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. Abstract

2 A recurrent neural network fitted to large electrophysiological datasets may help us un-
13 derstand the chain of cortical information transmission. In particular, successful network
1 reconstruction methods should enable a model to predict the response to optogenetic pertur-
15 bations. We test recurrent neural networks (RNNs) fitted to electrophysiological datasets on
16 unseen optogenetic interventions, and measure that generic RNNs used predominantly in the
17 field generalize poorly on these perturbations. Our alternative RNN model adds biologically
18 informed inductive biases like structured connectivity of excitatory and inhibitory neurons,
19 and spiking neuron dynamics. We measure that some biological inductive biases improve
20 the model prediction on perturbed trials in a simulated dataset, and a dataset recorded in
21 mice in vivo. Furthermore, we show in theory and simulations that gradients of the fitted
»  RNN can be used to target micro-perturbations in the recorded circuits, and discuss the
23 potential utility to bias an animal’s behavior and study cortical circuit mechanisms.

» 1 Introduction

»» A fundamental question in neuroscience is how cortical circuit mechanisms drive percep-
»% tion and behavior. To tackle this question, experimental neuroscientists have been collect-
x ing large-scale electrophysiology datasets under reproducible experimental settings (Siegle
s et al., 2021; Esmaeili et al.; 2021; Urai et al., 2022; International Brain Laboratory et al.,
2 2023). However, neuroscience lacks data-grounded modeling approaches to generate and
3 test hypotheses on the causal role of neuronal and circuit-level mechanisms. To leverage the
a1 high information density of contemporary recordings, we need both (1) modeling approaches
» that scale well with data, and (2) metrics to quantify when the models provide a plausible
33 mechanism for the observed phenomena.

En Biophysical simulations have been crucial for our understanding of single-cell mecha-
5 nisms (Hodgkin, 1958), and have been used to describe interactions across cortical layers,
s columns, and areas (Markram et al., 2015; Billeh et al., 2020; Isbister et al., 2023; Chen
s et al.,, 2022; Rimehaug et al., 2023; Fraile et al., 2023; Spieler et al., 2023). A promising
s approach to constrain models to electrophysiological data lies in the optimization of the sim-
s ulation parameters by gradient descent. These methods were successful in quantitatively
w classifying functional cell types (Pozzorini et al., 2015; Teeter et al., 2018), and modeling
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s micro-circuit interactions (Pillow et al., 2008; Deny et al., 2017; Mahuas et al., 2020). To
«2 bridge the gap from single neurons or small retinal networks to cortical recordings in vivo,
s recent studies made substantial progress towards data-constrained recurrent neural network
«# (RNN) models (Perich et al., 2020; Bellec et al., 2021; Arthur et al., 2023; Valente et al.,
s 2022; Kim et al., 2023; Dinc et al., 2023; Sourmpis et al., 2023; Pals et al., 2024). In this
s line of work, neurons in the RNN are mapped one-to-one to recorded cells and optimized
« by gradient descent to predict recorded activity at large scale.

a8 An important question is whether these data-constrained RNNs can reveal a truthful
s mechanism of neuronal activity and behavior. By construction, the RNNs can generate
so brain-like network activity, but how can we measure whether the reconstructed network
51 faithfully represents the biophysical mechanism? To answer this question, we submit a range
52 of RNN reconstruction methods to a difficult perturbation test: we measure the similarity
53 of the network response to unseen perturbations in the RNN and the recorded biological
s« circuit.

55 Optogenetics is a powerful tool to induce precise causal perturbations in vivo (Esmaeili
ss et al., 2021; Guo et al., 2014). It involves the expression of light-sensitive ion channels
sz (Boyden et al., 2005), such as channelrhodopsins, in specific populations of neurons (e.g.,
s excitatory/pyramidal or inhibitory /parvalbumin-expressing). In this paper, we use datasets
s including both dense electrophysiological recordings and optogenetic perturbations to eval-
e uate RNN reconstruction methods. Since the neurons in our RNNs are mapped one-to-one
&1 to the recorded cells, we can model optogenetic perturbations targeting the same cell-types
62 and areas as done in vivo. Yet, we observe that the similarity between the simulated and
63 recorded perturbations varies greatly depending on the reconstruction methods.

64 Most prominently, we study two opposite types of RNN specifications. First, as a con-
e trol model, we consider a traditional sigmoidal RNN (¢RNN) which is arguably the most
s common choice for contemporary data-constrained RNNs (Perich et al., 2020; Arthur et al.,
e 2023; Pals et al., 2024); and second, we develop a model with biologically informed inductive
s biases (bioRNN): (1) neuronal dynamics follow a simplified spiking neuron model, and (2)
e mneurons associated with fast-spiking inhibitory cells have short-distance inhibitory projec-
w0 tions (other neurons are excitatory with both local and long-range interareal connectivity).
n  Following Neftci et al. (2019); Bellec et al. (2018b, 2021); Sourmpis et al. (2023), we adapt
= gradient descent techniques to optimize the bioRNN parameters of neurons and synapses to
73 explain the recorded neural activity and behavior.

74 Strikingly, we find that the bioRNN is more robust to perturbations than the cRNN.
75 This is nontrivial because it is in direct contradiction with other metrics often used in the
7 field: the cRNN simulation achieves higher similarity with unseen recorded trials before per-
77 turbation, but lower than the bioRNN on perturbed trials. This contradiction is confirmed
7 both on synthetic and in vivo datasets. To analyze this result, we submit a spectrum of in-
7 termediate bioRNN models to the same perturbation tests, and identify two bioRNN model
s features that are most important to improve robustness to perturbation: (1) Dale’s law (the
s cell type constrains the sign of the connections (Eccles, 1976)), and (2) local-only inhibi-
@2 tion (inhibitory neurons do not project to other cortical areas). In contrast, other model
e features are penalizing, or do not improve significantly the prediction of the optogenetically
s perturbed response in this out-of-distribution fashion. It indicates that perturbation tests
s can validate biophysical modeling strategies in data-constrained deep learning models of
s neural mechanisms.

87 Beyond the optogenetic area inactivation available in the in vivo dataset, we investigate
s how perturbation-robust RNNs could enable targeted optogenetic protocols for the discovery
s of detailed neuronal circuit mechanisms in future experiments. Targeted causal interventions
o will become decisive in studying smaller circuit mechanisms. Acute optogenetic inactivations
o1 of genetically defined laminar sub-populations were used to characterize the causal role of
e specific neurons in the sensory motor pathways (Tamura et al., 2025; Wyart et al., 2025),
s and upcoming technology will make these experiments easier (Lakunina et al., 2025). To
o illustrate how RNN reconstruction can help to target neuronal stimulation, we consider
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s micro-perturbations (u-perturbation) targeting dozens of neurons in a small time window.
o Inspired by recent read-write all-optical setups (Packer et al., 2015), we imagine a model-
o7 informed p-perturbation protocol, where neurons are targeted based on their functional
s rather than genetic properties. While previous work has used linear models to produce
o targeted stimulations (Wyart et al., 2025; Minai et al., 2024), we show that back-propagated
w0 gradients of perturbation-robust RNNs provide a sensitivity map to predict the effect of
1w p-perturbations. Concretely, in a closed-loop experimental setup in silicon, we can use
102 RNN gradients to target a p-perturbation and change the movement in a simulated mouse.
w3 The gradients are used to identify the few neurons having the strongest causal effect on
14 behavior. Conceptually, it means that our RNN reconstructions enable an estimation of
s “circuit gradients”, bringing numerical and theoretical concepts from deep learning (LeCun
s et al., 2015; Richards and Kording, 2023) to study biological network computation.

o« 2 Results

w 2.1 Reconstructed Networks: biological inductive biases
100 strengthen robustness to perturbations

uo  Synthetic dataset for challenging causal inference We build a toy synthetic dataset
m  to formalize how we intend to reverse engineer the mechanism of a recorded circuit using op-
n2  togenetic perturbations and RNN reconstruction methods. It also serves as the first dataset
u3  to evaluate our network reconstruction methods. This toy example represents a simplified
s version of large-scale cortical recordings from multiple brain areas during a low-dimensional
us  instructed behavior (Steinmetz et al., 2019; Esmaeili et al., 2021; International Brain Lab-
us oratory et al., 2023), similarly to the in vivo dataset of a GO/No-Go task Esmaeili et al.
ur  (2021) analyzed in the next section. Let’s consider two areas A and B which are either
us transiently active together (“hit trial” occurring with frequency p) or quiescent together
uo  (“miss trial” occurring with probability 1 — p). Since the two areas are active or in-active
120 together, it is hard to infer if they are connected in a feedforward or recurrent fashion. In
121 Methods 4.1, we describe a theoretical example where it is impossible to decide between
122 opposing mechanistic hypothesis (feedforward or recurrent) when recording only the macro-
123 scopic activations of areas A and B. In this case, performing optogenetic inactivation of one
124 area is decisive to distinguish between the feedforward or recurrent hypothesis.

125 To generate artificial spike train recordings that capture this problem, we design two
s reference circuits (RefCircs) from which we can record the spike trains. Each RefCirc consist
w7 of two populations of 250 spiking neurons (80% are excitatory) representing areas A and
128 B. To highlight the importance of optogenetic perturbations as in the Methods 4.1, the
o first circuit RefCircl is feedforward and the second Refcirc2 is recurrent: RefCircl (and
1w not RefCirc2) has strictly zero feedback connections from B to A. Yet, the two RefCircs
1 are almost identical without optogenetic perturbations: each neuron in RefCircl has been
12 constructed to have an almost identical trial-averaged activity as the corresponding neuron
133 in RefCirc2; and in response to a stimulus, the circuits display a similar bi-modal hit-or-
13« miss response with a hit trial frequency p ~ 50%. We consider that a trial is a hit if area
s A is active (averaged firing rate above 8Hz)!. To simulate optogenetic inactivations of an
16 area in the RefCircs, we inject a transient current into the inhibitory neurons, modeling the
17 opening of light-sensitive ion channels?. Figure S1 shows that optogenetic perturbations
138 in area B reflect the presence or absence of feedback connections which differs in RefCirc
139 1 and 2. Methods 4.4 provides more details on the construction of the artificial circuits.
w  Our perturbation test will consist of the comparison of optogenetic perturbations in the

1Defining a “hit” trial based on area A is equivalent to saying that both areas need to be active during
unperturbed trials with this dataset. But excluding B in this definition avoids that the hit rate is trivially
impacted when manipulating the activity of B with optogenetic perturbations.

2Symmetrically, an optogenetic activation is simulated as a positive current injected into excitatory cells.
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Figure 1: Network reconstruction and perturbation tests. A. The three steps to
reconstruct the reference circuit (RefCirc) using a biologically informed RNN (bioRNN) or
a sigmoidal RNN (cRNN) and evaluate the reconstruction based on perturbation tests. B.
Summary of the differences between a bioRNN and a ¢RNN. C. Trial-averaged activity
of area A of the two circuits during hit (black-dashed: RefCircl; blue: bioRNN1; pink:
oRNN1) and miss (grey-dashed: RefCircl; light blue: bioRNN1; light pink: cRNN1) trials.
All models display a hit rate of p ~ 50%. D. Same as C during inactivation of area
B. ApP = 0 is the recorded change of hit rate for the feedforward circuit RefCircl, so a
successful reconstruction achieves p ~ 0%. E. Quantitative results on perturbation tests
showing that cRNN achieves the lowest loss function on the unperturbed test trials, but
only the bioRNN retains an accurate fit to the perturbed trials.
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1w reconstructed RNN and in their references RefCircl and 2, without retraining the RNN on
12 these perturbations.

13 Network reconstruction methodology (synthetic dataset) To reconstruct the
s recorded circuits with an RNN, we record activity from the spiking RefCircs, and opti-
s mize the parameters of an RNN to generate highly similar network activity. The whole
1us reconstruction method is summarized graphically in panel A of Figure 1. In the simplest
w7 cases, the RNN is specified as a sigmoidal network model (Rosenblatt, 1960; Elman, 1990):
us  0RNNI and cRNN2 are optimized to reproduce the recording from RefCircl and RefCirc2
us respectively. In this synthetic dataset, the reconstructed cRNNs have the same size as the
50 RefCires (500 neurons) and sigmoidal neurons are mapped one-to-one with RefCirc neu-
151 rons (20% are mapped to inhibitory RefCirc neurons). They are initialized with all-to-all
152 connectivity and are therefore blind to the structural difference of the RefCircl and 2 (feed-
153 forward or recurrent). From each of the two RefCircs, we store 2,000 trials of simultaneous
152 spike train recordings of all 500 neurons (step 1 in Fig. 1A). Half of the trials are used
155 as training set and will be the basis for our data-driven RNN optimization. The second
156 half of the recorded trials form the testing set and are used to evaluate the quality of the
17 reconstruction before perturbations.

158 We optimize the synaptic “weights” of the cRNN to minimize the difference between
150 its activity and that of the RefCirc (step 2 in Fig 1A, see Methods). The optimization
10 combines three loss functions defined mathematically in Methods 4.5: (i) the neuron-specific
1 loss function Lpeuron is the mean-square error of the trial-averaged neural activity (e.g.
12 the PSTH) between cRNN and RefCirc neurons. (ii) To account for fluctuations of the
163 single-trial network activity, we use a trial-specific loss function Lt,i,1, which is the distance
14 between the distribution of single trial population-averaged activity of cRNN and RefCirc
s (see Sourmpis et al. (2023)). (ili) Finally, we add a regularization loss function L,es to
166 penalize unnecessarily large weights.

167 We also developed a biologically informed RNN model (bioRNN) for which we have
s designed a successful optimization technique. The main differences between cRNNs and
10 bioRNNs consist in the following biological inductive biases. Firstly, the bioRNN neuron
w model follows a simplified leaky integrate and fire dynamics (see Methods 4.2) yielding
wn strictly binary spiking activity. Secondly, we constrain the recurrent weight matrix to de-
12 scribe cell-type specific connectivity constraints: following Dale’s law, neurons have either
173 non-negative or non-positive outgoing connections; moreover, since cortical inhibitory neu-
s rons rarely project across areas, we assume that inhibitory neurons project only locally
s within the same area. Thirdly, we add a term to the regularization loss L., to imple-
e ment the prior knowledge that cross-area connections are more sparse than within an area.
17 Adding these biological features into the model requires an adapted gradient descent algo-
ws rithm and matrix initialization strategies (Methods 4.5). The reconstruction method with
19 0cRNNs and bioRNNs is otherwise identical: the models have the same size, and are opti-
180 mized on the same data, for the same number of steps and using the same loss functions.
11 The two models bioRNN1 and bioRNN2 are optimized to explain recordings from RefCircl
12 and Refcirc2, respectively. Importantly, the structural difference between RefCircl (feedfor-
13 ward) and RefCirc2 (feedback) is assumed to be unknown during parameter optimization:
1a  at initialization, excitatory neurons in bioRNN1 or bioRNN2 project to any neuron in the
s network with transmission efficacies (aka as synaptic weights) initialized randomly.

186 After parameter optimization, we have four models, cRNN1, cRNN2, bioRNN1 and
157 bioRNN2, that we call “reconstructed” models. To validate the reconstructed models, we
s verify that the network trajectories closely match the data on the test set in terms of (i) the
10 “behavioral” hit-trial frequency, (ii) the peristimulus time histogram (PSTH) mean-square
wo error of single neurons as evaluated by Lpeuron, and (iii) the distance between single-trial
1 network dynamics as evaluated by Lyyia (see Suppl. Fig. S2 and Table 1). At first sight, the
12 oRNN displays a better data fitting when comparing with the non-perturbed trials of the
103 testing set: Liyia) is for instance lower with cRNN (see Table 1). This is expected considering
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14 that the optimization of bioRNNs is less flexible and numerically efficient because of the
105 sign-constrained weight matrix and the imperfect surrogate gradient approximation through
106 spiking activity. However, the two bioRNNs are drastically more robust when evaluating
17 the models with perturbation tests.

s Perturbation test To test which of the reconstructed RNNs capture the causal mech-
109 anisms of the RefCircs, we simulate optogenetic activations and inactivations of area B
20 (step 3 in Fig. 1A). We first compare the change of hit probability after perturbations in
2 the reconstructed RNN (Ap) and recorded in RefCirc (Ap?) in Figure 2. For the cRNN
22 the activation or inactivation of area B changes drastically the peak firing rate in area A:
203 all trials become a hit during inactivation of area B. This drastic increase of hit rate is
24 not consistent the reference where the effect of the optogenetic inactivations is mild: the
25 distribution of network responses remains bi-modal (hit versus miss) with only a moderate
26 change of hit frequency for RefCirc2 Ap? = —3%. For RefCircl we even expect Ap? = 0%
207 by design because of the absence of feedback connections from B to A. In contrast, the
28 bioRNN models capture these changes more accurately (see Fig. 1 and 2). Quantitative
20 results are summarized in Fig. 2E, the error of hit probability changes |ApP — Ap| is 7%
a0 with bioRNNs when averaged over all conditions (bioRNN1 and bioRNN2, with optogenetic
au inactivations and activations). The corresponding error is 48.5% on average for cRNNs.
22 In this sense, we argue that the bioRNN provides a better prediction of the perturbed hit
a1z frequency than the cRNN. We also performed spike train recordings in the area that is
24 not directly targeted by the light to compare the perturbed network dynamics in the fitted
25 RNNs and the RefCirc. The perturbed dynamics are displayed in Fig. 2D. The quantity
216 ﬁiﬁgf is a distance between the network dynamics (RNN versus reference) and is reported
a7 in Fig. 2D-E and Table 1. Again, the perturbed dynamics of the bioRNN are more similar
25 to those of the reference circuits £5°7 = 0.26, than with the cRNN L& — 1.19 (t-test
20 p-value is 0.0003).

220 To analyze which features of bioRNN explain this robustness to perturbation, we then
21 derive a family of models where only one feature of the reconstruction is omitted. Namely,
22 the “No Dale’s law” model does not have excitatory and inhibitory weight constraints, the
»3 “Non-local inhibition” model allows inhibitory neurons to project outside of their areas, the
24 “No Spike” model replaces the spiking dynamics with a sigmoidal neuron model, and the “No
25 Sparsity” model omits the cross-area sparsity penalty in L,e,. Omitting all these features
26 in bioRNN would be equivalent to using a cRNN. The accuracy metrics on the testing sets
27 before perturbation are reported for all RNN variants Fig. 2E and G. For reference, we also
28 include the model “No TM” (trial-matching), which omits the loss function L, during
29 training.

230 The strongest effect measured with this analysis is that the Dale’s law and local inhibi-
2 tion explain most of the improved robustness of bioRNNs. This is visible in Fig. 2 as the
a2 perturbed trajectories of “No Dale’s law” and “Non-local inhibition” are most distant from
213 the reference in Fig. 2D. This is confirmed numerically where both the hit-rate error and the
2¢  distance of network dynamics increase the most when lifting these constraints (Fig. 2E-G
25 and Table 1. We explain this result as follows: the mono-synaptic effect of a cell stimulated
26 by the light are always correct in bioRNN (according to Dale’s law, and inhibition locality),
a7 but often wrong in the alternative models (see Fig. 2A). For instance, a simple explanation
28 may justify the failure of the “Non-local inhibition” model: the stimulation of inhibitory
20 neurons in B induces (via the erroneous mono-synaptic inhibition) a reduction in the base-
20 line activity in area A (see the green trace during inactivation in Fig. 2D). More generally
an for perturbation testing, we speculate that these features are measured to be important here
u2  because they are central to the biophysical nature of the perturbation considered: optoge-
23 netic perturbation targets specific cell types, and these features incorporate a biophysical
2a - connectivity priors which is hard to infer entirely from the unperturbed data.

25 Not all the biological features that we implemented in bioRNN made comparable im-
2us  provements in the prediction of optogenetic perturbations. We implemented simple spiking
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Figure 2: Reconstruction of network mechanisms. A. RefCircl is feedforward and
RefCirc2 is recurrent. B. The fitted RNNs are blind to the structural difference of RefCircl
and 2 and must infer this from the spiking data. C. Raster plot showing an example trial
of the bioRNN and ¢RNN models, neurons in red are mapped to inhibitory neurons. D.
To study which model feature matters, bioRNN variants are defined by removing one of the
features, for instance “No Dale’s law” refers to a bioRNN without weight sign constraints.
Trial-averaged activity in area A under activation/inactivation of area B. All the RNNs
are tested with the same reference circuit and training data (No spike and No Sparsity
models are shown in Suppl. Fig. S4). E. Error between the change of hit probability
after perturbations in the RNN Ap and in the RefCirc ApP. F. The distance of network
dynamics 4}%2; between each RNN and RefCirc (horizontal axis: light power in arbitrary
units). G. Same quantity as D but averaged for each RNN under the strongest light power
condition (averaging activations and inactivations of area B). Statistical significance in
comparison with bioRNN is computed using the mean over multiple network initializations
and is indicated with 0 to 4 stars corresponding to p-values thresholds: 0.05, 10=2, 10~3

and 104,
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RefCircl vs. RNN1 RefCirc2 vs. RNN2
no light light 4 no light light 4
bioRNN 0.19 + 0.01 0.25 + 0.09 0.18 + 0.01 0.28 + o013
ocRNN 0.16 +o0.01 1.15 + 1.07 0.17 +o.01 1.22 + 064
No sparsity 0.20 £ 0.01 1.37 £1.42 0.19 + 001 0.19 + 013
Non-local inhibition 0.20 =+ 0.02 0.54 + 0.a2 0.18 + 0.01 1.19 £ 001
No Dale’s law 0.18 + o0.01 0.86 + 0.23 0.18 + o0.01 2.21 £ 160
No Spike 0.17 + 0.00 0.19 + 0.0 0.18 + 0.00 0.46 + 0.19
No Trial Matching (TM) | 0.33 + 0.01 0.44 + 0.9 0.35 + 0.03 0.44 + 0.09

Table 1: BioRNN is more robust to optogenetic perturbations than ¢RNN. The
table reports the trial matching (TM) loss Ly on test trials, it measures the distance
between the distributions of single trial network dynamics Sourmpis et al. (2023) in area A
when stimulating area B. Column “no light” indicates values on the unperturbed test trials,
and “light” the perturbation trials. + indicates the 95% confidence interval, best values are
shown in bold and major failure with distance above 0.5 is in red.

27 neuron dynamics and fitted the spiking network as any other RNN using surrogate gradi-
25 ents Neftci et al. (2019) as in Bellec et al. (2021); Sourmpis et al. (2023). On perturbed
2 data, the spiking bioRNN achieves slightly better performance than its “No spike” variant,
0 but without significant margins, t-test p-value is 0.31 for 4}%2; (see Table 1 and Fig 2E-G).
1 We speculate that simulating spikes is not advantageous here, because optogenetic pertur-
»2  bations are relatively broad in space and time, and it might become more relevant for other
3 perturbation experiments where precise timing matters or at a microcircuit level. The quan-
s titative of sparse connectivity regularization also did not make a significant improvement in
5 all cases (see Table 1).

256 Besides predicting the response to optogenetic perturbations, we wondered if we could
»7  recover the connectivity structure of the recorded circuit. Our method would not be appro-
s priate to recover individual synaptic connections, but we tested whether the fitted RNNs
»9  reflected the optogenetic signature of the structural difference between the ”feedforward”
%0 RefCircl and the ”"recurrent” RefCirc2. Our criteria is here qualitative: the early increase in
s the PSTH response in area A characteristic of mono-synaptic feedback from area B should
%2 not exist for RefCircl (see Figure 2 and Suppl. Fig. S4A). To reveal this difference in the
%3 fitted bioRNN1 and bioRNN2 models, not only Dale’s law and local-inhibition are necessary,
s but also spiking dynamics and sparsity appear to be helpful. For instance, the erroneous
x5 early onset on the perturbed trial in area A for the “No Sparsity” model is corrected with
6 the sparsity prior (Suppl. Fig. S4, red versus blue curves). Yet, these are subtle qualita-
%7 tive results that are likely to be less impactful and reproducible than the clear qualitative
xs improvement obtained with perturbation testing when modeling cell-type connectivity. In-
%0 deed, we will see in the next section that we obtain consistent qualitative perturbation
a0 testing results on the larger in vivo dataset.

m 2.2 Predicting perturbations on in vivo electrophysiology data

a2 To test whether our reconstruction method with biological inductive biases can predict
a3 optogenetic perturbations in large-scale recordings, we used the dataset from Esmaeili et al.
o (2021). In this study, water-deprived mice were trained to perform a whisker tactile detection
a5 task. In 50% of the trials (Go trials), a whisker is deflected, followed by a 1-second delay,
as  after which an auditory cue signals that the mice can lick a water spout to receive a water
o reward. In the other 50% of trials (No-Go trials), no whisker deflection occurs, and licking
as  after the auditory cue results in a penalty with an extended time-out period. While the
a9 mice performed the task, experimenters recorded 6,182 units from 12 areas across 18 mice.
20 Using this dataset, we focused on the 6 most relevant areas for executing this task (Esmaeili
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Figure 3: Predicting optogenetic perturbations for in vivo electrophysiology data
A. During a delayed whisker detection task, the mouse reports a whisker stimulation by
licking to obtain a water reward. Jaw movements are recorded by a camera. Our model
simulates the jaw movements and the neural activity from six areas. B. The experimentalists
performed optogenetic inactivations of cortical areas (one area at a time) in three temporal
windows. C. Example hit trial of a reconstructed network (left). Using the same random
seed, the trial turns into a miss trial if we inactivate area wS1 (right, light stimulus indicated
by blue shading) during the whisker period by stimulation of inhibitory neurons (red dots).
D. Error of the change in lick frequency caused by the perturbation, Ap is predicted by the
model, and Ap? is recorded in mice. Light-shaded circles show individual reconstructed
networks with different initializations. The whiskers are the standard error of means. E.
Examples of Ap hit rate changes under perturbation for wS1 (Top) and tjM1 (Bottom).
The black circles refer to the hit rate change from the recordings, ApP. See Suppl. Fig. S7
for the other areas.
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s et al., 2021). From each area, we randomly selected 250 neurons (200 putative excitatory
22 and 50 putative inhibitory), which correspond to 1500 neurons in total. These areas, all
283 shown to be causally involved in the task (Esmaeili et al., 2021), include the primary and
¢ secondary whisker sensory cortex (wS1, wS2), the primary and secondary whisker motor
25 cortex (wM1, wM2), the anterior lateral motor cortex (ALM), and the primary tongue-jaw
25 motor cortex (tjM1). We fit the neuronal activity using the same reconstruction method as
27 used for the synthetic dataset. In the model, we simulate the jaw movement of the mouse
28 as a linear readout driven by the model’s neural activity. This readout is regressed with
20 the real jaw movement extracted from video footage. The parameter optimization of the
20 behavioral readout is performed jointly with fitting the synaptic weights to the neuronal
2 recordings, see Methods 4.5. After training, our reconstructed model can generate neural
22 activity with firing rate distribution, trial-averaged activity, single-trial network dynamics
2:  and behavioral outcome which are all consistent with the recordings (see Suppl. Fig S6).
2 Before perturbations, we observe again that the cRNN model fits the testing set data better
205 than the bioRNN model (see Table 2 and Fig. S6).

296 We then submit the reconstructed cRNNs and bioRNNs models to perturbation tests.
207 For the sessions of the in vivo dataset with optogenetic perturbation that we considered,
26 only the behavior of an animal is recorded during inactivation of an area at a given time
20 window (stimulus, delay, or choice periods). For each of the six areas and time windows, we
o extract the averaged hit frequency under optogenetic inactivation, and attempt to predict
sn  this perturbed behavior by inducing the same inactivations to the fitted RNNs. These per-
;2 turbations are acute spatiotemporal optogenetic inactivations of each area during different
w03 time periods (see Figure 3B). As an example, we show the effect of an inactivation of wS1
s during the whisker period in the model in Fig. 3. In panel C, we display the simulated
ss  trial of a fitted bioRNN with and without perturbations side by side. The two trials are
36 simulated with the same random seed, and this example shows that an early perturbation
s7 in wS1 can change a lick decision from hit to miss in the model (Fig. 3C).

308 Consistent with the synthetic dataset, we now find with this in vivo dataset that modeling
a0 cell-type connectivity yields better prediction of the causal effect of optogenetic perturbation.
a0 We denote by Ap? the in vivo change in lick probability across Go trials in response to
sn  optogenetic perturbations. The perturbations were performed in different periods for each
s area in Esmaeili et al. (2021) (stimulation, delay, or choice periods). For all areas and time
a3 windows, we measure the corresponding Ap in the model. On average, the error change
s probability obtained with the cRNN model is |[ApP — Ap| = 21% which is significantly
as worse than the bioRNN model’s 16% (t-test p-value is 0.014, see Figure 3D). As in the
ais  synthetic dataset, we find this to be consistent over multiple bioRNN model variants, and
sz we find that imposing Dale’s law and local inhibition best explain the improvement in
sis  perturbation-robustness. We also measure that the spiking bioRNN predicts the change in
a9 lick probability slightly better than the “No Spike” bioRNN model. Conversely, adding the
a0 sparsity prior does not seem to improve the perturbed hit-rate prediction on the real data as
s seen in the recurrent artificial dataset (RefCirc2) and not in the feedforward case (RefCircl)
22 as shown in Suppl. Fig. S5. In this sense, in vivo perturbation testing emerges as a hard
3 test to evaluate modeling strategies combining deep learning and biophysical modeling.

32 To further analyze the consistency of the perturbations in the model, we can compare
s the perturbation map showing changes in lick probability obtained from acute inactivation
a6 in the data and the model. The Suppl. Fig. S7 summarizes visually which area has a critical
a7 role at specific time points. The changes of lick probability in area wS1, ALM and tjM1
s are accurately predicted by the bioRNN. In contrast, our model tends to underestimate the
20 causal effect induced by the inactivations of wS2, wM1 and wM2 (Suppl Fig S7). Overall,
s our model is consistent with a causal chain of interaction from wS1 to ALM and continuing
31 to tle.
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Figure 4: Measuring circuit gradients with py-perturbations A-B. Numerical verifi-
cation for equation (1). A shows the change of jaw movement AY following inactivations in
a “No Spike” bioRNN. From left to right, we reduce the size of the spatiotemporal window
for the optogenetic stimulation. B. Gradients values Zi,t % that approximate AY from
A using equation (1). C-D. Verification that gradients predict the change of movement on
single trials. In C, we display the gradients and jaw movement for three different trials,
the neurons targeted by the p-perturbation are boxed and the perturbed jaw movement is
blue. Results averaged for every 100ms stimulation windows are shown in D: positive (resp.
negative) modulated means that the 20 neurons with highest (resp. lowest) gradients are
targeted, random neurons are selected for the shuffled case.

2.3 Applications for experimental electrophysiology

With future progress in recording technology and reconstruction methods, network recon-
struction may soon predict the effect of optogenetic perturbation with even higher accu-
racy. In this section, we explore possible consequences and applications for experimental
electrophysiology. We demonstrate in the following that (1) perturbation-robust bioRNNs
enable us to estimate gradients of the recorded circuits, (2) which in turn enable us to
target p-perturbations in the recorded circuit and optimally increase (or decrease) induced
movements in our simulated mouse. The so-called “recorded circuit” is a bioRNN trained
on the in vivo dataset that we use as a proxy experimental preparation. Its mathemati-
cal underpinnings enable us to make rigorous theoretical considerations and the design of
forward-looking in silico experiments.

p-perturbations measure brain gradients We first prove a mathematical relationship
between gradients in the recorded circuit and p-perturbations. We define the integrated
movement as Y = ), y; where y; is the movement of the jaw at time ¢ generated by the
model, and we denote AY* as the change of movement caused by the p-perturbation. If
the circuit has well-defined gradients (e.g. say a “No spike” bioRNN model trained on the
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1 in vivo recordings in the previous section), using a Taylor expansion, we find that:

dY

i,t€L g

us  where Z are the neuron and time indices selected for the optogenetic intervention. The
s error term e is negligible when the current Au! induced by the light is small. We first
s confirm this approximation with numerical visualization in Fig. 4A: we display movement
s perturbations (AY?) in the circuit with time windows of decreasing sizes ({-) indicates a
53 trial average). When the time window is small, and the perturbation is only applied to
s excitatory or inhibitory cells in Fig. 4A, one can appreciate visually the similarity with the
»  binned gradient (3, %) in Fig. 4B. Proceeding to a quantitative verification of equation
6 (1), we now compare the effect of small perturbations targeting only 20 neurons on a single-
s7  trial. We use the gradient Zi’t fiiTYg (see Fig. 4C) to predict the outcome of p-perturbation

s as follows: for each trial, and each 100ms time window, we identify 20 neurons in the
30 model with highest (or lowest) gradients Zi,t %. We then re-simulate the exact same trial
w0 with identical random seed, but induce a u—pertlllrbation on selected neurons (see rectangles
s in Figure 4). If we target neurons with strongly positive gradients, the perturbed jaw
sz movements are strongly amplified AY? > 0; conversely, if we target neurons with negative
s gradients the jaw movements are suppressed AY* < 0. Although the equation (1) is only
s rigorously valid for models with well-defined gradients like the “No Spike” model, we also
s confirm in Fig. 4D that this numerical verification also holds in a spiking circuit model
w6 where the gradients are replaced with surrogate gradients (Neftci et al., 2019).

367 An implication of equation (1) is that the measurements (AY*) that can be recorded in
s Vvivo are estimates of the gradients (Z” %) in the recorded circuit. Yet, measuring detailed
w0 gradient maps (or perturbation maps) as Idisplayed in Fig. 4 would be costly in vivo as it
s Trequires to average AY? over dozens of trials for each spatio-temporal window. Instead,
sn gradient calculation in a bioRNN model (that was fitted to the experimental preparation) is
s a rapid mathematical exercise. If the extracted model is valid, then the gradients > dy’

it dul
w3 in the bioRNN approximate (1) the effect of u-perturbations AY” in the experimental
s preparation; (2) the gradient Zi’t % in the recorded circuit.

s Targeting in vivo p-perturbations with bioRININ gradients Building on this theo-
s retical finding, we build a speculative experimental setup where the bioRNN gradients are
s used to target a p-perturbation and increase (or decrease) the movements Y in the ex-
ass  perimental preparation in real time. We show a schematic of this speculative closed-loop
a9 experiment in Fig. 5C extending contemporary read-write elecotrophysiology setups (Packer
s et al., 2015; Adesnik and Abdeladim, 2021; Grosenick et al., 2015; Papagiakoumou et al.,
s 2020). We demonstrate in silico in Fig. 5A-B how this experiment could use bioRNN gradi-
s ents to bias the simulated mouse movement Y. As a preparation step, and before applying
s perturbations, we assume that the bioRNN is well fitted to the recorded circuit and we
s collect a large databank B of simulated trials from the fitted bioRNN. Then in real-time,
s we record the activity from the experimental preparation until the time ¢* at which the
6 stimulation will be delivered (Step 1 in Fig. 5A, ¢t* is 100ms before the decision period).
7 Rapidly, we find the trial with the closest spike trains in the databank of simulated trials
s (Step 2) and use the corresponding gradient maps to target neurons with the highest gra-
0 dient dd% in the model (Step 3). The targeted stimulation is then delivered immediately
w0 at t* to the experimental preparation (Step 4). When testing this in silico on our artificial
s experimental preparation, we show in Fig. 5C that this approach can bias the quantity of
2 jaw movement Y driven by the circuit in a predictable way. The amount of movement is
33 consistently augmented if we target neurons with the highest ‘{% (or diminished if we target
34 neurons with the lowest ‘%).
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Figure 5: Gradient targeted p-perturbations could precisely bias an animal be-
havior A. Protocol to deliver an optimal p-perturbation on the experimental preparation
based on jaw gradients. (Step 1) The circuit is recorded until stimulation time t*. (Step
2) The closest bioRNN trial to the ongoing recorded trial is retrieved from the databank
B. (Step 3) We select the neurons with the highest (or lowest) gradient value for the p-
perturbation. (Step 4) The p-perturbation is delivered at ¢*. B. Effect of the p-perturbation
using the artificial setup A under different light protocols. Practically, for “High gradient”,
we keep step 3 as it is, for “Low gradient”, we change the sign of the gradient, and for “Zero
gradient”, we pick the 40 neurons with lowest gradient norm. C. Speculative schematic of
a close-up setup implementing the protocol A inspired by the all optical “read-write” setup
from Aravanis et al. (2007); Packer et al. (2015).
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w 3 Discussion

s Finding the right level of detail to model recorded phenomena has sparked intensive de-
a7 bates in computational neuroscience. When the goal is to achieve the strongest predictive
s power, generalist deep learning models have proven successful across many scientific disci-
a0 plines, questioning how biophysical modeling plays a role in this context. Our results show
w0 that perturbation testing is a new approach to evaluate the implementation of biophysical
s features in a deep learning system. Our key finding about perturbation testing relies on
w2 the difficulty for deep learning models to predict the effect of optogenetic perturbations
w3 out-of-distribution (meaning, the perturbed trials are not available in the training set of
w¢  the data-constrained model). We see that standard deep learning RNNs generalize poorly
w5 to perturbed trials, even when they achieved the best fit on the unperturbed test set. In
ws contrast, this is alleviated with our bioRNN, which implements biophysical constraints that
w7 are relevant to the nature of the perturbation. In our case, modeling cell type connectivity
ws 1s crucial because the optogenetic perturbations are targeted to these genetically encoded
a0 cell types. In this sense, we believe that these features were successful on the perturbation
a0 tests because they are central to modeling the perturbation of the deep learning system.
a1 Perturbation testing emerges as a quantitative tool to search for data-constrained models
a2 beyond two standard types of incomplete brain models in computational neuroscience: (1)
a3 physiologically detailed models intended to explain brain mechanisms but do not enable
as  powerful quantitative predictions; (2) deep learning models with high predictive power but
x5 capturing a wrong biophysical mechanism, causing erroneous generalizations. We view our
a6 work as a simple and reasonable way to combine deep learning and biophysical modeling,
a7 while rigorously evaluating the combined models.

a1 Our reconstruction method and modeling choices when building the data-constrained
a0 bioRNN are innovative and are validated on perturbation tests. We achieve a reconstruction
a0 of the sensory-motor pathway in the mouse cortex during a sensory detection task from
a1 electrophysiology data. The model is optimized to explain electrophysiological recordings
w22 and generalizes better than standard models to in vivo optogenetic interventions. We found
»23  unambiguously that anatomically informed sign and connectivity constraints for dominant
as  excitatory and inhibitory cell types improve the model robustness to optogenetic perturba-
w5 tions. We also find that assuming that inhibitory connections are short and do not project
w6 to other areas is crucial to pass our optogenetic Perturbation test. Modeling spiking neuron
27 dynamics and adding a sparsity prior yielded more nuanced results and was not decisive,
s showing that making a difference on Perturbation testing is challenging. In hindsight, we
2 conclude that adding biological constraints becomes beneficial when (1) they model the
a0 interaction between the circuit and the perturbation mechanism; (2) their implementation
a1 should not impair the efficiency of the optimization process.

3 Broadly speaking, this hindsight is also supported by other results elsewhere in neuro-
a3 science. For instance, biologically inspired topological networks having higher correlation
s for neighboring neurons are more consistent with comparable causal interventions in the
a5 Monkey’s visual system Schrimpf et al. (2024), and detailed cell-type distribution and con-
16 nectome improve models of vision in the fly brain Lappalainen et al. (2023); Cowley et al.
a7 (2024). For future work, there is a dense knowledge of unexploited physiological data at the
a3 connectivity, laminar or cell-type level that could be added to improve a cortical model like
a0 ours (Harris et al., 2019; Liu et al., 2022; Udvary et al., 2022; Staiger and Petersen, 2021;
o Rimehaug et al., 2023). By submitting the extended models to the relevant perturbation
a1 tests, it becomes possible to measure quantitatively the goodness of their biological mecha-
a2 nism implementations. We do not rule out, that significant improvements on perturbation
w3 tlests can also be achieved with other means (e.g. by training deep learning architectures Az-
ws abou et al. (2024); Pandarinath et al. (2018); Ye et al. (2023) on larger datasets to enable
ws  generalization, or with generic regularization techniques like low-rank connectivity Dubreuil
ws et al. (2022); Valente et al. (2022)). However, in a similar way as the cRNN was apriori
a7 an excellent predictor on our initial test-set, any powerful brain model will likely have fail-
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s ure modes that can be well characterized and measured with an appropriate perturbation
mo  test. So perturbation tests could become a central component of an iterative loop to identify
s needed data collection or model improvements towards robust brain models.

251 To highlight the importance of perturbation-robust circuit models, we have discussed
s2  possible implications for experimental neuroscience in section 2.3. We build the RNN twin
»s3 of the biological circuit from unperturbed electrode recordings. By implementing the correct
s« biophysical constraints, the RNN becomes perturbation robust (i.e. it predicts the effect of
s causal perturbation) even without including perturbation data in the RNN training. We
s then demonstrated in silico that gradients of this RNN produce sensitivity maps to target
»s7  micro-stimulation of the biological circuit. As a result, we could design a hypothetical closed-
w8 loop setup combining read-write electrophysiology with a brain model to influence the brain
w0 activity or behavior, having potentially important practical and ethical consequences. More
w0 conceptually, we have shown theoretically that the gradients of a perturbation robust RNN
w1 are also consistent with the gradients of the recorded biological circuits. In perspective
w2 with the foundational role of gradients in machine learning theory LeCun et al. (2015);
w3 Richards and Kording (2023), it enables the measurement of “brain gradients” and lays a
ws  computational link between in vivo experimental research and decades of theoretical results
w5 on artificial learning and cognition.
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« 4 Methods

« 4.1 Mathematical toy model of the difficult causal inference be-
a8 tween H1 and H2

w0 Let’s consider two simplistic mathematical models that both depend on two binary random
a0 variables A and B which represent that putative area A is active as A = 1 and area B as
m B = 1. With this notation, we can construct two hypothetical causal mechanisms H1 (“a
>  feedforward hypothesis”) and H2 (“a recurrent hypothesis”), which are radically different.
a3 The empirical frequency p(A, B) of the outcome does not allow us to differentiate whether
an the system was generated by a feedforward mechanism H1 or a recurrent mechanism H2.
a5 Schematically, we can represent the two mechanism hypotheses as follows:

(H1) A— B, (2)
(H2) A+—B. (3)

as  For hypothesis H1: we assume that external inputs are driving the activity of area A such
a7 that A =1 is active with probability pg, and there are strong feed-forward connections from
ws A to B causing systemically B = 1 as soon as A = 1. Alternatively, in H2, we assume
w9 that areas A and B receive independent external inputs with probability p; = 1 — /1 — pg.
w0 Each of these two inputs is sufficient to cause A = 1 or B = 1, and the two areas are
s also strongly connected, so A = 1 always causes B = 1 and vice versa. Under these
w2 hypothetical mechanisms H1 and H2, one finds that the empirical probability table p(A, B)
ws i identical 3: pgo(A = 1,B = 1) = 2p; — p? = po (“Hit trial”, both areas are active),
w p(A =0,B=0) =1-—py (“Miss trial”, the areas are quiescent). In both cases, the
w5 possibility that only one area is active is excluded by construction. So for any A and B
ws p1(A, B) = pya(A, B) and in other words, even if we observe an infinite number of trials
w7 and compute any statistics of the binary activations A and B, discriminating the two possible
ss  causal interactions (H1 versus H2) is impossible.

289 A solution to discriminate between hypotheses H1 and H?2 is to induce a causal pertur-
wo bation. We can discriminate between our two hypotheses if we can impose a perturbation
w1 that forces the inactivation of area B in both mathematical models. In mathematical terms
w2 we refer to the do operator from causality theory. Under the feedforward mechanism H1
s and inactivation of B, A is not affected py1 (A =1 | do (B =0)) = po. Under the recurrent
ss  hypothesis, H2, and inactivation of B, A is activated only by its external input such that
ws paa(A=1]do (B=0)) = pl # po. So the measurement of the frequency of activation
ws of area A under inactivation of B can discriminate between H1 and H2 which illustrates
w7 mathematically how a causal perturbation can be decisive to discriminate between those
w8 two hypothetical mechanisms.

w 4.2 Neuron and jaw movement model

s0  We model neurons as leaky-integrate and fire (LIF) neurons. The output of every neuron
1 j at time t is a binary outcome z! (spike if 2§ = 1, no spike if 2{ = 0) generated from its

s membrane voltage U§. The following equations give the dynamics of the membrane voltage

t.
503 ’Uj.

3To prove this: a and b to denote the binary external inputs into A and B, so we have: pga(A=1,B =
1) =>,,p(A=1,B = 1|a,b)p(a,b) = pla =1,b=1) + p(b = 0,a = 1) + p(b = 1,a = 0) where we used
that p(A =1, B = 1|a,b) is 0 or 1, then using p(a = 1) = p(b = 1) = pl and the independence between a
and b we find: p(A=1,B=1)=2p; —p? =pg
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v§ = ajv;_l (lfaj)j vthmj +§t (4)

t _ recd in 7,

o= YW ZWU 51 (5)
di

su  Where Wg, and Wm 4 are the recurrent and input weight matrices. The timestep of the
ss  simulation dt is 2 ms when we simulate the real dataset and 1 ms otherwise. The superscript

s d denotes the synaptic delay; every synapse has one synaptic delay of either 2 or 3 ms.
sor - With o = exp ( &,)7 we define the integration speed of the membrane voltage, where
m,J

se T, = 30 ms for excitatory and 7, = 10 ms for inhibitory neurons. The noise source
500 f; is a Gaussian random variable with zero mean and standard deviation ijthr,j\/ﬁ (B;
s0 is typically initialized at 0.14). The input 2! is a binary pulse signal with a duration of
su 10 ms. For the real dataset, we have two binary pulse input signals, one for the whisker
siz deflection and one for the auditory cue. The spikes are sampled with a Bernoulli distribution

513 zj ~ B(exp(w)), where vy is the temperature of the exponential function and vip,.
se is the effective membrane threshold. After each spike, the neuron receives a reset current
sis with an amplitude of vy,;,; and enters an absolute refractory period of 4 ms, during which
si6 it cannot fire.

517 For networks fitted to the real dataset, we also simulate the jaw movement. The jaw
si3  movement trace y is controlled by a linear readout from the spiking activity of all excitatory
519 neurons Spemﬁcally, y 1s computed as y = exp(f) + b, where b is a scaling parameter and
20 ' is given by §' = ¥+ (1 — Qjaw) > W?aw t4 4. Here, W”w is the output weight

s2 matrix (linear readout) for the jaw, and Tj4, = 5ms defines ajq = exp(— t/ ), which
s controls the integration velocity of the jaw trace.

= 4.3 Session-stitching and network structure

s As in (Sourmpis et al., 2023), we simulate multi-area cortical neuronal activity fitted to
s electrophysiology neural recordings. Before we start the optimization, we define and fix
s6 each neuron’s area and cell type in the model by uniquely assigning them to a neuron from
27 the recordings. For the real dataset from Esmaeili et al. (2021), the cell type is inferred from
ss the cell’s action potential waveform (with fast-spiking neurons classified as inhibitory and
s0 regular-spiking neurons as excitatory). Most electrophysiology datasets include recordings
s from multiple sessions, and our method would typically require simultaneous recordings of all
sn neurons. To address this challenge, similarly to (Sourmpis et al., 2023) we use the technique
s called “session-stitching” which allows neighboring modeled neurons to be mapped with
533 neurons recorded across multiple sessions. This effectively creates a “collage” that integrates
s data from multiple sessions within our model. This approach has practical implications for
s our optimization process. Specifically, the trial-matching loss includes a term for each
35 session, with the overall loss calculated as the average across all sessions (see 4.5).

537 For both the real and the synthetic datasets, we simulate each area with 250 LIF neurons
s:3  and impose that each area has 200 excitatory neurons and 50 inhibitory. Respecting the ob-
s servation that inhibitory neurons mostly project in the area that they belong to (Tamamaki
s0 and Tomioka, 2010; Markram et al., 2004), we don’t allow for across-area inhibitory con-
sa nections. The “thalamic” input is available to every neuron of the circuit, and the “motor”
s2 output for the real dataset, i.e., jaw movement, is extracted with a trained linear readout
sa3  from all the excitatory neurons of the network, see 4.2.

s« 4.4 Reference circuits for hypotheses 1 and 2

ss To build a synthetic dataset that illustrates the difficulty of separating the feedforward (H1)
s6  and recurrent hypotheses (H2), we construct two reference spiking circuit models RefCircl
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s and RefCirc2. The two networks consists of two areas A and B, and their activity follows the
sis hard causal inference problem from method 4.1, making it hard to distinguish A1l and A2
ss0  when recording the co-activation of A and B. Moreover, to make the problem even harder,
sso  the two networks are constructed to make it almost impossible to distinguish between H1
ssi.  and H2 with dense recordings: the two circuits are designed to have the same PSTH and
s2 - single-trial network dynamics despite their structural difference, one is feedforward and the
ss3 - other is recurrent.

554 To do so, RefCircl and 2 are circuit models that start from random network initializations
55 following the specifications described in Methods 4.2 and 4.3. The only difference is that
ss we do not allow feedback connections from A to B in RefCircl, the construction below
sy is otherwise identical. The synaptic weights of the two circuits are optimized with the
sss losses described in Methods 4.5 to fit the identical target statistics in all areas: the same
sso  PSTH activity for each neuron and the same distribution of single-trial network dynamics.
ss0 The target statistics are chosen so the activity in RefCircl and 2 resemble kinematics and
s statistics from a primary and a secondary sensory area. The baseline firing rates of the
ss2  neurons is dictated by the target PSTH distribution and it follows a log-normal distribution,
ss with excitatory neurons having a mean of 2.9 Hz and a standard deviation of 1.25 Hz and
s inhibitory neurons having a mean of 4.47 Hz and a standard deviation of 1.31 Hz. The
ss  distribution of single-trial activity is given by the targeted single-trial dynamics: in RefCircl
o and 2, the areas A and B respond to input 50% of the time with a transient population
se7  average response following a double exponential kernel characterized by 7,5 = 5 ms and
s Trai = 20 ms. Mimicking a short signal propagation between areas, these transients have
s0 a4 ms delay in area A and 12 ms delay in B (relative to the onset time of the stimulus).
s To impose a ”behavioral” hit versus miss distribution that could emerge from a feedforward
sn and recurrent hypothesis (see method 4.1), the targeted population-averaged response of
sz each trial is either a double-exponential transient in both area A and B ("Hit trials”), or
ss remains at a baseline level in both areas ("Miss trials”) in the remaining trials. At the
su - end of the training, we verified that RefCircl and RefCirc2 generate very similar network
si5 activity in the absence of perturbation (see Figure S1). The circuits are then frozen and
s used to generate the synthetic dataset. We generate 2000 trials from these RefCircs, 1000
sz of which are used for the training set and 1000 for the testing set.

2 4.5 Optimization and loss function

s9 ' The optimization method we use to fit our models is back-propagation through time
s00 (BPTT). To overcome the non-differentiability of the spiking function, we use surrogate
s gradients (Neftci et al., 2019). In particular, we use the piece-wise linear surrogate deriva-

t
i —Uthr,j

s tive from Bellec et al. (2018b). For the derivative calculations, we use - o and not

t
Vi —Vthr,j . o« g
583 exp(ij vt =~ ) We use sample-and-measure loss functions that rely on summary statistics,

s as in (Bellec et al., 2021; Sourmpis et al., 2023), to fit the networks to the data. Our loss
s function has two main terms: one to fit the trial-averaged activity of every neuron (Lyeuron ),
s and one to fit the single trial population average activity (Liyial), £ = Lneuron + Ltrial. The
ss7 two terms of the loss function are reweighted with a parameter-free multi-task method
ss (Défossez et al., 2023) that enables the gradients to have comparable scales.

589 As in Sourmpis et al. (2023): (1) To calculate the trial-averaged loss, we first filter the
s trial-averaged spiking activity ﬁeuwn’j (2) = % Dok z;) . * f using a rolling average window
D

sn (f) of 8 ms. We then normalize it by the trial-averaged filtered data activity, (z” are
s recorded spike trains)

7;1/éuron,j(z) = (7;1teuron,j (Z) - <7_I;teurotl,j(zD)>t)/(O-t (7_r;teur0n,j (ZD))7 (6)
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ss  where (.); is the time average, and o, the standard deviation over time. The trial-averaged
s loss function is defined as:

N T
‘Cneuron = Z Z ||7;1/éuron 7;1/2111‘011,] (ZD)||2 ’ (7)
7 t

ss  where T is the number of time points in a trial and N is the number of neurons. For the
ss  real dataset, where we want to fit also the jaw movement, we have an additional term for
s7  the trial-averaged filtered and normalized jaw, || 327 77 on (@) — Tuwon (WP)||%, where y is
ss  the simulated jaw movement and y? the recorded jaw movement.

500 (2) To calculate the trial-matching loss, we first filter the population-average activity
eo of each area A, Tik(z) = ﬁ ZjeA z}fk x f, using a rolling average window of 32 ms. We
s1 then normalize it by the population-averaged filtered activity of the same area from the
o2 recordings, T4, (2) = (T4 1 (2) — (T4 1 (27))k) /o (T4 1 (27)), and concatenate all the areas
o3 that were simultaneously recorded, T, (2) = (T4 x> TAb 1), where (.), is the trial average,
s and oy the standard deviation over trials. The trial-matching loss is defined as:

Livial = mln Z Z || trlal k 7;r1al (k) (ZD) H2 ’ (8)

s where 7 is an assignment between pairs of K recorded and generated trials 7 : {1,... K} —
ws {1,...K}. Note that the minimum over 7 is a combinatorial optimization that needs to be
eor calculated for every evaluation of the loss function. For the real dataset we consider the jaw
s movement as an additional area, and we concatenate it to the 7%, ;. = (7'A1 e 7'142 k> Taw k)

609 Based on this loss function, we optimize the following parameters: W/, 4 WZJ” % Vihr gy

a0 and f for the RefCircs. For the RNNs, we optimize only the recurrent connectivity W,
su  and the rest are fixed from the RefCircs. For the real dataset, additionally to the parameters
ez optimized in the RefCircs, we also optimize the jaw’s linear readout WJJ ““ and its scaling
613 parameter b.

rec, d

s Implementing Dale’s law and local inhibition In our network, the recurrent weights
sis W7 are computed as the elementwise product of two matrices: W"¢¢ which encodes the
eis  strength of synaptic efficacies and is always positive, and W’ = which has a fixed sign

sign?
v determined by the neurotransmitter type of the presynaptic neuron and [WSC | = 1:
WT‘P(‘ W'l”(’(’ o W‘;‘I;(’g(;ql (9)

as To enforce Dale’s law during optimization, we set any negative values of W7 to zero
o0 at each iteration as in Bellec et al. (2018a). Similarly, to constrain only local inhibitory
60 connections during optimization, we zero out any changes in the synaptic efficacies of across-
61 areas inhibitory connections at each iteration. In simplified models, Dale’s law or the local
62 inhibition constraint can be disrupted by omitting this correction step.

623 The success of the network optimization highly depends on the initialization of the re-
624 current weight matrices. To initialize signed matrices we follow the theoretical Rajan and
o5 Abbott (2006) and practical insights Bellec et al. (2018b); Cornford et al. (2020) developed
o2 previously. After defining the constraints on the weight signs W%, the initialization am-
e plitude W™ for each target neuron is adjusted to a zero-summed input weights (the sum of
e incoming excitatory inputs is equal to the sum of inhibitory inputs). Then the weight ampli-
e tude is re-normalized by the modulus of its largest eigenvalue of W"¢¢, so all the eigenvalues
630 of this matrix W7 have modulus 1 or smaller.

61 Stopping criterion for the optimization For the synthetic dataset, we train the models
62 for 4000 gradient descent steps. For the real dataset, due to limited data and a noisy test
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63 set, we select the final model based on the optimization step that yields the best trial-
s1  type accuracy (closest to the trial-type accuracy from the data), derived from the jaw trace
65 and whisker stimulus, along with the highest trial-matched Pearson correlation between the
63 model and the recordings.

e Sparsity regularization There is a plethora of ways to enforce sparsity. In this work,
633 we use weight regularization. In particular, we use the [ 1 norm of the recurrent and input
0 weights that promote a high level of sparsity (Xu et al., 2012). To avoid numerical instabil-
s0 ities, we apply this regularization only for synaptic weights above o and prune all synapses
s1 below . (we set a = le~"). The regularized loss function becomes:

1 1 gl

Lo = LA M|IWTT + A W7 4 g [Wrerossd 2, (10)
2 2 2

o2 where Wa°%:d are the connections from one area to the other.

643 For the synthetic dataset, we choose the level of across-area sparsity by performing a

e small grid search for A3. In particular, the sparsity level A3 is the maximum value A3 where

es the performance remains as good as without sparsity, see Suppl. Fig S3. For the real

as dataset, we use the same value A3 as the one we found for the full reconstruction method
e of bioRNNI1.

«s 4.6 Perturbation test of in silico optogenetics

s0 In systems neuroscience, a method to test causal interactions between brain regions uses
0 spatially and temporally precise optogenetic activations or inactivations (Esmaeili et al.,
e 2021; Guo et al., 2014). Usually, inactivations refer to the strong activation of inhibitory
ez neurons for cortical areas. These inhibitory neurons have strong intra-area connections that
o3 effectively “silence” their local-neighborhood (Helmstaedter et al., 2009).

654 Our model can simulate these perturbations and allow us to compare the causal mecha-
e nisms of two networks based on their responses to optogenetic perturbations. We implement
ess activations and inactivations as a strong input current to all the neurons in one area’s excita-
67 tory or inhibitory population. For the RefCircs and reconstructed RNNs, we use a transient
es current that lasts 40 ms, from 20 ms before to 20 ms after the input stimulus. The strength
0 of the current (light power) varies until there is an effect in the full reconstruction method
s0 bioRNN1. For the synthetic dataset in Figure 2 (except for panel D), we inject a current of
et Aul = 0.08 into excitatory neurons for activations and Auf = 1 into inhibitory neurons for
62 1nactivations. For the real dataset, we perform optogenetics inactivations in three different
w3 periods. As in Esmaeili et al. (2021), we silence the cortical circuit during the whisker
6« presentation, the time between the whisker and auditory stimulus, or when the animal was
65 licking for the reward. In particular, we use transient currents to the inhibitory neurons
s during (i.) 100 ms before and after the whisker presentation, (ii.) 100 ms after the whisker
s presentation till 100ms before the onset of the auditory cue, and (iii.) after the auditory
ses cue till the end of our simulation. For cases (i.) and (ii.), we linearly decreased the strength
69 of the current to avoid rebound excitation. The light power is chosen so that our model
60 has the best results in reproducing the lick probability of the recordings. It is important
en to mention that the perturbation data are not used to optimize the network but to test
e whether the resulting network has the same causal interactions with the recordings.

673 For the RefCircs and bioRNNs, we evaluate the effect of the perturbations directly from
ea  the neural activity. We use the distance of network dynamics L, to compare the two
o5 perturbed networks. For the real dataset, we compare the effect of the inactivations on
o6 the behavior; as behavior here, we mean whether the mouse/model licked. We classify the
o7 licking action using a multilayer perceptron with two hidden layers with 128 neurons each.
ers  The classifier is trained with the jaw movement of the real dataset, which was extracted from
oo video filming using custom software, to predict the lick action, which was extracted from a
e piezo sensor placed in the spout. This classifier predicted lick correctly 94% of the time. We
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61 then used the same classifier on the jaw movement from the model to determine whether
62 there was a “lick” or not. For the comparisons in both the artificial and real datasets, we
63 trained multiple models with different random seeds for each variant and aggregated the
ea results. The different random seeds affect both the weight initialization and the noise of our
es model. In particular, we used from 3 to 6 different random seeds for each different model
es6 variant.

« D Data availability statement
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s2 https://zenodo.org/records/4720013.
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Method name Real Dataset vs Reconstructed network
bioRNN 0.76 = 0.14
ocRNN 0.62 4+ 0.12
No sparsity 0.77 £ 0.15
Non-local inhibition 0.79 £ 0.15
No Dale’s law 0.68 £ 0.13
No TM 1.63 4+ 0.55
No spike 0.64 £ 0.13

Table 2: Trial-matching loss test loss Liyia of the different reconstruction methods with the
real recordings from (Esmaeili et al., 2021) + indicates the 95% confidence interval.

- Supplemental information
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Figure S1: Modeling “optogenetic” perturbations. A. Two different network hypothe-
ses for implementing a detection task. In RefCircl, area A projects to area B but not vice
versa. In RefCirc2, the areas are recurrently connected. B. Raster plots of all neurons in
RefCircl during a single hit trial under normal conditions (control, left) and under optoge-
netic perturbation of excitatory (middle) and inhibitory (right) neurons. The duration of
the light stimulus is shown with a blue shading. C. Same for RefCirc2 D. Trial-averaged
activity of the two circuits during Hit (blue: RefCircl; green: RefCirc2) and Miss (yellow:
RefCirc 1; red: RefCirc2) trials. A trial is classified as “Hit” if area A reaches a transient
firing rate above 8Hz; and otherwise as “Miss”. For the control case, the maximal difference
between the trial average activity of the two networks is below 0.51 Hz (zoom inset).
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Figure S2: Fitting Reconstructed networks to the synthetic dataset. A. Schematic
representation of the RefCircl and bioRNN1. and probability of hit trials. B. Histogram
of the firing rate distribution of the RefCircl and all the RNN1 versions. We observe that
all RNN1 versions fit well with the RefCircl. C. Left: Neuron loss of the different RNN1
variants. Right: Trial-matching loss of the different RNN1 variants. We observe that the
model without the trial-matching loss function behaves considerably worse. The whiskers
show the 95% confidence interval of the mean across trials. D-F. Same as A-B for RefCirc2

and RNNs2.
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Figure S3: Picking the sparsity level. A. Grid search for the optimal maximum

regularization strength (A3) without a drop in performance. As a performance measure, we
used the trial-matching loss, Lial-
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Figure S4: Trial averaged traces across RNN variants. Trial-averaged activity in

area A under activation/inactivation of area B. Dashed black lines indicate the activity of
RefCircl (thick dashed) and RefCirc2 (thin dashed). All the RNNs are tested with the same
reference circuit and training data, each bioRNN model variant is shown with a different
color.
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Figure S5: A Hit frequency prediction error |Ap? — Ap| as in Figure 2E. In contrast to
Figure 2E, here we show separately the change of hit probability for RefCircl (left) and
RefCirc2 (right).

A 0.8 i C 2.0
100 2.5
ES €
06 i g
*%% 8 g 315
g 04 S 50 g 20 3
£, H Q 1.0
‘ = 1.5 a8 L ]
0 : 0.5
S AN FQ e S S NS S e S S S S
LTSS e Firing rate (Hz) SIS e SIS e
TS R TS &Y TS &Y
® ,\0(? & ,\°C’P & \oc?
eoc & &

Figure S6: Reconstruction of the real recordings. A. Probability of hit trials of the
different variant models. B. Histogram of the firing rate distribution from the real recordings
and all the variants. C. Top: Neuron loss of the different RNN1 variants. All RNN versions
have a similar loss value. Bottom: Trial-matching loss of the different model variants. We
observe that the model without the trial-matching loss function behaves considerably worse.
The whiskers show the 95% confidence interval.
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Figure S7: A Change of lick probability under inactivation of all areas in all the different
temporal windows. We show the Ap from the data and reconstruction model variants.
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