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ABSTRACT

Recently, reinforcement learning from human feedback (RLHF) has demonstrated
remarkable efficiency in fine-tuning large language models (LLMs), fueling a
surge of interest in KL-regularization. Yet, the theoretical foundations of KL-
regularization remain underexplored. Many prior works employ either explicit
online exploration strategies—such as UCB, Thompson sampling, and forced
sampling—or optimism-embedded optimization techniques (e.g., Xie et al.[2024)
in addition to KL-regularization to achieve sublinear regret in online RLHF. In
this paper, we show, for the first time to our best knowledge, that such additional
exploration strategies are unnecessary if KL-regularization is already included.
That is, KL-regularization alone suffices to guarantee sublinear regret. To handle
general function classes, we assume access to an online regression oracle and
propose KL-EXP (and its RLHF variant, OEPO), which achieves logarithmic KL-
regularized regret—the standard objective in KL-regularized contextual bandits and
RLHF—while also attaining an unregularized regret of O(v/log N - TRegg, (1)),
where N is the number of actions, 7" is the total number of rounds, and RegSq (T)
is the online regression oracle bound. To the best of our knowledge, this is the first
result to achieve regret with only logarithmic dependence on N in oracle-based
contextual bandits. As a special case, in linear contextual bandits, our result yields
an unregularized regret of O(y/dT log N), where d is the feature dimension. To
our best knowledge, this is the first (’j(«/dT log N)-type regret bound achieved
without resorting to supLin-type algorithms, making it substantially more practical.

1 INTRODUCTION

The Kullback—Leibler (KL)-regularized contextual bandit problem (Langford & Zhang, [2007} Neu
et al., [2017; | Xiong et al., [2023; | Xie et al., 2024) has recently attracted considerable attention due to its
remarkable empirical success in fine-tuning large language models (LLMs), an application commonly
referred to as reinforcement learning from human feedback (RLHF) (Christiano et al.| 2017; [Bai
et al.} 2022} |Ouyang et al.,|2022). This framework uses KL-regularization as a key mechanism to
balance reward optimization with distributional stability.

Despite these practical successes, the theoretical understanding of KL-regularization remains limited,
particularly in the context of online learning. Online exploration is crucial for efficiently gathering
informative feedback and addressing user preferences in RLHF. In this vein, many prior works
have leveraged additional mechanisms to promote exploration, such as Upper Confidence Bound
(UCB) (Xiong et al., 20232024} [Zhao et al.,[2025a), forced sampling (Zhao et al.,|2024]), and value-
incentivized policy optimization (Xie et al.,[2024; (Cen et al., |2024). Building on these strategies,
Xiong et al.[(2023)); Ye et al.|(2024);|Xie et al.|(2024);|X10ong et al.[(2024);/Cen et al.|(2024) established
O(v/T) bounds on KL-regularized regret (or O(1/€%) sample complexity). More recently, Zhao et al.
(20245 20254) achieved the first logarithmic KL-regularized regret (or O(1/¢) sample complexity).

However, optimizing the KL-regularized objective (Equation [I)) already yields a randomized policy
of the Gibbs distribution form (Equation [2). This implies that KL-regularization induces inherent
exploration. Therefore, a natural question arises:

Can logarithmic KL-regularized regret be achieved without extra exploration techniques
in contextual bandits and RLHF when KL-regularization is used?
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Beyond this, we raise a more fundamental question: is achieving sublinear KL-regularized regret,
by itself, truly sufficient? To the best of our knowledge, the tightest bound to date is O(nlogT),
established by |Zhao et al.|(2025a), where 7 is the KL-regularization parameter. A direct implication
of this result is that by choosing 7 to be sufficiently small, one can always guarantee an arbitrarily
small KL-regularized regret. Indeed, a small 7 indicates that the KL-regularized optimal policy 77,
remains very close to the reference policy ¢, which makes this result appear reasonable. However,
when 7}, & Ter, the learner gains little to no improvement, which is undesirable since the goal is to
discover a strictly better policy than the reference policy. To address this, we also consider the notion
of unregularized regret (Equation[3), as in standard bandit settings. This regret can be large when
the policy remains close to 7 (i.€., for small 1) but far from the unregularized optimal policy m*.
Minimizing the unregularized regret allows us to directly pursue the unregularized optimal policy 7*,
rather than being limited to the KL-regularized solution 7. This naturally raises the hypothesis that 7
should be chosen carefully to minimize the unregularized regret, which leads to our second question:

By choosing m appropriately, can we achieve sublinear unregularized regret, still without
additional exploration techniques?

In this paper, we answer these questions affirmatively. We begin by analyzing the KL-regularized
(adversarial) contextual bandit setting and then extend our analysis to RLHF. To consider general
algorithms, we assume access to an online regression oracle (Foster & Rakhlin, [2020), while the
offline regression oracle is discussed in Appendix [F] Our main contributions are summarized as:

e KL-regularized regret. In KL-regularized contextual bandits, we establish a KL-regularized
regret bound of O(nRegg, (1') + 1log(1/d)), where 7 is the regularization parameter, Regg, (7')
is the online regression oracle bound, and ¢ is the failure probability (Theorem [I)). This result
is achieved solely through KL-regularization, without relying on any additional exploration
techniques. To our best knowledge, this is the first result to show the provable efficiency of
the KL-regularization-only approach. Since Regg,(7") = O(logT') can be attained by suitable
regression oracles for a wide range of reward functions—including linear, generalized linear, and
bounded eluder-dimension function classes—we achieve logarithmic KL-regularized regret.

* Unregularized regret. By setting 7 = © (v DT/(Regg,(T) + log 6~1)), we obtain an unregu-

larized regret of O(vV/ DT (Regg,(T)) +log5~')), where D = £ S KL (7 () | et (- 24))
(Theorem [I)). To the best of our knowledge, this is the first unregularized regret bound for
KL-regularized contextual bandits attained solely through KL-regularization-induced exploration.

First v/log N-order regret in oracle-efficient contextual bandits. With a uniform refer-
ence policy and n = O(v/Tlog N /Regg,(T')), we obtain an (unregularized) regret bound
O(W1log N - TRegg,(T)), where N is the number of actions. This improves upon the previ-
ous regret bound O(v NTRegg, (1)) (Foster & Rakhlin}[2020) by reducing the dependence on N

from v/N to 4/log N. To the best of our knowledge, this is the first result to achieve regret with
only logarithmic dependence on /N within the oracle-efficient contextual bandit framework.

O(4/dT log N) regret in linear contextual bandits. With a uniform reference policy and
n = O(y/Tlog N/(dlogT)), we obtain an (unregularized) regret bound of O(+/dT log N) for
linear contextual bandits (Theorem , where d is the feature dimension. To our best knowledge,
this is the first O(1/dT log N )-type regret achieved without using on supLin-type algorithms (Auer}
2002; (Chu et al., 2011} [L1 et al., 2019), which are known to be impractical. Hence, this is the first
practical algorithm to achieve minimax optimal regret for finite-armed linear contextual bandits.

Extension to RLHF. We further establish similar regret bounds in the RLHF setting, with only an
additional factor due to the non-linearity of the Bradley—Terry model (Theorems [3|and [E. 1.

2 RELATED WORKS

Online RLHF. Early works in online RLHF trace back to the dueling bandits literature (Yue et al.,
2012; Zoghi et al} [2015] [Saha & Gopalan, 2018} [Bengs et al., 2021) and were later extended to
the reinforcement learning setting (Xu et al.,2020; Novoseller et al.| 2020; |Chen et al.| 2022} |Saha
et al., 2023 |Zhan et al., |2023b; Wu & Sun, [2023). More recently, |Xiong et al.| (2023)); Ye et al.
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(2024) introduced provably efficient algorithms under the KL-regularized objective using UCB-style
exploration. These were further refined by methods that employ optimistically biased optimization
targets (Xie et al., [2024; [Liu et al., 2024; (Cen et al., [2024)). The most closely related works are Zhao
et al.| (2024} [2025a), which also study the KL-regularized objective and establish O(nlog T') KL-
regularized regret (or O(n/e) suboptimality gap). However, all of these prior approaches depend on
additional exploration mechanisms. In contrast, our work demonstrates—for the first time, to the
best of our knowledge—that KL-regularization alone suffices to achieve sublinear regret in both the
regularized and unregularized forms. For additional related work, see Appendix [A]

3 PROBLEM SETUP

Notations. Given a set X', we use |X| to denote its cardinality. For a positive integer, n, we denote
[n] :={1,2,...,n}. Let N denote the size of the action space. We write O(-) for asymptotics up to
constants and O(-) when also hiding logarithmic factors (except in V). For a function class F, we
denote by Nz (e) its e-covering number.

3.1 KL-REGULARIZED CONTEXTUAL BANDITS

In the KL-regularized contextual bandits, at each round ¢ € [T'], the learner observes a context z; € X
(which may be provided adversarially) and then selects an action a; € A, where X is the context
space and A is the action space. The learner then receives a reward r; € [0, 1], given by:

*
Ty = R ($t7at) + €ty
where R* (x4, a;) is the unknown expected reward function, and ¢, is independent, zero-mean, and 1-

sub-Gaussian. In this paper, we consider a general reward function class R < {R : X x A — [0, 1]},
which can be a class of parametric functions, nonparametric functions, neural networks, etc.

Assumption 1 (Realizability). The true reward function is contained in R, i.e., R* € 'R.

Assumption 2 (Pointwise relative interior). For each (x,a) € X x A, define S , := {R'(x,a) :
R € R} < [0,1]. We assume R(x,a) € rij 1](Sz,q). i.e., there exists £ o > 0 such that (R(x,a) —
a0 R(z,0) + €24) n[0,1] S Sy

Assumption [I| corresponds to the standard realizability assumption commonly adopted in prior
works (Chu et al.l 2011} |Agarwal et al., 2012} Foster et al.,|[2018a} |[Foster & Rakhlin} 20205 |Simchi+
Levi & Xul [2022). Assumption [2]ensures differentiability of the functions defined later with respect
to R(z,a) over R. This assumption holds for most bandit settings (e.g., multi-armed, linear, GLM,
and neural bandits), with the exception of finite function classes (Agarwal et al., 2012 Note that
this assumption has been overlooked and not explicitly stated in prior works whose analyses similarly
rely on differentiating certain reward-dependent functions to obtain logarithmic regret (Zhao et al.
2024} 2025ajb); it should have been made explicit in those papers as well.

KL-Regularized Objective. We consider a KL-regularized reward objective, defined for a regular-
ization parameter 1 > 0, as:

1
I (7w, R) = Bar( o) [R(2e, 0)] — 5KL(W('IIt)H?Tref('IIt)), Vi =1, (1

where 7 is the reference policy known to the learner. When 7 is uniform, Equation E]reduces to
the entropy-regularized objective that encourages diverse actions and enhances robustness (Williams}
1992; |Levine & Koltun, 2013} Levine et al.} 2016} Haarnoja et al.,[2018)), which is also closely-related
to the generative flow networks (GFlowNets) (Bengio et al.| [2021; 2023} |Tiapkin et al.,|2024). When
Tt 18 instead chosen as a base model, KL-regularization has been widely adopted for RL fine-tuning
of large language models (Ouyang et al., 2022; Rafailov et al.,|2023). It has also been studied in
online learning (Cai et al.,2020; |He et al.,|2022) and convex optimization (Neu et al., 2017).

Following prior work (Peters & Schaall [2007; Rafailov et al., 2023} Zhang, 2023), it is straightforward
to show that the optimal solution to the objective in Equation 1| has the following form:
mh(alz) =

fmmmm exp(nR(z,a)). @

"For finite function classes, one may instead consider their convex hull conv(R) to satisfy Assumption
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where Zg(7) := Eqry(.|) exp(nR(7, a)) is the normalization constant. A full derivation can be
found in Appendix A.1 of Rafailov et al.|(2023).

3.2 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK (RLHF)

In the RLHF problem (Ouyang et al. [2022)—more specifically, the contextual dueling bandit
problem with a KL-regularized objective—the learner at each round ¢ € [T'] observes a context
x4 € X (possibly provided adversarially) and selects two actions a}, a? € A, where X is the context
space and A the action space. The learner then receives relative preference feedback between the two
actions, rather than a scalar reward. In this paper, we consider the Bradley-Terry Model (Bradley &
Terryl |1952)), where the probability of a' is preferred over a? (denoted by a' > a?) is given by

P(a' > a®|z,a',a”) = o(R*(2,a") — R*(z,a%)) ,

where o () = 1= is the sigmoid function, and R* : X x A — [0, 1] the unknown true reward

function. We denote R < {R : X x A — [0, 1]} as the class of reward functions. To capture
the non-linearity of the sigmoid function, we define  := SUpgeR e x aca 1/0(R(x,a)). As in the
bandit setting, we update the policy by optimizing the KL- regularlzed reward objectlve (Equation ).

3.3 KL-REGULARIZED AND UNREGULARIZED REGRET

We study two types of regret to more comprehensively evaluate the performance of our algorithm.

KL-regularized regret. Let 7;(-|2;) = argmax, J;' (7, R*) denote the KL-regularized optimal
policy. Our objective is to minimize the cumulative regret, defined as:

Regret,, (T, 1) Z Jn(WnR*))

This KL-regularized regret has been extensively studied in the prior literature (Xiong et al., 2023} |Ye
et al.| 2024} Song et al.,|2024; Zhao et al., [2024; 2025a).

Unregularized regret. Beyond the KL-regularized regret, we also measure performance relative
to the unregularized optimal policy 7*(-|x;) = argmax, E, (. |z,)[R*(2¢,a)], and define the
corresponding regret as follows:

Regret Z a~m* \a:t (xtv a)] - Ea'»ﬂ't(-|wt) [R* (‘Tta a)]) : 3

The notion of this regret is standard in conventional bandit problems. This metric enables a more
direct evaluation of how closely the learned policies approach the unregularized optimal policy.

4 KL-REGULARIZED CONTEXTUAL BANDITS

In this section, we consider KL-regularized contextual bandit problems. We introduce the notion of
an online regression oracle (Subsection 4.1)), present our algorithm KL-EXP together with its regret
bounds (Subsection[4.2), and provide a proof sketch (Subsection [4.3)).

4.1 SQUARED-LOSS ONLINE REGRESSION ORACLE.

We assume access to a squared-loss online regression oracle (Foster & Rakhlin|, |2020), denoted by
OracleSq. At each round ¢, OracleSq outputs a reward estimator

ﬁt — OracleSqt ((xl, ai, 7’1), ceey (xt_l, at—1, 'rt—l)) s where ]/:L\)t eR. “4)

Unlike [Foster & Rakhlin|(2020), we ruire ]SLt € R, a condition readily met when R is sufficiently

rich. In conjunction with Assumption 2} this guarantees differentiability at }Azt(x, a). The prediction
error of OracleSq is assumed to be bounded with respect to the true reward function R*.
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Algorithm 1 KL-EXP (KL-regularized EXPonential-weights algorithm)

Inputs: regularization Earameter 7, reference policy 7f, online regression oracle OracleSq.
Initialize: choose any R; € R.
for round ¢t = 1to 7T do
Observe context x; € X. R
Compute policy ¢ (+|@;) o€ mef(-|2¢) exp(nRy(zy,-)) via Equation
Sample action a; ~ 7;(-|z;) and receive reward r;.
Update Rt+1 using OracleSq via Equatlon
end for

A A ol e

Assumption 3 (Guarantee of OracleSq). We assume that, for every sequence x1.7,a1.7,71.1, there
exists regret bound Regg, (T') such that the regression oracle OracleSq satisfies

T T ,
Z (e ar) =) — > (R* (w1, a0) = 74)” < Reggy (T).
=1 =1

An important advantage of Assumption [3|is that it places no restriction on how the estimator fit is
obtained; in particular, it does not require solving ERM exactly. Instead, R; can be computed via
iterative methods such as (stochastic) gradient descent and implemented in an online or streaming
manner, which is crucial for large-scale modern machine learning. Under realizability (Assumption|[T),
Assumption |3|is weaker than Assumption 2a in [Foster & Rakhlin (2020), since we compete only
against the fixed R*, whereas they compete against the best predictor over the sequence.

The online squared-loss regression problem is well studied, with efficient algorithms and regret
guarantees for many function classes.

Example 1 (Linear classes). When R* € R and the reward function class R is linear, i.e., R =
{R: R = ¢(x,a)70,0 € R%, |02 < 1}, where ¢(x,a) € RY is a known feature map satisfying
[#(x,a)|2 < 1, choosing OracleSq as the Vovk—Azoury—Warmuth forecaster (Vovk, |1997} |Azoury
& Warmuth, [2001) yields Regg, (1) = O(dlog(T/d)).

Example 2 (Generalized linear models (GLMs)). For a fixed non-decreasing I1-Lipschitz link function
w:R—[0,1], deﬁne the reward function class R = {R : R = u(¢(z,a)"0),0 € R4, ||0], < 1},
where ¢(r,a) € R? is a known feature map with |¢(x,a)|2 < 1. If R* € R, then the GLMtron
algorithm (Kakade et al.,|2011) guarantees Regg (1) = O(x >dlog(T'/d)), where 1/fi < F..

Example 3 (Bounded eluder dimension, Russo & Van Royl} [2013). When R* € R and the reward
function class R has bounded eluder dimension, the empirical risk minimization (ERM) algorithm
achieves, with probability at least 1 — 0, Regg,(T') = O(dg log(Nr (€)T)) (Lemma

For additional examples, the reader is referred to[Foster & Rakhlinl (2020) for high-dimensional linear
models, Banach spaces, and RKHS, and toDeb et al.| (2024) for neural networks.

4.2 ALGORITHM AND MAIN RESULTS

We present our KL-regularized EXPonential-weights algorithm, KL-EXP, in Algorithm|l} At each
round ¢ € [T'], the algorithm observes the context z; € X and computes the policy 7; by solving the
KL-regularized objective in Equation [T} which admits the closed-form solution given in Equation 2]
The algorithm then samples an action a; ~ m¢(-|;) and receives a reward r;. Finally, it updates the

reward estimator R;; for the next round using the squared-loss online regression oracle (Equation@)

Remark 1 (Ease of implementation and computational efficiency). KL-EXP is simple and practical:
it admits a closed-form solution (Equation[2) and—unlike prior approaches with general function
approximation (Russo & Van Roy, 2013} \Jiang et al.} 2017 Jin et al.| 2021} |Zhao et al., 2025a)—does
not require explicit computation of exploration terms (e.g., UCB), which is often intractable for
large models such as transformers. It is also computationally efficient. In linear contextual bandits
(ignoring oracle-related computations), the per-round cost is only O(N ), where N = | A|, whereas
LinUCB and LinTS require O(d? N) per round.
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The main guarantees for the algorithm are stated below, with the proof deferred to Appendix B}

Theorem 1 (Regret of KL-EXP). Let § > 0 and D := % 31 KL(7*(-|a) |met(-|21)). Under
Assumption[I} 3] with probability at least 1 — 6, KL-EXP (Algorithm[l) guarantees

Regret, (T, 1) = O(nRegSq(T) + nlog(l/é)) and

Regret(T) = O(nRegsq(T) + nlog(1/6) + iT) .

Result 1: Logarithmic KL-regularized regret. Theorem|[I|shows that the KL-regularized regret of
KL-EXP scales with Regsq(T), resulting in logarithmic regret in 7" across a broad range of function

classes. For example, when § = ©(T~1), we obtain O(ndlogT) for linear classes (Example ,
O(nr;,dlog T) for generalized linear models (Example [2), and O(ndg log(Nr (€)T')) for function
classes with bounded eluder dimension (Russo & Van Royl, 2013)) (Example E]) Hence, TheoremE]
shows that logarithmic KL-regularized regret in 7" can be achieved without the auxiliary exploration
methods (e.g., UCB-based strategies). In contrast, prior works such as|Xiong et al.| (2023} [2024);
Xie et al.| (2024) obtained O(+/T) KL-regularized regret (or O(1/e?) sample complexity), and
more recently, Zhao et al.|(2024;[2025a) established O(nlog T') KL-regularized regret (or O(n/e)
sample complexity), all of which depend on the additional exploration strategies. To the best of
our knowledge, this is the first result that achieves logarithmic KL-regularized regret without any
additional exploration, highlighting the key insight that the KL-regularized objective alone provides
sufficient exploration in contextual dueling bandits and RLHF.

Remark 2 (Comparison with|Zhao et al.| (2025a))). For classes with bounded eluder dimension, we
recover the regret bound of \Zhao et al.|(2025a), O (ndg log(Nw (e)T)). Unlike Zhao et al.|(20254)),
however, our algorithm does not require prior knowledge of the eluder dimension (Russo & Van Roy,
2013), which is typically unknown in practice. The full proof is provided in Appendix|C]

Result 2: Unregularized regret and its tightness. With the choice of the regularization parameter
n = ©(VDT/(Regg,(T) + log5~1)), we obtain Regret(T) = O(V DT (Regs,(T) + logs~1)).
The result provides an interesting insight: with appropriately chosen 7, it is possible to achieve a
v/T-type regret bound even in conventional (unregularized) contextual bandit problems. To the best
of our knowledge, this is the first unregularized regret bound in KL-regularized contextual bandits
achieved purely via KL-regularization—induced exploration.

To demonstrate the tightness of our bound, we consider the uniform reference policy m.f =
Unif(A), under which KL(7||mef) < log N holds for any policy w. Under this setting, our

result gives Regret(T) = O(vIogN - T Regg, (T ))F[, which improves upon the previous bound
O(VN TRegSq(T)), achieved by Square(CB (Foster & Rakhlin, 2020), reducing the dependence
from /N to y/Iog N—except in finite function classe where our analysis does not directly apply.

To the best of our knowledge, this is the first work to break the v/ barrier and achieve regret with
only logarithmic dependence on /N within the oracle-efficient contextual bandit framework.

Furthermore, for linear (adversarial) contextual bandits, we obtain the first @(«/dT log N)-type
regret bound, to the best of our knowledge.

Theorem 2 (Unregularized regret under linear classes). We denote N = |A|. Under the setting of
Theorem if we set Tt = Unif (A) and n = ©(y/T log N/(dlogT)), then with probability at least
1 — %, we have Regret(T) = O(y/dT'log NlogT).

The proof of Theoremfollows directly from two facts: Regg, (T') = O(dlog(T'/d)) (Example
and KL(7* | mer) < log N when mes = Unif(A).
Remark 3 (Minimax-optimality under linear classes). We highlight that, in linear contextual bandits,

our regret bound O («/ dT'log N log T) is minimax-optimal, matching the order previously attained
by supLin-type algorithms (Auer, |2002; |Chu et al.| 2011} |Li et al.||2019). To the best of our knowl-

edge, this is the first (’N)(\/ dT log N)-type regret bound for linear (adversarial) contextual bandits

*We set § = 1/T and omit the log 6" term, since log 6~ = log T < Regg, (T') for most cases.
3Recall that Assumption does not hold for finite function classes.
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that avoids the impractical “layered data partitioning” technique and explicit UCB computations.
Moreover, it matches the lower bound Q(\/dT log N log(T/d)) (Li et al.}|2019) up to logarithmic d
factors, underscoring both the statistical and computational efficiency of our approach.

Further examples for specific function classes are provided in Appendix

4.3 PROOF SKETCH OF THEOREMII]

1) Second-order regret decomposition. The regret decomposition is similar to the recent work
of Zhao et al.| (2025a), which establishes logarithmic KL-regularized regret. Define the function
f(z,R) := —% log Zg(x) + Epn [R(z,a) — R*(z,a)]. Since R*(z,a) = %log exp (NR*(x, a)),
the unregularized regret at round ¢ can be written as follows:

* 1 1 o) *
JZ’(W:,,R*) — J{ (7, R*) = 510g Zp+(w) — Hlog Zﬁt (zt) + Eonr, (a0 [Rt(%,a) -R (xtﬂ)]

f(xhﬁt) - f(th*)'

In Zhao et al | (2025a), the decomposition takes the alternative form J;' (7, R*) — J' (m;, R*) =
f(ze, Ry) — f (x4, R*), where Ry(z,a) := Ry(x,a) + by(z, a) is the UCB. They then apply the mean
value theorem to this expression and leverage optimism to bound f(x, R¢) — f(x¢, R*).

In contrast, our analysis shows that it suffices to work directly with the oracle estimator R,. Instead
of invoking the mean value theorem, we use the exact second-order Taylor expansion of f.

af(l‘t, R*)
OR(x¢,a)
=0

! O f(xy, R* + aARy)
+ 11—« ARy(z,a : ARy (xy,ad) | da
JO ( ) Lgata%ct (ea) OR(xt,a')0R(x+, a) o a)

f(ae, Ry) — fay, RY) =
aeA

ARt (It, a)

~ 2
< n]Ea~7rt(~|a:t) [(Rt(xtaa) - R*(‘rha)) :| ) ©)
where AR; = ]’%t — R*. Note that in the equation, % = 0, which is one of our key theoretical
findings. This result shows that it is unnecessary to rely on optimistic estimators such as UCB. The
remaining steps then follow directly from straightforward calculus (see Lemma [B.2]for details).

2) Conversion to regression oracle bound. By summing over ¢ € [T'] in Equation [5|and applying
Freedman’s inequality together with Lemma 4 of |[Foster & Rakhlin|2020, we obtain

~ 2 1
Regret; (T,7) <7 Z Eai~m(-l20) [(Rt(xtv ar) — R*(xtvat)> ] < 2nReggy(T) + 167 log 3

This completes the proof of the KL-regularized regret bound.

3) Unregularized regret bound. From the definitions of .J;’ and ,, together with the non-negativity
of the KL divergence, we can bound the unregularized regret as follows (Lemma [B.3):

Regret(7) < Regrety; (T,7) Z KL (7% (- @¢) [ mrer (-] 1)) -
By applying the KL-regularized regret bound established above, we complete the proof of Theorem [I]

Remark 4 (Intuition behind why KL-regularization is sufficient). KL-regularization keeps the policy
close to a reference policy, and by choosing the regularization parameter n appropriately, we can
induce the right amount of exploration. When the optimal policy w}, is far from the reference policy
Tef, We use a larger 1 to encourage more aggressive exploration; when they are close, we use a
smaller 1) to induce more conservative exploration. For additional intuition, consider the special
case where the reference policy is uniform random. In this setting, KL-regularization resembles
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the entropic-regularized Follow-the-Regularized-Leader (FTRL) framework (Abernethy et al.| 2009}
Orabona, 2019) (even though the objective‘ﬂ and analyses differ fundamentally). Both approaches
introduce a regularizer when optimizing the policy, leading to a Gibbs-style solution. This connection
illustrates how KL-regularization can induce an exploratory effect similar to that of FTRL, implicitly
balancing exploration and exploitation through its regularized policy optimization.

5 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK

5.1 LOG-LOSS ONLINE REGRESSION ORACLE.

Similar to the KL-regularized contextual bandit setting, we assume access to a log-loss online
regression oracle (Foster & Krishnamurthyl 2021), denoted by OracleLog. First, we define the
binary logarithmic/cross-entropy loss function (“log-loss”) at round ¢ as

L(R) = f[yt loga(R(xt, ap) — R(zy, af)) + (1 —ye) loga(R(xt, a?) — R(xy, ai)) ], 6)

where y; denote the binary preference label, where y; = 1 if a; is preferred over a? (i.e., aj > a?)
and y; = 0 otherwise At each round ¢, OracleLog returns

Ry « OracleLog, ((z1,a1,a3,v1), ..., (Te—1,a{_1,a;_1,4—1)), where RyeR. (7)

Analogous to Assumption 3} we assume that the prediction error of OracleLog is bounded as follows:

Assumption 4 (Guarantee of log-loss regression oracle). We assume that, for every (possibly adap-
tively chosen) sequence x1.r,a} 1, a3, y1.1, there exists regret bound Reg; ., (T) such that the
regression oracle OracleLog satisfies

T T
C(Ry) = > 4(RY) < Regy o (7).
1 t=1

t=

Example 4 (Linear classes under log-loss). When R* € R and the reward function class R is linear,
we can use the algorithm from|Foster et al.|(2018D) to obtain Reg ,,(T') = O(dlog(T/d)).

Similar guarantees are available for kernels, generalized linear models, and many other nonparametric
classes, as in the case of the squared-loss online regression oracle (Foster & Krishnamurthy, [2021])).

5.2 ALGORITHM AND MAIN RESULTS

We now introduce an algorithm for RLHF problems, OEPO, described in Algorithm The overall
flow is similar to KL-EXP; however, at each round ¢ € [T'], the current policy samples two actions,
at,a? ~ m(-|z¢), and receives preference feedback between them. Another key difference is that the

reward estimator R, is updated using the log-loss online regression oracle OracleLog (Equation .
When OracleLog is implemented with a gradient-based method (e.g., SGD or Adam), OEPO recovers
the practical online RLHF algorithm.

The regret guarantees for OEPO are presented below, with the proofs deferred to Appendix

Theorem 3 (Regret of OEPO). Let 6 > 0, D := A>T KL(m*(x)|met(-|2)) and r :=
SUPR .o 1/0(R(x,a)). Under Assumption EI and with probability at least 1 — §, OEPO ensures

Regret,, (T,n) = O(nﬁ2RegLOg(T) + nK? log(l/é)) and

DT
Regret(T) = O(UHQRegLOg(T) + 77,%2 log(1/0) + 77) .

Discussion of Theorem [3} We obtain regret bounds comparable to Theorem ] up to a x factor
(and differences in oracle prediction error). Such x-dependence is standard and largely unavoidable

“FTRL optimizes an objective based on cumulative losses, while KL-regularization optimizes one based on
current reward estimates.
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Figure 1: Cumulative regret in linear bandits with d € {5,20} and N = |.A| € {50, 100}.
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Figure 2: Cumulative regret in neural bandits under different true reward functions.

in RLHF and dueling bandits (Saha) 2021} [Saha et al., 2023; [Zhu et al., 2023} Xiong et al.| 2023}
Zhan et all, 2023b; [Das et al, 2024} Xie et al., 2024} Zhao et al., [2024). With the choices n =
S (\/ DT/ (/fQRegLog(T))) and 7er = Unif(.A), OEPO achieves unregularized regret Regret(T") =

O(kV DTRegy . (T)). As in Theorem this yields O(v/T') regret guarantees for a broad range of
function classes (see Foster & Krishnamurthy|(2021) for bound on Reg; ,(7')).

Remark 5 (Extension to DPO, [Rafailov et al.| 2023). The DPO-variant algorithm (Algorithm%])
x|E).

achieves the same-order regrets, up to differences in the oracle’s prediction error (see Appendi

6 EXPERIMENTS

6.1 LINEAR CONTEXTUAL BANDITS

In the linear bandit experiments, we consider linear reward function class, i.e., R = {R : R =
é(x,a)T0,0 € R, |02 < 1}. For each instance we sample the true parameter 0* ~ A(0, I;) and
normalize it so that [|0*||s < 1. At each round ¢, a context x; € X is drawn uniformly at random, with
feature vector ¢(z¢, a) € R lying in the unit ball. We set d € {5,20} and N = | A| € {50,100}. We
report cumulative regret averaged over 20 runs, with standard errors.

We compare the performance of our algorithm KL-EXP against four baselines: (i) LinUCB
[2010), (ii) LinTS (Agrawal & Goyall 2013), (iii) LinPHE (Kveton et al.| [2020), and (iv)
SupLinUCB 2011). We use the exact theoretical confidence parameters for the baselines
and the theoretically optimal regularization parameter 7 from Theorem [I] for our algorithm. Figure[T]
shows that our algorithm consistently and significantly outperforms the baselines across varying d
and N, while also achieving faster per-round computation than the others (see Table [H.T)).

6.2 NEURAL CONTEXTUAL BANDITS

In the neural bandit experiments, we use the neural network reward class R, instantiated as a two-
layer network with input dimension 80 and hidden width 100, equipped with ReLU activations.
We evaluate four types of true reward functions: (i) linear: R*(z,a) = ¢(z,a)'0*, (ii) quadratic:
R*(z,a) = (¢(z,a)"6*)2, (iii) cosine: R*(x,a) = cos(wd(x,a)’0*), and (iv) neural network:
R* € R. Training is performed with squared loss via SGD (batch size 100, learning rate 0.005). We
set NV = 20, and report cumulative regret averaged over 10 runs with standard errors.

We compare our algorithm KL-EXP against two baselines: (i) NeuralUCB 2020) and (ii)
NeuralTsS (Zhang et al.,[2020). For the baselines, we tune the confidence bounds via grid search
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Llama-3-8B-Flow  Llama-3-8B-Flow  y5 OnlineDPO (1)
-SFT -Final 5.0 8.5 10.0 12,5  20.0
61.61 6190 62.04 6200 6214 62.02
Accuracy (%) 59.11 60.47 +0.04 +0.07 +0.14 +0.11 +0.12 +0.32

Table 1: OnlineDPO and XPO are trained with three random seeds; we report the mean accuracy
over 17 benchmarks and one standard error (small font), capturing training variance. Llama-3-8B-
Flow-SFT and -Final are fixed pretrained models and thus have no training randomness.

over {1.0,5.0,10.0}. For KL-EXP, we tune 7 using grid search over {50, 100, 500}, and adopt the
uniform random reference policy. Figure [2]shows that our algorithm outperforms the baselines across
diverse reward structures while running about 10 x faster (see Table [H.3).

6.3 LLM FINE-TUNING WITH RLHF

In this subsection, we validate our key theoretical insight in the LLM fine-tuning task: properly tuning
the regularization parameter n alone is sufficient to induce exploration. Our DPO-variant algorithm,
ODPO, coincides with On1ineDPO (Guo et al.,[2024) when the regression oracle OracleDPO (defined
in Equation is instantiated using the original DPO optimizer settings (optimizer, batch size,
learning rate, and training steps). Since we adopt these original settings, we report the algorithm as
OnlineDPO (in Table rather than ODPO, to avoid confusion.

For experimental details, we follow the iterative DPO pipeline (Xu et al., 2023} [Tran et al., 2023}
Dong et al.|[2024; |Xie et al.| 2024) from Dong et al.|(2024), running 7" = 3 total iterations with large
batches of pairs sampled from ;. We use the same base model (Llama—3—8B—Flow—SFTE]), prompt
sets for each iteration’} and true preference model for generating feedbac as in Dong et al.[(2024);
Xie et al.| (2024)), ensuring our results are directly comparable to theirs. Across all three iterations, we
fix the reference policy s to the base model Llama-3-8B-Flow-SFT.

We consider three baselines: (i) Llama-3-8B-Flow-SFT, the reference model; (ii) Llama-3-8B-Flow-
Final, the final model from Dong et al.| (2024), released on Hugging Facﬂ; and (iii) XPO (Xie et al.,
2024). To induce exploration, Llama-3-8B-Flow-Final constructs preference pairs by maximizing
heuristic uncertainty, while XPO augments the DPO objective with an additional exploration term that
encourages the policy to behave optimistically. We evaluate all algorithms on 17 academic and chat
benchmarks (Zhong et al., 2023} Nie et al., 2019; Hendrycks et al., 2020; |Cobbe et al., 2021} |Rein
et al.,2024;|Chen et al.|, 2021} Zellers et al., 2019} Sakaguchi et al.|[2021}; |Clark et al.;, 2018 |Lin et al.|
2021 Mihaylov et al.| 2018; Zellers et al.| 2018;Sap et al., 2019} |Pilehvar & Camacho-Collados}[2018];
Levesque et al., 2012} Socher et al.,[2013) and report their average accuracies. Table|l|shows that with
a properly chosen 1 = 12.5, OnlineDPO (or ODPO) outperforms other baseline algorithms that rely
on auxiliary exploration methods. This supports our main theoretical claim that additional exploration
techniques are unnecessary in online RLHF—properly tuning 1 suffices. See Appendix for
additional experimental details, per-benchmark results, training-time accuracy, and further analysis.

7 CONCLUSION

We show, for the first time to our knowledge, that KL-regularization alone is sufficient for achieving
sublinear regrets. In particular, the KL-regularized regret scales with the regression oracle bound,
which can be logarithmic in 7" for many function classes. Moreover, by carefully choosing the
regularization parameter 7, we achieve (’N)(\/T) unregularized regret, demonstrating that the policy
can be improved beyond the KL-regularized optimum. This highlights the pivotal role of 7 in attaining
sublinear unregularized regret. We leave further refinements of 7, such as time-varying schedules, as
an important direction for future work.

Shttps://huggingface.co/RLHFlow/LLaMA3-SFT
Shttps://huggingface.co/datasets/RLHFlow/iterative-prompt-v 1 -iter2-20K
"https://huggingface.co/RLHFlow/pair-preference-model-LLaMA3-8B
8https://huggingface.co/RLHFlow/LLaMA 3-iterative-DPO-final
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THE USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were used solely as an assistive tool for non-substantive tasks in
preparing this paper. Their use was limited to improving clarity, grammar, and style, as well as
helping generate code snippets for figures and visualizations, which were subsequently verified and
customized by the authors. No part of the research ideation, algorithm design, theoretical analysis,
or experimental results involved the use of LLMs. The authors take full responsibility for the entire
content of the paper, and LLMs are not considered authors or contributors.
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A FURTHER RELATED WORK

In this section, we provide additional related work that complements Section ]2}

Dueling bandits. The dueling bandit problem, first introduced by (2012), generalizes the
classical multi-armed bandit by replacing direct reward observations with pairwise comparisons: in
each round ¢, the learner chooses two arms and only observes which one is preferred. A challenge in
this setting is that there may not exist a single arm that dominates all others under arbitrary preference
structures. To deal with this, the literature has proposed several notions of “winners,” such as the
Condorcet winner (Zoghi et al.} 2014} [Komiyama et al., 2015), Copeland winner (Zoghi et al., 2015
[Wu & Liu} 2016; Komiyama et al.,[2016), Borda winner (Jamieson et al.| 2015; [Falahatgar et al.l 2017
Heckel et al., Saha et al.| Wu et al.} [2023)), and von Neumann winner (Ramamohan et al.
2016}, [Dudik et al.} 2015}, [Balsubramani et al., [2016)), each of which comes with its own performance

criterion.

To incorporate contextual information, [Saha) (2021)) introduced the contextual dueling bandit with
a Bradley-Terry-Luce (BTL) model (Bradley & Terry}, [1952), where pairwise preferences are
determined by latent arm rewards. Building on this line, Bengs et al.|(2022) analyzed a contextual
linear stochastic transitivity model, and [Di et al.| (2023) proposed a layered algorithm with variance-
sensitive regret guarantees.

18



Under review as a conference paper at ICLR 2026

Another line of research avoids parametric reward models and instead assumes that preferences are
generated by a more general function class. For instance, |Saha & Krishnamurthy|(2022) developed
an algorithm with optimal regret guarantees for /-armed contextual dueling bandits, and |Sekhari
et al.| (2023) further extended the framework with algorithms that provide theoretical guarantees not
only on regret but also on query complexity.

However, existing dueling bandit frameworks do not consider the KL-regularized objective, which is
the main focus of our work.

RLHF theory. Motivated by the remarkable success of RLHF in fine-tuning LLMs, its theoretical
foundations have recently become an active research topic. Much of the existing work focuses on
the offline RLHF setting (Zhu et al., 2023} Zhan et al., [2023a), which is complementary to ours.
Another line of research studies hybrid RLHF, where offline data are incorporated into an online RL
procedure (Xiong et al.| [2023; |Gao et al.; 2024} [Chang et al., 2024)).

In the context of online RLHF, much of the prior work (Xu et al., 2020; Novoseller et al., [2020;
Saha et al., 2023} |Xiong et al.| [2023; [Wu & Sun, [2023) has focused on the special case of tabular
MDPs or linear MDPs (or linear reward models when the horizon length is 1), establishing sample
complexity or regret bounds in this setting. The exploration bonuses used in these algorithms are
specifically designed for linear structures and thus do not extend naturally to the more general function
approximation regime we study (e.g., for LLMs).

To go beyond linear models, |Chen et al.|(2022); [Wang et al.|(2023); Ye et al.[(2024) investigate general
function approximation under the assumption of prior knowledge of the eluder dimension (Russo &
'Van Roy, [2013)), which is notoriously difficult to quantify in practice, especially for LLMs. More
recently, Zhao et al.| (2025a)) leveraged the properties of KL-regularization to establish the first
O(nlogT') KL-regularized regret bound, again assuming prior knowledge of the eluder dimension.
These approaches also require solving a complex optimization problem to compute the exploration
terms, raising concerns about their practicality for large-scale language models. In parallel,[Zhao et al.
(2024) achieved a O(n/e) KL-regularized suboptimality gap by relying on a forced exploration phase,
whose length depends on the coverage coefficient—another quantity that is difficult to determine
in practice. As yet another direction,|Zhao et al.|(2025b)) analyze f-divergence-regularized offline
policy learning.

To improve practicality under general function approximation, Xie et al.[(2024)); Liu et al.| (2024);
Cen et al.|(2024) proposed value-incentivized exploration methods that optimize the policy against
optimistically biased targets. However, the optimization problems in these approaches do not admit
closed-form solutions, and they introduce an additional exploration parameter o that must be tuned,
which can make implementation sensitive to hyperparameter choices.

To the best of our knowledge, all existing online RLHF works rely on auxiliary exploration methods
beyond KL-regularization. In contrast, our algorithm KL-EXP relies solely on KL-regularization.
Moreover, it requires no prior knowledge of any complexity measure, admits a closed-form solu-
tion Equation 2] and is thus easy to implement.

B PROOF OF THEOREMI]

In this section, we present the proof of Theorem|T}

B.1 MAIN PROOF OF THEOREM[I]

Define Mt = (ﬁt(xt,at) — ’I"t)2 — (R*(xt,at) — Tt)2 and Zt = ]E[Mt | ]:tfl] — Mt, where
Fi—1 =0(x1,a1,71,- ., Ti—1,0t—1,7t—1,T¢) is the filtration up to round ¢ — 1. The following
lemma establishes that these random variables are both bounded and self-bounding.

Lemma B.1 (Lemma 4 of |[Foster & Rakhlin|2020). Let F;_1 be the filtration up to round t — 1, i.e.,
Fi1=0(x1,a1,71,. .., T4 1,a:_1,7¢_1,T¢). Define My := (R¢(ws,as) —1¢)% — (R* (x4, a) —7¢)?
and Zy := E[M; | Fi—1] — M. Then, the following properties hold:

® |Zt| <L
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E[M; | Fir] = Ear, (o) | (Rel@e, a0) = R*(21,00))% .
E[Z2? | Fi_1] < 4E[M; | Fi_1].
We now present a key lemma that is central to the proof of Theorem [I]and crucial for establishing

regret guarantees without any additional exploration.

Lemma B.2 (Second-order regret decomposition). Under Assumption|l|and [Z] foranyt e [T], we
have

~ 2
TPt R*) = T (71, R) < 1B, (o) [(Rt(xt7a) - R*(a1,0)) ] .

The proof is deferred to Appendix[B.2.1]
Remark B.1 (Comparison with |Zhao et al.| (2024)). Unlike Lemma 3.9 of |[Zhao et al.| (2024),
which bounds the regret Jy'(my, R*) — J'(m;, R*) in terms of the unknown policy w?y (where

fy = ’yﬁt + (1 — v)R* for some unknown ~y € (0,1)), Lemma shows that our regret bound
depends only on the known current policy my. Note that in|Zhao et al.| (2024)), handling the unknown
policy 71'?7 requires a forced sampling phase, and the minimum number of forced sampling rounds

depends on difficult-to-estimate quantities such as the data coverage coefficient (Definition 4.5
therein) and the e-covering number of the reward function class. In contrast, our algorithm does not
rely on such quantities.

Remark B.2 (Comparison with [Zhao et al.|(2025a))). Unlike Lemma A.1 of |Zhao et al.|(20254),
Lemma does not rely on the optimism event. Consequently, our algorithm does not require
computing the Upper Confidence Bound (UCB) term, which is generally intractable for general
function classes.

Lemma B.3 (Unregularized regret decomposition). For any t € [T], we have
Ea~7r*(-|zt) [R* (‘Ttv a)] - Ea~7rt(~\xt) [R* (I’t, a)]
* * * 1 *
< J{(my, RY) = J(m, R7) + 5KL(7T Clwe)mrer(-2e))-

The proof is deferred to Appendix[B.2.2]

We are now ready to provide the proof of Theorem

Proof of Theorem[I] By Lemma[B.2] we can bound the regret as follows:

M’ﬂ

Regret,; (T, 1) — J (7, RY)

t=1
T

2 ag~ms (-|at) [(ﬁt(xt,at) — R*(mt,at)>2:| . (B.1)

Let i1 =0(x1,a1,71,...,&4—1,01—1,Tt—1, %) be the filtration up to round ¢ — 1. Define M; :=

(}A%t(a:t, a;)—r¢)?—(R*(z¢,a¢)—r4)? and Z; := E[M; | F;_1]— M. Then, by applying Freedman’s
inequality (Lemma|G.1)) with 8 = 1/8, with probability at least 1 — §, we have

T
2
DE[M, | Fia] < ;Mt+ EIEZ | Fie 1]+810g5

t=1
T

< Regg (1) +

1
E[M, | Fi—1] + 8log 5 (LemmalB.T)

l\')\)—l
N LMﬂi
Mﬂ

-
Il
—

1
[Mt | ]:1571] + 8log g,
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where the last inequality holds because

T
Z M, = Z Rt Ty, ap) — 1) Z (z¢,a;) —1¢)? < Regg, (7). (Assumption[3)
t=1 t=1
This directly implies
d 1
Z [M; | Fi1] < 2Reggy(T) + 16l0g . (B.2)

Plugging Equation [B:2]into Equation[B.I] we obtain
T ~ 2
Regrety; (7,7) <n 2 Ea,wrt( £ [(Rt(xh at) — R* (w4, at)) ]

T
Z [M; | Fe1] (Lemma [BT)

1
< 2nRegg, (T') + 160 log 5 (Equation[B2)

This concludes the proof of the regret bound for the KL-regularized objective.

We now provide the proof of the unregularized regret bound. By summing over ¢ € [T'] on both sides
of the result in Lemma|B.3] we directly obtain

T T
* * * 1
Regret(T) < > (J{(m}, R*) = J}(m, RY)) EZ * () et (-226))
t=1 t=1
= Regrety, (T,7) 2 KL(7* (+|z¢) | Tref (-] 2¢))  (Definition of Regret,, (T',7))
DT
- Regret (T.) + 2 (D= 4 ST, KL( () el -0)))

DT
= O(nRegsq(T) +nlog(1/6) + 77> .
Hence, the proof of Theorem|T]is complete. O

B.2 PROOFS OF LEMMAS FOR THEOREM ]

B.2.1 PROOF OF LEMMA [B.2]

Proof of Lemma[B.2] For simplicity, we use the shorthand Er[-] = Eq.r(|s)[:]. Noting that
R*(z,a) = % log exp (nR*(x,a)), we have

Ery [R*(x, a) - - log W”Mx)] ~E., [R*(x, a) = Llog ”t(am]

n et (@) n Tret(a|7)

1 [ re : * ) 1 e : * )
O r(alr) P (nR* (= a))] g, [log Trer(a|z) - exp (nR* (x a))]

no w5 (alz) n m(alz)

- ) " Tref(a|z) - €xp nﬁ(m,a)

g, [t o] 1 [, D)

no | w5 (alz) n m(alz)

+ Eﬂ't _ﬁt(xa Cl) - R* (l‘7 G,)]

1 1 ~
= 5log Zp(x) — 5log Zp (2) + Er, [Rt(x7 a) — R*(z, a)] , (B.3)
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where the last equality holds because

mef(a]z) - exp (nR* (z, a)) _ Tef(a]z) - exp (nR*(x, a)) ()
m(alz) Tet(alx) - exp (nR*(z,a))/Zg- (x) ’
and
Tref(a|z) - exp (77R*(:1c7 a)) _ mef(alz) - exp (nfit(x, a)) _ 7 (@)
m(alz) Ter(a|z) - exp (nRy(x,a))/Zp (x)

Define the function f : X x R — R as follows:
’/Tref(a‘x) + €Xp (UR(% a))

f(z,R) := —% log Zr(z) + Z -(R(z,a) — R*(z,a))

aeA ZR(I)
~r2(alz)
1
= o log Zg(z) + Exn [R(z,a) — R*(z,a)]. (B.4)

Then, since m; = 77% , the right-hand side of Equation can be written as:
1 1 ~ ~
108 7 () — - log Zp, (@) + Er, [ R, ) = ¥, 0)] = f(2, Be) = S, R,

First, we present the lemma that gives the derivatives of 7}, and Zg, with the proof given in
Appendix[B3.1]

Lemma B.4. Under Assumption[2} for any (z,a) € X x A, we have

m = nmet(alz) exp(nR(z, a)),

ompla'le) _ {777?3(‘”33) —nrp(alz)?, ifa=d,

OR(z,a) —nm i (a|x)m (alz), ifa+a.

m = nrj(alz) (R(z,a) — R*(z,a) — pr(z)) + 7} (alz),

where ju(z) == Equnio) [R(x,0) — B (z,a)]

Then, we compute the derivative of f(z, R) as follows:

of(x,R) 1 0 P )
R.a) ~ noRa) B7r@  Gpe oy B (R, 0) = B (@, )]
= _l 1 aZR(x) + a [ﬂ;?%(ah:) . (R(x’a) _ R*(ﬂf,a))]

nZgr(z) 0R(x,a) JR(z,a)

* s [ 3 wh(alo) - (R(e.a) - R*“’“'))}

a'#a
= —n}(alz) + 7h(alz) + m . (R(x,a) ~ R*(z, a))
+ Z a;g((:;)) - (R(z,d") — R*(z,d)) (Lemma[B.4)
a’'#a ’

(Lemma[B.4)
= nmg(alz) - (R(z,a) = R*(x,a) — pr(z)),
where pg(2) 1= Eqroqn o) [R(2,a") — R*(2,a")]. Note that when R = R*, we have g+ (z) =
0, which implies

of (x, R*)

O0R(z,a)
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Moreover, the second-order gradient of f can be expressed as:

?f(z,R)
O0R(x,a’)0R(z,a)

(mr%(abc) - (R(z,a) — R*(z,a) — uR(x))>

= )
_ m (R(z,a) — R*(z,a) — pr(z)) + nrh(alz) - <1a=a, _ %)

= 11’1 (alr) (Lama — 7R (d'|2)) (R(2,0) — R* (2, a) — pig(z))

+ UWR(Q\I) (la:a/ - 77”7{(% al) (R(JE, a,) - R*(I, a’l) - MR(J:)) + W?%(xa al))
(Lemma[B.4)

= ale) (Lamar — wha|2))
e (alo)]| (Lomw - wy '[2)) (R(z,a) ~ R*(,0) — p(a))
7) (R(x,d) = R (2.) = pr(a)) |.

For simplicity let AR, = R, — R* and v¥(z,a) = aARy(x,a) — prr+anr, () = 0AR(z,a) —
alE n [AR¢(x,a")]. Then, using the exact second-order Taylor expansion, we have
t

mr(a

flz,R) — f(z,R*) = f(z,R* + aAR,) — f(z, R")

3 1 32f($,R* + aARt> / of(x,R*) _
- fo = L;al Q;A AR a) OR(z,a')0R(x,a) Afty(w. ) | do ( OR(w a) -V

acA acA

+12 ) Ty ang, (@l2)vf (x, ) (ARy(z, a))
ac A

= JO (1-a) ln Z Tr;’%*-&-aARt (alz) (ARt(ﬂv,a))2 -7 (Z 77;]%*+aARt (alx) AR (x, a))

— o (Z 7TR*+aAR (alx)vi(z,a) AR (x, a ) (Z 7TR*+QAR |$)ARt($,a’)> 1da.

aceA a’eA
(B.5)
Plugging v{(x,a) = aARi(x,a) — o, T oan [AR;(x,a")] into the right-hand side, we can
further simplify the second and third terms as follows:
0’ Y e ranr, (@l0)0f (z,a) (AR (x,a))”
aeA
— 22 (Z Thesanr, (@2)0f (2, 0) AR (z,a ) (Z Thetanr, ( sc)ARt(x,a’)>
aeA a’eA
= ngal D) Thesanr, (@lz) (ARy(z,a))’
acA
" 3
SE g*‘FLXARf I:ARt z, a ZA/NR*JFOLAR (a|$) (ARt( L, )) (E ?{*+o¢ARt [ARt(Iaa’ )])
ae
E[(X - E[X])X] = E[X?] - (E[X])*)
2 n " 3
= P Y 7 onr, (al2) (ARt(x,a) Ery., oo [ARi(z0 )]) .

acA
E[(X - E[X])°] = E[X°] - 3E[X]E[X?] + 2(E[X])*)
Using this, we can rewrite the right-hand side of Equation[B.3]as follows:
1

flx,Ry) — f(z,R*) = fo (1—a)[nVard(z) + UQQM{’(QJ)] de, (B.6)
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where we define

Varg (z) = Y T anr, (al2) (ARi(z,0))” - (Z W?{*+aARt<a|x)ARt(xaa)>

aeA aeA
« n " 3
M (x) := Z}AWR,JFQA& (alx) (ARt(x,a) _Eﬂawwat [AR(z,a )]) .
ae

The following lemma is a useful tool for calculating the right-hand side of Equation[B.6] Its proof is
presented in Appendix [B:3.2]

Lemma B.5. Let 7w, (a|z) := merlalz) exp(nRa(®.0)) \ypore R, = R* + aAR with R*, AR € R, and

Zo(x)
Zo(x) = Ypen Tret(a|z) exp (NRa(x, a)). Then, underAssumptionandIZl Sforany (x,a) € X x A,
we have

- ra(ale) = nralalr) (AR(z, 0) ~ Bx, [AR(z, )],

< B [AR(, )] = 1., [(AR(x, ) ~ B, [AR(, a))?]
g (ARG )] = 1 (5. [AR(. )] - Er, [AR(,0]Ex, [AR(. ).

Then, by Lemma[B.3] we show that

d ¢ o
T Var{' (x)
d 9 2
= —(En., 0 [(ARe(,0)%] - (EW;MRt [ARt(m,a)])
d d
= @ 7‘—;’%*+0ARt [(ARt(x7 CL))2] - 2E”1T,?,*+QARt [ARt<xa a)] : @EW;’%*+0AR¢ [ARt(xa a)]

[AR(x,a)]|E,

1(Bep..ps, (AR 0]~ B (AR (w,0))?]

= 71.77 n [
R*+aAR; R*+aARy

— QETFIOQ*JN,YARt [AR:(z,a)] - Var?(x)) (Lemma[B.3)
= n 3 — n n 2
_ n(EﬁR*MARt [(ARi(2.0)"] 3B, [AR(r.a)]|Ey.  [(AR(r.0))?]

3

+2 (E’Tﬁwam?t [AR(x, a)]) > (Definition of Vary'(x))

= nM;(z). (Definition of M (x))
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Therefore, Equation [B.6]can be further simplified as:

f(e. Re) — f(x.R") = j (1 - a) [ Varl(z) + Pa M2 (z)] da

=7 *Jl(l — «) Varg (z)da + J

LJO 0

'od
as Varg (w)da]

rel 1
=7 J (1 — ) Varg (z)da + [« Varf‘(x)](l) - J Var?(a:)da]
LJo 0

(integration by parts)

r 1

— | Var (@) - |

L 0

a Vary (x)da]

= nEﬂ—%t :(ARt(x, a) — ]Eﬂ—%t [AR(x, a)])Q] -7 Ll aVary (z)da
<y 7(ARt(x, a) By [ARi(x, a)])Q] (Var$(z) = 0)
< 1B |(ARi(2))’] E[(X — E[X])*] < E[X?)

Recall that m;, = wrl’% and AR; = ]%t — R*. Hence, we obtain

t

~ 2
J;](TF;%R*) — Jg(’frt,R*) < 'I]Ea~ﬂ.t(.|$t) [(Rt(xha) — R*(xtya)) :| .
This concludes the proof of Lemma|B.2} O

B.2.2 PROOF OF LEMMA B3]

Proof of Lemma[B.3] For simple presentation, we write Er[-] = Eqr(.|z)[-]. Then, for any ¢ € [T7],
we have

1

Eors (o) [R (21, a)] = J (7", R*) + EKL(T(*('Hl't)”ﬂ'ref(’”zt)) (Definition of J;")
* * 1 * 11 *
< J{ (7, R*) + p KL (7 (- |2¢) [ mree (- |l2e) ) - (Definition of )

Moreover, since the KL divergence is always non-negative, we get

Eanry(an [B (#1;0)] 2 Baror, (o) [R (21, 0)] = %KL(m(~|\wt)H7Tref(-Hwt))
= J (7, RY).
Combining the above two results, we obtain
Eore (o) [B* (20, 0)] = Equr, (o) [R* (1, )]
< J{(m, RY) = I (m, RY) + %KL(T"*('th)H7Tref("|xt))7

which concludes the proof of Lemma [B.3] O

B.3 SUPPORTING RESULTS FOR LEMMA [B.2]
B.3.1 PRrROOF oF LEMMA [B 4]

Proof of Lemma([B4] First, we compute the derivative of Z(z). For any (z,a) € X x A, we get

6ZR(33) 0

OR(z,a)  0R(x,a) (Enlexp(nR(z,))]) = nmer(alz) exp(nR(z, a)),
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Next, we compute the derivative of the policy 7}, (alx). For any (z,a) € X x A, we have
orp(alr) 0 1
, _ g R
0R(z,a)  OR(z,a) ZR(x)Trer(a\:c) exp(nR(z,a))

_ nmeei(alz) exp(nR(z,a))  mei(alz) exp(nR(z,a))  0Zg(x)

- Zn(x) Zr(z)? " OR(z,a)
- el Tl ) ) exp(o(r, )

= yry(ale) - nh(ale)?.

Moreover, for any (z,a,a’) € X x A x A with a’ # a, we obtain

orh(a'|z) / ! ¢ =
a&mn=wwwmwmmﬂfmm@<%w>
Tref(d'|2) exp(nR(x, o’
_ Ter(] )ZRFx(;?? D)) er(alz) exp(nR(z, @)

= —nrg(d|x)mg (alz).

Finally, we compute the derivative of g (z) = Eqrn (|2) [R(z,a) — R*(z,a)]. For any (z,a) €
X x A, we have
Opr(z) omp(a’|x) / /
=N 2 (R ~ R "
OR(r.a) ~ 2, OR(.a) (0] 00) + kel

= nri(alz) Z (Lo—ar — 7R(d'|2)) - (R(z,d') — R*(z,d)) + 7 (a|z)
a’eA

= nrh(alz)(R(z,a) — R*(z,a) — pr(z)) + 74 (alz).
Thus, we conclude the proof of Lemma [B.4]

B.3.2 PROOF OF LEMMA B3]
Proof of Lemma[B.3] For the first property, a simple calculation gives

d (alz) = Teet(a]z) exp (NRa (2, ) - nAR(2, ) Zo (x) — Tret(alx) exp (nRa(z, a)) - 2alz)

I — da
da@ Zo(x)?
Tret(a|z) exp (NRy(x, a)) 1 dZ,(x)
— A _
Zo () Ak, a) Zo(z)  da
_ 1 dZ,(x)
= mq(alx) [UAR(I, a) — Zo@) da ] . (B.7)
Moreover, we get
dZ,(z)
v Y, meilal) exp (nRa(x, a)) - nAR(w,a) = nZa(x) )| malale)AR(z, a)
!
acA acA
= 0Zo(2)Er [AR(z,a)]. (B.8)
Plugging Equation [B.8]into Equation[B.7] we obtain the first property.
Now, we prove the second property.
d dmy (alx)
Eﬂ" A ) = ——A ’
1o Er.[AR(x, a)] 2;‘ o AR(v,a)
=7 Z Tolalz) (AR(z,a) — Ex, [AR(z,a)]) AR(z,a)  (first property)
acA

= 1 (Br, [AR(@,0)] = (Ex, [AR(z, 0))))

= nEq, [(AR(J:, a) — E,. [AR(z, a)])2] .
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Similarly, substituting AR(z, a) with AR(x, a)? in the above analysis, we obtain

i]E,ra [AR(x,a)*] =1 Z Tolalz) (AR(z,a) — Er [AR(z,a)])AR(z,a)* (first property)

da acA
=1 (Er,[AR(z,a)’] — Er [AR(z,a)*|E, [AR(z,q)]),
which proves the last property. O

B.4 DISCUSSION ON SPECIFIC FUNCTION CLASSES

In this subsection, we supplement the result of Theorem I]by providing a more detailed discussion
of the tightness of our (unregularized) regret bound for several special function classes. We set
the reference policy to be uniform, i.e., mer = Unif(A4). Then, for any policy m, it holds that
KL(7|mer) = ), (7(a)log 7(a) — 7(a)log ﬁ) < log|A| = log N. Hence, KL-EXP yields the
following regret bounds for special function classes:

1. Linear classes: When R* € R and the reward function class R is linear, i.e., R =
{R: R = ¢(x,a)76,0 € R% |0l < 1}, where ¢(z,a) € R? is a known feature map sat-
isfying |é(x,a)|e < 1, the Vovk—Azoury—Warmuth forecaster (Vovk, |1997; |Azoury & War-
muth, 2001) guarantees Regg,(7") = O(dlog(7'/d)) (Example [1), which implies Regret(7) =
@) (\/ dT'log N log T). As stated in Remark[ﬂ, this bound is minimax-optimal, matching the lower
bound €2(+/dT log N log(T'/d))(Li et al., [2019) up to logarithmic d factors. It is remarkable that we

obtain this O(+/dT log N)-type regret bound without relying on the difficult-to-implement “layered
data partitioning” technique required in prior works (Auer, [2002;|Chu et al.,[2011;|L1 et al., 2019). Our
algorithm is simple to implement: it only requires solving the KL-regularized objective in Equation|[I]
(with the closed-form solution in Equation using the reward estimator I:Et returned by the online
regression oracle. We believe this opens a promising direction for developing algorithms that are
both practical and statistically optimal in linear contextual bandits.

2. Multi-armed bandits (MABs): The function class in an MAB problem can be viewed as
an N-dimensional hypercube. Consequently, the MAB setting follows directly from the linear
case by taking d = N. In this case, we achieve Regg,(7") = O(N log(T'/N)) and Regret(T') =
O(4/NTlog N log(T/N)), which matches the lower bound Q(v'NT) of Auer et al.| (2002) up to
logarithmic factors.

3. Generalized linear models (GLMs): For GLM reward function class, i.e., R = {R : R =
w(o(z,a)76),0 € R4, ||6]o < 1}, where  : R — [0,1] is a fixed non-decreasing 1-Lipschitz
link function and ¢(z,a) € R? is a known feature map with ||¢(z,a)|s < 1, if R* € R, the
GLMtron algorithm (Kakade et al., 2011) guarantees Regg, (T') = O(x7.dlog(T/d)), where 1/1 <
#iy,- This, in turn, implies Regret(T') = O(k,,+/dT log N'log T'), which is tighter than the bound
O(k,(log T)'*\/dTlog N) (Li et al., [2017) by a factor of logT. On the other hand, [Lee et al.

(2024); [Sawarni et al.| (2024) establish a «,-improved regret bound of 1] (d T/ /{L) , where KJ; =

W, though with a looser dependence on v/d than ours. It remains an open question whether a

O(4/dT log N)-type regret bound can be attained while simultaneously improving the dependence
on K.

4. Bounded eluder dimension: Under the realizability assumption (Assumption , ie., R eR,
and the reward function class R has bounded eluder dimension (Definition [C.I)), the empiri-
cal risk minimization (ERM) algorithm achieves, with probability at least 1 — 9, Regg, (1) =

O(dglog(Nr(€)T)) (Lemma [C.2). Consequently, we obtain the unregularized regret bound
Regret(T) = O(+/dgTlog N log(N%(€)T)). In comparison, the existing bound of [Russo &

Van Roy| (2013) is O(\/dETlog(NR(e)T)), which shows that our result is tight up to a 4/log N
factor.

Remark B.3 (Not directly applicable to finite function classes). Our analysis is not directly applicable
to the finite function class setting (Agarwal et al|[2012)), as a finite class violates Assumption[2} In par-
ticular, the derivative-based arguments employed in Lemmas|B.2) and|B.5\do not hold in this case.
For a finite function class R, we instead consider its convex hull conv(R) (so that Assumption@holds )
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and analyze it using eluder-dimension arguments. This gives Regg, (1) = O (dE log(Neonv(R) (e)T))
and Regret(T) = O(\/dET log N 10g(Neony(r) (€)T)), where dg denotes the eluder dimension

with respect to conv(R), and Neony(r)(€) is its e-covering number (see Section Ig for complete

proofs). Compared to the minimax-optimal (unregularized) regret bound O(,/NT log |R|) estab-
lished by |Foster & Rakhlin (2020), our bound can be looser since dg10g(Noony(r)(€)T') is typically
larger than N log |R|, especially when |R| is small. Therefore, for problems with a finite function
class, we recommend using the SquareCB algorithm proposed by|Foster & Rakhlin|(2020).

C CASE: R WITH BOUNDED ELUDER DIMENSION (REMARK [2))

In this subsection, we analyze the setting where the reward function class ‘R has bounded eluder
dimension (Russo & Van Roy, [2013)), in order to enable a direct comparison with prior work (Zhao
et al.l [2025a).

We define the uncertainty and eluder dimension, following|Zhao et al.| (2025a)).

Definition C.1. For any sequence Dy = {(zs,as)}'_], we define the uncertainty of (x,a) with
respect to R as:

Ur(z,a;Dt) := sup |R1(z,a) — Ry(x,a)| .
R1,R2€R \/)\+Za 1 Rl(l’s7a5) RQ(Z’S,QS))

And the eluder dimension is defined as:

T
dg = sup Y min{l,Ug x(x,ai;D1)?} (C.1)

T1:T,01:T y_1

‘We also define the confidence set R; as follows:

Ry := {R ER: ti (R(zs,as) — I?L’t(xs,as))Q +A<pBE= 16log(NR(e)T/6)} ,

s=1
where A > 0. We can then bound the estimation error using the following lemma.

Lemma C.1 (Lemma 4.5 of Zhao et al.[2025a). Let Rg be the empirical risk minimizer (ERM), i.e.,

Rt «— argminger ZS 1(R(a:5, as) — ys)?. Then, under Assumptzonand the condition that the
noises €, are conditional 1-subGaussian, we have with probability at least 1 — 6, for all t € [T, we
have

~

Ri(z,a) — R*(xz,a) < min{l, Br - Ug, r(x,a; Dy)}, V(z,a) e X x A
The following lemma is useful for the subsequent analysis.

Lemma C.2. Under Assumption|l] if OracleSq is chosen as the standard ERM algorithm, then with
probability at least 1 — § we obtain

*(r,a1) — )" = O(dg log(Nr (6)T)).

MH
Mﬂ

It;at - Tt
f:1 t:l

Proof of Lemma|C.2] Let M; := (}A%t(sct, at) — )% — (R*(wy,a¢) — r4)% and Z; := My — E[M,
Fi—1]. We define the filtration ;1 =0 (21, a1,71, ..., Tt—1,0¢—1,T¢—1, T¢). Then, by Lemma
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and Freedman’s inequality (Lemma|G.1) with 8 = 1/8, with probability at least 1 — §, we have

1 & 1
Z M; < Z [ M| Fi=1] § Z E[Z2|F;_1] + 8log 5 (Lemma[G.1I] w.p. 1 —4)

1
E[M, | Fi—1] + 8log 5 (Lemma|[B:1)

N
N o
Mﬂ

-
I
—_

~

1
Ea~m I:(Rt(zt, Clt) — R*(;Z:t, at))2 | ft—l] + 810g g

Il
N | o
Nl

-
I
—_

~ 2
(Rt(xt, a;) — R* (x4, at))2 + 16log 5 (Lemma[G.2] w.p. 1 —4)

)
w
D=

-
I
—_

Hence, we derive

Z »Tt’at *T’t

s 2 2
Z Rt (z1,a0) — R* (24, a¢))” + 161log =

2
R*(xt,a¢) — Tt)

MH

t:1
é

2
< 382 Z min {1, Ug, x(z:, at;Dt)z} + 161log 5 (LemmalC.T} w.p. 1 — 0)
t=1

2
< 48dg log(Nr (€)T/d) + 16log 5
By setting § < 2, the proof is complete. O

We now present the claim in Remark [2] more formally.

Proposition C.1 (Regret under bounded eluder dimension). Suppose the eluder dimension defined
in Equation is finite. Let the online regression oracle OracleSq be the ERM predictor. Under
Assumptions|l|and[3] for any 6 > 0, KL-EXP (Algorithm|I) guarantees that with probability at least

>

Regret,, (T, 1) = O(ndE log (N (€)T) )a and Regret(T') = O (ndE log (NR(€)T') + DnT) ’

where D := th 1KL( (th)Hﬂref(th))

Proof of Proposition|C.1} Then, following a similar analysis to the proof of Theorem [I] we can
bound the regret as follows:

T
Regrety, (T',7) Z m, RY) — J)(m, RY)

T

Z as~me(-|zs) [(ﬁt(:ﬂt,at) - R*(l‘t,at))2] (Lemma[B.2)

T T
~ 2 1
2 Ri(xy,ar) — r (x¢,a) — 7 + 16log —
n ; ( i (4, a t t; t, Qt t) 1 g s
(Lemma|[G.I|and[B. I w.p. 1 — 4)
= O(ndglog (Nr(e)T)). (Lemma[C2lw.p. 1 — &)
Setting § < 3 yields the bound for Regrety, (T, 7).

The bound for Regret(T") then follows directly from Lemma|[B.3] Thus, the proof of Proposition
is complete. D

29



Under review as a conference paper at ICLR 2026

Algorithm D.1 OEPO (Oracle-Efficient Policy Optimization)

1: Inputs: regularization parameter 7, reference policy ¢, online regression oracle OracleLog.

2: Initialize: choose any R; € R.
3: forroundt = 1to 7T do

4 Observe context x; € X. R

5 Compute policy ¢ (+|@;) o€ mef(:|2¢) exp(nRy(zy,-)) via Equation
6: Sample action a}, al, ~ m(-|x;) and receive preference feedback ;.
7 Update }ABtH for the next round using OracleLog via Equation

8: end for

D PROOF OF THEOREM [3]

In this section, we present the proof of Theorem

D.1 MAIN PROOF OF THEOREM 3]

We begin by introducing the key lemmas used to prove Theorem 3]
Lemma D.1. With probability at least 1 — 6§, we have

T 2
> (IR (wea}) = Rolwe, ab)] = [R* (21, 03) = Ri(wr,a})])

T

T
2 (Zét(Rt 2 ) + 2k2 1og(1$.
t=1

The proof is deferred to Appendix [D.2.1]

Lemma D.2 (Second-order regret decomposition with baseline). Under Assumption[Ijand 2} for any
te[T]andany g : X — R, we have

N 2
JZ?(TF:],R*> - Jtn(ﬂ-hR*) < nEa~7rf,(~|act) [(Rt(xtaa) - R*(‘rha) + g(‘rt>) :| .

The proof is deferred to Appendix
We now provide the proof of Theorem 3]
Proof of Theorem 3] By applying Lemma with setting
gt(‘r) = 7Ea2~7rt(~\a:) I:Et@:v a2) - R*(‘Ta a2)] )

we have

Regret,, (T, 1) — J (e, R)

HM%

1 2 2 2 2
<7 Z Ea1 ,a?~7(-|xe) [(Rt(xtv ) - R*(l't,(l ) - (Rt(xtaa ) - R*(‘rtva ))) :|
t=1
(Lemma|D.2))

T R 9 9
Z (Rt mhat R*(xtaa%) - (Rt(xtva’?) - R*(;vt,af))) + 32nlog 3
B (Lemma[G.2] w.p. 1 —0)

T T
. 1 2
< 2nk? (Z AVHEDY &(R*)) + 4nK? log 5+ 32nlog (Lemma[D.1] w.p. 1 — §)
t=1

1 2
< anizRegLog(T) + 4nk?log 5 + 32nlog —

5 (Assumption [)
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By setting 6 < 2, we establish the bound for Regrety; (7', 7).
Furthermore, the bound on Regret(7") follows immediately from Lemma using the same analysis
as in the proof of Theorem[I} Hence, this completes the proof of Theorem O

D.2 PROOFS OF LEMMAS FOR THEOREM [3]

D.2.1 PRrRoOOF oF LEMMA D]

Proof of Lemma|D.1} The proof of Lemma [D.T] follows the analysis of Lemma D.1 in [Zhao et al.
(2024). However, unlike Zhao et al.| (2024), where the estimator R is fixed for all ¢, our setting
accommodates a time-varying sequence {;}1_;.

For completeness, we present the full proof below.

For simplicity, we write p; = o(R* (x4, at) — R*(24,a})) and p; = U(Rt(xt7at) Ry(x4, af)).
We define

— L po) — L pi 1-pi
X; = 5 (ft(R ) ft(Rt)) =3 (yt log o + (1 —y)log )
Then, by Lemma|[G.3] with probability at least 1 — 4, we have

1 (T T
3 (Z L(RY) — Z Et(Rt ) Z X; < Z log Et 1le X’]) + 1og 5 (Lemma|G.3)
t=1 t=1

t=1 t=1

T o\ —1/2 o\ —1/2
« [ Pt * 1_pt> 1
= > lo — +(1- + log —
;1 g(m (pt> ( pt)<1pt ) g5
d 1
= > log (\/pipt ++/(1-pp)(1 —pt)) +log 5
T

~+
[

<) (\/ptther—pt (1—p) — )+10g%

~+
—

(logx < x —1,forxz > 0)

[(\F \/197) (\/1—p2—\/1—pt)2]+10g(1;

(I=35@+ (1 =p)+pe+ (1—py)))

l\.')\»—l
IIMH

N 1
(p; — pt)2 + log 5 (D.1)

he fact that, for any p,q € [0,1], (\/p — /@)* + (VT —p —

-

<_

8
[
ﬂ‘

where the last inequality follows fro
VI=¢)?=(p—a)?

Now, consider the term pj — p;. For simplicity, let A} = R*(zy,a}) — R*(z4,a?) and A, =
R, (w4,a}) — R, (74, a?). Then, by the mean value theorem, we obtain

p; —pt = 0(A]) — ()

= (A} — At)J o (Ay +7(A] — Ay))dr (mean value theorem)
0
> 1 (AT — Ay). (6(2) = L, Definition of )
KR

Hence, substituting the above result into Equation [D.T]and rearranging terms, we obtain

Z ( (z1,a}) — R*(x1,02)] — [Ry(z1,a}) — Et(ﬂﬁtaa?)])Q

) T T
2 (Z ét(Rt Z ) + 2K 10g 5
t=1 t=1
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Algorithm D.2 ODPO (Oracle-efficient Direct Policy Optimization)

: Inputs: regularization parameter 7, reference policy 7, online regression oracle OracleLog.
. Initialize: choose any 7, € II.

: forround ¢ = 1to 7T do

Observe context x; € X.

Sample action a}, ab ~ 7(-|x;) and receive preference feedback ;.

Update ;1 for the next round using Orac1eDPO via Equation [E.2]

end for

AR A ol ey

which concludes the proof. O

D.2.2 PROOF OF LEMMA[D.2]
Proof of Lemma([D.2] Recall the definition of f : X x R — R in equation [B.4}

f(z, R) = —% log Zr(a) + Ery, [R(z,a) — R* (z,a)].

Note f is invariant to adding any action-independent baseline g : X — R.

f(SL',R + g) _% 10g ZR+g(x) + Eﬂ7?+g [R(x,a) + g(x) - R*(x,a)]

—% (log Za(x) + ng(x)) + Epy [R(x,a) + g(x) — R*(@,a)] (), = 7

1
- log Zg(z) + Eqy [R(z,a) — R*(z,a)] = f(z, R),
where the second equality holds because

Zrig(x) = Z Tret(a] @)@ +9(2)) — ng(2) Z Tret(a]@) M@0 — e19(®) 74 (1),

aeA aeA
and
(o) = Tref (] ) - e(R(@:0)+9(2)) _ Tef(alx) - enfi(z,a) | gng(z) 2 (al)
Rtg N Zpyg(x) B en9(®) 7 p(x) R '

Therefore, by substituting R, (x,a) < R, (x,a)+ g(zx) and the following the proof from Equation
in Lemma[B.2] we derive

~

2
Jtn(ﬂ-:pR*) - Jtn(ﬂ-taR*) < nE(l'vTrf,(~|.’Et) [(Rt(xtaa) - R*(‘rha‘) + g(‘rt>) :| .

which concludes the proof. O

E EXTENSION TO DIRECT PREFERENCE OPTIMIZATION (DPO)

In this section, we extend our method to the DPO objective (Rafailov et al., 2023)). The problem
setup is identical to the RLHF setting (Subsection [3.2), except that DPO bypasses reward learning
and directly optimizes the policy within the policy class II. Rearranging Equation[2] we can express
the reward function as follows:

R(z,a) = 1 log _m(alz)
n Trref (CL | x )

Accordingly, the Bradley—Terry model for preference feedback takes the form

1 ! 1 2
P(a' > a?|z,a',a?) = 0<10g7r(a|1x) — —log 7r(alac)) ,
n 7"-ref(a |Z‘) Ui 7Tref(a’ |$)

+ %logZR(:r). (E.1)
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where o (z) = 14—% is the sigmoid function. Finally, the DPO loss at round ¢ is defined as

1 1 1 2
PP (1) .= 10g0< log 77r(atlmt) ——1lo 77r(atl$t) ) )
n mer(ag|ze) 7 Trer(af [ T¢)

Note that /PPO(7) is exactly the same as ¢;(R) defined in Equation @

Similar to Subsection [3.2] we assume access to an online DPO regression oracle, denoted by
OracleDPO. At each round ¢, rather than estimating a reward function, this oracle directly returns a
policy:

7 < OracleDPO; ((z1,a1,af,y1),.. ., (T4—1,a;_1,a;_1,yt—1)), where meIl.  (E.2)

We assume that the prediction error of OracleDPO is bounded with respect to the policy class II.

Assumption E.1 (Guarantee of online DPO regression oracle). We assume that, for every (possibly
adaptively chosen) sequence x1.r,al.r, a%:T, y1.1, there exists regret bound Regppo (T') such that
the regression oracle OracleDPO satisfies

T T
D00 () = D 4270 (mh) < Regppo (T).

t=1 t=1
Using this oracle, we establish the following regret bound, analogous to Theorem

Theorem E.1 (Regret of ODPO). Ler 6 > 0 and k := supg , , m. Under Assumption
and ODPO guarantees that with probability at least 1 — 6,

Regrety; (T, 1) = O(nmzRegDPo(T) + nK? log(1/8)), and

DT
Regret(T) = (’)(nm2RegDpo(T) + nr?log(1/6) + 77) ,

where D:= % ST KL(w* (-|¢) et (- |¢) )

Proof of Theorem[E-1} By Lemmal|D.1} together with the fact that /P*°(7) = ¢,(R) and the reward
reformulation in Equation we obtain

Corollary E.1. With probability at least 1 — 6, we have

T 2
1, 1 1, 1
S (L togrt (aller) — L logmy(al o) ( log 7 (a2]ae) — - 10g7rt(df|$t)>
=\ 1 1 1
T T 1
< 2 EDPO o KDPO * 9 21 Z
o (3t - 300 ) + 2t
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Then, by Lemma|[D.2] we get

Regrety, (T,7) = ZJ" m, R*) — J{ (7, RY)

- D 1 * 1 D 2 * 2
<0 Y Bt i | (Rela) = R rea!) = (Ruwa?) = )|
t=1
(Lemmawith 9t (1) = —Eg2r,(|2) [ﬁt(xt,a2) — R*(xy, ag)])

T 5 9
< 2n Z (Rt(xt, at) — R*(x¢,a;) — (Rt(zt, af) R*(xy, af))) + 327 log 5

t=1

(Lemma[G.2] w.p. 1 — 0)
T 2
1 w1 1 2 1 x( 2

Z 1og 7t (ay Hay) — ; logﬂ'n(at |xe) — Hlogm(at |xy) — Elog ﬂ'n(at |xs)

+ 32 log 5 (Equation [E.T))
T
1 2
< 22 (Z PPO (7, Z (PO (7 > + 4nk? log ~ 5+ 32nlog 5 (Corollary [E.T| w.p. 1 —¢)
1 2

< 2nK?Regppo(T) + 4nk? log 5 + 32nlog 5 (Assumption [E.T)

By setting § < 2, we obtain the bound for Regrety, (T, 7).

In addition, the bound for Regret(7’) follows directly from Lemma by applying the same
reasoning as in the proof of Theorem[I] This concludes the proof of Theorem [E.T] O

E.1 COMPARISON TO LOWER BOUND IN PROPOSITION 2.1 OF|XIE ET AL.|(2024))

A careful reader might wonder whether the logarithmic KL-regularized regret established in Theo-
rem@]contradicts the lower bound in Proposition 2.1 of Xie et al.|(2024)). This is not the case: their
analysis considers only the restricted policy class IT = {7ref, ,}, rather than the full family of Gibbs
policies (Equation[2)), so their lower bound does not apply to our setting. For clarity, we first restate
Proposition 2.1 from Xie et al.| (2024).

Proposition E.1 (Necessity of deliberate exploration, Proposition 2.1 of Xie et al.|[2024). Fix
n > %, and consider the two-armed bandit setting of X = &, and |A| = N = 2. Let

IT = {mpes, 7r,*7} There exists a reference policy Tt such that for all T < % exp (g) with constant
probability, all of policies 71, ..., 7p4+1 produced by OnlineDPO satisfiy

1
max J; (7, R) — J (7, R) > 3’ Vte [T +1].

TE

As is clear, this proposition only applies to the restricted class IT = {mef, ™ }, where the learner can
update its policy only by switching between these two candidates. In contrast, our analysis permits
the learner to choose from the full family of Gibbs policies—beyond just { e, 7, }—with the choice
adaptively guided by data collected through online interactions. Therefore, their lower bound is not
directly comparable to our upper bound.

F KL-REGULARIZED CONTEXTUAL BANDITS WITH OFFLINE REGRESSION
ORACLE

In this section, we assume access to an offline regression oracle instead of the online regression
oracle defined in Equation[d] Note that an online regression oracle must provide robust guarantees
against arbitrary data sequences generated by an adaptive adversary, which becomes challenging
to implement when the function class R is complex. While the minimax regret rates for online
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regression with general function classes are well understood (Rakhlin & Sridharan) 2014)), to the best
of our knowledge, computationally efficient algorithms are only known for specific function classes.

Unlike the online regression oracle setting, where contexts may be chosen adversarially, we now
adopt a stochastic context assumption.

Assumption F.1 (Stochastic context). At each round t, the context vy € X is drawn i.i.d. from an
unknown but fixed distribution p.

In this section, we redefine the KL-regularized and unregularized regrets in the stochastic contextual
setting as follows (we use the same regret notations for simplicity):

T
Regrety; (T,7) := > By, [J/(w}, R*) = J{ (7, R*)] and

t=1
T

Regret(T) == > By, p[Eonrne (o) [R (@1, 0)] = Egmr, (o [R* (21, 0)]]-
t=1

F.1 OFFLINE REGRESSION ORACLE

We now introduce the notion of an offfine regression oracle. Given a reward function class R, an
offline regression oracle associated with R, denoted by OracleOf£f, is a procedure that produces a

predictor R: X x A — Rbased on input data. In statistical learning theory, the performance of

R is typically evaluated in terms of its out-of-sample error, that is, its expected error on random,
unseen test data. Similar to online regression setting, we assume the statistical learning guarantees of
OracleOff.

Assumption F.2 (Guarantee of offline regression oracle). Let m : X — A(A) be an arbitrary
policy. Given n training samples (1.5, a1.n, T1.n) Where x; ~ p and a; ~ 7(-|x;) i.i.d., the offline
regression oracle OracleOff returns a reward estimator R:X x A— R For any § > 0, with
probability at least 1 — §, we have

Eomprar(lo) [(fz(m,a) - R*(x, a))Q] < &(n).

Under the realizability assumption (Assumption [T)), this squared distance corresponds to the estimation
error or excess risk of R.

F.2 ALGORITHM AND RESULTS

We provide an algorithm KL-EXP-O£f in Algorithm [F1} Unlike Algorithm I} which updates the
predictor at every round, KL-EXP-0£f adopts an epoch-based learning protocol, updating the reward
estimator only once per epoch via the offline regression oracle. In addition, rather than feeding all
past data into the oracle, we restrict its input to the data collected in the immediately preceding epoch
(m — 1). As a consequence of this strategy, the algorithm proceeds in gradually increasing epochs,
ie., T, = 2™

Let m(T") denote the total number of epochs. We then establish the following regret bound under the
offline regression oracle.

Theorem F.1 (Regret of KL-EXP-0£f). Consider an epoch schedule 1., = 2™ for m < m(T). Then,
Under Assumption[I] 2} and[F2] with probability at least 1 — 0, the regret of KL-EXP-0ff is bounded
by

Regrety, (T, 1) = O(nEs/1057(T) - T), and
DT
Regret(T) =0 (T]g(;/ logT(T) T+ 77> y
where D:= & ST KL (7% (- 4) et (- | ¢)).-

Remark F.1 (Computational efficiency). The algorithm KL-EXP-O£f requires only O(logT') calls
to the offline regression oracle.
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Algorithm F.1 KL-EXP-0ff

1: Inputs: regularization parameter 7, reference policy 7, offline regression oracle OracleOf£f,
epoch schedule 0 =19 <74 <70 < ---

2: Initialize: choose any R; € R.

3: forepochm = 1,2,...,m(T) do

4: forroundt =71,,_1+1,---,7, do

5: Observe context x; € X. R

6: Compute policy my(+|2;) o€ mef(-|¢) exp(nRm (24, -)) via Equation
7: Sample action a; ~ m¢(-|z;) and receive reward ;.

8: end for R

9: Feed only the data in epoch m — 1 into OracleO£ff and obtain R,,, ;1 .
10: end for

Example F.1 (Linear classes). When Assumpnon[Z]holds and the reward function class 'R is linear (re-
fer Examplel) by using the least squares regression oracle, KL-EXP-0ff achieves Regrety, (T,n) =

O(ndlogT) and Regret(T) = O(+/dDT logT), with the choice n = © ( dﬁgT). Moreover, by

setting Tt 10 be uniform random, we have Regret(T) = C’)(\/dT log N log T) since D < log N.

This upper bound matches the lower bound Q(\/ dT log N log(T'/d)) established by|Li et al.{(2019),
up to logarithmic d factors.

Example F.2 (Neural Networks). Let Assumptionhold and R = GV, where G denotes the class
of Multi-Layer Perceptrons (MLPs) as described in Section 2.1 of Farrell et al.|(2021). For each
(z,a) € X x A, let the rewardfunctlon be R*(x,a) = g;(x). Assume the context distribution p is
continuous over [—1,1]%, and that g5, ..., gx lie in a Sobolev ball with smoothness /3 € N. Then,

by Theorem 1 of Farrell et al.|(2021), the deep MLP-ReLU network estimator attains O (n_%)
estimation error. Consequently, by using this estimator as the offline regression oracle, KL-EXP-0ff
~ ~ 2d
achieves Regrety, (T,n) = O (nTBLer> and Regret(T) = O (T ﬁi?d) (ignoring dependence on

~ 8 . .
other parameters) with the parameter choice n = © (T25+2d ) Our derived unregularized regret,

0 (T 35754 ) has the same order as the regret established by |Simchi-Levi & Xu|(2022).

F.3 MAIN PROOF OF THEOREM [E1]

In this subsection, we present the proof of Theorem [FI]

Proof of Theorem[F1] For any ¢ € [T], by Lemma|[B.2] we have

Mﬂ

Regrety, (T',7) a:f~p T R) — J¢ (7, R*)]
t=1
T

2 oo~ pBay~my (-|z0) [(ﬁm(xt,at)—R*(xt,at)>2] (Lemma [B.2)

t=1

Let F; := o(x1,a1,71,...,%t, 7, a;) be the filtration up to round ¢. We introduce the following
lemma to further bound the regret.

Lemma F.1 (Lemma 2 of|Simchi-Levi & Xu|2022). Forallm > 2and allt € {Tp—2+1, -+ ,Tm—1},
with probability at least 1 — §/(2m?), we have

~

2
]Ewt~p,at~7rt(~|xt) [(Rm(xtvat) - R*(l'tvat)) | ft1:| < 65/(2m2)(7_m71 - 7—777,72)~
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By applying Lemma|F.I] with probability 1 — &, we obtain
T R 2
RegretKL T 77 Z Ti~p a,~7rf,(~\3:f,) |:(Rm(t) (xh at) - R (xtu at)) :|

T R 2
Z Ti~p a1~7rf,(~\3:f,) |:(Rm(f) (xtvat) - R*(xtaat)) | ]:tl:|

T
<7 2 Es/2m1)2) (Tm(t)—1 = Tm(t)—2) + T1
t=11+1
m(T)
_WZSS/QmQ)(Tm 1~ Tm— 2) ( — Tm— 1)+Tl
m=2

= 0(7756/ logT(T) 'T) .

This completes the proof of the upper bound on the KL-regularized regret. Moreover, the bound for
the unregularized regret follows directly from the same analysis as in the proof of Theorem[I} [

G TECHNICAL LEMMAS

Lemma G.1 (Freedman’s inequality, [Freedman, (1975). Let (Z;)i<1 be a real-valued martingale
difference sequence adapted to a filtration Fy_1, and let By[-] = E[- | Fi—1]. If |Z¢| < B almost
surely, then for any (B € (0,1/B), it holds that, with probability at least 1 — 6,

T
Zy < ﬁz B 1 [Z7] + Bl%(lw)-
t=1

gk

Lemma G.2 (Lemma A.3 of [Foster et al.[2021). Let (X;):<1 be a sequence of random variables
adapted to a filtration (Fy)i<t. If 0 < X; < B almost surely, then with probability at least 1 — 6,

T T T
_3
t; <3 ; 1[X4] +4Blog5 and ;Et,l[xt 22Xt +8Blog§

t=1

Lemma G.3 (Lemma A .4 of Foster et al.[2021). For any sequence of real-valued random variables
(Xt)t<T adapted to a filtration (Fi)i<r, it holds that with probability at least 1 — 6, for all T < T,

T’ T’ 1
X, 4
t;Xt < tgllog (Ei—1[e™*]) + log 5

H ADDITIONAL EXPERIMENTAL RESULTS

H.1 ADDITIONAL RESULTS ON LINEAR CONTEXTUAL BANDIT EXPERIMENTS

H.1.1 COMPUTATIONAL COST IN LINEAR CONTEXTUAL BANDITS

N | d | LinUCB LinTS LinPHE SupLinUCB | KL-EXP (ours)

50 | 5 0.321 0.274 0.862 0.203 0.173
100 | 5 0.465 0.336 0.927 0.225 0.190
50 | 20 1.414 1.504 1.877 1.274 1.227
100 | 20 1.616 1.546 1.942 1.378 1.253

Table H.1: Average per-round computation time (us) for linear bandits.
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H.1.2 ABLATION STUDY ON 7 IN LINEAR CONTEXTUAL BANDITS

| KL-EXP (1)
d N " " " S S LinUCB LinTS LinPHE SupLinUCB
| 0.2n 0.51 n 2n 5p* |
5 50 596.37 36731 24452 22257 26798 | 302.06 44090 602.85 1486.69
+112.63 +129.12 +78.35 +67.61 +88.32 +45.40 +73.82 +63.90 +636.21
5 100 508.08 410.16 238.09 267.38 320.29 | 297.72 417.66 594.41 1497.95
+131.46 +152.76 +77.78 +213.09 +106.25 +33.71 +64.97 +71.29 +641.16
20 50 541.04 34224 32934 321.84 340.00 | 47825 584.17 614.89 1105.45
+227.71 +105.33 +40.41 +70.77 +76.04 +113.83 +182.24 +207.34 +416.75
20 100 684.46 41629 361.01 379.26 400.35 | 443.73 575.69 622.88 1104.46
+212.17 +108.76 +55.66 +135.18 +106.67 +80.81 +177.43 +212.86 +420.46
Table H.2: Average cumulative regret at the final round 7' = 5000, with standard deviations

(small font), under varying regularization parameters 7 in linear contextual bandits. Here, n* =
\/Tlog N/(2dlog T + 16log(1/5)) denotes the theoretically optimal choice proposed in Theorem

H.2 ADDITIONAL RESULTS ON NEURAL BANDIT EXPERIMENTS

H.2.1 COMPUTATION COST IN NEURAL BANDITS

NeuralUCB  NeuralTS \ KL-EXP (ours)
0.0507 0.0665 | 0.0048

Table H.3: Average per-round computation time (s) for neural bandits.

H.2.2 ABLATION STUDY ON 7 IN NEURAL BANDITS

Reward | KL-EXP (7))
Function | 50 100 500 1000 3000 5000 | NewralUCE  NeurallS
Linear | 5248 2707 1949 2005 2059 2196 | 29.56 31.61
+2.01 +1.55 +1.12 +1.23 +1.52 +1.82 +2.67 +2.85
| 13461 7089 5157 5061 4616 4847 | 142.59 108.89
Quadratic ) ; ) -
+3.65 +2.29 +6.44 +4.88 +5.89 +4.12 +16.75 +6.36
Cosine | 21167 21007 20785 20495 21089 21584 | 24658 250.42
+7.69 +6.12 +6.51 +9.72 +9.62 +10.02 +6.73 +6.77
Neural | 139.10 8355 5476 5375 5392 5858 | 79.43 68.96
Network +2.35 +1.78 +1.24 +1.63 +1.53 +2.24 +4.27 +1.80

Table H.4: Average cumulative regret at the final round 7" = 4000, with standard deviations (small
font), under varying regularization parameters 7 in neural bandits.

H.3 RLHF EXPERIMENTS: DETAILS AND ADDITIONAL RESULTS

In this section, we present the RLHF experimental setup in detail and provide additional results.

Implementation details. For fair comparison, we follow the experimental setup of |Dong et al.
(2024)); Xie et al.| (2024). In each iteration, we fix the base model (Llama-3-8B-Flow-SFT) as the
reference model s and set the regularization parameter to = 10.0. Training is performed with a
global batch size of 16, a learning rate of 5 x 10~7 with cosine scheduling, 2 epochs per iteration,
and a warmup ratio of 0.03. For XPO, following [Xie et al.| (2024), we set 7; = m; and D" = D?ref,
and use their exploration schedule o € {1 x 107°,5 x 10~°, 0} across the three iterations(see their
definitions). All experiments were conducted on 8 x Nvidia H100 GPUs.

We train XPO (Xie et al.|[2024)) and On1ineDPO using three random seeds and report the mean and
standard error of their average accuracy across 17 benchmarks to ensure statistical reliability. For the
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baselines Llama-3-8B-Flow-SFT (m¢) and Llama-3-8B-Flow-Final 2024), we directly
evaluate the pretrained models released on Hugging Face, so training randomness is not reported for
these two baselines.

Full benchmark results. Table [H.3]reports the accuracies of the algorithms on all 17 academic and

chat benchmarks (Zhong et al.}[2023} [Nie et al.} 2019} [Hendrycks et al.} 2020} [Cobbe et al, 2021}, [Rein

et al.| 2024; [Chen et al., 2021} Zellers et al., 2019; |Sakaguchi et al., [2021; |Clark et al.| 2018} |Lin et al.
2021; Mihaylov et al., 2018} Zellers et al., 2018 Sap et al., 2019; Pilehvar & Camacho-Collados

2018; [Levesque et al., 2012} [Socher et al.,2013), as well as the performance of Onl1ineDPO (or ODPO)
with varying regularization parameters 7 € {5.0, 8.5, 10.0, 12.5, 20.0}. The bold values represent the
best performance for each benchmark. The results show that On1ineDPO with a carefully chosen n
(= 12.5) outperforms other baselines that rely on additional exploration techniques.

Robustness to sampling temperature. We evaluate the performance of models produced by different
alignment algorithms across a range of sampling temperatures. We also report the win rates (%)
computed by GPT-40-mini (Hurst et al., 2024) on the RLHFlow test dataseﬂ , comparing each
model against the reference policy (Llama-3-8B-Flow-SFT). In Figure [HI} the results indicate
that OnlineDPO with n = 12.5 outperforms the other baselines across the sampling temperatures
7 € {0.5,0.7,1.0}. Moreover, we observe that OnlineDPO achieves its highest win rate at 7 = 1.0,
whereas the other baselines perform best at 7 € {0.5,0.7}. This behavior is, however, consistent
with our theoretical framework: the policy is trained at 7 = 1.0, and the regret is also defined with
respect to the 7 = 1.0 policy. In other words, the primary objective is to minimize regret for the
policy corresponding to 7 = 1.0, making this outcome expected.

65 ' —4— Llama-3-8B-Flow-Final 65 ' —$— OnlineDPO (n=20.0)
64 —$— XPO | 64 —— OnI!neDPO (n=12.5)
—4— OnlineDPO (n=12.5) —4— OnlineDPO (n=10.0)
~ 63 —#— OnlineDPO (n=8.5)
g\/ﬁz —$— 0nlineDPO (= 5.0)
9]
=
© 61
c
= 60
=
59
58
57
0.3 0.5 0.7 1.0 0.3 0.5 0.7 1.0
Sampling Temperature Sampling Temperature

Figure H.1: The frontier of the ground-truth reward reward vs KL to the reference policy.

Reward vs. KL to the reference policy. We additionally report the reward, evaluated by the
ground-truth reward model against the KL divergence at the end of each iteration. The figure [H.2]
shows that that OnlineDPO achieves the most efficient frontier—obtaining the highest reward while
keeping the KL divergence small.

3 ~ —e— Llama-3-8B-Flow-SFT —e— OnlineDPO (n=20.0)
—e— Llama-3-8B-Flow-Final 3 —® OniineDPO (n=12.5)
2 | e XPO ~e— OnlineDPO (n =10.0)
—e— OnlineDPO (n=12.5) 2 [~ PnlineDPO (.= 8.5)
1 —e— OnlineDPO (n=5.0)
° T
g ° s
] o 0
o -1 g:)
-1
-2
-2
-3
L] -3
-4
0 5 10 15 20 25 30 10 15 20 25 30 35 40
KL Divergence KL Divergence

Figure H.2: The Reward-KL trade-off curves.

https://huggingface.co/datasets/RLHFlow/test_generation_2k
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Model ‘ 7 ‘ iteration ‘ AGIEval ANLI MMLU GSM8K GPQA HumanEval HellaSwag WinoGrande ARC-C
Llama-3-8B-Flow-SFT | 10.0 | | 39.33 40.51  62.63 74.15 34.34 54.27 59.89 76.48 53.50
Llama-3-8B-Flow-Final | 10.0 | | 4175 4629 6336 74.75 3131 54.88 61.22 76.95 52.73

iter 1 39.33 43.74  63.13 80.14 33.33 57.11 62.16 75.82 56.60
£0.007  £0.147  £0.084 +0.347  £0.505 +0.931 +0.036 £0.199 +0.178
. 40.01 47.80 6334 80.31 31.14 58.64 62.48 76.16 56.31
XPO 10.0 iter 2 i . _
+0.089 40350  £0.079 +0.266  +0.292 +0.976 +0.075 +0.158 +0.443
iter 3 40.35 4643 63.46 81.91 33.16 58.94 62.94 77.01 56.83
+0.259 40316 +0.083 +0.904 +0.292 +0.931 +0.095 +0.456 +0.256
iter 1 39.47 4570 63.19 81.32 32.83 56.71 62.31 76.22 56.11
+£0.154  £0.258  +0.128 +0.306  +1.010 +2.199 +0.333 +0.254 +0.130
50 iter 2 40.17 46.68 6324 83.04 34.51 57.93 62.82 76.19 56.09
+0.354 41206  +0.253 +1.161 +1.458 +0.610 +0.397 +0.091 +0.793
iter 3 40.52 4726 6323 82.59 33.00 58.74 63.08 76.35 56.40
+0.325 41276 +0.080 +£0.219  +1.051 +1.269 +0.546 +0.329 +0.597
iter 1 39.65 4544 6333 81.67 31.66 57.58 62.61 76.22 56.14
+0.179 40796 £0.095 +0.368  +0.282 +0.458 +0.141 +0.228 +0.224
85 iter 2 40.33 4772 6334 82.89 33.00 58.03 63.20 76.06 55.66
40259 40924  +0.213 +1.595 +0.583 +0.187 +0.268 +0.182 +0.485
iter 3 40.53 4890  63.38 82.82 33.33 59.76 63.48 76.40 55.69
£0.215  £0.341  £0.079 +0.382 £1.010 +1.829 +0.219 £0.285 +0.130
iter 1 39.47 45.00  63.34 81.87 31.99 57.78 62.66 76.06 56.08
40105 40790 +0.082 +0.258  +0.764 +0.415 +0.095 +0.046 +0.174
OnlineDPO 100 | iter2 40.40 48.03  63.37 82.74 32.83 5772 63.29 76.16 55.57
+£0.219  £0.808  +0.207 +1.630  +0.505 +0.352 +0.180 +0.000 +0.394
iter 3 40.74 4891 6332 83.07 32.83 58.13 63.58 76.22 55.83
+0.284 40352 +0.127 +£0.389  +0.505 +0.352 +0.244 +0.164 +0.261
iter 1 39.57 4586  63.26 81.75 31.14 59.96 62.75 76.16 55.97
+0.077 40215 £0.009 +0.438  +1.166 +0.352 +0.080 +0.137 +0.148
125 iter 2 40.33 47.80  63.16 84.00 3249 59.55 63.42 76.87 55.12
+0.220 40258  +0.143 +£0.330  +1.166 +0.931 +0.072 +0.158 +0.171
iter 3 40.81 48.55 6326 83.37 33.00 58.33 63.72 76.59 55.52
) 40153 +£0.358  +0.095 +0.358  +1.543 +0.931 +0.177 +0.389 +0.215
iter 1 39.70 4598  63.27 82.56 31.99 57.93 62.94 76.16 55.86
+0.104 40353 +0.175 +£0.273  +0.583 +1.613 +0.041 +0.158 +0.099
200 | iter2 40.38 4740  63.18 83.34 3232 58.94 63.57 76.51 54.52
£0.209  £0.370  +0.047 +1.031 +0.875 +0.931 +0.106 £0.690 +0.644
iter 3 40.90 4730  63.37 83.47 31.99 5833 63.80 76.69 55.29
+0.168  £0.870  £0.168 +0.263  +0.582 +1.763 +0.047 +0.501 +0.823

Model | m | iteration | ARC-E  TruthfulQA OpenBookQA SWAG SocialIQa ~ WiC ~ WSC273 SST-2 | Average
Llama-3-8B-Flow-SFT | 10.0 | | 8333 45.38 35.40 58.07 5235 56.74 87.55 90.94 | 59.11
Llama-3-8B-Flow-Final | 10.0 | | 81.94 53.71 37.20 58.15 52.10 62.54 87.18 91.97 | 6047

iter 1 84.10 48.81 37.27 59.30 54.32 63.53 87.91 90.60 61.01

+0.064 +0.344 +0.115 +0.040 +0.118 +0.550  £0.001 +0.115 | £0.063

XPO 100 | iter2 84,2§ 51.70 37.87 59.63 53.46 61.91} 87,0§ 90,5‘6> 61.33
+0.064 +0.331 +0.115 +0.033 +0.207 +£0.565  +0.560  +0.066 | +0.013

iter 3 83.94 52.67 38.07 59.88 53.09 59.87 88.03 90.71 61.61

+0.064 +0.433 +0.231 +0.053 +0.107 +1.659  +0.211 +0.115 | £0.044

ter 1 84.41 50.13 37.11 59.19 53.29 62.55 87.76 90.32 61.10

+0.175 +1.004 +1.188 +0.400 +1.930 +0.590  +£0.602  +1.173 | +0.144

50 iter 2 84.26 52.34 36.85 59.59 53.24 61.88 88.34 90.66 61.64
+0.437 +0.422 +1.418 +0.853 +1.040 +£0.770  +0.879  £1.502 | +0.028

iter 3 84.09 54.03 36.35 59.60 53.19 62.65 89.58 91.60 61.90

+0.547 +0.687 +1.340 +0.748 +0.419 +0.246  £0.437  £0.513 | £0.068

iter 1 84.38 51.86 37.26 59.51 53.17 62.57 88.22 90.74 61.29

+0.218 +0.453 +0.245 +0.021 +1.632 +0.680  +0.171 +0.138 | £0.051

35 iter 2 83.98 54.32 37.27 59.85 52.64 62.19 88.32 91.33 61.77
+0.310 +0.569 +0.231 +0.053 +0.680 +0.827  £0.802  £0.659 | +0.061

iter 3 83.67 55.53 36.94 59.80 5251 61.52 88.97 91.41 62.04

+0.443 £0.310 +1.318 +0.390 +0.307 £0.810  £1.032  £0.541 £0.141

iter 1 84.49 52.07 37.26 59.50 53.05 62.36 88.22 90.78 61.29

+0.172 £0.180 +0.245 +0.019 +1.559 +£0.784 0171 +0.142 | £0.073

OnlineDPO 100 | iter2 83.99 54.47 37.20 59.89 52.56 61.93 88.69 91.18 61.77
+0.319 +0.658 +0.200 +0.046 +0.544 +0.859  £0.437  £0.648 | £0.059

iter 3 83.53 56.18 37.40 60.01 52.29 61.58 88.69 91.69 62.00

+0.353 +0.287 +0.393 +0.121 +0.078 +£0.799  +0.802  +0.811 | +0.109

ter 1 84.26 5233 3727 59.64 53.10 62.59 88.40 90.90 61.47

+0.219 +0.222 +0.231 +0.012 +0.059 +0.905  +£0.423  +0.066 | +0.039

125 iter 2 83.64 55.12 36.80 59.99 52.34 62.12 89.01 91.78 61.97
+0.088 +0.265 +0.200 +0.043 +0.156 +£0.394 0366 +£0.132 | +0.116

iter 3 83.17 56.53 37.13 60.26 52.00 62.54 89.26 92.35 62.14

+0.042 +0.147 +0.231 +0.051 +0.266 +0.313  £0.423  £0.132 | £0.121

iter 1 84.08 52.83 37.09 59.61 52.88 63.01 88.44 91.00 61.49

+0.064 +0.853 +0.103 +0.166 +0.341 +1.496  +0.511 +0.093 | £0.065

200 | iter2 83.24 56.11 37.00 59.94 51.89 61.46 89.09 92.01 61.82
+0.479 +0.715 +0.400 +0.382 +0.263 +0.840 40145  +£0.174 | +0.165

iter 3 82.93 56.87 37.17 60.34 51.58 62.47 89.26 92.57 62.02

+0.274 £0.501 +0.058 +0.150 +0.195 £1.019  £0.560  £0.332 | +0.319

Table H.5: Full benchmark evaluation of OnlineDPO with varying 7 € {5.0, 8.5, 10.0, 12.5, 20.0}
and of other algorithms that use additional exploration strategies. Bold values indicate the best
performance. Smaller font indicates standard deviation over three random seeds.
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