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MUSE-Net: Missingness-aware mUlti-branching Self-attention

Encoder for Irregular Longitudinal Electronic Health Records
Zekai Wang, Tieming Liu, Bing Yao

Abstract—The era of big data has made vast amounts of clin-
ical data readily available, particularly in the form of electronic
health records (EHRs), which provides unprecedented oppor-
tunities for developing data-driven diagnostic tools to enhance
clinical decision making. However, the application of EHRs in
data-driven modeling faces challenges such as irregularly spaced
multi-variate time series, issues of incompleteness, and data
imbalance. Realizing the full data potential of EHRs hinges on
the development of advanced analytical models. In this paper,
we propose a novel Missingness-aware mUlti-branching Self-
Attention Encoder (MUSE-Net) to cope with the challenges in
modeling longitudinal EHRs for data-driven disease prediction.
The proposed MUSE-Net is composed by four novel modules
including: (1) a multi-task Gaussian process (MGP) with miss-
ing value masks for data imputation; (2) a multi-branching
architecture to address the data imbalance problem; (3) a time-
aware self-attention encoder to account for the irregularly spaced
time interval in longitudinal EHRs; (4) interpretable multi-head
attention mechanism that provides insights into the importance of
different time points in disease prediction, allowing clinicians to
trace model decisions. We evaluate the proposed MUSE-Net using
both synthetic and real-world datasets. Experimental results show
that our MUSE-Net outperforms existing methods that are widely
used to investigate longitudinal signals.

Note to Practitioners—This article is motivated by the growing
need for robust machine learning models capable of handling
the complexities of real-world EHRs, including irregular time
intervals, missing data, and class imbalance. The proposed
MUSE-Net model integrates advanced imputation via multi-task
Gaussian processes with missingness masks, a time-aware self-
attention encoder, and a multi-branching framework to enhance
predictive accuracy and robustness. Additionally, MUSE-Net
leverages an interpretable multi-head attention mechanism to
provide transparent decision-making, allowing clinicians to trace
model predictions back to key time points. This framework
offers a practical and trustworthy solution for data-driven disease
prediction and clinical decision support.

Index Terms—Irregularly spaced time series, Multivariate lon-
gitudinal records, Data imputation, Imbalanced dataset, Multi-
task Gaussian process, Self-attention encoder, Interpretable
multi-head attention

I. INTRODUCTION

Rapid advancements in sensing and information technology
have ushered us into an era of data explosion where a large
amount of data is now easily available and accessible in the
clinical environment [1], [2], [3]. The wealth of healthcare
data offers new avenues for developing data-driven methods

Corresponding author: byao3@utk.edu;
Zekai Wang is with the Charles F. Dolan School of Business, Fairfield
University.
Bing Yao are with the Department of Industrial & Systems Engineering, The
University of Tennessee, Knoxville, TN, 37996 USA.
Tieming Liu is with the School of Industrial Engineering and Management,
Oklahoma State University, Stillwater, OK 74078.

for automated disease diagnosis. For instance, there have
been growing research interests in harnessing electronic health
records (EHRs) to create data-driven solutions for clinical
decision support [4] in detecting heart disease [5], sepsis
[6], and diabetes [7]. EHRs serve as digital repositories
of a patient’s medical information including demographics,
medications, vital signs, and lab results [8], [9], [10], curated
over time by healthcare providers, leading to a longitudi-
nal database. With rich information about a patient’s health
trajectory, longitudinal EHRs present unique opportunities to
analyze and decipher clinical events and patterns within large
populations through data-driven machine learning.

However, data mining of longitudinal EHRs poses distinct
challenges due to the observational nature of EHRs. Unlike
well-defined, randomized experiments in clinical trials that
collect data on a fixed schedule and ensure high data quality,
EHRs are recorded only when patients receive care or doctors
provide services. The information collected and the timing of
its collection are not determined by researchers, resulting in
EHRs that are highly heterogeneous [11] and further introduc-
ing the following challenges in data-driven decision-making:

(1) Irregularly spaced time series. EHR data are often
documented during irregular patient visits, leading to non-
uniform time intervals between successive measurements and
a lack of synchronization across various medical variables or
among different patients. Traditional time series models face
challenges when applied to irregular longitudinal data because
they typically assume a parametric form of the temporal vari-
ables, making them difficult to effectively account for highly
heterogeneous and irregular time intervals across different
variables. Additionally, the widely used deep learning models
such as convolution neural networks (CNNs) and recurrent
neural networks (RNNs) for mining sequential or time series
data are designed by assuming consecutive data points are
collected at a uniform time interval. Those deep learning
models do not consider the elapsed time between records and
are less effective in modeling irregular longitudinal EHRs.

(2) Incomplete data and imbalanced class distributions.
EHRs suffer from the issues of missing values and imbalanced
data. Due to the nature of clinical practice, not all information
is recorded for every patient visit, leading to incomplete
datasets. Additionally, EHR data often exhibit a significantly
imbalanced distribution, with certain health outcomes or char-
acteristics being underrepresented. For instance, rare diseases
or adverse drug reactions [12], [13] may have very few in-
stances compared to more prevalent conditions. In the existing
literature, a wide array of statistical and machine learning
techniques have been designed to tackle the missing value and
imbalanced data issues [14], [15], which, however, are less
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applicable in the context of modeling irregular longitudinal
EHRs. The presence of missing values and imbalanced class
distributions will introduce further difficulties in effective
model training using longitudinal EHRs, leading to biased or
inaccurate predictions if not properly addressed.

To address the challenges presented by longitudinal EHRs,
this paper introduces a novel framework of Missingness-
aware mUlti-branching Self-Attention Encoder (MUSE-Net)
for data-driven disease prediction. First, multi-task Gaussian
processes (MGPs) are employed for missing value imputation
in irregularly sampled time series. Second, we propose to
add missing value masks that record the locations of missing
observations as another input stream to our predictive model,
which enables the learning of correlations between non-
missing and missing values for mitigating the impact of possi-
ble imputation errors incurred from the imputation procedure
on the prediction performance. Third, we propose to integrate
a time-aware self-attention encoder with a multi-branching
classifier to address the imbalanced data issue and further
classify the irregular longitudinal EHRs for disease predic-
tion. Furthermore, MUSE-Net employs an interpretable multi-
head attention mechanism [16] that highlights critical time
points in disease prediction, offering transparency in decision-
making and enabling clinicians to trace model outputs back
to influential time points. This interpretability fosters trust and
facilitates the integration of MUSE-Net into real-world clinical
applications. We evaluate our proposed framework using both
simulation data and real-world EHRs. Experimental results
show that our proposed method significantly outperforms
existing approaches that are widely used in current practice.

II. RESEARCH BACKGROUND

The integration of data-driven modeling and EHRs has
transformed the healthcare field, which provides unprece-
dented opportunities for clinical decision support [8], [17],
[18]. Extensive research has been conducted to develop data-
driven models using non-longitudinal EHRs that consist of
static or cross-sectional health information [19], [20]. For
example, Huang et al. [21] employed naive Bayes, decision
tree, and nearest neighbor algorithms incorporating feature
selection methods to determine key factors affecting type II di-
abetes control and identify individuals who exhibit suboptimal
diabetes control status. Hong et al. [22] developed a multi-class
classification method to analyze clinical data in identifying
patients with obesity and various comorbidities using logistic
regression, support vector machine, and decision tree. A com-
prehensive review on machine learning of non-longitudinal
EHRs can be referred to [11], [23]. However, those methods
are limited in capturing temporal patterns in health status over
time. This limitation can result in less accurate predictions for
conditions that are heavily dependent on longitudinal health
trajectories [19], [24]. Moreover, traditional machine learning
approaches often require manual feature engineering, which is
time-consuming and prone to error.

With the growing availability of longitudinal EHRs, increas-
ing interests have been devoted to developing advanced models
to capture temporal information for disease prediction. Owing

to the strong capability in pattern recognition, deep learning
has been widely explored to mine complexly structured data
[25], [26], [27], [5]. Advanced network architectures have
been crafted for modeling time series or sequential data. For
example, RNNs including long short-term memory (LSTM)
are among the most commonly used models to analyze med-
ical time series for various clinical tasks [28], [29], [30].
Additionally, temporal convolutional networks (TCNs) have
been recognized as a robust alternative to RNNs for modeling
longitudinal signals [7], [6], [31]. However, traditional RNNs
and TCNs are designed with the assumption that the records
are collected at a constant rate and require the neighboring
samples to appear at fixed distances to facilitate the convolu-
tion or recurrent operations. This assumption is not valid in
many real-world databases, making traditional RNNs or TCNs
less effective in modeling irregular-spaced longitudinal EHRs.

To cope with the issue of irregular time intervals, many
modified RNN architectures have been developed. For ex-
ample, the time-aware LSTM (TLSTM) was designed to
account for non-uniform sampling intervals through a time
decay mechanism [32]. Che et al. [29] also implemented a
decay mechanism and proposed a GRU-D model, allowing the
network to better capture temporal dependencies even when
data points were incomplete or irregularly sampled. A com-
prehensive review of modified RNN architectures for irregular
sampled time series can be found in [33], [34]. However, most
existing time-aware RNNs assume that the impact of historical
risk factors on disease prediction proportionally decays over
time, which may not be true in describing complex disease
trajectories. Additionally, RNNs have been widely recognized
as computationally inefficient for modeling large-scale, long
sequential data due to their sequential processing nature.

The self-attention encoder, a cornerstone of the transformer
architecture [35], has revolutionized the field of natural lan-
guage processing (NLP). Unlike RNNs and TCNs that process
data sequentially and require uniform sampling intervals, the
self-attention mechanism allows the model to weigh the impor-
tance of different parts of the input sequences relative to each
other. This feature enables parallel processing and enhances
the model’s ability to capture long-range dependencies in
irregular longitudinal signals. For instance, Li et al. proposed
to transform time series data into images and adopted the
Vision Transformer to model irregularly sampled time series
signals [36]. Tipirneni and Reddy developed a method that
integrated a continuous value embedding technique with self-
attention to model irregularly sampled clinical time series by
treating them as a set of observation triplets (time, variable,
and value) [37]. Huang et al. developed a Deformable Neigh-
borhood Attention Transformer to capture local and global
dependencies in medical time series data through deformable
attention mechanisms [38]. Manzini et al. introduced the
Diabetic Attention with Relative representation Encoder for
Type 2 Diabetes patients [39]. Those self-attention models
demonstrate significant improvements over traditional meth-
ods, particularly in handling irregular longitudinal datasets.

Despite the strengths of self-attention encoders, most deep
learning models assume well-structured data, making them
less effective for longitudinal EHRs that are often incomplete,
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Fig. 1. (a) MGP for data imputation and missing value masks generation; The imputed data and missing value masks are processed by MUSE-Net, which
consist of (b) Missingness-aware Self-attention Encoder with Interpretable Multi-head Attention and (c) Multi-branching output layer.

imbalanced, and irregularly sampled. Existing methods rarely
integrate strategies to handle missing values, imbalanced class
distributions, and temporal irregularity simultaneously, limit-
ing their reliability in clinical applications. There remains a
critical need for a framework that not only addresses these
challenges holistically but also ensures robust and interpretable
decision-making for real-world healthcare prediction tasks.

III. RESEARCH METHODOLOGY

Suppose that there are N patients indexed by
p ∈ {1, . . . , N} and we denote the dataset as
D = {(tp, Yp, lp)}Np=1. Each patient is associated with
longitudinal data described by the tuple (tp, Yp, lp):
tp = [tp,1, tp,2, · · · , tp,Tp

] is the time index set for patient
p; Yp = [yp,1,yp,2, · · · ,yp,M ] ∈ RTp×M represents the
values of M medical variables at tp; lp is the binary
label with lp = 1 indicating patient p is positive (e.g.,
with disease) and otherwise lp = 0. The length of
the time series for each patient is highly variable (i.e.,
Tp ̸= Tp′ , if p ̸= p

′
), and the times series are often

irregularly spaced (i.e., tp,i+1 − tp,i ̸= tp,j+1 − tp,j , if j ̸= i)
in real-world longitudinal EHR databases. Additionally,
the EHR dataset is often incomplete, and we denote
the complete set of values of the M variables as
yp = Vect(Yp) = [yT

p,1,y
T
p,2, · · · ,yT

p,M ]T ∈ RTpM .
Then, we define an index set that contains observed values as
Io = {(t,m)| if [Yp]t,m is observed} and the corresponding
values are denoted by yo

p ∈ ROp . Similarly, we define
Iu = {(t,m)| if [Yp]t,m is missing} as the index set of
missing values, and the missing value vector is denoted by
yu
p ∈ RUp , where Up+Op = TpM . Fig. 1 shows the flowchart

of the proposed MUSE-Net to classify irregularly spaced
and incomplete longitudinal data. Each component in the
flowchart is described in detail in the following subsections.

A. MGP for Missing Value Imputation

A Gaussian process (GP) is a flexible non-parametric
Bayesian model where any collection of random variables
follows a joint Gaussian distribution [40], [41], [42], which
have been widely used to model complex time series data [43],

[44]. GP-based temporal models provide a way to determine
the distribution of a variable at any arbitrary point in time,
making them intrinsically capable of dealing with missing
value imputations that involve irregularly spaced longitudinal
data. Note that single-task GPs are limited in their ability to
model correlations across multiple related tasks (i.e., different
medical variables), making them less effective for modeling
multi-variate EHR data. To account for the multi-variate
nature, we adopt a multi-task GP (MGP) [45] to capture both
variable interactions and temporal correlations for imputing
missing values in irregular multi-variate longitudinal EHRs.

We denote fpm(t) as a latent function representing the true
values of variable m for patient p at time t, and a patient-
independent MGP prior is placed over the latent function
fpm(t) with a zero mean and the covariance function as:

cov(fpm(t), fpm′ (t
′
)) = KM (m,m

′
)Kt(t, t

′
)

ypm(t) ∼ N (fpm(t), σ2
m) (1)

where ypm(t) is the observed value of variable m for patient
p at time t, σ2

m is the noise term for the mth task (vari-
able), KM (m,m

′
) captures the similarities between tasks, and

Kt(t, t
′
) is a temporal correlation function, which is defined

as Kt(t, t
′
) = exp(− (t−t

′
)2

2θ2 ) with a lengthscale parameter θ.
Hence, the prior distribution for the fully observed multivariate
longitudinal records, yo

p, can be represented by:

yo
p ∼ N (0,Σo

p), Σo
p = KM ⊙KOp + E (2)

We formulate the kernel function Σo
p for the observed records

as the combination of the Hadamard product (i.e., element-
wise multiplication) of KM and KOp , and a noise term E:
KM is a Op × Op positive semi-definite covariance matrix
over medical variables, which is parameterized by a low-rank
matrix B as LBBTLT where B ∈ RM×q , and L ∈ ROp×M

is an indicator matrix with Lim = 1 if the ith observation
belongs to task m and

∑M
m=1 Lim = 1; KOp

is a Op × Op

squared exponential correlation matrix over time with elements
defined as KOp((m, t), (m

′, t′)) = Kt(t, t
′
) if (m, t) ∈ Io

and (m′, t′) ∈ Io; E is a noise matrix with Lσ2 on its main
diagonal (σ2 ∈ RM and [σ2]m = σ2

m ).
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In the inference step, we impute the missing value for
patient p using the posterior mean, µyu

p
:

µyu
p

= (KM∗M ⊙KUpOp
)(Σo

p)
−1yo

p (3)

where KM∗M = L∗BB
TLT ∈ RUp×Op is the task covariance

matrix for missing values, and L∗ ∈ RUp×M , L∗,im = 1 if
the ith missing value belongs to task m; KUpOp represents
the correlation matrix between the time points of the observed
and missing values. The hyperparameters in the MGP model
include the lower triangular matrix B, error term Diag(E), and
the lengthscale θ in KOp : Θ = {Vect(B),Diag(E), θ}, which are
learned by minimizing the negative log marginal likelihood
given by (with derivative)

L(Θ) = log |Σo
p|+ (yo

p)
T (Σo

p)
−1yo

p +
Op

2
log(2π)

dL
dΘ

= (yo
p)

T (Σo
p)

−1
dΣo

p

dΘ
(Σo

p)
−1yo

p + Tr
(
(Σo

p)
−1

dΣo
p

dΘ

)
(4)

Finally, the missing values in Yp are estimated as ŷu
p =

µyu
p

, which are combined with the observed values yo
p

to form an imputed dataset D̂ = {(tp, Ŷp, lp)}Np=1 =

{((top,Vect−1(yo
p)), (t

u
p ,Vect−1(ŷu

p)), lp)}Np=1, where Vect−1(·) is
the inverse operation of Vect(·). To accelerate MGP Impu-
tation, we adopt the black box matrix-matrix multiplication
framework [46] to integrate the modified preconditioned con-
jugate gradient (mPCG) with GPU acceleration into the data
imputation workflow. Please refer to Appendix VI-C for the
detailed procedure for GPU acceleration of MGP imputation.

B. MUSE-Net

We further propose a MUSE-Net to process the imputed lon-
gitudinal EHRs. This model is designed to not only effectively
capture crucial temporal correlations in multi-variate irregular
longitudinal data but also recognize missingness patterns and
account for the imbalanced data issue for enhanced classifica-
tion performance. As shown in Fig. 1(b) and (c), this model
consists of 3 key modules: time-aware self-attention encoder,
missing value masks, and multi-branching outputs.

1) Time-aware Self-attention Encoder: We propose to adapt
the traditional self-attention encoder [35] to incorporate the
information of elapsed time between consecutive records in
irregular longitudinal EHRs, including three building blocks:

Elapsed time-based positional encoding: The time order
of the longitudinal sequence plays a crucial role in time
series analysis. However, this information is often ignored
in traditional attention-based encoders because it does not
incorporate any recurrent or convolution operations. To address
this issue, an elapsed time-based positional encoding is added
into the input sequence at the beginning of the self-attention
encoder as shown in Fig. 1(b):

PEtp,i,2m = sin(tp,i/100002m/M ) (5)

PEtp,i,2m+1 = cos(tp,i/100002m/M )

where tp,i is the time position of each observation to account
for the irregular time interval, and 2m and 2m + 1 are the
(2m)-th and (2m + 1)-th variable dimensions, respectively.
The sinusoid prevents positional encodings from becoming too
large, introducing extra difficulties in network optimization.
The embedded elapsed time-based positional features will

then be combined with the imputed signals to generate the
input of the self-attention module: Xp = PEp + Ŷp, where
PEp ∈ RTp×M is a matrix with elements defined in Eq. (6).

Intepretable multi-head attention: The self-attention is a
mechanism to allow the network to learn dependencies in the
longitudinal data. It maps a query set and a set of key-value
pairs to an output. In a single-head self-attention, the key,
query, and value matrices, denoted as K ∈ RTp×M , Q ∈
RTp×M , and V ∈ RTp×M , are computed by taking input Xp:

K = FK(Xp), Q = FQ(Xp), V = FV (Xp) (6)

where FK(·), FQ(·), and FV (·) represent the network op-
erations to calculate the key, query, and value matrices re-
spectively, which are often selected as linear transformations.
The corresponding output, OutputS ∈ RTp×M , is computed
by applying the scaled-dot production attention:

OutputS = softmax(
QKT

√
M

)× V (7)

where softmax(x)i = exi∑
j exj outputs the weight assigned

to each element in V . The dot product in the softmax is
scaled down by

√
M . This is essential to prevent the dot

product values from growing too large, especially when the
dimensionality of Ŷp or Xp is large, introducing instabilities
in the training process. The self-attention mechanism enables
the network to access all the information of the input with the
flexibility of focusing on certain important elements over the
entire sequence.

The multi-head attention module is an extension of single-
head self-attention to capture different relations among multi-
variate time series. Specifically, multiple matrices for the keys,
queries, and values are defined by applying multiple network
operations, F l

K(·)’s, F l
Q(·)’s, and F l

V (·)’s, to the input:

Kl = F l
K(Xp) ∈ RTp×M

h , Ql = F l
Q(Xp) ∈ RTp×M

h (8)

Vl = F l
V (Xp) ∈ RTp×M

h

where h is the number of attention heads and l ∈ {1, . . . , h}.
The output of each attention head is calculated by:

Outputl = softmax(
QlK

T
l√

M/h
)× Vl ∈ RTp×M

h (9)

The final output of the multi-head attention, OutputM ∈
RTp×M , is the multiplication of the concatenation of the
outputs of all heads and a weight matrix, WO ∈ RM×M :

OutputM = [Output1,Output2, · · · ,Outputh]W
O (10)

This multi-head attention module enables the network to
jointly attend to information from different subspaces of
multivariate time series at different time points.

However, traditional multi-head attention suffers from three
limitations: (1) Lack of interpretability: the concatenation of
head outputs makes it difficult to analyze how each head
contributes to the final decision; (2) Independent value ma-
trices: each head has its own Vl, leading to inconsistent fea-
ture extraction across heads; (3) Extra computation overhead:
maintaining separate Vl’s increases parameter complexity. To
address these issues, we adopt the Interpretable Multi-Head
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Attention. Instead of maintaining separate value matrices Vl,
Interpretable Multi-head Attention introduces a shared value
matrix V for all heads V = XpW

V , where WV is a single
weight matrix applied to the entire input. Additionally, the
weighted key-query matrices across all heads are summed as:

S =

h∑
l=1

softmax(
QlK

T
l√

M/h
) (11)

Then, the final output is computed by multiplying the aggre-
gated attention score with the shared value matrix V :

OutputM = SVWO (12)

This modification improves interpretability by allowing a
global attention map S to capture how different query-key
interactions influence the shared value matrix. Instead of
treating each head’s output separately, interpretable multi-head
attention integrates them in a structured and meaningful way.

Feed-forward network: To stabilize the training process,
OutputM will pass through a layer normalization operation
[47], and the normalized output will be combined with the
original input using skip-connection [48] to generate the output
of the “Add & Norm” block (see Fig. 1(b)):

OutputAN = LayerNorm(OutputM ) +Xp (13)

OutputAN will serve as the input of a feed-forward network
with GELU [49] activation and additional “Add & Norm”
blocks to further induce nonlinearity degree into the self-
attention encoder. The multi-head attention and feed-forward
modules will be repeated multiple times to improve the
generalizability of the model for capturing more informative
features of the input sequence.

2) Missing Value Masks: To further account for potential
discrepancies between imputed values and actual observations,
the missing value masks (Fig. 1(a)) are incorporated as an
additional input to the model. We define the missing value
masks for patient p as X̃p with [X̃p]t,m = 1 if [Yp]t,m is
missing; otherwise [X̃p]t,m = 0. The masks will be processed
by an independent time-aware self-attention encoder in parallel
with the imputed sequences as shown in Fig. 1(b). This
missingness-aware design enables the network to capture the
relationship between non-missing and missing values. As a
result, the network is capable of mitigating the effect of
potential errors during the MGP imputation process, thereby
enhancing the overall predictive performance of the model.

3) Multi-branching Outputs: The self-attention encoder
serves as a powerful feature extractor from irregular longitu-
dinal EHRs for downstream classification tasks. The classifier
network, typically with a fully connected layer, is added after
the feature extractor to interpret the abstracted features and
make the final prediction. The imbalanced data issue incurs a
more pronounced and direct negative impact on the classifier
than on the feature extractor network. This is due to the fact
that the classifier network directly interacts with the labels and
is heavily influenced by the majority class during the training
process [50]. This leads to a bias towards the majority class,
visibly affecting the model’s performance. As such, careful

design of the classifier network is needed to cope with the
imbalanced data issue.

We propose to incorporate the Multi-branching (MB) archi-
tecture [6] (see Fig.1 (c)) into the classifier network to tackle
the imbalanced issue. Specifically, in the training phase, the
self-attention encoder will be trained with the whole dataset,
and each of the MB outputs in the classifier network will be
trained with a balanced sub-dataset to mitigate the negative
influence of imbalanced data. The original imputed dataset
D̂ consists of the majority class D̂M , and the minority class
D̂N . We create Nb balanced sub-datasets by under-sampling
D̂M to form Di = {D̂N , D̂i

M}, where the D̂M = D̂1
M ∪D̂2

M ∪
· · ·∪D̂Nb

M . This under-sampling operation is also applied to the
missing value masks. Correspondingly, Nb output branches are
created, each aligned with one of the balanced sub-datasets.
Thus, each balanced sub-dataset serves as the training data for
the respective branch in the output layer, and the self-attention
encoder will be optimized by using all the Nb balanced
subsets. In the end, the MB output layer will produce Nb
predicted probabilities. The optimization process is guided by
minimizing the cross-entropy loss function:

L(ω; D̂) = −
N∑

p=1

Nb∑
i=1

I(p ∈ Di)
(
lp log(P̂

(i)(Ŷp, X̃p;ω))

+(1− lp) log(1− P̂ (i)(Ŷp, X̃p;ω))
)

(14)

where ω is the network parameters; I(·) is an indicator
function; P̂ (i)(Ŷp, X̃p;ω) is the prediction by branch i given
the input Ŷp and corresponding missing value mask X̃p. The
final predicted probability is computed as the average of the
Nb predictions: P̂MB(Ŷp, X̃p;ω) =

∑Nb
i=1 P̂

(i)(Ŷp, X̃p;ω)/Nb,
which is a more robust estimator compared to the single-
branch (SB) counterpart as stated in Theorem I.
Theorem I: If both MB and SB classifiers are sufficiently
trained with the following assumptions:

¯̂
P (i)(Yp) =

¯̂
PSB(Yp), (i ∈ {1, . . . , Nb})

Eω[DKL(
¯̂
P (i)(Yp)||P̂ (i)(Yp;ω))] =

Eω[DKL(
¯̂
PSB(Yp)||P̂SB(Yp;ω))], (15)

where P̂SB(Yp;ω) is the predicted distribution by the SB
classifier for input Yp, DKL(·) is the Kullback–Leibler di-
vergence, ¯̂

PSB(Yp) = argminP∗ Eω[DKL(P∗(Yp)||P̂SB(Yp;ω))],
and ¯̂

P (i)(Yp) = argminP∗ Eω[DKL(P∗(Yp)||P̂ (i)(Yp;ω))], then
the variance of the MB classifier is no larger than the variance
of the SB classifier, i.e., VMB ≤ VSB , where

VMB = EYp∼Pdata,w[DKL(
¯̂
PMB(Yp)||P̂MB(Yp;w))] (16)

VSB = EYp∼Pdata,w[DKL(
¯̂
PSB(Yp)||P̂SB(Yp;w))] (17)

Here, Pdata denotes the true data distribution and
¯̂
PMB(Yp) = argmin

P∗
Eω[DKL(P∗(Yp)||P̂MB(Yp;ω))](18)

Theorem I shows that the MB classifier is more robust than
the SB classifier (see Appendix VI-B for the theoretical proof).

IV. EXPERIMENTAL DESIGN AND RESULTS

We implement our MUSE-Net to investigate both a syn-
thetic and real-world dataset for performance evaluation. The
MUSE-Net is benchmarked with four models widely used
in sequential data mining: LSTM [51], gated recurrent unit
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(GRU) [52], Time-aware LSTM (T-LSTM) [32], and TCN
[53]. Additionally, we evaluate the prediction performance
provided by different imputation methods, i.e., the proposed
MGP+mask, MGP, single GP, GP+mask, the baseline mean
imputation, and Mean+mask. We also evaluate the impact of
the number of branches on the final prediction performance.
The dataset is split into training (80%), validation (10%), and
testing (10%) sets. The model performance is evaluated on
four key metrics: area under the receiver operating charac-
teristic curve (AUROC), area under the precision-recall curve
(AUPRC), recall, and the F1 score. AUROC is a measure of
the model’s ability to discriminate between classes. AUPRC is
valuable for assessing performance in classifying imbalanced
datasets, reflecting the balance between precision and recall.
Recall assesses the model’s ability to correctly identify pos-
itive instances, while the F1 score provides a comprehensive
evaluation by accounting for both the model’s sensitivity to
positive cases and its overall predictive reliability.

Algorithm 1 Synthetic Data Generation Process
Require: Number of time steps: n obs = 200; Number of observations

sampled from each time series: sub time = 50; Number of variables:
n variables = 10; Number of samples to generate: n samples =
5000; Percentage of the majority samples: percent negative = 90%

1: Initialize Ωm for ARMA(pm,qm), m ∈ {1, 2, 3}, and apply feature
engineering to generate remaining ARMA(pm,qm) m ∈ {4, 5, · · · , 2×
n variables}

2: Generate a label list, labels list, including n samples binary labels
(0 or 1) based on percent negative

3: Generate empty 3-D tensor, all samples, to store the generated data
4: for j ← 1 to n samples do
5: Initialize an empty temporal list: variables← [ ]
6: for m← 1 to n variables do
7: if label list[j] is 0 (negative instance) then
8: Generate n variables time series using ARMA(pm, qm)
9: else

10: Generate n variables time series using
ARMA(pm+n variables, qm+n variables)

11: Add generated time series to variables

12: Combine variables into a matrix with n variables columns and
add it to all samples

13: Initialize an empty tensor: final dataset
14: for i← 1 to n samples do
15: subtime indices ← Maintains the temporal order and randomly

selects sub time unique time steps
16: sub ts i← all samples[i, subtime indices, :]
17: Add generated sub ts i to final dataset

18: return final dataset

A. Experimental Results in Synthetic Case Study

Algorithm 1 shows the process to generate synthetic data
from the autoregressive moving average (ARMA) model [54].
Specifically, we first generate three baseline time series vari-
ables by ARMA(pm,qm) models with moving average of order
qm and autoregressive of order pm: vm,t = ϕm,1vm,t−1+· · ·+
ϕm,pmvm,t−pm + ψm,1ϵm,t−1 + · · · + ψm,qmϵm,t−qm + ϵm,t,
where {ϵm,t} are uncorrelated random variables for variable
m; Ωm = {ϕm,1, · · · , ϕm,pm

, ψm,1, · · · , ψm,qm} is the set
of coefficients for variable m. We initialize Ωm randomly
from a standard normal distribution and randomly select
pm,qm from set {1, 2, 3}. We generate the remaining seven
variables through feature engineering applied to the three
baseline time series, ensuring correlations exist among the

variables and differences exist between different classes. De-
tailed information on the feature engineering process and the
simulation parameters is available in the Appendix VI-A. The
generated synthetic dataset is a 3-D tensor containing 5,000
samples with 90% from the majority class. Each sample has
10 variables measured across 50 time steps with irregular
intervals. Notably, each variable is characterized by a distinct
rate of missing values, varying randomly between 30% and
60%, mimicking real-world data complexities.

Fig. 2 shows the AUROC, AUPRC, F1 score, and Recall
on validation dataset over training epochs for MUSE-Net-
9 (i.e., with 9 branching outputs) using different imputation
methods with missing value masks on the validation set of
our simulated data. The ’complete’ scenario represents the
case where MUSE-Net is trained on synthetic data without
any missing values. Among all methods, MUSE-Net-9+MGP
demonstrates the best performance across all four metrics,
achieving higher AUROC, AUPRC, F1 score, and Recall,
along with the fastest convergence. In contrast, the MUSE-
Net-9+GP and MUSE-Net-9+mean methods exhibit slower
convergence and lower overall performance, highlighting their
limitations in handling missing values effectively.

Fig. 3 presents the AUROC, AUPRC, F1 score, and Recall
across training epochs for MUSE-Net+MGP with different
numbers of MB outputs on the simulated validation set.
Models with a higher number of MB outputs (MB5, MB7,
and MB9) demonstrate faster convergence and superior over-
all performance. This improvement can be attributed to the
enhanced class balance within each branching output. When
only one MB output is used (MB1), the class imbalance
is severe (approximately 9:1), making it difficult for the
model to effectively learn from the minority class. In contrast,
increasing the number of MB outputs to 9 results in a more
balanced class ratio (1:1) for each branch, facilitating better
learning from both classes.

The F1 score and Recall curves further emphasize the dif-
ferences in learning dynamics. Models with more MB outputs
exhibit rapid improvements in these metrics, while those with
fewer MB outputs (MB1 and MB3) show delayed growth and
lower overall performance, particularly in the early training
stages. This suggests that models with fewer MB outputs
struggle to effectively capture minority class patterns, leading
to slower convergence and reduced recall. Overall, increasing
the number of MB outputs enhances both convergence speed
and classification performance, reinforcing the benefits of a
more balanced learning framework.

B. Experimental Results in Real-world Case Study

We further conduct a case study using the Diabetic
Retinopathy (DR) dataset, obtained from the 2018 Cerner
Health Facts data warehouse [7], [30], to evaluate our MUSE-
Net. The variables selected for this study include 21 routine
blood tests, 5 comorbidity indicators, 3 demographic variables,
and the duration of diabetes. More details on variable selection
can be referred to [30], [56]. Notably, the 21 blood tests are
all subject to missing values, and the final dataset consists of
records from 23,245 diabetic patients, with a minority of 8.9%
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Fig. 2. Evaluation scores across epochs for MUSE-Net-9 with different imputation methods on simulated validation data.

Fig. 3. Evaluation metrics scores across epochs for MUSE-Net with varying MB outputs on MGP-imputed validation data.

diagnosed with DR. We use label “1” and “0” to indicate that
a patient diagnosed with and without DR, respectively.

Fig. 4 shows the performance of MUSE-Net compared

to other benchmark models on the DR validation set. Note
that to ensure a fair comparison, all models are designed
to have similar sizes, with the number of model parameters
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TABLE I
ARCHITECTURES OF MUSE-NET AND OTHER BENCHMARKS FOR DR DATASET.

Number of
model parameters

Number of
layers (blocks)

Number of outputs
in MB layer Optimizer

MUSE-Net 4,010

2 10
Adam with

decoupled weight decay
(AdamW) [55]

GRU 4,333
LSTM 4,686

T-LSTM 4,660
TCN 4,396

Fig. 4. AUROC and AUPRC across 15 epochs for our MUSE-Net and other benchmarks on the DR validation set.

TABLE II
AUROC, AUPRC, RECALL AND F1 SCORES FOR MUSE-NET AND

OTHER BENCHMARKS ON THE DR TEST SET.

MUSE-Net TCN LSTM T-LSTM GRU

AUROC 0.952 0.935 0.919 0.932 0.932
AUPRC 0.886 0.848 0.825 0.844 0.844
F1 0.750 0.704 0.580 0.671 0.671
Recall 0.850 0.809 0.836 0.827 0.827

approximately 4,000, as shown in Table I. Furthermore, all
models utilize the MGP imputation with missing value masks,
10 MB outputs, and Adam with decoupled weight decay op-
timizer [55]. According to Fig. 4, our MUSE-Net consistently
outperforms other benchmarks, achieving the highest AUROC
and AUPRC on the validation set. This trend is also evident
in the results for the test set summarized in Table II, where
MUSE-Net maintains the AUROC of 0.949 and the AUPRC
of 0.883, which dominates those yielded by TCN, LSTM,
T-LSTM, and GRU models. Specifically, the MUSE-Net has
an improvement over TCN by 2.3% in AUROC and 5.3% in
AUPRC, and an improvement over LSTM by 3.3% in AUROC
and 7.1% in AUPRC, an improvement over T-LSTM by 2.4%
in AUROC and 6.8%, and an improvement over GRU 1.9% in
AUROC and 4.6% in AUPRC. This performance demonstrates
that MUSE-Net is more effective at capturing the critical
patterns inherent in irregular longitudinal DR data.

Table III presents the performance comparison in AUROC
and AUPRC between our MUSE-Net-10 with MGP imputation
and other imputation methods on the DR test set. It is worth
noting that the MUSE-Net-10 with MGP+masks outperforms

TABLE III
AUROC AND AUPRC COMPARISON OF MUSE-NET-10 WITH MGP AND

OTHER IMPUTATION METHODS ON THE DR TEST SET.

Model:
MUSE-Net-10 MGP GP Mean

Mask w/o Mask w/o Mask w/o

AUROC 0.952 0.901 0.933 0.889 0.929 0.885
AUPRC 0.886 0.801 0.827 0.791 0.876 0.789

other methods, yielding an AUROC of 0.952 and an AUPRC
of 0.886, which represents an improvement over GP+masks by
2.0% in AUROC and 7.1% in AUPRC, and an improvement
over mean+masks by 2.5% in AUROC and 1.5% in AUPRC.
Moreover, consistent performance improvement is achieved
across all imputation methods when missing value masks are
applied. Specifically, MGP+masks achieves an improvement
over the non-mask MGP by 5.7% in AUROC and 10.6%
in AUPRC. The results show that the missing value masks
enable the model to effectively account for the missingness
patterns and mitigate potential discrepancies between imputed
and actual values that may arise during the imputation process.

Table IV shows the AUROC and AUPRC scores for MUSE-
Net with MGP imputation across various numbers of MB
outputs in the DR test set. MB 1 corresponds to a model with
a single output handling the original dataset with an imbalance
ratio of approximately 1:10, and MB 10 represents a model
with 10 outputs, each of which is trained with one of the
10 balanced sub-datasets with a ratio of approximately 1:1.
This table suggests an overall increasing trend in both AUROC
and AUPRC when the number of MB outputs increases. The
highest AUROC/AUPRC scores of 0.952/0.886 are achieved
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TABLE IV
AUROC AND AUPRC SCORES FOR MUSE-NET+MGP WITH DIFFERENT

MB NUMBERS IN THE DR TEST SET.

MB 10 MB 8 MB 6 MB 4 MB 2 MB 1
AUROC 0.952 0.947 0.946 0.947 0.945 0.940
AUPRC 0.886 0.876 0.877 0.886 0.869 0.864

with 10 MB outputs, demonstrating the enhanced predictive
capability of our MUSE-Net in a balanced training environ-
ment. The performance gradually declines with a decrease in
the number of MB outputs, reaching its lowest AUROC and
AUPRC of 0.940 and 0.864 at MB 1.

C. Intepretability Analysis of MUSE-Net in DR Prediction

We further analyze the attention weights learned by the
interpretable multi-head attention mechanism to interpret the
model’s decision-making process for DR prediction.

(a) (b)

Fig. 5. The averaged attention maps over all test samples for the first and
second layers of the MUSE-Net: (a) the first layer; (b) the second layer

1) Averaged Attention Map Across Layers: Fig. 5 presents
the averaged attention maps over all test samples for the first
and second layers of the MUSE-Net. Each heatmap represents
the attention weight distribution between query (y-axis) and
key time steps (x-axis), where higher values indicate stronger
attention. These maps help clinicians interpret how the model
makes predictions by identifying which time steps play a
dominant role in decision-making. In the first layer (Fig. 5(a)),
the attention distribution is skewed toward the later time, with
the highest attention at the final time step. This suggests that
the model places greater importance on more recent time steps
when making predictions. Earlier time steps receive lower
attention, indicating that they contribute less to the decision-
making in the initial processing layer. Clinically, this aligns
with the understanding that recent variable changes carry the
most relevant information for assessing DR progression.

In the second layer (Fig. 5(b)), attention weights are more
evenly distributed. This indicates that, after the first layer re-
fines feature representations, the second layer integrates a more
comprehensive view of temporal dependencies, balancing both
recent and earlier observations. From a clinical perspective,
this suggests that while initial assessments focus on recent
trends, a deeper analysis incorporates long-term history to
ensure a comprehensive decision-making process. This hier-
archical mechanism mirrors how clinicians evaluate patient
histories: first prioritizing the most recent indicators, then
considering long-term trends for a more thorough assessment.

2) Attention Patterns in DR and Non-DR: Fig. 6 shows the
column-wise sum of attention weights across all time steps
for DR and Non-DR patients, providing insight into how much
total attention is allocated to each time step for different groups
in the test dataset. Fig. 6(a) shows the sum of attention weights
in the first layer, revealing a clear difference: DR samples
exhibit a more evenly distributed attention pattern across
time steps. This suggests that the model considers multiple
time steps when identifying DR, which is clinically relevant
because DR progression is a gradual process influenced by
long-term trends of many risk factors. Non-DR samples, on the
other hand, show a steady increase in attention allocation over
time, meaning that recent observations are more predictive of
non-DR. This aligns with clinical practice where the absence
of warning signs in recent medical history reduces the disease
likelihood. This divergence in attention distribution provides
critical insights: for DR patients, historical data remains im-
portant in assessing disease progression, whereas for non-DR
patients, absence of recent warning signs is a stronger predictor
of continued healthy status.

Fig. 6(b) presents the summed attention weights from the
second layer. Here, both DR and non-DR samples follow an
increasing trend, but a key observation is that the scale of
the y-axis is smaller than in the first layer, indicating that
attention is more evenly distributed. This suggests that each
time step retains its importance, ensuring that no single time
step dominates the decision-making process for both DR and
Non-DR patients. These findings demonstrate that MUSE-Net
not only achieves strong predictive performance but also offers
clinically interpretable insights by mimicking how human
experts evaluate temporal patient data in DR diagnosis.

(a) (b)

Fig. 6. The column-wise sum of attention weights across all time steps in
the test dataset: (a) the first layer; (b) the second layer

V. CONCLUSIONS

In this paper, we introduce a novel framework:
Missingness-aware mUlti-branching Self-Attention Encoder
(MUSE-Net) to model irregular longitudinal EHRs with
missingness and imbalanced data issues. First, multi-task
Gaussian processes (MGPs) are leveraged for missing value
imputation in irregularly sampled longitudinal signals. Second,
we propose a time-aware self-attention encoder augmented
with a missing value mask and multi-branching architectures
to classify irregular longitudinal EHRs. Furthermore, an
interpretable multi-head attention mechanism is added to the
model to highlight critical time points in disease prediction,
offering transparency in decision-making and enabling
clinicians to trace model outputs back to influential time
points. Finally, we evaluate our proposed framework using
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both simulation data and real-world EHRs. Experimental
results show that our MUSE-Net significantly outperforms
existing approaches that are widely used to investigate
longitudinal signals. More importantly, this framework can
be broadly applicable to model complex longitudinal data
with issues of multivariate irregularly spaced time series,
incompleteness, and imbalanced class distributions.

VI. APPENDIX

A. Parameter Specifications in Synthetic Data Generation

Tables V and VI provide the parameter specification in
ARMA models and the feature engineering process.

TABLE V
PARAMETER SPECIFICATIONS OF THE THREE BASELINE ARMA MODELS

pm, qm Ωm

ARMA1, m = 1 (2, 2) {-0.75, 0.25, 0.65, 0.35}
ARMA2, m = 2 (1, 1) {-0.8, 0.5}
ARMA3, m = 3 (3, 3) {-0.65, 0.45, -0.2, 0.70, 0.45, 0.25}

TABLE VI
FEATURE ENGINEERING PROCESS TO GENERATE TIME SERIES FOR EACH

VARIABLE.

m Neg. samples (label = 0) Pos. samples (label = 1)
1 ARMA1 ARMA11 = ARMA1

2 ARMA2 ARMA12 = ARMA2

3 ARMA3 ARMA13 = ARMA3

4 ARMA4 = 0.8× ARMA1 ARMA14 = 1.1× ARMA11

5 ARMA5 = ARMA1+ARMA2 ARMA15 = ARMA11 +
ARMA12

6 ARMA6 = ARMA3+ARMA4 ARMA16 = ARMA13 +
ARMA14

7 ARMA7 = ARMA1 +
ARMA2 + ARMA3

ARMA7 = ARMA11 +
ARMA12 + ARMA13

8 ARMA8 = ARMA1 ×
ARMA2 + ARMA3 ×ARMA4

ARMA18 = ARMA11 ×
ARMA12 + ARMA13 ×
ARMA14

9 ARMA9 = ARMA3 +
ARMA4 + ARMA1 ×ARMA2

ARMA19 = 1.1×ARMA13 +
1.1× ARMA14 + ARMA11 ×
ARMA12

10 ARMA10 = −ARMA5 +
ARMA9

ARMA20 = −ARMA15 +
ARMA19

B. Robust Classifier from Multi-branching Network Models

This appendix shows the proof of Theorem I.
Definition I (Bregman Divergence): If F : X → R is a

convex differentiable function, the Bregman Divergence based
on F is a function DF : X × X → R+, defined as

DF [x1||x2] ≡ F (x1)− F (x2)− ⟨∇F (x2), x1 − x2⟩,
x1, x2 ∈ X (19)

Lemma I (Generalized bias-variance decomposition [57]):
Let F : X → R be a convex differentiable function,
g(Yp) is the true function, and f(Yp;ω) is the prediction,
where ω is the model parameter, the generalized bias-variance
decomposition based on the Bregman divergence DF is

EYp,ω[DF (g(Yp)||f(Yp;ω))] =

EYp,ω[DF (g(Yp)||f̄(Yp))] + EYp,ω[DF (f̄(Yp)||f(Yp;ω))] (20)

where f̄(Yp) = argminz Eω[DF (z||f(Yp;ω))].

Proof. (Lemma I) From the definition of f̄(Yp), we have:

0 = ∇zEω[DF (z||f(Yp;ω))]
∣∣∣
z=f̄(Yp)

= ∇zEω

[
F (z)− F (f(Yp;ω))

−⟨∇F (f(Yp;ω)), z − f(Yp;ω)⟩
]∣∣∣

z=f̄(Yp)

=
[
∇F (z)−∇zEω⟨∇F (f(Yp;ω)), z⟩

]∣∣∣
z=f̄(Yp)

=
[
∇F (z)− Eω[∇F (f(Yp;ω))]

]∣∣∣
z=f̄(Yp)

⇒ ∇F (f̄(Yp)) = Eω[∇F (f(Yp;ω))]. (21)

Then, the right-hand side of Eq. (20) can be rearranged as

EYp,ω[DF (g(Yp)||f̄(Yp))] + EYp,ω[DF (f̄(Yp)||f(Yp;ω))]

= EYp,ω

[
F (g(Yp))− F (f̄(Yp))

−⟨∇F (f̄(Yp)), g(Yp)− f̄(Yp)⟩
]

+EYp,ω

[
F (f̄(Yp))− F (f(Yp;ω))

−⟨∇F (f(Yp;ω)), f̄(Yp)− f(Yp;ω)⟩
]

= EYp,ω

[
F (g(Yp))− F (f(Yp;ω))

−⟨∇F (f̄(Yp)), g(Yp)− f̄(Yp)⟩

−⟨∇F (f(Yp;ω)), f̄(Yp)− f(Yp;ω)⟩
]

= EYp,ω

[
F (g(Yp))− F (f(Yp;ω))

−⟨∇F (f(Yp;ω)), g(Yp)− f(Yp;ω)⟩
]

= EYp,ω[DF (g(Yp)||f(Yp;ω))]. (22)

The bias-variance decomposition for classification analysis
with cross-entropy loss is provided in Theorem II:

Theorem II (Bias-variance decomposition for classification
tasks): We denote the true class distribution for input Yp as
P (Yp) and the predicted distribution given by the classification
model as P̂ (Yp,w), where w is the model parameter set. We
assume there are J classes in total. Then, according to the
generalized decomposition for Bregman divergence, the bias-
variance decomposition for classification tasks is given as

EYp,ω[DKL(P (x)||P̂ (Yp,w))] = EYp,ω[DKL(P (Yp)|| ¯̂P (Yp))]

+EYp,ω[DKL(
¯̂
P (Yp)||P̂ (Yp;ω))]. (23)

where ¯̂
P (Yp) = argminP∗ Eω[DKL(P∗(Yp)||P̂ (Yp;ω))] and

DKL(P ||P̂ ) =
∑J

j=1 pj log
pj

p̂j
is the Kullback-Leibler (KL)

divergence. The first term in Eq. (23) is the squared bias, and
the second term captures the variance of the classifier model.

Proof. (Theorem II) Note that minimizing KL divergence is
equivalent to minimizing cross-entropy loss in classification
tasks. The cross-entropy loss is defined as H(P ||P̂ ) =
−
∑J

j=1 pj log p̂j = DKL(P ||P̂ ) −
∑

j(pj log pj), where
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∑
j(pj log pj) is often considered as a constant. Hence, min-

imizing H(P ||P̂ ) is equivalent to minimizing DKL(P ||P̂ ).
Additionally, KL divergence is a special case of the Bregman
divergence. Specifically, if we define the function in Definition
I as F (P ) =

∑
i pi log pi, then

DF (P ||P̂ )
=

∑
i

(pi log pi)−
∑
i

(p̂i log p̂i)−
∑
i

⟨log p̂i + 1, pi − p̂i⟩

=
∑
i

pi log
pi
p̂i

= DKL(P ||P̂ ) (24)

As such, we can use Lemma I for the Bregman divergence
to prove Theorem II by defining F (P ) =

∑
i pi log pi, and

replacing g(Yp) by the true distribution P (YP ) and replacing
the prediction f(Yp;ω) by P̂ (Yp;ω).

Finally, the following shows the proof of Theorem I:

Proof. (Theorem I) From Theorem II, the variances of SB
and MB classifiers are (omitting subscripts Yp for notation
convenience)

VSB = Eω[DKL(
¯̂
PSB ||P̂SB(ω))], (25)

VMB = Eω[DKL(
¯̂
PMB ||P̂MB(ω))]

where P̂SB(ω) and P̂MB(ω) are the predictions provided
by the SB and MB classifiers. In the MB model, the predicted
probability for class j is p̂MB,j(ω) = 1

Nb

∑Nb

i=1 p̂
(i)
j (ω), where

p̂
(i)
j (ω) is the predicted probability for class j by branch
i. Given the assumptions in Theorem I, i.e., ¯̂

P (i) =
¯̂
PSB

and Eω[DKL(
¯̂
P (i)||P̂ (i)(ω))] = Eω[DKL(

¯̂
PSB ||P̂SB(ω))]

(i ∈ {1, . . . , Nb}) if all the branches and the SB model are
sufficiently trained, we have

VSB =
1

Nb

Nb∑
i=1

Eω [DKL(
¯̂
PSB ||P̂SB(ω))]

=
1

Nb

Nb∑
i=1

Eω [DKL(
¯̂
P (i)||P̂ (i)(ω))]

=
1

Nb

Nb∑
i=1

Eω

 J∑
j=1

¯̂p
(i)
j log

¯̂p
(i)
j

p̂
(i)
j (ω)


= Eω

 J∑
j=1

 ¯̂pSB,j log ¯̂pSB,j −
Nb∑
i=1

¯̂pSB,j

log p̂
(i)
j (ω)

Nb


= Eω

 J∑
j=1

(
¯̂pSB,j log ¯̂pSB,j − ¯̂pSB,j log(Π

Nb
i=1p̂

(i)
j (ω))

1
Nb

)
≥ Eω

 J∑
j=1

 ¯̂pSB,j log ¯̂pSB,j − ¯̂pSB,j log(
1

Nb

Nb∑
i=1

p̂
(i)
j (ω))


= Eω

 J∑
j=1

(
¯̂pSB,j log ¯̂pSB,j − ¯̂pSB,j log p̂MB,j(ω)

)
= Eω [DKL(

¯̂
PSB ||P̂MB(ω))] ≥ Eω [DKL(

¯̂
PMB ||P̂MB(ω))]

= VMB (26)

where the first inequality is true due to the fact that the
geometric mean of nonnegative variables is always less than
or equal to the arithmetic mean, and the second inequality is
true due to the definition of ¯̂

PMB as given in Eq. (18). As

such, the MB classifier is more robust than the SB classifier,
i.e., VMB ≤ VSB , as stated in Theorem I.

C. Algorithm for GPU Acceleration in MGP Imputation

In our study, we utilize GPU acceleration for training
MUSE-Net, which is a fundamental practice in modern deep
learning. However, using GPUs to speed up MGP imputation
remains relatively unexplored and requires further investiga-
tion. MGP-based imputation can be computationally intensive
because it involves operations of large kernel matrices. Three
key components contribute to the computational intensity:
multiplication of the inverse kernel matrix with observed
values (Σo

p)
−1yo

p, computation of log determinant log |Σo
p| and

trace Tr
(
(Σo

p)
−1 dΣo

p

dΘ

)
. In most existing MGP imputation tech-

niques [44], [58], [43], [31], calculation of the three quantities
hinges on Cholesky decomposition of (Σo

p)
−1, which has cubic

time complexity. Furthermore, the nonparallelizable nature
of Cholesky decomposition makes it not suitable for GPU
acceleration. To address this challenge, we adopt the blackbox
matrix-matrix multiplication framework [46] to integrate the
modified preconditioned conjugate gradient (mPCG) approach
with GPU acceleration into the data imputation workflow.

Algorithm 2 summarizes the procedure for MGP imputation
with mPCG. The inputs are initialized MGP hyperparameters
Θ0, observed value yo

p, covariance matrix Σo
p, a matrix

∆ = [d0,d1, · · · ,dt] ∈ ROp×(t+1), where d0 = yo
p, and

d1,d2, · · · ,dt are i.i.d random vectors from a probability dis-
tribution with E(di) = 0 and E(did

T
i ) = P (i ∈ {1, . . . , t}),

P = CCT = (C0C
T
0 +E) ≈ Σo

p, where C0C
T
0 ≈ KM ⊙KOp

is a low-rank matrix approximation of KM ⊙ KOp
generated

by pivotal Cholesky decomposition with C0 ∈ ROp×r0 (r0 ≪
Op) [59]. P−1 will then be employed as a preconditioner for
Σo

p to enhance the efficiency of the mPCG [46]. The output
of Algorithm 2 is the posterior mean for missing value µyu

p
.

Algorithm 2 consists of two main steps: the MGP training
step with mPCG acceleration (from line 5 to 15) to generate
optimal hyperparameters, Θ∗, from lines 3 to 21, followed by
the imputation step from line 22 to the end of the algorithm.

In MGP training, the key is to compute (Σo
p)

−1∆ =
[(Σo

p)
−1d0, (Σ

o
p)

−1d1, (Σ
o
p)

−1d2, · · · , (Σo
p)

−1dt] in a parallel
way in GPU using mPCG (see line 5 to 15). After k iterations,
the output of mPCG, i.e., Uk ≈ (Σo

p)
−1∆ and T1, T2, · · · , Tt ∈

Rk×k, which are partial Lanczos tridiagonalizations [60]
of Σo

p, can be used to compute (Σo
p)

−1yo
p, log |Σo

p|, and

Tr
(
(Σo

p)
−1 dΣo

p

dΘ

)
efficiently. Specifically, (Σo

p)
−1yo

p can be
obtained directly as (Σo

p)
−1yo

p ≈ [Uk]:,1, where [Uk]:,1
is the first column of matrix Uk. The computation of
Tr

(
(Σo

p)
−1 dΣo

p

dΘ

)
depends on stochastic trace estimation [46],

[61], which is a method used to efficiently approximate the
trace of a large matrix. The basic idea is to use random vectors,
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i.e., d1,d2, · · · ,dt, to probe the matrix as:

Tr
(
(Σo

p)
−1

dΣo
p

dΘ

)
= Tr

(
(Σo

p)
−1

dΣo
p

dΘ
E

di∼N (0,P)
[P−1did

T
i ]

)
= E

di∼N (0,P)

[
Tr

(
(Σo

p)
−1

dΣo
p

dΘ
P−1did

T
i

)]
= E

di∼N (0,P)

[
dT
i (Σo

p)
−1

(
dΣo

p

dΘ
P−1di

)]

≈
1

t

t∑
i=1

(
dT
i (Σo

p)
−1

)(
dΣo

p

dΘ
P−1di

)
(27)

where dT
i (Σ

o
p)

−1 ≈ ([Uk]:,i+1)
T are computed by mPCG,

and P−1 can be calculated using the Matrix Inversion
Lemma, i.e., P−1 = (C0C

T
0 + E)−1 = E−1 − E−1(I +

CT
0 E

−1C0)
−1CT

0 E
−1, which avoids the inversion computa-

tion of the Op × Op matrix using the inversion of a smaller
r0 × r0 matrix. To estimate log |Σo

p|, we integrate stochas-
tic trace estimation with partial Lanczos tridiagonalizations
[60], [62], i.e., T1, T2, · · · , Tt, from mPCG. The key idea
is that instead of calculating the full tridiagonalization, i.e.,
(C−1)TΣo

pC
−1 = HTT H where H is orthonormal, we run

k iterations (k ≪ Op) of this algorithm t times so that we
obtain t partial Lanczos tridiagonalizations decompositions Ti
(see line 13 and 14 in Algorithm 1). Specifically, the log
determinant log |Σo

p| can be calculated by:

log |Σo
p| = log |Σo

pC
−1P(C−1)T |

= log |(C−1)TΣo
pC

−1|+ log |P| (28)

log |(C−1)TΣo
pC

−1| = Tr(log T )
= E

di∼N (0,P)
[(dT

i (C
−1)T )(log T )(C−1di)]

= E
di∼N (0,P)

[(dT
i (C

−1)T )HT
i (log Ti)Hi(C

−1di)]

≈ 1

t

t∑
i=1

eT
1 (log Ti)e1 (29)

where log |P| can be computed using the Matrix Determinant
Lemma as log |P| = log |C0C

T
0 + E| = log |CT

0 E
−1C0 +

I| + log |E|, which converts the determinant calculation of
Op × Op matrix into the determinant calculation of r0 × r0
matrix; Ti ∈ Rk×k are partial Lanczos tridiagonal matrices,
which can approximate the eigenvalue of (C−1)TΣo

pC
−1 and

can be obtained directly from mPCG (see line 13 and 14) [60],
[62]; Hi is orthonormal matrix generated by C−1di so that
Hi(C

−1di) = e1, where e1 is the first column of identity
matrix. Many existing studies [46], [63] have shown that by
setting an iteration number k ≪ Op and utilizing GPU to
compute matrix operations in parallel, the mPCG algorithm
can approximate exact solutions of MGP but with much faster
speed compared to Cholesky decomposition.

The calculated (Σo
p)

−1yo
p, log |Σo

p|, and Tr
(
(Σo

p)
−1 dΣo

p

dΘ

)
are used for computing L(Θ) and its derivative dL/dΘ (see
lines 17 and 18). These values will be further utilized to
estimate the MGP hyperparameters through a gradient-based
optimization algorithm (i.e., ADAM Optimizer [64]), denoted
as Θ∗, which is subsequently utilized to compute the posterior
mean, completing data imputation as shown in line 22.

REFERENCES

[1] H. Yang and B. Yao, Sensing, Modeling and Optimization of Cardiac
Systems: A New Generation of Digital Twin for Heart Health Informat-
ics. Springer Nature, 2023.

Algorithm 2 Multi-task Gaussian Process (MGP) imputation
with modified preconditioned conjugate gradients (mPCG)
acceleration

1: Input: Initialization of Θ0; yo
p; Σo

p; ∆ = [d0,d1, · · · ,dt];
P−1 = (CCT )−1 = (C0C

T
0 + E)−1, C0C

T
0 generated by

decomposing KM ⊙ KOp using pivot Cholesky decomposition;
l← 0

2: Output: The posterior mean for missing values µyu
p

3: while stopping criterion not met do ▷ Start training step
4: U0 ← 0; R0 ← Σo

pU0 −∆; Z0 ← P−1(R0); S0 ← −Z0;
T1, . . . , Tt ← 0

5: for j = 0 to k − 1 do ▷ Execute mPCG
6: αj ← (Rj ⊙ Zj)

T1/(Sj ⊙ (Σo
pSj))1

7: Uj+1 ← Uj + Sjdiag(αj)
8: Rj+1 ← Rj +Σo

pSjdiag(αj)
9: if ∀i ∈ 1, 2, · · · , t ∥[Rj+1]:,i∥2 < tolerance then yield

Uj+1 break
10: Zj+1 ← P−1(Rj+1)
11: βj ← (Zj+1 ⊙ Zj+1)

T1/(Zj ⊙ Zj)
T1

12: Sj+1 ← −Zj+1 + Sjdiag(βj)

13: ∀i ∈ 1, 2, · · · , t [Ti]j+1,j+1 ← 1
[αj ]i

+
[βj−1]i
[αj−1]i

if j >

0, otherwise [Ti]j+1,j+1 ← 1/[αj ]i

14: ∀i ∈ 1, 2, · · · , t, j > 0 [Ti]j+1,j , [Ti]j,j+1 ←
√

[βj ]i

[αj ]i

15: yield Uk, T1, . . . , Tt ▷ Used for computation of L(Θl) and
dL
dΘl

16: Compute: (Σo
p)

−1yo
p ← [Uk]:,1, log |Σo

p| ←∑t
i=1 e

T
1 (log Ti)e1 + log |P|, Tr

(
(Σo

p)
−1 dΣo

p

dΘl

)
←

1
t

∑t
i=1([Uk]:,i+1)

T
(

dΣo
p

dΘl
P−1di

)
17: L(Θl)← log |Σo

p|+ (yo
p)

T (Σo
p)

−1yo
p +

Op

2
log(2π)

18: dL
dΘl
← (yo

p)
T (Σo

p)
−1 dΣo

p

dΘl
(Σo

p)
−1yo

p + Tr
(
(Σo

p)
−1 dΣo

p

dΘl

)
19: Θl+1 ← ADAMOptimizer

(
L(Θl),

dL
dΘl

)
▷ Update

Θl+1 by ADAM optimizer
20: l← l + 1
21: yield Θ∗ = {Vect(B)∗,Diag(E)∗, θ∗} ▷ Complete training

step
22: µyu

p
← (K(Vect(B)∗)M∗M ⊙K(θ∗)UpOp)(Σ

o
p(Θ

∗))−1yo
p ▷

Complete imputation step
23: return µyu

p

[2] B. Yao, Y. Chen, and H. Yang, “Constrained markov decision process
modeling for optimal sensing of cardiac events in mobile health,” IEEE
Transactions on Automation Science and Engineering, vol. 19, no. 2,
pp. 1017–1029, 2021.

[3] B. Yao and H. Yang, “Spatiotemporal regularization for inverse ecg mod-
eling,” IISE Transactions on Healthcare Systems Engineering, vol. 11,
no. 1, pp. 11–23, 2020.

[4] A. Rajkomar, E. Oren, K. Chen, A. M. Dai, N. Hajaj, M. Hardt, P. J. Liu,
X. Liu, J. Marcus, M. Sun et al., “Scalable and accurate deep learning
with electronic health records,” NPJ digital medicine, vol. 1, no. 1, p. 18,
2018.

[5] Z. Wang, S. Stavrakis, and B. Yao, “Hierarchical deep learning with
generative adversarial network for automatic cardiac diagnosis from ecg
signals,” Computers in Biology and Medicine, vol. 155, p. 106641, 2023.

[6] Z. Wang and B. Yao, “Multi-branching temporal convolutional network
for sepsis prediction,” IEEE journal of biomedical and health informat-
ics, vol. 26, no. 2, pp. 876–887, 2021.

[7] Z. Wang, S. Chen, T. Liu, and B. Yao, “Multi-branching temporal con-
volutional network with tensor data completion for diabetic retinopathy
prediction,” IEEE Journal of Biomedical and Health Informatics, 2024.

[8] P. Yadav, M. Steinbach, V. Kumar, and G. Simon, “Mining electronic
health records (ehrs) a survey,” ACM Computing Surveys (CSUR),
vol. 50, no. 6, pp. 1–40, 2018.

[9] B. Shickel, P. J. Tighe, A. Bihorac, and P. Rashidi, “Deep ehr: a survey of
recent advances in deep learning techniques for electronic health record



13

(ehr) analysis,” IEEE journal of biomedical and health informatics,
vol. 22, no. 5, pp. 1589–1604, 2017.

[10] B. Yao, R. Zhu, and H. Yang, “Characterizing the location and extent of
myocardial infarctions with inverse ecg modeling and spatiotemporal
regularization,” IEEE journal of biomedical and health informatics,
vol. 22, no. 5, pp. 1445–1455, 2017.

[11] C. Xiao, E. Choi, and J. Sun, “Opportunities and challenges in de-
veloping deep learning models using electronic health records data:
a systematic review,” Journal of the American Medical Informatics
Association, vol. 25, no. 10, pp. 1419–1428, 2018.

[12] A. Schieppati, J.-I. Henter, E. Daina, and A. Aperia, “Why rare diseases
are an important medical and social issue,” The Lancet, vol. 371, no.
9629, pp. 2039–2041, 2008.

[13] Z. Wang, A. Crawford, K. L. Lee, and S. Jaganathan, “reslife: Residual
lifetime analysis tool in r,” arXiv preprint arXiv:2308.07410, 2023.

[14] T. Emmanuel, T. Maupong, D. Mpoeleng, T. Semong, B. Mphago, and
O. Tabona, “A survey on missing data in machine learning,” Journal of
Big Data, vol. 8, no. 1, pp. 1–37, 2021.

[15] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE
Transactions on knowledge and data engineering, vol. 21, no. 9, pp.
1263–1284, 2009.
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