - nAR(z,a) = nZy(x) Z To(a|2)AR(z, a)

aceA aceA
= nZo(2)Er [AR(z,a)]. (B.8)

Plugging Equation [B.§]into Equation[B.7] we obtain the first property.

Now, we prove the second property.

d _ dm, (alx)
T Er [AR(, 0)] = ;A — o AR(@,a)
=1 Z Ta(alz)(AR(z,a) — Ex [AR(z,a)])AR(z,a)  (first property)
aeA

=1 (Exr, [AR(2,0)?] - (Ex, [AR(,)])°)
= Er, [(AR(z,a) — Eq, [AR(z,)])?].

Similarly, substituting AR(z, a) with AR(x, a)? in the above analysis, we obtain

%]EM [AR(x,a)*] =1 Z Ta(alz) (AR(z,a) — Er, [AR(z,a)])AR(z,a)* (first property)
ac A

=1 (Er,[AR(z,0)’] — Er [AR(z,a)*|E,, [AR(z,q)]),

which proves the last property. O

B.4 DISCUSSION ON SPECIFIC FUNCTION CLASSES

In this subsection, we supplement the result of Theorem I]by providing a more detailed discussion
of the tightness of our (unregularized) regret bound for several special function classes. We set
the reference policy to be uniform, i.e., mer = Unif(A4). Then, for any policy 7, it holds that
KL(7|mef) = >, (7(a)logm(a) — 7(a)log ﬁ) < log|A| = log N. Hence, KL-EXP yields the
following regret bounds for special function classes:
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1. Linear classes: When R* € R and the reward function class R is linear, i.e., R =
{R: R = ¢(x,a)70,0 € R% |0l < 1}, where ¢(z,a) € R? is a known feature map sat-
isfying [|¢(z,a)|2 < 1, the Vovk—Azoury—Warmuth forecaster (Vovkl |1997; |Azoury & War{
muth, 2001) guarantees Regg,(7) = O(dlog(7'/d)) (Example , which implies Regret(T") =
O(y/dTlog NlogT). As stated in Remark[3] this bound is minimax-optimal, matching the lower
bound (/dT log N log(T'/d))(Li et al., 2019) up to logarithmic d factors. It is remarkable that we

obtain this O(+/dT log N )-type regret bound without relying on the difficult-to-implement “layered
data partitioning” technique required in prior works (Auer,2002;|Chu et al.,|2011;|Li et al., 2019). Our
algorithm is simple to implement: it only requires solving the KL-regularized objective in Equation|[I]
(with the closed-form solution in Equation using the reward estimator }Ait returned by the online
regression oracle. We believe this opens a promising direction for developing algorithms that are
both practical and statistically optimal in linear contextual bandits.

2. Multi-armed bandits (MABs): The MAB case follows directly from the linear case by setting
d = N. We achieve Regg, (T) = O(N log(T/N)) and Regret(T) = O(+/NT log N log(T/N)).

3. Generalized linear models (GLMs): For GLM reward function class, i.e., R = {R: R =
w(op(x,a)T6),0 € R |0 < 1}, where u : R — [0,1] is a fixed non-decreasing 1-Lipschitz
link function and ¢(z,a) € R? is a known feature map with |¢(z,a)|s < 1, if R* € R, the
GLMtron algorithm (Kakade et al., 2011) guarantees Regg, (T') = O(x 2 dlog(T/d)) where 1/p1 <

k. This, in turn, implies Regret(T") = (’)( v/dT log N log T) which is tighter than the bound
O(k,(log T)'*\/dT Tog N) (Li et al., 2017) by a factor of logT. On the other hand, Lee et al.

(2024); Sawarni et al.|(2024)) establish a x,,-improved regret bound of 9] (d T/k

* L
M),where Ky, =

W, though with a looser dependence on +/d than ours. It remains an open question whether a

(’N)(\/dT log N)-type regret bound can be attained while simultaneously improving the dependence
on K.

4. Bounded eluder dimension: Under the realizability assumption (Assumption E]), ie, R* e R,
and the reward function class R has bounded eluder dimension (Definition [C.I)), the empiri-
cal risk minimization (ERM) algorithm achieves, with probability at least 1 — 0, Regsq(T) =

O(dE log(NR(e)T)) (Lemma . Consequently, we obtain the unregularized regret bound
Regret(T') = O(4/dgT log N log(Nz(e)T)). In comparison, the existing bound of Russo &

Van Roy| (2013) is O (+/dgT log(N (€)T)), which shows that our result is tight up to a y/log N
factor.

C CASE: R WITH BOUNDED ELUDER DIMENSION (REMARK [I))

In this subsection, we analyze the setting where the reward function class ‘R has bounded eluder
dimension (Russo & Van Roy, [2013)), in order to enable a direct comparison with prior work (Zhao
et al.l [2025)).

We define the uncertainty and eluder dimension, following Zhao et al.| (2025]).

Definition C.1. For any sequence D; = {(z,,a5)}.2}, we define the uncertainty of (x,a) with
respect to R as:

Ura(z,a;Dp) == sup |[Ri(z,a) — Ry(,a)] §
R1,R2€R \/)\+ZS 1 Rl(xs,as) Rz(ws,as))

And the eluder dimension is defined as:

T
dg := sup Zmin{l,UR,,\(mt7at;Dt)2}. (C.1)

T1T,Q1:T 41

We also define the confidence set R; as follows:

Ri = {R ER: 2 (R(zs, as) — ﬁft(ﬂﬁs,as))Q A< B = 1610g(NR(€)T/5)} ;

s=1
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where A > 0. We can then bound the estimation error using the following lemma.

Lemma C.1 (Lemma 4.5 of [Zhao et al.|2025). Let Rt be the empirical risk minimizer (ERM), i.e.,

R, « argminger N o 1(R(:vs, as) — ys)?. Then, under Assumpnonand the condition that the
noises € are conditional 1-subGaussian, we have with probability at least 1 — 6, for all t € [T'], we
have

ét(m,a) — R*(x,a) < min{l, Br - Ug, r(x,a;Dy)}, V(z,a) e X x A

The following lemma is useful for the subsequent analysis.

Lemma C.2. Under Assumption[l} if OracleSq is chosen as the standard ERM algorithm, then with
probability at least 1 — § we obtain

Z xt7at

(x4, ag) rt)2 = O(dg log(Nr(e)T)).

||M%

ProofofLemma@ Let Mt = (Et(mt, (lt) - T't)2 - (R*(.Tt, at) - T't)2 and Zt = Mt - E[Mt
Fi—1]. We define the filtration F;_; =0 (x1,a1,71,...,2¢—1,at—1,7¢—1,T¢). Then, by Lemma
and Freedman’s inequality (Lemma|G. 1) with § = 1/8, with probability at least 1 — §, we have

1 & 1
Z M, < Z [ M| Fi=1] é Z E[Z2|F;_1] + 8log 5 (Lemma[G.1] w.p. 1 —4)

t=1 t=1

1
E[M; | Fi—1] + 8log 5 (Lemma[B.T)

N
N o
Mﬂ

-
Il
—

~

N 1
Eavr, |(Rilwear) = R (v:0))* | Fioa | + 81og 5

Il
N o
Nal

-
Il
—

~ 2
(Re(zt, a¢) — R* (x4, at))2 + 16log 5 (Lemma[G.2} w.p. 1 —§)

N
w
ol

ﬁ
Il
—

Hence, we derive

d 2
Z t(ze, ar) —Tt Z "z, ar) —Tt)

t=1

T
2
Z Rt act,at R*(xt,at))Q + 1610g 5

2
< 3432 Z min {1, Ur, x(¢, a;; Dy)*} + 161og 5 (Lemma[Cd] w.p. 1 — )

t=1

2
< 48dg log(NR (€)T/8) + 16 log 5
By setting § < 2, the proof is complete. O

We now present the claim in Remark [T more formally.

Proposition C.1 (Regret under bounded eluder dimension). Suppose the eluder dimension defined
in Equation is finite. Let the online regression oracle OracleSq be the ERM predictor. Under
Assumptions|l|and[2) for any 6 > 0, KL-EXP (Algorithm[I) guarantees that with probability at least

>

Regrety; (T,1) = O(ndglog (Nz(e)T)), and Regret(T) = (’)<ndE log (Nz(e)T) + DnT) ,

where D := th 1KL( (th)HWref(th))
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Algorithm D.1 OEPO (Oracle-Efficient Policy Optimization)

1: Inputs: regularization parameter 7, reference policy ¢, online regression oracle OracleLog.

2: Initialize: choose any R; € R.
3: forroundt = 1to 7T do

4 Observe context x; € X. R

5 Compute policy ¢ (+|@;) o€ mef(:|2¢) exp(nRy(zy,-)) via Equation
6: Sample action a}, al, ~ m(-|x;) and receive preference feedback ;.
7 Update }ABtH for the next round using OracleLog via Equation

8: end for

Proof of Proposition|C.1] Then, following a similar analysis to the proof of Theorem [T} we can
bound the regret as follows:

M‘ﬂ

Regrety, (T, 1) (75, RY) — J{! (71, RY)

t=1
T

~ 2
< 3 Farenin [(Rxwt,at) - Riaean) | Lemma[E)
T T , 1
: : +16log =
g xt at t; JCt at Tt) 0g 5
(Lemmal[G.T|and[B.I]w.p. 1 — ¢)
= O(ndg log (Ng(e)T) ). (Lemma[C.2lw.p. 1 — 0)

Setting § < 2 yields the bound for Regrety, (T’ 7).

The bound for Regret(T") then follows directly from Lemma|[B.3] Thus, the proof of Proposition
is complete. O

D PROOF OF THEOREM [3]

In this section, we present the proof of Theorem 3]

D.1 MAIN PROOF OF THEOREM 3]

We begin by introducing the key lemmas used to prove Theorem
Lemma D.1. With probability at least 1 — 6§, we have

T 2
> (IR (w1 0) = R, ab)] = [R* (21, 08) = Ri(r, a?)])

T T 1
2 (Z Zt(Rt 2 ) + 2K%log = 5
t=1 t=1

The proof is deferred to Appendix [D.2.1]

Lemma D.2 (Second-order regret decomposition with baseline). Foranyt € [T] andany g : X — R,
we have

~ 2
Jf(ﬁ;7R*) — J (7, R*) < NEqmr, (-|2) [(Rt(xt,a) — R*(x4,a) + g(:ct)) ] .

The proof is deferred to Appendix[D.2.2]
We now provide the proof of Theorem 3]
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Proof of Theorem 3] By applying Lemma|D.2] with setting
gt(a?) = —Eazwﬂt(,‘x) [Et(x’ a2) — R*(x, aZ)] ,

we have

Regrety; (T, 7) — J (e, R)

||M%

T
<7 Z Eat a2 m,(|22) [(}A%t(xt,al) — R*(x4,a") — (Et(xt,aQ) — R*(mt,cﬂ)))?]
- (Lemma|[D.2))
T R ) 9
Z (Rt a:t,at R*(xt,atl) - (Rt(ajt,af) — R*(xt,af))) + 327 log 5
! (Lemma|G.2] w.p. 1 —4)

T T
~ 1 2
< 2nk? <Z L(Ry) — Z &,(R*)> + 4nk?log 5T 32nlog 5 (Lemma[D:1] w.p. 1 —4)
t=1

1 2
< 2n/@2RegL0g(T) + 4nk?log ~ + 32nlog 5 (Assumption[3)

J

By setting § < 2, we establish the bound for Regrety; (T, 7).

Furthermore, the bound on Regret(7") follows immediately from Lemma using the same analysis
as in the proof of Theorem [T} Hence, this completes the proof of Theorem O

D.2 PROOFS OF LEMMAS FOR THEOREM [3]

D.2.1 PROOF oF LEMMA D1l

Proof of Lemma[D.1] The proof of Lemma [D.T] follows the analysis of Lemma D.1 in Zhao et al.
(2024). However, unlike |[Zhao et al. (2024), where the estimator R is fixed for all t, our setting
accommodates a time-varying sequence {R;}7_,.

For completeness, we present the full proof below.

For simplicity, we write p; = o(R*(zy,af) — R*(24,a})) and p, = G‘(Rt(.%‘t, al) — Ry(zy, af)).
We define

X :

A 1 H 1—p;
=5 (6@ —t(Re)) = =3 (yt log 2%+ (1— yr) log | pt) .

— Dt

l\DH—\
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Then, by Lemma|[G.3] with probability at least 1 — &, we have

1 (< d 1
5 (;1 ft(R*) — t_zlgt(Rt ) Z Xt ]Et 1[6 t]) + ].Og 6 (Lemma@)
. —1/2 *\ —1/2
* 7t ok 1 — Py 1
> log (pt o +(1 pt)(l_pt +log

t=

= > log (\/prt +4/(1-pp)(1 —pt)) + log%

<> (Veip + V=)0 =p) 1) +10g%

[

~
—

~
—

(logx < x —1,forxz > 0)

[(\F f) (\/1p2\/1pt)2]+10g(15

(L=3m+ @ =p) +pe+(1L—p))

M\»—l
HMH

. 1
< — (pr —pe)? + log 5 D.1)

o~
Il
—

DN =
=

where the last inequality follows from the fact that, for any p, q € [0,1], (\/p — \/5)2 +(W1—-p-—
VI—q)?=(p-q?

Now, consider the term p} — p;. For simplicity, let A} = R*(x;,a}) — R*(z4,a?) and A, =
R, (z4,a}) — Rt(xt, a?). Then, by the mean value theorem, we obtain

p; —pe = 0(Af) —o(Ay)

= (A} — At)J o (Ay +7(A] — Ay))dr (mean value theorem)
0
> 1 (AT — Ay). (6(2) = L, Definition of x)
K

Hence, substituting the above result into Equation [D.T]and rearranging terms, we obtain

2 (17" (s ad) — R* o))~ [Rulrirad) — Rilarad)])

T T 1
2 1 2621
K (; t(Rt ; > + 2k°log — 5

which concludes the proof. O

D.2.2 PROOF OF LEMMA [D.2]
Proof of Lemma[D.2} Recall the definition of f : X x R — R in equation[B.4}

1
flz,R) := ~ log Zgr(z) + Eqn [R(z,a) — R*(z,a)] .
Note f is invariant to adding any action-independent baseline g : X — R.

flz,R+g) = —% log Zp4g(x) + B, [R(z,a) + g(z) — R*(z,a)]

—% (log Zr(x) + ng(x)) + Exy [R(x,a) + g(z) — R*(z,a)] (7R, = 7R)

108 Za(e) + By [Rla.0) = R (2.0)] = f(a. ),
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Algorithm E.1 ODPO (Oracle-efficient Direct Policy Optimization)

: Inputs: regularization parameter 7, reference policy 7, online regression oracle OracleLog.
. Initialize: choose any 7, € II.

: forround ¢ = 1to 7T do

Observe context x; € X.

Sample action a}, ab ~ 7(-|x;) and receive preference feedback ;.

Update ;1 for the next round using Orac1eDPO via Equation [E.2]

end for

AR A ol ey

where the second equality holds because

Zrig(x) = Z Tret(a] @) " F@:0)+9(2)) — ng() 2 Tret(a]@) M@0 — e19() 7 (1),

acA acA
and
ﬂ_’l’] (a|x) B ﬂ-ref(a‘x) . e”](R(wya)"’g(;E)) B Wref(a|m) . enR($7a) . 677.(1(90) _ 7.[_7] (a‘x)
R+g N ZRrig(2) B en9(@) Zp(x) R '

Therefore, by substituting R, (z,a) <« R, (x,a) + g(x) and the following the proof from Equation
in Lemma|B.2] we derive

~ 2
Jt"(w:],R*) = J (7, R*) < B, () [(Rt(xt,a) — R*(x4,a) + g(xt)) ] )

which concludes the proof. O

E EXTENSION TO DIRECT PREFERENCE OPTIMIZATION (DPO)

In this section, we extend our method to the DPO objective (Rafailov et al., [2023)). The problem
setup is identical to the RLHF setting (Subsection [3.2)), except that DPO bypasses reward learning
and directly optimizes the policy within the policy class II. Rearranging Equation[2] we can express
the reward function as follows:

1 7(alx)
R(x,a) = —log —————
() =5 1o o)

Accordingly, the Bradley—Terry model for preference feedback takes the form

1 ! 1 2
p(al > a2|x,a1,a2) = 0_<10g71'(a|$) — —log 7r(a|a:)) ,
Ui

—I—%logZR(ac). (E.1)

Tret(atlz) 7 Tret(a|)
where o(z) = # is the sigmoid function. Finally, the DPO loss at round ¢ is defined as
1 1 1 2
PPO (1) .= —logo ( log 7F<atlxt) — —log 77T(atlxt) ) .
Ui Teet(ag |ze) Trer(ai|2¢)

Note that £PPO(rr) is exactly the same as /;(R) defined in Equation 6]

Similar to Subsection [3.2] we assume access to an online DPO regression oracle, denoted by
OracleDPO. At each round ¢, rather than estimating a reward function, this oracle directly returns a
policy:

7y < OracleDPOy((z¢,a},a?); (x1,al,a3,91), ..., (Te_1,a}_1, a7 1, Y1) (E.2)
We assume that the prediction error of OracleDPO is bounded with respect to the policy class II.

Assumption E.1 (Guarantee of online DPO regression oracle). We assume that, for every (possibly
adaptively chosen) sequence x1.r,a} 1, 3.7, y1.1, there exists regret bound Regppo (T') such that
the regression oracle OracleDPO satisfies

T T
Z 070 (my) — Z K?PO(W;) < Regppo (1)
t=1 t=1
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Using this oracle, we establish the following regret bound, analogous to Theorem 3]

Theorem E.1 (Regret of ODPO). Let k := supp , , m. Under Assumption forany § > 0,
ODPO guarantees that with probability at least 1 — 6,

Regrety; (T,7) = O(nx°Regppo(T) + 1 log(1/)) ,  and
DT
Regret(T) = O(nKQRegDpo(T) +nK? log(1/8) + 77) )
where D:=% 31 KL(7* (-|a¢) | e (- 24)).

Proof of Theorem By Lemma|D. 1} together with the fact that /270 () = £;(R) and the reward
reformulation in Equation we obtain

Corollary E.1. With probability at least 1 — 6, we have

T 2
1, 1 1, 1

> | =~ log i (af|zy) — —logm(af|z)— ( log 7y (af|ze) — = logm(aﬂxt))

i\ n 7 7

T T
1
< K? (Z PPO (1) — Z (PPO (7 )> + 2k% log 5

t=1 t=1
Then, by Lemma|[D.2] we get

Regrety, (T,7) = ZJ” mr, RY) — J{ (m, RY)

s 2 1 * 1 o) 2 * 2 2
< 772 Eal,a2~7rt(~|.tt) [(Rt(ﬂfua ) -R ($t>a ) - (Rt(xt,a ) -R («Ttaa ))) ]
t=1
(Lemmawith 9t(rt) = —Eaz o, (]2 [Rt(xt, 2) — R*(It,CLZ)])

* * 2 2
<27 (Rt(xt,at) R*(x¢,a}) — (Rt(xt,at) R(mt,af))> +32n10g5

(Lemma[G.2] w.p. 1 — 9)

T 2
1 1, 1 1
=27 Z (77 log i (af|2s) — ; logﬂ'n(aﬂxt) - (77 log 7;(a?|xs) — Elog 77,,(af|a:t)> )

t=1

1=

t

Il
—

2
+ 32nlog -

3 (Equation[E.T))

T T
< 2nK2 (Z PO (my) = D6 ( )) + 4nk? log 5+ 320 1og§ (Corollary [E_T} w.p. 1 — d)

t=1 t=1

1 2
< 2nk*Regppo (T) + 41k2 log 5 + 32nlog 5 (Assumption [E.T)

By setting 6 < 2, we obtain the bound for Regret,, (T, 7).

In addition, the bound for Regret(T) follows directly from Lemma by applying the same
reasoning as in the proof of Theorem|[I} This concludes the proof of Theorem [E.T] O

E.1 COMPARISON TO LOWER BOUND IN PROPOSITION 2.1 OF|XIE ET AL.|(2024)

A careful reader might wonder whether the logarithmic KL-regularized regret established in Theo-
rem contradicts the lower bound in Proposition 2.1 of |Xie et al.|(2024). This is not the case: their
analysis considers only the restricted policy class I = {mf, 7, }, rather than the full family of Gibbs
policies (Equation[2), so their lower bound does not apply to our setting. For clarity, we first restate
Proposition 2.1 from Xie et al.[(2024).
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Proposition E.1 (Necessity of deliberate exploration, Proposition 2.1 of [Xie et al.|[2024). Fix
n > &, and consider the two-armed bandit setting of X = &, and |A] = N = 2. Let

IT = {mer, w;} There exists a reference policy Tt such that for all T < % exp (g), with constant
probability, all of policies w1, ..., 711 produced by OnlineDPO satisfiy

1
max J; (7, R) — J (7, R) > 3 Vi e [T +1].

mell

As is clear, this proposition only applies to the restricted class IT = {mef, ™ }, where the learner can
update its policy only by switching between these two candidates. In contrast, our analysis permits
the learner to choose from the full family of Gibbs policies—beyond just {7ef, ™ }—with the choice
adaptively guided by data collected through online interactions. Therefore, their lower bound is not
directly comparable to our upper bound.

F KL-REGULARIZED CONTEXTUAL BANDITS WITH OFFLINE REGRESSION
ORACLE

In this section, we assume access to an offline regression oracle instead of the online regression
oracle defined in Equation[d] Note that an online regression oracle must provide robust guarantees
against arbitrary data sequences generated by an adaptive adversary, which becomes challenging
to implement when the function class R is complex. While the minimax regret rates for online
regression with general function classes are well understood (Rakhlin & Sridharanl 2014)), to the best
of our knowledge, computationally efficient algorithms are only known for specific function classes.

Unlike the online regression oracle setting, where contexts may be chosen adversarially, we now
adopt a stochastic context assumption.

Assumption F.1 (Stochastic context). At each round t, the context vy € X is drawn i.i.d. from an
unknown but fixed distribution p.

In this section, we redefine the KL-regularized and unregularized regrets in the stochastic contextual
setting as follows (we use the same regret notations for simplicity):

T
Regrety; (T,7) := > Eq, <, [J/ (), R*) = J{(m;, R*)] and
t=1
T
Regret(T) = Z EﬂﬁtNP [Ea~7r*(-|:zzt) [R* (It, a)] - Ea~m(-\m) [R* (Itv a)]]
t=1

F.1 OFFLINE REGRESSION ORACLE

We now introduce the notion of an offline regression oracle. Given a reward function class R, an
offline regression oracle associated with R, denoted by OracleO£f, is a procedure that produces a

predictor R: X x A — Rbased on input data. In statistical learning theory, the performance of

R is typically evaluated in terms of its out-of-sample error, that is, its expected error on random,
unseen test data. Similar to online regression setting, we assume the statistical learning guarantees of
OracleOff.

Assumption F.2 (Guarantee of offline regression oracle). Let m : X — A(A) be an arbitrary
policy. Given n training samples (Z1.n, 1.n, "1.n) Where x; ~ p and a; ~ 7(- | ;) i.i.d., the offline
regression oracle OracleOff returns a reward estimator R:XxA— R For any 6 > 0, with
probability at least 1 — §, we have

A~

Eompamn(lo) [(R(:z:,a) ~ R*(x, a))Q] < &(n).

Under the realizability assumption (Assumption[)), this squared distance corresponds to the estimation
error or excess risk of R.
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Algorithm F.1 KL-EXP-0ff

1: Inputs: regularization parameter 7, reference policy 7, offline regression oracle OracleOf£f,
epoch schedule 0 =19 <71 <70 <---.

2: Initialize: choose any R; € R.

3: forepochm = 1,2,...,m(T) do

4: forroundt =71,,_1+1,---,7, do

5: Observe context x; € X. R

6: Compute policy my(+|2;) o€ mef(-|¢) exp(nRm (24, -)) via Equation
7: Sample action a; ~ m¢(-|z;) and receive reward ;.

8: end for R

9: Feed only the data in epoch m — 1 into OracleO£ff and obtain R,,, ;1 .
10: end for

F.2 ALGORITHM AND RESULTS

We provide an algorithm KL-EXP-O£f in Algorithm [F1I] Unlike Algorithm [I[ which updates the
predictor at every round, KL-EXP-0£f adopts an epoch-based learning protocol, updating the reward
estimator only once per epoch via the offline regression oracle. In addition, rather than feeding all
past data into the oracle, we restrict its input to the data collected in the immediately preceding epoch
(m — 1). As a consequence of this strategy, the algorithm proceeds in gradually increasing epochs,
ie., T, = 2™

Let m(T') denote the total number of epochs. We then establish the following regret bound under the
offline regression oracle.

Theorem F.1 (Regret of KL-EXP-0£f). Consider an epoch schedule ., = 2™ for m < m(T). Then,
with probability at least 1 — 0, the regret of KL-EXP-0£f is bounded by

Regrety, (T,7) = 0(7156/ log7(T) - T) , and

DT
Regret(T) = O(né};/logT(T) T+ 77) ,

where D:= & ST KL (7% (- ) [ mes (| 24)).-

Remark F.1 (Computational efficiency). The algorithm KL-EXP-0ff requires only O(logT') calls
to the offline regression oracle.

Example F.1 (Linear classes). When Assumption[l|holds and the reward function class R is linear (re-
fer Example , by using the least squares regression oracle, KL-EXP-0ff achieves Regrety, (T,n) =
O(ndlog T) and Regret(T) = O(+/dDT logT), with the choice n = © ( dggTT). Moreover, by
setting Ter to be uniform random, we have Regret(T) = (’)(\/dT log N log T) since D < log N.
This upper bound matches the lower bound Q(+/dT log N log(T/d)) established by Li et al.|(2019),
up to logarithmic d factors.

Example F.2 (Neural Networks). Let Assumptionhold and R = GV, where G denotes the class
of Multi-Layer Perceptrons (MLPs) as described in Section 2.1 of Farrell et al.|(2021). For each
(x,a) € X x A, let the reward function be R*(x,a) = g%(x). Assume the context distribution p is
continuous over [—1,1]%, and that g7, . . ., g lie in a Sobolev ball with smoothness 3 € N. Then,
by Theorem 1 of Farrell et al.|(2021), the deep MLP-ReLU network estimator attains O (n_%)
estimation error. Consequently, by using this estimator as the offline regression oracle, KL-EXP-0ff

achieves Regrety, (T, 1) = O (nTﬂ%d> and Regret(T) = O (T 2/212;(1) (ignoring dependence on

~ ] . .
other parameters) with the parameter choice n = © (T25+2d ) Our derived unregularized regret,

0 (T 355 ) has the same order as the regret established by |Simchi-Levi & Xu(2022).

F.3 MAIN PROOF OF THEOREM [F.]]

In this subsection, we present the proof of Theorem [F.I]
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Proof of Theorem[F1} For any ¢ € [T], by Lemma[B.2] we have
T
Regrety, (T,n) = > By, <, [J{(n}, R*) — J{!(m, R*)]

=1

~+

T R 2
<9 Z Eg,~pBa; e (-|21) [(Rm(a:t, ar) — R* (x4, at)) ] (Lemma|[B.2)
t=1
Let 7; := o(x1,a1,71,...,%¢, ¢, ag) be the filtration up to round ¢. We introduce the following

lemma to further bound the regret.

Lemma F.1 (Lemma 2 of |Simchi-Levi & Xu|2022). Forallm > 2andallt € {r_o+1, -+ . Tm_1},
with probability at least 1 — §/(2m?), we have

~

2
]Ezt~p,at~7rt(<|:rt) [(Rm($t7(lt) - R*(xtyat)) | ‘Ft—l] < 56/(2m2)(7—m—1 - T77L—2)'
By applying Lemma [F.I] with probability 1 — J, we obtain

T R 2
Regrety, (T',1) <n Z Eazwaawm(-\x,,) [(Rm(t) (w4, a¢) — R* (4, at)) ]

t=1

T R 2
=1 Z Exy~pBaymrm, (|20) [(Rm(t) (w4, a¢) — R* (4, at)) | ]:t1:|
t=1

T
<n Z Es/2m1)2) (Tm(t)—1 = Tm(t)—2) + T1
t=11+1
m(T)
=1 Z 85/(2m2)(7-m—1 - Tm—2) . (Tm - 7-171—1) + 7
m=2

= 0(7155/ log7(T) - T) :
This completes the proof of the upper bound on the KL-regularized regret. Moreover, the bound for
the unregularized regret follows directly from the same analysis as in the proof of Theorem[l]] [

G TECHNICAL LEMMAS

Lemma G.1 (Freedman’s inequality, [Freedman, |1975). Let (Z;)i<r be a real-valued martingale
difference sequence adapted to a filtration Fy_1, and let Bi[-] = E[- | Fi—1]. If | Z;| < B almost
surely, then for any 3 € (0,1/B), it holds that, with probability at least 1 — 0,

T T
Z Zi < ﬁZ E: 1[Z7] + Bl%(lﬂf)
t=1 t=1

Lemma G.2 (Lemma A.3 of Foster et al.|2021). Ler (X;):<T be a sequence of random variables
adapted to a filtration (Fi)i<r. If 0 < X; < B almost surely, then with probability at least 1 — 0,

L 3 & 2
DX < 5 DB [X] + 4Blog 5,

t=1 t=1
and

T T 9
E; 1] X¢] <2 X; + 8Blog —.
;1 t 1[ t] Z t gé

t=1

Lemma G.3 (Lemma A.4 of Foster et al.[2021). For any sequence of real-valued random variables
(X¢)r<T adapted to a filtration (Fy)i<T, it holds that with probability at least 1 — 6, for all T' < T,

T T 1
Z X < Z log (Et_l[eXt]) + log 5

t=1 t=1
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H ADDITIONAL EXPERIMENTAL RESULTS

H.1 COMPUTATION COST IN LINEAR BANDITS

N | d | LinUCB LinTS LinPHE SupLinUCB | KL-EXP (ours)

50 | 5 0.321 0.274 0.862 0.203 0.173
100 | 5 0.465 0.336 0.927 0.225 0.190
50 | 20 1.414 1.504 1.877 1.274 1.227
100 | 20 1.616 1.546 1.942 1.378 1.253

Table H.1: Average per-round computation time (us) for linear bandits with d € {10,20} and
N € {50, 100}.

H.2 COMPUTATION COST IN NEURAL BANDITS

NeuralUCB  NeuralTS \ KL-EXP (ours)
0.0507 0.0665 | 0.0048

Table H.2: Average per-round computation time (s) for neural bandits.

H.3 RLHF EXPERIMENTS: DETAILS AND ADDITIONAL RESULTS

In this section, we present the RLHF experimental setup in detail and provide additional results.

Implementation details. For fair comparison, we follow the experimental setup of [Dong et al.
(2024); Xie et al.| (2024). In each iteration, we fix the base model (Llama-3-8B-Flow-SFT) as the
reference model 7 and set the regularization parameter to 7 = 10.0. Training is performed with a
global batch size of 16, a learning rate of 5 x 10~7 with cosine scheduling, 2 epochs per iteration,
and a warmup ratio of 0.03. For XPO, following [Xie et al.| (2024), we set 7; = m; and D" = D’t’ref,
and use their exploration schedule « € {1 x 107°,5 x 10~°, 0} across the three iterations(see their
definitions). All experiments were conducted on 8 x Nvidia HI00 GPUs.

Additional results. Table [H.3|reports the accuracies of the algorithms on all 17 academic and chat
benchmarks (Zhong et al.| 2023; Nie et al., 2019; |Hendrycks et al., 2020; |Cobbe et al., 2021} |[Rein
et al.| [2024; |Chen et al.| [2021}; |Zellers et al.,|2019; Sakaguchi et al.| 2021} |Clark et al., 2018}, [Lin et al.}
2021; Mihaylov et al., 2018; [Zellers et al., 2018 |Sap et al., [2019; [Pilehvar & Camacho-Collados,
2018} Levesque et al.L[2012; [Socher et al.,2013), as well as the performance of OnlineDPO (or ODPO)
with varying regularization parameters 7 € {5.0, 8.5, 10.0, 12.5, 20.0}. The bold values represent the
best performance for each benchamrk. The results show that On1ineDPO with a carefully chosen n
(= 12.5) outperforms other baselines that rely on additional exploration techniques.
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Model \ n \iteralion\AGIEval ANLI MMLU GSM8K GPQA HumanEval HellaSwag WinoGrande ARC-C
Llama-3-8B-Flow-SFT | 10.0 | | 3933 4051 6263 7415 3434 5427 59.89 76.48 53.50
Llama-3-8B-Flow-Final | 10.0 | | 4175 4629 6336 7475 3131 54.88 61.22 76.95 52.73

iter 1 | 39.32  43.69 63.08 8021 34.85 56.10 62.20 75.61 56.40

XPO 100 | iter2 | 3991 4577 6327  80.59 30.81 57.93 62.57 76.32 56.57

iter3 | 40.14 4607 6337 8218 3283 57.93 62.95 76.48 56.57

iter 1 | 39.33 4554 63.10 8097 3384  56.10 62.12 76.32 56.14

50 | iter2 | 4008 46.13 6326 8241 3535  57.93 62.61 76.24 56.31
iter 3 | 4029 46,57 63.15 8271 3333 59.75 62.92 76.24 56.66

iter 1 | 39.56 4569 6322 8135 31.82 5732 62.49 76.48 56.31

8.5 | iter2 | 40.17 47.19 6327 8279 3333 58.25 62.97 75.85 56.06
iter 3 | 4036 4873 6331 8287 3232 5973 63.36 76.72 55.80
OnlineDPO iter 1 | 3934 4455 6325 8196 3283 57.93 62.63 76.01 56.14
10.0| iter2 | 4037 4813 6337 8234 3283 57.32 63.24 76.16 55.80
iter 3 | 4074 4884 6325 8340 3232 5793 63.56 76.40 56.06

iter 1 | 39.53 4598 6326 8150 31.82  59.76 62.71 76.09 56.06

125| iter2 | 4053 4782 6330 83.62 3182 5854 63.36 76.87 55.12
iter 3 | 40.87 4892 6330 83.09 3333 58.54 63.59 76.32 55.29

iter 1 | 3972 4632 6321 8287 3232 5671 62.98 76.01 55.80

20.0 | iter2 | 4070 4780 63.12 8279 31.82  57.93 63.68 75.93 53.92
iter 3 | 41.10 4629 63.18 83.17 3131 57.32 63.74 76.40 54.35

Model | n |iteration | ARC-E TruthfulQA OpenBookQA SWAG Social IQa WiC WSC273 SST-2 | Average
Llama-3-8B-Flow-SFT | 10.0 | | 83.33 45.38 35.40 5807 5235 5674 87.55 9094 | 59.11
Llama-3-8B-Flow-Final | 10.0 | | 81.94 53.71 37.20 58.15 5210 6254 87.18 91.97 | 6047

iter 1| 84.09 48.53 37.20 59.30 5425 6411 8791 9071 | 61.03

XPO 100 iter2 | 84.26 51.32 37.80 59.65 5343 6254 8755 90.60 | 61.23

iter 3 | 83.92 52.20 38.20 59.85  53.12 6176 8828 90.60 | 61.55

iter 1| 84.47 49.41 37.60 5930 5409 6223 8755 9048 | 61.09

50 | iter2 | 8451 51.97 37.20 59.63  53.84 6144 8791 90.60 | 61.61
iter 3 | 84.43 53.48 37.00 59.81 5343 6285 89.38 9140 | 61.96

iter 1 | 84.22 51.38 37.40 59.53 5394 6254 8828 90.71 | 6131

8.5 | iter2 | 84.09 54.42 37.40 59.81 5338 6238 87.55 9151 | 61.79
iter 3 | 84.09 55.30 37.60 60.00 5281  61.13  89.01 90.94 | 62.01
OnlineDPO iter 1 | 84.55 52.01 37.40 59.50  53.58 6191 8828 90.83 | 61.33
10.0 | iter2 | 84.13 54.86 37.20 5991 5312 61.60 88.64 91.06 | 61.77
iter 3 | 83.75 56.22 37.40 60.11 5235 6129 88.64 91.17 | 61.97

iter 1 | 84.39 52.46 37.40 59.65  53.07 6207 88.64 90.94 | 6149

125| iter2 | 83.54 55.32 37.00 59.95 5230 6176 88.64 91.63 | 61.83
iter 3 | 83.16 56.70 37.00 6020  51.84 6223 89.01 9220 | 62.09

iter 1 | 84.09 53.71 37.20 59.73 5251 6207 89.01 91.06 | 61.49

20.0 | iter2 | 82.70 56.94 37.40 60.13 5159 6050 89.01 91.86 | 61.64
iter 3 | 82.66 57.18 37.20 6022 51.64 6144 8864 9215 | 61.65

Table H.3: Full benchmark evaluation of OnlineDPO with varying € {5.0, 8.5, 10.0, 12.5, 20.0}
and of other algorithms that use additional exploration strategies. Bold values indicate the best
performance.

36



	Introduction
	Related Works
	Problem Setup
	KL-Regularized Contextual Bandits
	Reinforcement Learning from Human Feedback (RLHF)
	KL-Regularized and Unregularized Regret

	KL-Regularized Contextual Bandits
	Squared-loss online regression oracle.
	Algorithm and Main Results
	Proof sketch of Theorem 1

	Reinforcement Learning from Human Feedback
	Log-loss online regression oracle.
	Algorithm and Main Results

	Experiments
	Linear Contextual Bandits
	Neural Contextual Bandits
	LLM Fine-Tuning with RLHF

	Conclusion
	Appendix
	 Appendix
	Further Related Work
	Proof of Theorem 1
	Main Proof of Theorem 1
	Proofs of Lemmas for Theorem 1
	Proof of Lemma B.2
	Proof of Lemma B.3

	Supporting Results for Lemma B.2
	Proof of Lemma B.4
	Proof of Lemma B.5

	Discussion on Specific Function Classes

	Case: R with Bounded Eluder Dimension (Remark 1)
	Proof of Theorem 3
	Main Proof of Theorem 3
	Proofs of Lemmas for Theorem 3
	Proof of Lemma D.1
	Proof of Lemma D.2


	Extension to Direct Preference Optimization (DPO)
	Comparison to Lower Bound in Proposition 2.1 of xie2024exploratory

	KL-Regularized Contextual Bandits with Offline Regression Oracle
	Offline Regression Oracle
	Algorithm and Results
	Main Proof of Theorem F.1

	Technical Lemmas
	Additional Experimental Results
	Computation Cost in Linear Bandits
	Computation Cost in Neural Bandits
	RLHF Experiments: Details and Additional Results



