
Second-order forward-mode optimization of recurrent
neural networks for neuroscience

Youjing Yu Rui Xia Qingxi Ma Máté Lengyel Guillaume Hennequin
Computational and Biological Learning Lab

Department of Engineering
University of Cambridge, Cambridge, UK

{yy471, rx220, qm218}@cam.ac.uk, {m.lengyel, g.hennequin}@eng.cam.ac.uk

Abstract

Training recurrent neural networks (RNNs) to perform neuroscience tasks can be
challenging. Unlike in machine learning where any architectural modification of an
RNN (e.g. GRU or LSTM) is acceptable if it facilitates training, the RNN models
trained as models of brain dynamics are subject to plausibility constraints that funda-
mentally exclude the usual machine learning hacks. The “vanilla” RNNs commonly
used in computational neuroscience find themselves plagued by ill-conditioned loss
surfaces that complicate training and significantly hinder our capacity to investigate
the brain dynamics underlying complex tasks. Moreover, some tasks may require
very long time horizons which backpropagation cannot handle given typical GPU
memory limits. Here, we develop SOFO, a second-order optimizer that efficiently
navigates loss surfaces whilst not requiring backpropagation. By relying instead
on easily parallelized batched forward-mode differentiation, SOFO enjoys constant
memory cost in time. Moreover, unlike most second-order optimizers which in-
volve inherently sequential operations, SOFO’s effective use of GPU parallelism
yields a per-iteration wallclock time essentially on par with first-order gradient-
based optimizers. We show vastly superior performance compared to Adam on
a number of RNN tasks, including a difficult double-reaching motor task and the
learning of an adaptive Kalman filter algorithm trained over a long horizon.

1 Introduction

In recent years, trained recurrent neural networks (RNN) have gained increasing adoption as models
of brain circuits dynamics [47, 1]. As flexible parametric models of sequential dynamics, RNNs
can be trained to perform specific computations or reproduce certain behaviors [31, 50, 20, 13],
and be subsequently probed for insights into the distributed computations that give rise to those
behaviors [2, 53]. RNNs are also often used as expressive models of the latent dynamics underlying
the spatiotemporal structure of neural recordings [39, 44, 21, 12].

Despite their flexibility, RNNs are notoriously difficult to train [40, 51, 9, 36]. In addition to the
classic problem of vanishing gradients in temporally extended tasks, the loss surfaces that arise from
RNN dynamics in complex tasks often exhibit pathological curvature that first-order gradient-based
optimization techniques struggle to handle. These problems are normally addressed in multiple ways.
First, the RNNs used in machine learning are modified from their standard (“vanilla”) formulation to
include specific gate variables [18, 8] that largely mitigate the vanishing gradient problem. However,
there is little biological support for the existence of such gating mechanisms, such that computational
neuroscience studies have typically restricted themselves to vanilla RNNs [46]. Second, second-order
optimizers such as Hessian-free optimization [32, 33, 50] or KFAC [34] can be used to dramatically
accelerate training. However, those are difficult to scale, often much slower in wall-clock time, and
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memory hungry. Alternatively, the loss surface can be regularized by introducing artificial temporal
“skip connections”, and the network is progressively weaned off those biologically meaningless
connections during the course of training [46].

Another great obstacle to training RNNs lies in the memory complexity of gradient-based optimization
via backpropagation through time (BPTT). In certain applications, such as in motor neuroscience,
RNNs must be trained on tasks that require the production of smooth behavior requiring the use
of small (millisecond) time steps and therefore long time horizons. In other applications such
as “learning to learn” [29, 10] where the parameters of a synaptic plasticity rule are optimized to
yield a specific learning behavior, the network must be simulated over a horizon long enough to
span the slow timescale of synaptic modifications. Since backpropagation has a memory cost that
scales with the time horizon, its naive application is often prohibitively expensive in these scenarios.
Memory efficiency can be improved in a variety of ways. Checkpointing [42] allows discarding
information between sporadic checkpoints in the forward pass, at the expense of having to recompute
that information during the backward pass. Alternatively, backpropagation through time can be
truncated [51]: instead of computing a single gradient for the entire sequence of size T , gradients are
computed sequentially for consecutive sub-sequences of size T ′ ≪ T . Although cutting the chain of
backpropagating gradients in this way reduces the memory cost from O(T ) to O(T ′), the resulting
gradient estimates are biased and neglect long-range temporal dependencies that may be important
for the task [35, 38]. Yet another way of reducing the memory footprint of BPTT is to formulate
the RNN dynamics as an ordinary differential equation (ODE) in continuous time. In these “neural
ODE” models, gradients are obtained by solving another (adjoint) ODE with no need for caching
intermediate states [7, 26]. However, this requires very accurate, often adaptive ODE solvers that are
highly non-trivial to implement and to adapt to the mini-batch setting.

Finally, training RNNs is known to largely under-exploit the parallelization capabilities of modern
(GPU) hardware. RNN gradient computations are inherently sequential (forward-backward), such
that the only way to exploit GPU parallelism is to use large batches (e.g. run a large number of trials
of the task in each training iteration). Whilst using large batches may enable faster learning with
larger learning rates, it is often the case that increasing the batch size beyond a certain point no longer
helps in this respect [25]. Thus, some of the parallel processing power of GPU hardware is often
underused.

In summary, training RNNs is plagued with many problems. While there exist piecemeal solutions to
each of these challenges, we currently lack a simple method that addresses all of them simultaneously.
In this paper, we develop such a method, which we call SOFO (Second order Forward-mode
Optimization). At each training iteration, SOFO reparameterizes the model in a random subspace,
and uses batched forward-mode automatic differentiation to efficiently compute exact Generalized
Gauss-Newton (GGN) updates in that subspace. This circumvents the need for backpropagation,
enabling the training of RNNs over very long horizons. We test the performance of SOFO on
benchmark tasks (e.g. learning an adaptive Kalman filter over long horizons, performing a motor
reach with a biomechanical arm; Section 4). We show empirically that, despite only exploring a small
fraction of the parameter space in each iteration, SOFO dramatically accelerates training of RNNs in
these complex tasks. More generally, we suggest that SOFO – as a general purpose optimizer – is a
strong candidate for machine learning applications that involve relatively few trainable parameters
but memory-hungry computational graphs(e.g. fine-tuning of transformers using low-rank adapters
[19], or tuning of hyperparameters in Gaussian process-based models).

2 Background and related work

2.1 Problem formulation

We consider supervised learning problems where a neural network with parameters θ ∈ RP is given
batches of inputs x, and produces batches of outputs y(x,θ) ∈ RMN , where M is the batch size.
The specific case of an RNN with output dimension D simulated over a time horizon T would imply
N = DT – i.e. the network’s outputs consist of entire sequences. Training the network involves
minimizing a stochastic cost function c(θ,x), averaged over the training data in each minibatch, that
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depends on the network’s output y and therefore on the parameters θ:

c(θ,x) ≜ ℓ(y(θ,x)) ≜
1

M

M∑
m=1

N∑
i=1

ℓmi (ymi(θ,xm)) (1)

where each ℓmi(·) function is strongly convex in its first argument (which does not imply that the
overall cost c(θ, ·) is convex in θ). In RNN applications, i runs from 1 to N = DT , i.e. it indexes the
cartesian product of T time bins × D output dimensions; the explicit dependence of ℓmi on i thus
allows for the possibility of providing teaching signals only at specific times. To eliminate clutter,
in most of this paper we will drop the explicit dependence of the network’s outputs on the inputs x,
focusing instead on their dependence on θ.

2.2 Generalized Gauss-Newton optimization

The Generalized Gauss-Newton (GGN) method prescribes parameter updates of the form:

θt+1 = θt − η G(θ,x)+
∂c

∂θ

∣∣∣∣
θt

(2)

where η is a learning rate and G(θ,x)+ is the Moore-Penrose pseudo-inverse of the GGN matrix
G(θ,x) ∈ RP×P , defined as

G(θ,x) ≜ J(θ,x)⊤

(
∂2ℓ

∂y2

∣∣∣∣
y(θ,x)

)
J(θ,x). (3)

Here, J(θ,x) ∈ RMN×P is the Jacobian of the network’s output y w.r.t. the parameters θ. We
note that for an underparameterized model with a number of network outputs MN exceeding the
number of parameters P , the GGN matrix can be full rank, in which case the pseudoinverse coincides
with the inverse. For overparameterized models, it has rank ≤ MN . In both cases, it is common
practice to damp the inverse to enhance the stability of the training process; this is done by using
G+

γ ≜ (G+ γI)−1 instead of G+ with some damping parameter γ.

2.3 Forward-mode automatic differentiation

Given a computational graph with inputs θ ∈ RP (keeping the notation relevant to our use case)
and producing outputs y(θ), forward-mode AD [3] allows the directional derivative ∂y(θ)

∂θ v (i.e. a
Jacobian-vector product, JVP) in any arbitrary direction v to be automatically computed together
with y(θ) itself, with roughly the same computational and memory complexity. This is achieved
by initializing the parameters with primal value θ and tangent value θ̇ = v, extending the standard
mathematical operators to operate on such primal/tangent pairs, and running the computation forward
in this dual space. For any intermediate node z in the computational graph, the tangent value ż that
is produced has the same shape as z and represents the sensitivity of z to small one-dimensional
changes in θ in the direction of v:

ż ≜ lim
ϵ→0

z(θ + ϵv)− z(θ)

ϵ
=

∂z

∂θ︸︷︷︸
R•×P

v︸︷︷︸
RP

. (4)

Note that – unlike backpropagation, or “reverse-mode AD” – forward-mode AD does not require
caching any of the intermediate results that lead to the output of interest. SOFO exploits the fact that
Jacobian-vector products are embarassingly parallelizable, i.e. one can rewrite the standard maths
functions to operate not on one tangent per value, but on a whole batch of K tangents in parallel.
This can be done in JAX [5] out-of-the-box by composing Jacobian-vector products with the vmap
primitive. As no such functionality exists in PyTorch yet, we provide our own flexible implementation
of batched JVPs based on OCaml-Torch1.

1code available at https://github.com/hennequin-lab/SOFO
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2.4 Subspace optimization methods

A variety of methods exist that, like SOFO, optimize parameters in a different subspace in each
iteration. A well-known example is coordinate descent, which iteratively minimizes the objective
function w.r.t. each parameter, one at a time [55]. More generally, one may optimize in a higher-
dimensional subspace than 1D, in a coordinate system that is not necessarily axis-aligned. This leads
to a family of randomized subspace algorithms, including stochastic subspace descent (SSD; 27) and
its variance-reduced version inspired by stochastic variance-reduced gradient (SVRG; 22). The above
methods can be construed as Jacobian sketching methods, whereby a random “sketch” of the Jacobian
is obtained and used to estimate the gradient; the convergence of such sketching algorithms has been
proved [27, 28] under standard assumptions on the loss function (e.g. Polyak-Lojasiewicz condition;
24). Similarly, it is possible to sketch not only the Jacobian but also any of the matrices that are
normally used as curvature estimates, leading to a family of randomized second-order optimization
algorithms. These include the sketched Newton algorithm [41], randomized subspace Newton [14],
randomized subspace Gauss-Newton [6], stochastic dual Newton ascent [43] and stochastic subspace
cubic Newton [15]. Sketched Hessians are usually obtained by nested forward- and reverse-mode AD,
and as such incur the same memory complexity as backpropagation. To obtain a rank-K sketch of
the Jacobian, and therefore compute directional first-order derivatives in a K-dimensional subspace,
one can instead perform K independent forward-mode AD computations [28, 4].

Here, we extend this use of forward-mode AD to the sketching of the Generalized Gauss-Newton
matrix, which we show can be performed efficiently on GPUs. This leads to a memory- and compute-
efficient algorithm that enjoys the fast convergence properties of a second-order method, with the
runtime complexity of a first-order optimizer.

3 SOFO

SOFO (Algorithm 1) is based on successively optimizing low-dimensional affine re-parameterizations
of the model, randomized in each training iteration. Specifically, instead of updating all P parameters
independently at every step as is normally done, SOFO locally reparameterizes the model by writing
the cost function as

c̃t(∆θ̃) ≜ c(θt +Θ∆θ̃), (5)

where the K columns of Θ form a random K-dimensional subspace that is drawn anew at every
iteration. An exact GGN update ∆θ̃⋆ (see below) is then obtained for this momentary lower-order
model, leading to new parameters θt+1 = θt − ηΘ∆θ̃⋆ around which the model is again re-
parameterized in the next iteration. The gradient and GGN matrix associated with c̃t(·) are related to

Algorithm 1 SOFO: Second-order Forward Optimisation
1: input: θ0 ∈ RP

2: hyperparameters: subspace dimension K, learning rate η, relative damping λ
3: convention: for any variable z ∈ R•, let uppercase Z ∈ R•×K denote the associated batch of

K tangent values (e.g. {θ,Θ}, {y, Y }, {c, C})
4: for t = 0, 1, 2, ... do ▷ training iterations
5: sample data minibatch x

6: sample Θ ∈ RP×K with Θpk
iid.∼ N (0, 1) ▷ subspace randomization

7: {y, Y } = network_output({θ,Θ},x) ▷ under batched forward-mode AD
8: {c, C} = c({y, Y }) (c.f. Equation 1) ▷ under batched forward-mode AD
9: form sketched GGN matrix G̃ = Y ⊤HY ▷ c.f. Equation 7

10: compute SVD of G̃ = USU⊤

11: extract smax = max diag(S) ▷ max. singular value
12: θt+1 = θt − ηΘU(S + λsmaxI)

−1U⊤C ▷ SOFO update
13: end for
14: output: last iterate θt
15: note: for RNNs, memory can be saved in steps 7–9 by directly accumulating G̃ and C over time

steps.
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those of c(·) via the chain rule:
∂c̃t

∂∆θ̃︸ ︷︷ ︸
RK

= Θ⊤ ∂c

∂θ

∣∣∣∣
θt

and G̃︸︷︷︸
RK×K

= Θ⊤GΘ. (6)

Thus, G̃ is a random (K ×K) sketch of the full (P × P ) GGN matrix (c.f. Section 2.4). Inserting
Equation 3 into Equation 6, we obtain

G̃ = (JΘ)⊤
(
∂2ℓ

∂y2

)
(JΘ) (7)

which is then used to compute the main (damped) SOFO parameter update,

θt+1 = θt − ηΘ(G̃+ γI)−1

(
Θ⊤ ∂c

∂θ

)
, (8)

where γ is the damping parameter (see below). SOFO uses batched forward-mode AD to efficiently
compute JΘ and Θ⊤ ∂c

∂θ on parallel hardware. As in standard forward AD, we rewrite the standard
math operators to operate on primal/tangent pairs (c.f. Section 2.3). However, instead of working
with single tangents, we operate directly on entire batches of K tangent values for every primal
value (note: these tangent batches have nothing to do with data minibatches). Those K tangents
can be propagated completely independently of each other through every differentiable operation
leading to network outputs and the final cost. Thus, computing such Jacobian-matrix products is
an embarrassingly parallel problem that can fully exploit GPU parallelism. The steps detailed in
Algorithm 1 show concretely how JΘ ≡ Y is obtained as the tangent batch associated with the
network outputs y, and how the vector of directional derivatives Θ⊤ ∂c

∂θ ≡ C is the tangent batch
associated with the final cost c.

Given that y is typically a large tensor (batch size × time horizon × output dimension), one might
worry that the Hessian of ℓ(y) in . Equation 7 could be expensive to compute. However, (i) the loss
function ℓ(y) is typically a sum over losses applied to individual batch elements and time bins of y,
implying a block-diagonal Hessian and therefore cheap products with JΘ; (ii) for standard losses
such as the mean squared error or the cross-entropy, the diagonal blocks themselves have a structure
that affords fast computations [32]. One might also worry that y may not even fit in GPU memory.
For RNNs, however, ℓ(·) is typically a sum of losses accumulated over time, and it is straightforward
to similarly accumulate both the overall cost c (and its tangents) and the sketched GGN matrix G̃
without ever having to store network activations over time. Overall, this leads to a O(T 0) memory
cost (Figure 6A).

Second-order methods are known to require appropriate damping of the curvature matrix [33].
Finding a good absolute damping parameter γ can be difficult without knowing the overall scale of the
curvature matrix or the extent of its ill-conditioning. SOFO’s lower-dimensional reparameterization
of the model at each iteration affords us the explicit computation and inversion of the sketched GGN
matrix G̃ (K ×K). In particular, this gives us easy access to its singular values. We exploit this here
by using a relative damping scheme, setting γ = λsmax where smax is the maximum singular value of
G̃, and λ is a relative damping parameter that we have found easier to tune.

Connection to real-time recurrent learning (RTRL) The RTRL algorithm [54] is mathematically
equivalent to a particular limit of SOFO: the limit where (i) SOFO doesn’t use curvature information
(i.e. dropping the inverse matrix term in Equation 8 ) and (ii) the set of tangent vectors used at
each iteration (Θ in Equation 6) is a full basis equal to the identity matrix. In this limit, batched
forward-mode differentiation (efficiently) implements the usual RTRL recursion to propagate exact,
entire Jacobians of network activity w.r.t. the parameters, in (constant memory) forward mode. For
a model with P parameters, the memory cost of RTRL will be P/K times that of SOFO if SOFO
uses K random tangents. Given that the ratio K/P used in our experiments is around 1%, this would
make RTRL ∼ 100 times more memory-intensive than SOFO.

4 Results

We now apply SOFO to a range of RNN-based applications relevant to neuroscience, and show that it
outperforms Adam in all cases, occasionally finding network solutions for tasks where Adam failed.
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Figure 1: Sparsely supervised Lorenz attractor. (A) In each trial, a 32-step snippet (colored line)
of the Lorenz manifold attractor (grey) is chosen at random. The RNN is initialized in the starting
state (blue dot), and the final state (green dot) is the only supervision label provided during training.
(B) Learning curves for Adam, SOFO, FGD [4] and a first-order version of SOFO that uses the same
number of tangents [28]. It is possible to get a smoother learning curve for Adam but at the cost of
much slower convergence. (C) Example trajectory produced by the RNN after training with SOFO.
In this task, SOFO is only 35% slower than Adam in wallclock time per iteration (not shown).

For all tasks, we manually tuned both SOFO and Adam’s hyperparameters to get best performance in
each case, as assessed by the training loss. All experiments are run on an RTX 2080 Ti GPU.

4.1 Inferring dynamics from sporadic observations

We begin by evaluating SOFO’s ability to learn the nonlinear dynamics of a system based on
temporally sparse state observations – a problem related to current neuroscience efforts to infer latent
brain dynamics from neural or behavioral data [12]. We use the Lorenz attractor [30] as a model
nonlinear system with non-trivial dynamics (Figure 1). We train an RNN with a 3-dimensional state
space, but flexible one-step dynamics parameterized by a two-layer MLP with an inverted bottleneck
(Appendix E.1; this is similar to the neural ODE model class used in 26). In each trial, the network is
initialized at a random location on the Lorenz manifold, and is trained to generate a state trajectory
that, after 32 time steps, terminates exactly where the Lorenz system would have (Figure 1A).
Therefore, the RNN is only supervised using trajectory endpoints, being left unsupervised for most of
the trial.

In this task, the training loss decays faster, more smoothly, and to a lower minimum with SOFO than
with Adam (Figure 1B). The RNN correctly recovers the Lorenz dynamics (Figure 1C).

It is remarkable that despite only optimizing a small effective fraction K/P of the parameters at each
iteration (in this application, K = 128 implies K/P < 5%), SOFO still outperforms a method that
optimizes all parameters at once (Adam). We hypothesized that this owes to the use of second-order
preconditioning with the GGN matrix. To test this, we compared SOFO to a first-order version of it,
i.e. parameter updates of the form ΘΘ⊤ ∂c

∂θ [28]. This first-order subspace method also sees the same
small parameter subspace at each iteration, but does much worse than SOFO; in fact, in this case, it
appears to be useless (Figure 1B, orange). With K = 1 and no second-order preconditioning, SOFO
reduces to “Forward-gradient descent” (FGD; 4), which performs even worse (Figure 1B, green).

4.2 Learning an adaptive Kalman filter

Next, we trained a vanilla RNN to perform adaptive Kalman filtering (KF) in a non-stationary
environment (Figure 2A) – a task highly relevant to adaptive motor control [16, 17]. In this task, the
RNN receives noisy observations of the state of an underlying 1D linear dynamical system (LDS),
and at each time step must infer the current latent state. The parameters of the linear dynamical
system (i.e. the context) are subject to sporadic changes during each trial (details in Appendix E.2).
Thus, the RNN must learn to integrate its inputs to (i) rapidly learn about the current parameters of
the LDS to be able to perform optimal KF, and (ii) detect any contextual switches.

SOFO again outperforms Adam on this task, successfully training the RNN in less than 200 training
iterations (Figure 2B). Adam is much slower, and converges to a suboptimal solution. Networks
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Figure 2: Learning an adaptive Kalman filter (KF). (A) Task structure, where xt denotes the latent
state and yt its momentary observation. Each trial (T = 5000 steps) is randomly partitioned into
successive contexts (of potentially different durations; Appendix E.2). Each context is characterized
by a different, randomly parameterized LDS, which produces latent state trajectories noisily observed
by the RNN; context switches are uncued. At each step, the RNN must predict the current state.
(B) Training curves for Adam and SOFO, compared to the MSE noise floor provided by KF knowing
the current context (green, average over 1000 trials), and a baseline showing KF performance given
random (and thus wrong) LDS parameters sampled from the task distribution (Kalman random;
orange, average over 1000 trials). (C) Within-trial evolution of the mean-squared prediction error for
the current context in the trained models, as a function of time elapsed since the last context switch,
averaged over 1500 contexts (barely visible shaded areas = ±2 s.e.m.). Green and orange baselines:
same as in (B).

trained by SOFO are able to (implicitly) infer the current LDS parameters with good accuracy within
10/20 steps following every context switch, gradually approaching the fundamental limit set by a KF
that has full knowledge of the active LDS parameters at all times (Figure 2C, red). Within-context
learning in networks trained by Adam is slower and worse overall (black).

4.3 3-bit flip-flop task

To further demonstrate the ability of SOFO to learn long temporal dependencies, we turn to the 3-bit
flip-flop task described in [49] (Figure 3A, B; see Appendix E.3 for details). Moreover, we compare
the performance of SOFO not only against Adam, but also FORCE [48] (Figure 3C), another second-
order optimizer based on recursive least-squares (RLS) which is admittedly the optimal solution
in the “reservoir” setting. Whilst FORCE does make more rapid initial progress, SOFO eventually
achieves a lower loss at convergence. To make the comparison fair to FORCE, we implemented a
novel batched version of FORCE-RLS (Appendix B).
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Figure 3: 3-bit flip-flop task. (A) Network architecture for the classical 3-bit flip flop task: three input
channels sporadically provide random bits (±1) at random time intervals and each corresponding
output channel must hold its activity at the value given by the last provided bit (see B). The network
feeds back its own output via random feedback weights (grey). Only the output weights (black) are
trained. (B) Example outputs for the network trained with SOFO (dashed lines); tight match to target
outputs (solid pale) shows successful training. Solid dark lines show the corresponding input bits.
(C) Evaluation loss for Adam (black), SOFO (red) and FORCE (green), for a network of size 1000
and for SOFO small (purple) where the network size is reduced to 128 but the all sets of weights (i.e.
recurrent weights, biases etc) are trainable. (D) Same as C, for varying number of neurons from 1000
to 8000 (dark to pale).

7



0.01

0.1

1

0 20 40 60 80 100

0

4

8

SO
FO

Ad
am

Adam
SOFO

tr
ai

ni
ng

lo
ss

wallclock time [min]

ti
m

e
pe

r
it
er

at
io

n
[s

]

SOFO
Adam

prepare reach

SOFO

Adam

hold
prepare

reach

time

model arm

noisy

vanilla RNN

sensory feedback

task

inputs

example single-neuron PSTHs single-trial

hand trajectories
shoulder torque

A B C

D E F

Figure 4: Memory-guided single-reach task. (A) System schematics and task structure (see text).
(B) Training curves for Adam and SOFO (mean ± 2 s.e.m. over 3 independent runs). (C) Wallclock
time per training iteration. (D–F) Example single-neuron firing rates (D), single-trial hand trajectories
(E) and shoulder torques (F) for eight selected reach conditions (color-coded). Gray areas denote
preparation epochs.

Interestingly, we find that SOFO works best when the reservoir is non-chaotic at initialization
(g = 0.5 instead of g = 1.5 as in [49]) – whereas FORCE tends to fail in this setting (as is well
known). Morover, ref. [11] demonstrated that by restricting the locus of learning to those few
task-relevant output weights, FORCE tends to come up with brittle solutions. SOFO, on the other
hand, is a flexible general purpose 2nd-order optimizer that can be used to tweak any of the network’s
parameters (recurrent weights, biases, feedback and input weights), not just the output weights. We
implemented this form of training and found that SOFO was able to train a much smaller network
of 128 units and ReLu activations (instead of the usual FORCE tanh) on the 3-bit flip flop task
(Figure 3C, purple), to a final test means squared error more than 15 times smaller than FORCE’s
with 1000 neurons. In summary, by allowing efficient training of more flexible network models from
non-chaotic initializations, SOFO stands as nicely complementary to FORCE in the RNN training
toolbox.

4.4 Motor tasks

Finally, we also applied SOFO to two different memory-guided motor tasks: a single-reach task, and
a more challenging double-reach task. In both tasks, the RNN receives task-related inputs (see below)
and outputs a pair of time-varying torques driving the motion of a two-jointed model arm (Figure 4A;
[23]). The RNN also receives sensory feedback in the form of joint positions and velocities. In the
single-reach task (Figure 4), each trial begins with a variable “idle” phase during which the hand must
remain at a central spot (where it is initialized). A variable-length preparation phase follows, during
which the network is presented with inputs representing the x- and y-coordinates of the reach target
but must continue to hold to the central spot. The movement phase is initiated by the withdrawal of a
“hold” input present during the first two phases (c.f. [50]). The RNN must reach the target within
600 ms, and hold it for 200 ms. In the double-reach task, the two target locations are simultaneously
presented during the preparation phase, and must be reached in a sequence (see Section 4.4 for details
of the loss function). Target locations are randomly sampled in each trial from a distribution of
reachable positions around the central spot.
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We trained a stochastic vanilla RNN on both tasks. This is a difficult task for a noisy RNN to acquire,
as process noise in the recurrent dynamics not only causes motor disturbances in the arm, but also
corrupts the memory of the target location which is no longer visible during the reach. A successful
network must learn a strategy that mitigates the effect of ongoing noise in the relevant memory /
output subspaces, and integrate sensory feedback to correct for output disturbances.

SOFO rapidly trains successful RNNs to perform both tasks proficiently in a few hundred training
iterations (between 30min and 2h of wallclock time), where RNNs trained using Adam just about
get the gist of the single-reach, and completely fail to learn double reaching (Figure 4B-E-F and
Figure 5B-C-D) despite days of manual hyperparameter tuning. In the single-reach task, networks
trained with Adam fail to withhold movement until the go cue, and appear unable to robustly
memorize the target location and/or correct for motor noise.

Excitingly, the single-neuron activity patterns observed in the RNN trained with SOFO have a striking
resemblance with those recorded in the motor cortex of non-human primates during similar tasks.
Some neurons are active during movement only, producing rich multiphasic activity patterns; others
are active during preparation only, and many are active during both phases. We leave the analysis
of these population activity trajectories to future work; for now, we simply note that SOFO renews
our ability to train networks on complex motor tasks, thus opening many avenues for future motor
neuroscience investigations.

4.5 Memory and compute profiling

Details on SOFO’s memory and algorithmic complexity can be found in Appendix C. To experi-
mentally demonstrate that SOFO is memory and compute efficient, we carried out profiling in the
context of the Kalman filter learning task (Section 4.2), varying the time horizon T used in each
trial. As expected from backpropagation, memory usage for Adam increases almost linearly with the
time horizon, eventually exceeding the limit of our GPU for T ∼ 30K steps (Figure 6A, black). In
contrast, SOFO’s use of forward-mode AD incurs a low and constant memory cost independent of
T (red). Remarkably, despite being a second-order method, SOFO is only about twice slower than
Adam on wall-clock time per iteration (Figure 6B; see also wallclock time comparisons in Figure 4B
and Figure 5B.

5 Limitations of SOFO

All tasks we have used here can be described using a relatively small number of bits – much fewer
than the information that could in principle be stored in the model’s parameters. Accordingly, simply
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instating the right low-dimensional dynamical motifs in the RNN is sufficient to acquire the desired
behaviour [9]. Therefore, it is perhaps not surprising that SOFO performs very well even though
it only optimizes a fraction of all model parameters in each iteration. We speculate that in richer
learning tasks that require the RNN to store a lot of information (e.g. supervised learning on a rich
dataset), SOFO might not have as large an advantage over Adam. Indeed, our experiments using
SOFO to train an MLP-Mixer [52] on CIFAR-10 shows relatively poor performance – at best on par
with Adam (Appendix D.3).

Even for simple tasks, and assuming a fixed K (size of the gradient and GGN sketches), we expect
SOFO’s performance to gradually deteriorate with the number of parameters in the model. This
is because the sketch of the GGN matrix gets noisier as the tangent to parameter ratio (K/P ) gets
smaller – meaning that we explore a smaller fraction of the parameter space per iteration. Indeed,
when training RNNs with increasing number of neurons S, the convergence rate for SOFO worsens
while that for Adam improves (Appendix D.2).

6 Conclusion and Future Work

In this paper, we have shown how sketches of both the Generalized Gauss-Newton matrix and the
loss gradient can be computed efficiently on parallel hardware, leading to an RNN optimizer that
outperforms Adam in all the neuroscience-related tasks we have studied, at lower memory complexity.
By accelerating RNN training (and sometimes enabling successful training altogether), SOFO could
greatly facilitate a whole line of neuroscientific inquiry that relies on constructing neural networks
that solve behavioral tasks. These trained networks are constrained for biological realism and reverse-
engineered to increase our understanding of brain computations. SOFO’s fast and robust convergence
in all the tasks we have tried suggests that it could enable faster analysis-by-synthesis iterations.

Our current implementation of SOFO could be refined in a number of ways. Adaptive damping (e.g.
based on the Levenberg-Marquardt heuristic [37, 33]) is known to make second-order optimization
algorithms more robust. We speculate that SOFO might benefit from it – although perhaps not to the
same usual degree, given that a random sketch of the GGN matrix is typically better-conditioned than
the full GGN (it is indeed very unlikely that parameter subspaces randomly sampled at each iteration
would exactly contain the top and bottom eigenvectors of the GGN).

In principle, SOFO is a general-purpose optimizer that could be deployed onto any problem outside
the realm of recurrent neural networks. We expect SOFO to perform particularly well in models that
have relatively few tunable parameters yet involve computational graphs that are too large to allow
backpropagation to operate on large data batches. A prime example of this is the fine tuning of large
language models, e.g. with low-rank adaptors [19], but there are many other potential applications
e.g. in the physical sciences.
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A Additional Experiments

In this section we describe some additional experiments and again compare the performance of SOFO
with Adam.

A.1 One-shot classification

We also tested SOFO on a difficult one-shot classification task (see Appendix E.5 for details). This
task relies on three Gaussian distributions of 3D inputs: pi(u) = N (u; ei, I) where I is the 3× 3
identity matrix and ei denotes its ith column. In each trial, these three input distributions are randomly
assigned a unique class label ∈ {1, 2, 3}, and the network begins the trial with a phase of exposure to
a sequence of three input/output pairs (“support set” in meta-learning jargon), each sampled from a
different class and presented for Tlearn = 10 consecutive time steps. In a second phase, the network is
presented with three other fresh inputs from each class (“query set”, Texploit = 10), in random order,
and is asked to classify them according to the same input/class contingencies (Figure 7A). With these
contingencies being randomized in every trial, the RNN must use the initial exposure phase to learn
from the support set, and remember and exploit this information to accurately classify the query set –
and do all this using its own dynamics with fixed parameters.

SOFO outperforms Adam on this task too, successfully training an RNN to 90% one-shot classification
accuracy (later 100%) in 150 training iterations, compared to 1500 iterations for Adam. Contrary to
SOFO, Adam’s training loss exhibits the usual plateau characteristic of first-order optimization of
loss functions with pathological curvature (Figure 7B).

A.2 Delayed addition

To demonstrate that SOFO can also train networks on tasks that require complex temporal dependen-
cies, we apply SOFO to the delayed-addition task (Schmidt et al. [45]; see Appendix E.6 for details)
with varying sequence lengths (Figure 8). There, SOFO again outperforms Adam on tasks involving
both short sequences (Figure 8A) and long sequences (Figure 8B).
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B Batched-FORCE

We also extend the FORCE learning algorithm [48] to its batched version, which we used for the
flip-flop task in Section 4.3 and Figure 3. Recursive least squares (RLS)-based FORCE learning,
as presented in [48], assumes a batch size of 1, which does not fully exploit GPU parallelism. The
batched FORCE algorithm presented in Algorithm 2 implements FORCE learning on a whole batch
of trials in parallel.

Algorithm 2 Batched FORCE
1: hyperparameters: α; batch size M ; number of neurons S; output dimension N ; time horizon

T .
2: input: initial inverse covariance matrix P0 = 1

αI , initial output weights W0 ∈ RN×S and initial
network state z0 ∈ RS×M .

3: for m = 0, 1, 2, ... do ▷ iterate until convergence
4: sample data mini-batch with targets {ȳt ∈ RN×M}t=T

t=0
5: for t = 0, 1, 2, . . . , T do ▷ iterate over the horizon length
6: obtain zt from zt−1 and y(t) (Equation 15)
7: rt = ϕ(zt)
8: yt = Wtrt
9: et = yt − ȳ(t) ▷ calculate error

10: Pt = Pt−1 − Pt−1rt(MIM + rTt Pt−1rt)
−1rTt Pt−1 ▷ update P

11: Wt+1 = Wt − 1
M etr

T
t Pt ▷ update W

12: end for
13: P0 ← PT

14: output: {yt}t=T
t=0

15: end for

C Memory and runtime complexity for SOFO

This section states the memory and runtime complexity of SOFO when applied to an RNN with state
dimension S (assumed to be larger than the output dimension N ), minibatch size M , time horizon T
and tangent batch size K.

Memory complexity For a recurrent neural network operating in batched forward-mode AD, what
has been computed at time t can be immediately discarded at time t+1, leading toO(T 0) complexity
where T is the time horizon. At each time step, the memory cost is dominated by the largest tangent
tensor being manipulated, which will typically be the batch of tangents associated with the network’s
activity, of shape S ×M ×K. For large networks with S > M , the dominant contribution will be
from the batch of tangents associated with the recurrent weight parameters (Θ) of shape S × S ×K.
Note that the accumulated GGN sketch G̃, of size K×K, makes a negligible contribution to memory
usage. Thus, SOFO’s memory complexity is O(max(S,M)SK), to be compared to O(S2 + SMT )
for standard reverse-mode AD.

Runtime complexity SOFO’s per-time-step runtime complexity is dominated by the temporal
updating of the batch of activity tangents; for RNNs, this involves batched matrix multiplications
which have complexity O(S2MK). Runtime complexity is also linear in the time horizon, leading
to an overall O(S2MKT ) complexity. Whilst this is technically K times more than the O(S2MT )
runtime complexity of reverse-mode AD, efficient batching of those K multiplications on GPU is
such that, in our experiments, SOFO was only a small constant (typically between 1.5 and 3) times
slower than Adam in terms of wallclock time per training iteration (c.f. Figure 6B). Note also that the
SVD of the GGN sketch (Algorithm 1, line. 10) will incur a negligible O(K3) runtime cost unless K
is very large (which typically isn’t the case anyway, because of memory constraints – see ‘Memory
complexity’ above).
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Figure 9: MNIST classification task. Training and test performance (see titles) for Adam (black)
and SOFO (colored) with different numbers of tangents K. Percentages refer to the K/P ratio, i.e.
number of tangents K to total parameter count P .

D Additional profiling experiments

Here we present additional profiling experiments on SOFO to demonstrate how SOFO performs
when we (1) increase the number of tangents K; (2) increase the number of neurons S and (3) scale
up to deep networks.

D.1 Investigating the effect of K in SOFO

The choice of K affects the quality of SOFO’s gradient and GGN sketches – the larger, the better. In
general, K should be chosen to be small enough such that the training is not too memory-intensive, but
large enough to ensure fast convergence. Our experiments with SOFO have shown that performance
mainly depends on the ratio of K to the number of parameters P . Strikingly, in RNN settings, this
K/P ratio can be chosen as low as 1% and still yield excellent training performance.

Here we carry out two further experiments to demonstrate the effect of K on SOFO-based training.

MNIST classification We investigated the effect of K on the training of a two-layer perceptron
(MLP) on MNIST classification. With hidden size 100, and input size 28× 28 = 784, the network
had a large total parameter count of P = 79510. As we increased the ratio K/P from 0.16% to
1.26%, training became gradually better, with SOFO eventually outperforming Adam in terms of
progress per training iteration (Figure 9).

Delayed addition We also investigated the impact of K in the training of an RNN on the delayed-
addition task (Appendix A.2). There, the vanilla RNN with S = 128 neurons had a smaller parameter
count P = 17024 (see network structure in Appendix E.6). In this case, even using only K = 32
tangents (K/P ≈ 0.2%) is sufficient for SOFO to outperform Adam, and increasing K leads to even
faster convergence (Figure 8C).

D.2 Training SOFO on large networks

In all previous experiments SOFO has mostly been employed to train small networks (i.e. up to 1000
neurons in the flip-flop task in Section 4.3). In Figure 3D, we compared the performance of SOFO
and Adam in the context of the flip-flop task, as we increased the number of neurons S from 1000
to 8000. While increasing S improved the performance of Adam in terms of convergence speed, it
actually hindered SOFO. In light of the discussion in Appendix D.1, this is perhaps not surprising,
as we kept the number of tangents K fixed at 256, such that the K/P ratio decreased quadratically
with growing S. In other words, with growing S, SOFO got to explore a diminishing fraction of the
parameter space in each training iteration. Note that SOFO nevertheless outperformed Adam for all
network sizes in this benchmark.
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D.3 Training SOFO on deep networks

We have also added a comparison between Adam and SOFO on an MLP-Mixer architecture [52]
trained on CIFAR-10 classification (∼ 105 parameters; see details in Appendix E.7; Figure 10). This
is a fairly easy target for Adam due to the presence of skip connections and layer-norm operations,
and with the limits imposed by GPU memory, the best SOFO does here is to nearly match Adam’s
performance. Note that this deep network setup is not where we expect SOFO to be the most useful
anyways, as this network is not deep enough to really challenge reverse-mode AD in terms of memory
complexity.

E Details on experiments

In this section we present the details on main experiments, describing the task setup and network
structure.

E.1 Details on Figure 1

Task structure The task consists of learning the dynamics of a Lorenz attractor with minimal
supervision. The Lorenz attractor consists of a three-dimensional state (x1, x2, x3) evolving as

ẋ1 = 10(x2 − x1) ẋ2 = x1(28− x3)− x1 ẋ3 = x1x2 −
8

3
x3 (9)

Data is generated by integrating Equation 9 over with a time step of 0.01 using a Runge-Kutta solver
(RK4) followed by z-scoring. During training, the network runs for a total of TLorenz = 32 time steps
but the only label provided is the system’s state at the final time step.

Network structure We use a simple RNN network with an inverted bottleneck structure for this
task. The hidden state z of the recurrent network, which is three-dimensional and directly used as the
state readout, evolves as:

zt+1 = Azt +Wϕ(Czt + b) (10)

where A,C,W, b are parameters and ϕ is the ReLU function. The size of the inverted bottleneck
is chosen to be 400 (i.e. W has shape 400× 3). We use the squared error (SE) between the model
prediction and the label as the loss function for training of the network.

E.2 Details on Figure 2

Task structure The task consists of learning to perform adaptive Kalman filtering on a session
comprising of multiple linear dynamical systems (LDSs) (i.e. the environment is non-stationary).

The state transition dynamics of an LDS is given as:

xt+1 = axt + v + σϵϵ
x
t+1 (11)
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where xt is the hidden state at timestep t. The state emission dynamics is given by:
yt = xt + σβϵ

y
t (12)

where yt is the observation at timestep t (Figure 2A). a is the state transition parameter, b is the
stationary mean of the process and v is the drift at each time point and is obtained as v = (1− a)b.
σ2
ϵ is the process noise variance and σ2

β is the observation noise variance. ϵx and ϵy are both drawn
i.i.d. from a standard Gaussian distribution N (0, 1). In particular, σ2

ϵ is related to the stationary
variance of the LDS, which we denote σ2, via σ2

ϵ = (1− a2)σ2.

Each session has a horizon length of T timesteps and consists of a number of LDSs: an LDS survives
for the first Tfix number of timesteps, and from Tfix beyond at every step there is a 1/d probability of
transitioning onto a new LDS, where d is denoted as the survival time. Before the start of each LDS,
we first sample its parameters (i.e. a, b, σ2

β) from a common global distribution, before sampling
the first data point for this particular LDS from N (b, σ2). Hence, each session is characterized by a
number of LDSs whose transitions are iid. The values of parameters and the global distributions from
which the parameters are sampled are presented in Table 1.

Given the data emitted by the LDSs as described above, the task is as follows: at each time step t,
the neural network receives a new observation yt, and outputs a prediction of the current latent state
x̂t. The training loss is a simple temporal accumulation of squared prediction errors. The network is
hence trained to amortize inference (approximating p(xt|y1:t)) in this non-stationary Kalman filter
setting.

Network structure We use a vanilla RNN with for this task. The momentary hidden state zt of the
recurrent network evolves as:

zt+1 = (1− α)zt + α(ϕ(Czt +Byt + e)) (13)
where B,C, e are network parameters and ϕ is the ReLU nonlinearity. The estimated current state is
obtained as:

x̂t = Ozt (14)
where O is the readout matrix. The number of neurons is 10 (dimension of z) and α = 0.25. Network
parameters are initialized so as to reproduce the current observation (i.e. x̂1 = y1). We use the
squared error between the predicted current state x̂t and the actual current state xt averaged over T
timesteps as the loss function.

Kalman filter and Kalman random baselines The ‘Kalman filter’ baseline has access to the
parameters of each LDS (i.e. a, b, σ2, σ2

β) and is hence aware of each context change. The ‘Kalman
random’ baseline performs the same updates as the Kalman filter, except for that it has knowledge of
b but not of the other parameters (a, σ2, σ2

β). Instead, it assumes random values for these parameters,
drawn from the same global distribution as the one used to generate the parameters for each LDS
(Table 1).

E.3 Details on Figure 3

Task structure We conduct a 3-bit flip-flop task as in Sussillo and Barak [49], where three input
channels sporadically provide bits (±1) at random time intervals while remaining at zero at other

Table 1: Values of LDS parameters and global distributions for the sampling of LDS parameters in
learning an adaptive Kalman filter task (Section 4.2) p(x) denotes the distribution that x is drawn
from and U(a, b) denotes the uniform distribution between a and b.

parameters distribution/values
T 5000
Tfix 100
d 100
p(b) U(−3, 3)
p(τ) U(1, 10)
p(σβ) U(0.1, 3)
p(σ) 1
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times. Each corresponding output channel must sustain its activity (±1) at the value given by the last
provided input bit. In other words, the network must maintain at least 23 = 8 bit memory at any time
instance, while ignoring the cross-talk between differing input/output pairs.

Network structure The hidden state z of the recurrent network evolves as:

zt+1 = (1− α)zt + α(ϕ(Jzt +Byt +WFBx̂t)) (15)

where J,B,WFB are network parameters, y is the output and ϕ is the ReLU nonlinearity. The output
is obtained as:

x̂t = Wϕ(zt) (16)
where W is the readout matrix. Note that to similar to FORCE learning, we fix all weights and only
train output weights W . In particular, entries of J are drawn from a Gaussian distribution N (0, g2

S ),
where g > 1 initializes the network in the chaotic regime (which is necessary for FORCE learning)
but g < 1 initializes the network in the non-chaotic regime. We use S = 1000 neurons and mean
squared error between the target trace and output trace as the training criterion.

E.4 Details on Figure 4 and Figure 5

Task structure See main text for an overall description of the task. The details of the two-jointed
arm model used in these tasks can be found in [23]. The central spot is about 20cm in front of the
shoulder joint. For the single-reach task, the duration of the idle phase is drawn uniformly between
0.1 and 0.5s in each trial, and the duration of the preparation phase is drawn uniformly between 0.2
and 0.8s. Each trial lasts for 2 seconds regardless of whether the target has been successfully reached.
During the idle & preparation epochs, the loss function is a quadratic penalty on the squared deviation
of the hand position from the central spot and a quadratic penalty on the hand velocity. During the
movement epoch, there is no loss for the first 600ms, and then the deviation of the hand from the
desired reach target is penalized quadratically, together with the hand velocity.

For the double-reach task, each trial begins with the preparation phase right away, whose duration is
sampled uniformly between 0.2 and 0.6s. The loss is similar to that described above, with one more
term for the second target to be reached.

For the single-reach task, the input u(t) is 3-dimensional, the first two channels relaying target
information and the third conveying the go cue [50]. For the double-reach task, the input is 5-
dimensional, as two more dimensions are needed for the second target.

Network structure The stochastic vanilla network dynamics considered here read:

τ
dz

dt
= −z +W (ϕ(z)⊙ (1 + σϵ)) + b+Bu+ F (θ1,θ2, θ̇1, θ̇2)

⊤ (17)

where (θ1,θ2) and their derivatives denote the Markov state of the two arm joint angles. Here, W is
a matrix of recurrent weights, b is a bias vector, B is the input weight matrix, and F is a matrix of
feedback weights. We set τ = 20 ms, and use networks with 64 neurons. The nonlinearity ϕ(·) is
the ReLu function, and “firing rates” are corrupted by multiplicative noise (1 + σϵ) where ϵ is an
N -dimensional random vector of uniformly sampled elements between −0.5 and 0.5.

The network dynamics are integrated using the Euler method with a time step of 2 ms.

E.5 Details on Figure 7

Task structure The task is a one-shot three-class classification. We define three Gaussian distribu-
tions of three-dimensional (3D) inputs: pi(u) = N (u; ei, I) where I is the 3× 3 identity matrix and
ei denotes its ith column. In each trial, these three input distributions are randomly assigned a unique
class label ∈ {1, 2, 3}. Each trial consists of two phases: the learning phase and the exploitation
phase. During the learning phase, the network receives a set of three components (the support set):
the input is a randomly generated example, the label is the corresponding one-hot encoded class label
and a teaching signal of value 1. The same set is presented for a fixed Tlearn = 10 timesteps before the
next set is presented for another Tlearn timesteps where the input is generated from a different class,
until all three classes have been presented. During exploitation the network receives a set of two
components (the query set): the input is a randomly generated example and a teaching signal of value
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0 (all entries in the label is set to zero). Similar to the learning phase, the input is an unseen example
drawn from one class is presented for a fixed Texploit = 10 timesteps, before another example drawn
from a different class is presented for another Texploit timesteps, until examples from all three classes
have been presented. The goal of the neural network is to predict the class at the last step of Texploit
for each of the 3 unseen examples during the exploitation phase (Figure 7A).

Network structure We use a simple RNN with an inverted bottleneck for this task. The hidden
state z of the recurrent network evolves as:

zt+1 = Azt +Wϕ(Czt + e) +Byt + d (18)

where A,B,C,W, e,d are network parameters, ϕ is the ReLU nonlinearity and yt is the input and
teaching signal concatenated together at the time step t. The predicted next step is obtained as:

ŷt = Ozt (19)

where O is the readout matrix. The number of neurons is 100 (dimension of z) and the size of the
inverted bottleneck is 400 (W is of size 400× 10). We use the cross-entropy between the true label
and the network output as the loss function, averaged over the c = 3 predictions that the network
makes during each session.

E.6 Details on Figure 8

We conduct a delayed addition task as in Schmidt et al. [45]. The input consists of two sequences
both of length T : the first sequence contains entries drawn from a uniform random distribution
U[0, 1] while the second sequence contains zeros except for one at two random timings: t1 < 10 and
t2 < T/2. Constraints on t1 and t2 are chosen such that every trial requires a long memory of at least
T/2 time steps. At the last time step T , the network is expected to generate an output that is the sum
of the two numbers in the first sequence at t1 and t2.

We use a vanilla RNN (same structure as that in Appendix E.2) with S = 128 neurons to learn the
task. We use the mean squared error between the target and output as the training criterion.

E.7 Details on Figure 10

We use SOFO to train a five-layer MLP-mixer [52] on CIFAR-10 classification task. The network
consists of a patchification layer (patch size 4× 4) followed by a per-patch linear embedding to a
higher channel dimension of 128. This is then followed by two mixer blocks, each block including
one token-mixing MLP with dimension 64, and one channel-mixing MLP with dimension 128 (each
MLP uses a GELU nonlinearity). Finally, a fully-connected output layer performs classification.
Other components such as skip-connections, dropout and layer norm on the channels are also included.
This adds up to about P ≈ 105 parameters.

F Hyperparameter values

Here we present the ranges of hyperparameter values tested for Adam and SOFO in Table 3 and
Table 5 respectively all experiments carried out. The final values of hyperparameters used in the
experiments for Adam and SOFO are presented in Table 2 and Table 4 respectively. We finally present
the range of hyperparameters tested and the final hyperparameters for FGD and first-order SOFO
for the Lorenz task (Section 4.1) and for batched FORCE in the 3-bit flipflop task (Section 4.3) in
Table 6.
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Table 2: Hyperparameters used for Adam. η is to the learning rate.

batch size η

Lorenz 256 2× 10−4

Kalman 256 10−2

one-shot 256 10−5

single reach 256 10−3

double reach 256 10−3

flip-flop 32 10−4

delayed addition 256 10−4

MNIST 512 9× 10−4

cifar-10 256 2× 10−4

Table 3: Ranges of hyperparameters explored for Adam

batch size η

Lorenz 256 10−4 − 10−2

Kalman 256 10−4 − 10−2

one-shot 256 10−5 − 10−3

single reach 256 10−6 − 10−5

double reach 256 10−6 − 10−4

flip-flop 32− 256 10−5 − 10−2

delayed addition 256 10−5 − 10−2

MNIST 512 10−4 − 10−2

cifar-10 256 10−4 − 10−3

Table 4: Hyperparameters used for SOFO. K is the number of tangents used, P is the total number
of network parameters, η is the learning rate and λ is the relative damping applied on SOFO. Note
that for experiments where a range of K is used the corresponding entry in the table is left as empty.

batch size K K/P ratio η λ

Lorenz 256 128 4.6% 0.3 10−5

Kalman 256 256 2.5% 0.05 10−3

one-shot 256 256 2.8% 0.1 10−3

single reach 256 256 5.4% 0.1 10−6

double reach 256 256 5.2% 0.1 10−6

flip-flop 32 256 2.5% 0.1 10−5

delayed addition 256 - - 0.1 10−5

MNIST 512 - - 0.8 10−7

cifar-10 256 - - 0.5 10−7

Table 5: Ranges of hyperparameters explored for SOFO

batch size K η λ

Lorenz 256 128 10−2 − 0.7 10−7 − 10−3

Kalman 256 256 0.5− 1 10−5 − 10−3

one-shot 256 256 10−2 − 0.2 10−4 − 10−2

single reach 256 256 10−3 − 1 10−7 − 10−4

double reach 256 256 10−3 − 1 10−7 − 10−4

flip-flop 32-256 256 10−2 − 1 10−7 − 10−3

delayed addition 256 - 10−4 − 0.1 10−7

MNIST 512 - 0.1− 1 10−5 − 10−4

cifar-10 256 - 0.1− 1 10−6
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Table 6: Range of the learning rate η explored and all final hyperparameters used for FGD [4],
first-order SOFO [28] for the Lorenz task (Section 4.1) and batched FORCE (Appendix B) for the
3-bit flip-flop task (Section 4.3). Range of a refers to the range of the parameter a explored.

batch size K η range of η α

FGD 256 1 2× 10−4 10−6 − 10−4 -
first-order SOFO 256 128 10−2 10−6 − 10−4 -
batched FORCE 256 - - - 0.1− 100
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately reflect the paper’s contribution which
is tackling the multiple challenges of training RNNs over long horizons, and the scope is
focusing on serving the computational neuroscience community.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The suitable tasks for the proposed optimizer are those involving relatively
few trainable parameters but memory-hungry. The computational efficiency is discussed in
Section 4.5 and also tested in Creffig:motorC and Figure 5B. A formal discuss of limitation
can be found in the Discussion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: We do not have any theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The proposed algorithm is clearly presented in Algorithm 1 in detail, matching
exactly with the releasing code. For each simulated task, the used network structure, the
hyperparameters, and the way to generate datasets are all included in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Data and code are publicly accessible upon publication, including data genera-
tion, and training scripts to reproduce all experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All training details of the tasks are included in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The 2-sigma error bars of losses are shown for 3-5 runs with different random
seeds as shown in Figure 2C and Figure 4B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Computer resources as in type of compute workers, memory, time of execution
are investigated in Section 4.5 (Figure 6). Time of execution as in wallclock time is also
compared for motor reaching tasks.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper conforms with the NeurIPS code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper proposed a generic algorithm for optimizing RNNs particular for
the computational neuroscience community and there is no negative societal impacts.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper proposed an optimization algorithm and poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use any existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The dataset and code will be well documented with details about training and
license.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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