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Abstract11

A recurrent neural network fitted to large electrophysiological datasets may help us un-12

derstand the chain of cortical information transmission. In particular, successful network13

reconstruction methods should enable a model to predict the response to optogenetic pertur-14

bations. We test recurrent neural networks (RNNs) fitted to electrophysiological datasets on15

unseen optogenetic interventions, and measure that generic RNNs used predominantly in the16

field generalize poorly on these perturbations. Our alternative RNN model adds biologically17

informed inductive biases like structured connectivity of excitatory and inhibitory neurons,18

and spiking neuron dynamics. We measure that some biological inductive biases improve19

the model prediction on perturbed trials in a simulated dataset, and a dataset recorded in20

mice in vivo. Furthermore, we show in theory and simulations that gradients of the fitted21

RNN can be used to target micro-perturbations in the recorded circuits, and discuss the22

potential utility to bias an animal’s behavior and study cortical circuit mechanisms.23

1 Introduction24

A fundamental question in neuroscience is how cortical circuit mechanisms drive percep-25

tion and behavior. To tackle this question, experimental neuroscientists have been collect-26

ing large-scale electrophysiology datasets under reproducible experimental settings (Siegle27

et al., 2021; Esmaeili et al., 2021; Urai et al., 2022; International Brain Laboratory et al.,28

2023). However, neuroscience lacks data-grounded modeling approaches to generate and29

test hypotheses on the causal role of neuronal and circuit-level mechanisms. To leverage the30

high information density of contemporary recordings, we need both (1) modeling approaches31

that scale well with data, and (2) metrics to quantify when the models provide a plausible32

mechanism for the observed phenomena.33

Biophysical simulations have been crucial for our understanding of single-cell mecha-34

nisms (Hodgkin, 1958), and have been used to describe interactions across cortical layers,35

columns, and areas (Markram et al., 2015; Billeh et al., 2020; Isbister et al., 2023; Chen36

et al., 2022; Rimehaug et al., 2023; Fraile et al., 2023; Spieler et al., 2023). A promising37

approach to constrain models to electrophysiological data lies in the optimization of the sim-38

ulation parameters by gradient descent. These methods were successful in quantitatively39

classifying functional cell types (Pozzorini et al., 2015; Teeter et al., 2018), and modeling40
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micro-circuit interactions (Pillow et al., 2008; Deny et al., 2017; Mahuas et al., 2020). To41

bridge the gap from single neurons or small retinal networks to cortical recordings in vivo,42

recent studies made substantial progress towards data-constrained recurrent neural network43

(RNN) models (Perich et al., 2020; Bellec et al., 2021; Arthur et al., 2023; Valente et al.,44

2022; Kim et al., 2023; Dinc et al., 2023; Sourmpis et al., 2023; Pals et al., 2024). In this45

line of work, neurons in the RNN are mapped one-to-one to recorded cells and optimized46

by gradient descent to predict recorded activity at large scale.47

An important question is whether these data-constrained RNNs can reveal a truthful48

mechanism of neuronal activity and behavior. By construction, the RNNs can generate49

brain-like network activity, but how can we measure whether the reconstructed network50

faithfully represents the biophysical mechanism? To answer this question, we submit a range51

of RNN reconstruction methods to a difficult perturbation test : we measure the similarity52

of the network response to unseen perturbations in the RNN and the recorded biological53

circuit.54

Optogenetics is a powerful tool to induce precise causal perturbations in vivo (Esmaeili55

et al., 2021; Guo et al., 2014). It involves the expression of light-sensitive ion channels56

(Boyden et al., 2005), such as channelrhodopsins, in specific populations of neurons (e.g.,57

excitatory/pyramidal or inhibitory/parvalbumin-expressing). In this paper, we use datasets58

including both dense electrophysiological recordings and optogenetic perturbations to eval-59

uate RNN reconstruction methods. Since the neurons in our RNNs are mapped one-to-one60

to the recorded cells, we can model optogenetic perturbations targeting the same cell-types61

and areas as done in vivo. Yet, we observe that the similarity between the simulated and62

recorded perturbations varies greatly depending on the reconstruction methods.63

Most prominently, we study two opposite types of RNN specifications. First, as a con-64

trol model, we consider a traditional sigmoidal RNN (σRNN) which is arguably the most65

common choice for contemporary data-constrained RNNs (Perich et al., 2020; Arthur et al.,66

2023; Pals et al., 2024); and second, we develop a model with biologically informed inductive67

biases (bioRNN): (1) neuronal dynamics follow a simplified spiking neuron model, and (2)68

neurons associated with fast-spiking inhibitory cells have short-distance inhibitory projec-69

tions (other neurons are excitatory with both local and long-range interareal connectivity).70

Following Neftci et al. (2019); Bellec et al. (2018b, 2021); Sourmpis et al. (2023), we adapt71

gradient descent techniques to optimize the bioRNN parameters of neurons and synapses to72

explain the recorded neural activity and behavior.73

Strikingly, we find that the bioRNN is more robust to perturbations than the σRNN.74

This is nontrivial because it is in direct contradiction with other metrics often used in the75

field: the σRNN simulation achieves higher similarity with unseen recorded trials before per-76

turbation, but lower than the bioRNN on perturbed trials. This contradiction is confirmed77

both on synthetic and in vivo datasets. To analyze this result, we submit a spectrum of in-78

termediate bioRNN models to the same perturbation tests, and identify two bioRNN model79

features that are most important to improve robustness to perturbation: (1) Dale’s law (the80

cell type constrains the sign of the connections (Eccles, 1976)), and (2) local-only inhibi-81

tion (inhibitory neurons do not project to other cortical areas). In contrast, other model82

features are penalizing, or do not improve significantly the prediction of the optogenetically83

perturbed response in this out-of-distribution fashion. It indicates that perturbation tests84

can validate biophysical modeling strategies in data-constrained deep learning models of85

neural mechanisms.86

Beyond the optogenetic area inactivation available in the in vivo dataset, we investigate87

how perturbation-robust RNNs could enable targeted optogenetic protocols for the discovery88

of detailed neuronal circuit mechanisms in future experiments. Targeted causal interventions89

will become decisive in studying smaller circuit mechanisms. Acute optogenetic inactivations90

of genetically defined laminar sub-populations were used to characterize the causal role of91

specific neurons in the sensory motor pathways (Tamura et al., 2025; Wyart et al., 2025),92

and upcoming technology will make these experiments easier (Lakunina et al., 2025). To93

illustrate how RNN reconstruction can help to target neuronal stimulation, we consider94
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micro-perturbations (µ-perturbation) targeting dozens of neurons in a small time window.95

Inspired by recent read-write all-optical setups (Packer et al., 2015), we imagine a model-96

informed µ-perturbation protocol, where neurons are targeted based on their functional97

rather than genetic properties. While previous work has used linear models to produce98

targeted stimulations (Wyart et al., 2025; Minai et al., 2024), we show that back-propagated99

gradients of perturbation-robust RNNs provide a sensitivity map to predict the effect of100

µ-perturbations. Concretely, in a closed-loop experimental setup in silicon, we can use101

RNN gradients to target a µ-perturbation and change the movement in a simulated mouse.102

The gradients are used to identify the few neurons having the strongest causal effect on103

behavior. Conceptually, it means that our RNN reconstructions enable an estimation of104

“circuit gradients”, bringing numerical and theoretical concepts from deep learning (LeCun105

et al., 2015; Richards and Kording, 2023) to study biological network computation.106

2 Results107

2.1 Reconstructed Networks: biological inductive biases108

strengthen robustness to perturbations109

Synthetic dataset for challenging causal inference We build a toy synthetic dataset110

to formalize how we intend to reverse engineer the mechanism of a recorded circuit using op-111

togenetic perturbations and RNN reconstruction methods. It also serves as the first dataset112

to evaluate our network reconstruction methods. This toy example represents a simplified113

version of large-scale cortical recordings from multiple brain areas during a low-dimensional114

instructed behavior (Steinmetz et al., 2019; Esmaeili et al., 2021; International Brain Lab-115

oratory et al., 2023), similarly to the in vivo dataset of a GO/No-Go task Esmaeili et al.116

(2021) analyzed in the next section. Let’s consider two areas A and B which are either117

transiently active together (“hit trial” occurring with frequency p) or quiescent together118

(“miss trial” occurring with probability 1 − p). Since the two areas are active or in-active119

together, it is hard to infer if they are connected in a feedforward or recurrent fashion. In120

Methods 4.1, we describe a theoretical example where it is impossible to decide between121

opposing mechanistic hypothesis (feedforward or recurrent) when recording only the macro-122

scopic activations of areas A and B. In this case, performing optogenetic inactivation of one123

area is decisive to distinguish between the feedforward or recurrent hypothesis.124

To generate artificial spike train recordings that capture this problem, we design two125

reference circuits (RefCircs) from which we can record the spike trains. Each RefCirc consist126

of two populations of 250 spiking neurons (80% are excitatory) representing areas A and127

B. To highlight the importance of optogenetic perturbations as in the Methods 4.1, the128

first circuit RefCirc1 is feedforward and the second Refcirc2 is recurrent: RefCirc1 (and129

not RefCirc2) has strictly zero feedback connections from B to A. Yet, the two RefCircs130

are almost identical without optogenetic perturbations: each neuron in RefCirc1 has been131

constructed to have an almost identical trial-averaged activity as the corresponding neuron132

in RefCirc2; and in response to a stimulus, the circuits display a similar bi-modal hit-or-133

miss response with a hit trial frequency p ≈ 50%. We consider that a trial is a hit if area134

A is active (averaged firing rate above 8Hz)1. To simulate optogenetic inactivations of an135

area in the RefCircs, we inject a transient current into the inhibitory neurons, modeling the136

opening of light-sensitive ion channels2. Figure S1 shows that optogenetic perturbations137

in area B reflect the presence or absence of feedback connections which differs in RefCirc138

1 and 2. Methods 4.4 provides more details on the construction of the artificial circuits.139

Our perturbation test will consist of the comparison of optogenetic perturbations in the140

1Defining a “hit” trial based on area A is equivalent to saying that both areas need to be active during
unperturbed trials with this dataset. But excluding B in this definition avoids that the hit rate is trivially
impacted when manipulating the activity of B with optogenetic perturbations.

2Symmetrically, an optogenetic activation is simulated as a positive current injected into excitatory cells.
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Figure 1: Network reconstruction and perturbation tests. A. The three steps to
reconstruct the reference circuit (RefCirc) using a biologically informed RNN (bioRNN) or
a sigmoidal RNN (σRNN) and evaluate the reconstruction based on perturbation tests. B.
Summary of the differences between a bioRNN and a σRNN. C. Trial-averaged activity
of area A of the two circuits during hit (black-dashed: RefCirc1; blue: bioRNN1; pink:
σRNN1) and miss (grey-dashed: RefCirc1; light blue: bioRNN1; light pink: σRNN1) trials.
All models display a hit rate of p ≈ 50%. D. Same as C during inactivation of area
B. ∆pD = 0 is the recorded change of hit rate for the feedforward circuit RefCirc1, so a
successful reconstruction achieves p̂ ≈ 0%. E. Quantitative results on perturbation tests
showing that σRNN achieves the lowest loss function on the unperturbed test trials, but
only the bioRNN retains an accurate fit to the perturbed trials.
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reconstructed RNN and in their references RefCirc1 and 2, without retraining the RNN on141

these perturbations.142

Network reconstruction methodology (synthetic dataset) To reconstruct the143

recorded circuits with an RNN, we record activity from the spiking RefCircs, and opti-144

mize the parameters of an RNN to generate highly similar network activity. The whole145

reconstruction method is summarized graphically in panel A of Figure 1. In the simplest146

cases, the RNN is specified as a sigmoidal network model (Rosenblatt, 1960; Elman, 1990):147

σRNN1 and σRNN2 are optimized to reproduce the recording from RefCirc1 and RefCirc2148

respectively. In this synthetic dataset, the reconstructed σRNNs have the same size as the149

RefCircs (500 neurons) and sigmoidal neurons are mapped one-to-one with RefCirc neu-150

rons (20% are mapped to inhibitory RefCirc neurons). They are initialized with all-to-all151

connectivity and are therefore blind to the structural difference of the RefCirc1 and 2 (feed-152

forward or recurrent). From each of the two RefCircs, we store 2,000 trials of simultaneous153

spike train recordings of all 500 neurons (step 1 in Fig. 1A). Half of the trials are used154

as training set and will be the basis for our data-driven RNN optimization. The second155

half of the recorded trials form the testing set and are used to evaluate the quality of the156

reconstruction before perturbations.157

We optimize the synaptic “weights” of the σRNN to minimize the difference between158

its activity and that of the RefCirc (step 2 in Fig 1A, see Methods). The optimization159

combines three loss functions defined mathematically in Methods 4.5: (i) the neuron-specific160

loss function Lneuron is the mean-square error of the trial-averaged neural activity (e.g.161

the PSTH) between σRNN and RefCirc neurons. (ii) To account for fluctuations of the162

single-trial network activity, we use a trial-specific loss function Ltrial, which is the distance163

between the distribution of single trial population-averaged activity of σRNN and RefCirc164

(see Sourmpis et al. (2023)). (iii) Finally, we add a regularization loss function Lreg to165

penalize unnecessarily large weights.166

We also developed a biologically informed RNN model (bioRNN) for which we have167

designed a successful optimization technique. The main differences between σRNNs and168

bioRNNs consist in the following biological inductive biases. Firstly, the bioRNN neuron169

model follows a simplified leaky integrate and fire dynamics (see Methods 4.2) yielding170

strictly binary spiking activity. Secondly, we constrain the recurrent weight matrix to de-171

scribe cell-type specific connectivity constraints: following Dale’s law, neurons have either172

non-negative or non-positive outgoing connections; moreover, since cortical inhibitory neu-173

rons rarely project across areas, we assume that inhibitory neurons project only locally174

within the same area. Thirdly, we add a term to the regularization loss Lreg to imple-175

ment the prior knowledge that cross-area connections are more sparse than within an area.176

Adding these biological features into the model requires an adapted gradient descent algo-177

rithm and matrix initialization strategies (Methods 4.5). The reconstruction method with178

σRNNs and bioRNNs is otherwise identical: the models have the same size, and are opti-179

mized on the same data, for the same number of steps and using the same loss functions.180

The two models bioRNN1 and bioRNN2 are optimized to explain recordings from RefCirc1181

and Refcirc2, respectively. Importantly, the structural difference between RefCirc1 (feedfor-182

ward) and RefCirc2 (feedback) is assumed to be unknown during parameter optimization:183

at initialization, excitatory neurons in bioRNN1 or bioRNN2 project to any neuron in the184

network with transmission efficacies (aka as synaptic weights) initialized randomly.185

After parameter optimization, we have four models, σRNN1, σRNN2, bioRNN1 and186

bioRNN2, that we call “reconstructed” models. To validate the reconstructed models, we187

verify that the network trajectories closely match the data on the test set in terms of (i) the188

“behavioral” hit-trial frequency, (ii) the peristimulus time histogram (PSTH) mean-square189

error of single neurons as evaluated by Lneuron, and (iii) the distance between single-trial190

network dynamics as evaluated by Ltrial (see Suppl. Fig. S2 and Table 1). At first sight, the191

σRNN displays a better data fitting when comparing with the non-perturbed trials of the192

testing set: Ltrial is for instance lower with σRNN (see Table 1). This is expected considering193
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that the optimization of bioRNNs is less flexible and numerically efficient because of the194

sign-constrained weight matrix and the imperfect surrogate gradient approximation through195

spiking activity. However, the two bioRNNs are drastically more robust when evaluating196

the models with perturbation tests.197

Perturbation test To test which of the reconstructed RNNs capture the causal mech-198

anisms of the RefCircs, we simulate optogenetic activations and inactivations of area B199

(step 3 in Fig. 1A). We first compare the change of hit probability after perturbations in200

the reconstructed RNN (∆p̂) and recorded in RefCirc (∆pD) in Figure 2. For the σRNN201

the activation or inactivation of area B changes drastically the peak firing rate in area A:202

all trials become a hit during inactivation of area B. This drastic increase of hit rate is203

not consistent the reference where the effect of the optogenetic inactivations is mild: the204

distribution of network responses remains bi-modal (hit versus miss) with only a moderate205

change of hit frequency for RefCirc2 ∆pD = −3%. For RefCirc1 we even expect ∆pD = 0%206

by design because of the absence of feedback connections from B to A. In contrast, the207

bioRNN models capture these changes more accurately (see Fig. 1 and 2). Quantitative208

results are summarized in Fig. 2E, the error of hit probability changes |∆pD −∆p̂| is 7%209

with bioRNNs when averaged over all conditions (bioRNN1 and bioRNN2, with optogenetic210

inactivations and activations). The corresponding error is 48.5% on average for σRNNs.211

In this sense, we argue that the bioRNN provides a better prediction of the perturbed hit212

frequency than the σRNN. We also performed spike train recordings in the area that is213

not directly targeted by the light to compare the perturbed network dynamics in the fitted214

RNNs and the RefCirc. The perturbed dynamics are displayed in Fig. 2D. The quantity215

Llight
trial is a distance between the network dynamics (RNN versus reference) and is reported216

in Fig. 2D-E and Table 1. Again, the perturbed dynamics of the bioRNN are more similar217

to those of the reference circuits Llight
trial = 0.26, than with the σRNN Llight

trial = 1.19 (t-test218

p-value is 0.0003).219

To analyze which features of bioRNN explain this robustness to perturbation, we then220

derive a family of models where only one feature of the reconstruction is omitted. Namely,221

the “No Dale’s law” model does not have excitatory and inhibitory weight constraints, the222

“Non-local inhibition” model allows inhibitory neurons to project outside of their areas, the223

“No Spike” model replaces the spiking dynamics with a sigmoidal neuron model, and the “No224

Sparsity” model omits the cross-area sparsity penalty in Lreg. Omitting all these features225

in bioRNN would be equivalent to using a σRNN. The accuracy metrics on the testing sets226

before perturbation are reported for all RNN variants Fig. 2E and G. For reference, we also227

include the model “No TM” (trial-matching), which omits the loss function Ltrial during228

training.229

The strongest effect measured with this analysis is that the Dale’s law and local inhibi-230

tion explain most of the improved robustness of bioRNNs. This is visible in Fig. 2 as the231

perturbed trajectories of “No Dale’s law” and “Non-local inhibition” are most distant from232

the reference in Fig. 2D. This is confirmed numerically where both the hit-rate error and the233

distance of network dynamics increase the most when lifting these constraints (Fig. 2E-G234

and Table 1. We explain this result as follows: the mono-synaptic effect of a cell stimulated235

by the light are always correct in bioRNN (according to Dale’s law, and inhibition locality),236

but often wrong in the alternative models (see Fig. 2A). For instance, a simple explanation237

may justify the failure of the “Non-local inhibition” model: the stimulation of inhibitory238

neurons in B induces (via the erroneous mono-synaptic inhibition) a reduction in the base-239

line activity in area A (see the green trace during inactivation in Fig. 2D). More generally240

for perturbation testing, we speculate that these features are measured to be important here241

because they are central to the biophysical nature of the perturbation considered: optoge-242

netic perturbation targets specific cell types, and these features incorporate a biophysical243

connectivity priors which is hard to infer entirely from the unperturbed data.244

Not all the biological features that we implemented in bioRNN made comparable im-245

provements in the prediction of optogenetic perturbations. We implemented simple spiking246
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Figure 2: Reconstruction of network mechanisms. A. RefCirc1 is feedforward and
RefCirc2 is recurrent. B. The fitted RNNs are blind to the structural difference of RefCirc1
and 2 and must infer this from the spiking data. C. Raster plot showing an example trial
of the bioRNN and σRNN models, neurons in red are mapped to inhibitory neurons. D.
To study which model feature matters, bioRNN variants are defined by removing one of the
features, for instance “No Dale’s law” refers to a bioRNN without weight sign constraints.
Trial-averaged activity in area A under activation/inactivation of area B. All the RNNs
are tested with the same reference circuit and training data (No spike and No Sparsity
models are shown in Suppl. Fig. S4). E. Error between the change of hit probability
after perturbations in the RNN ∆p̂ and in the RefCirc ∆pD. F. The distance of network
dynamics Llight

trial between each RNN and RefCirc (horizontal axis: light power in arbitrary
units). G. Same quantity as D but averaged for each RNN under the strongest light power
condition (averaging activations and inactivations of area B). Statistical significance in
comparison with bioRNN is computed using the mean over multiple network initializations
and is indicated with 0 to 4 stars corresponding to p-values thresholds: 0.05, 10−2, 10−3

and 10−4.
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RefCirc1 vs. RNN1 RefCirc2 vs. RNN2

no light light � no light light �
bioRNN 0.19 ± 0.01 0.25 ± 0.09 0.18 ± 0.01 0.28 ± 0.13

σRNN 0.16 ± 0.01 1.15 ± 1.07 0.17 ± 0.01 1.22 ± 0.64

No sparsity 0.20 ± 0.01 1.37 ± 1.42 0.19 ± 0.01 0.19 ± 0.13

Non-local inhibition 0.20 ± 0.02 0.54 ± 0.42 0.18 ± 0.01 1.19 ± 0.91

No Dale’s law 0.18 ± 0.01 0.86 ± 0.23 0.18 ± 0.01 2.21 ± 1.60

No spike 0.17 ± 0.00 0.19 ± 0.04 0.18 ± 0.00 0.46 ± 0.19

No Trial Matching (TM) 0.33 ± 0.01 0.44 ± 0.19 0.35 ± 0.03 0.44 ± 0.09

Table 1: BioRNN is more robust to optogenetic perturbations than σRNN. The
table reports the trial matching (TM) loss Ltrial on test trials, it measures the distance
between the distributions of single trial network dynamics Sourmpis et al. (2023) in area A
when stimulating area B. Column “no light” indicates values on the unperturbed test trials,
and “light” the perturbation trials. ± indicates the 95% confidence interval, best values are
shown in bold and major failure with distance above 0.5 is in red.

neuron dynamics and fitted the spiking network as any other RNN using surrogate gradi-247

ents Neftci et al. (2019) as in Bellec et al. (2021); Sourmpis et al. (2023). On perturbed248

data, the spiking bioRNN achieves slightly better performance than its “No spike” variant,249

but without significant margins, t-test p-value is 0.31 for Llight
trial (see Table 1 and Fig 2E-G).250

We speculate that simulating spikes is not advantageous here, because optogenetic pertur-251

bations are relatively broad in space and time, and it might become more relevant for other252

perturbation experiments where precise timing matters or at a microcircuit level. The quan-253

titative of sparse connectivity regularization also did not make a significant improvement in254

all cases (see Table 1).255

Besides predicting the response to optogenetic perturbations, we wondered if we could256

recover the connectivity structure of the recorded circuit. Our method would not be appro-257

priate to recover individual synaptic connections, but we tested whether the fitted RNNs258

reflected the optogenetic signature of the structural difference between the ”feedforward”259

RefCirc1 and the ”recurrent” RefCirc2. Our criteria is here qualitative: the early increase in260

the PSTH response in area A characteristic of mono-synaptic feedback from area B should261

not exist for RefCirc1 (see Figure 2 and Suppl. Fig. S4A). To reveal this difference in the262

fitted bioRNN1 and bioRNN2 models, not only Dale’s law and local-inhibition are necessary,263

but also spiking dynamics and sparsity appear to be helpful. For instance, the erroneous264

early onset on the perturbed trial in area A for the “No Sparsity” model is corrected with265

the sparsity prior (Suppl. Fig. S4, red versus blue curves). Yet, these are subtle qualita-266

tive results that are likely to be less impactful and reproducible than the clear qualitative267

improvement obtained with perturbation testing when modeling cell-type connectivity. In-268

deed, we will see in the next section that we obtain consistent qualitative perturbation269

testing results on the larger in vivo dataset.270

2.2 Predicting perturbations on in vivo electrophysiology data271

To test whether our reconstruction method with biological inductive biases can predict272

optogenetic perturbations in large-scale recordings, we used the dataset from Esmaeili et al.273

(2021). In this study, water-deprived mice were trained to perform a whisker tactile detection274

task. In 50% of the trials (Go trials), a whisker is deflected, followed by a 1-second delay,275

after which an auditory cue signals that the mice can lick a water spout to receive a water276

reward. In the other 50% of trials (No-Go trials), no whisker deflection occurs, and licking277

after the auditory cue results in a penalty with an extended time-out period. While the278

mice performed the task, experimenters recorded 6, 182 units from 12 areas across 18 mice.279

Using this dataset, we focused on the 6 most relevant areas for executing this task (Esmaeili280
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Figure 3: Predicting optogenetic perturbations for in vivo electrophysiology data
A. During a delayed whisker detection task, the mouse reports a whisker stimulation by
licking to obtain a water reward. Jaw movements are recorded by a camera. Our model
simulates the jaw movements and the neural activity from six areas. B. The experimentalists
performed optogenetic inactivations of cortical areas (one area at a time) in three temporal
windows. C. Example hit trial of a reconstructed network (left). Using the same random
seed, the trial turns into a miss trial if we inactivate area wS1 (right, light stimulus indicated
by blue shading) during the whisker period by stimulation of inhibitory neurons (red dots).
D. Error of the change in lick frequency caused by the perturbation, ∆p̂ is predicted by the
model, and ∆pD is recorded in mice. Light-shaded circles show individual reconstructed
networks with different initializations. The whiskers are the standard error of means. E.
Examples of ∆p̂ hit rate changes under perturbation for wS1 (Top) and tjM1 (Bottom).
The black circles refer to the hit rate change from the recordings, ∆pD. See Suppl. Fig. S7
for the other areas.
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et al., 2021). From each area, we randomly selected 250 neurons (200 putative excitatory281

and 50 putative inhibitory), which correspond to 1500 neurons in total. These areas, all282

shown to be causally involved in the task (Esmaeili et al., 2021), include the primary and283

secondary whisker sensory cortex (wS1, wS2), the primary and secondary whisker motor284

cortex (wM1, wM2), the anterior lateral motor cortex (ALM), and the primary tongue-jaw285

motor cortex (tjM1). We fit the neuronal activity using the same reconstruction method as286

used for the synthetic dataset. In the model, we simulate the jaw movement of the mouse287

as a linear readout driven by the model’s neural activity. This readout is regressed with288

the real jaw movement extracted from video footage. The parameter optimization of the289

behavioral readout is performed jointly with fitting the synaptic weights to the neuronal290

recordings, see Methods 4.5. After training, our reconstructed model can generate neural291

activity with firing rate distribution, trial-averaged activity, single-trial network dynamics292

and behavioral outcome which are all consistent with the recordings (see Suppl. Fig S6).293

Before perturbations, we observe again that the σRNN model fits the testing set data better294

than the bioRNN model (see Table 2 and Fig. S6).295

We then submit the reconstructed σRNNs and bioRNNs models to perturbation tests.296

For the sessions of the in vivo dataset with optogenetic perturbation that we considered,297

only the behavior of an animal is recorded during inactivation of an area at a given time298

window (stimulus, delay, or choice periods). For each of the six areas and time windows, we299

extract the averaged hit frequency under optogenetic inactivation, and attempt to predict300

this perturbed behavior by inducing the same inactivations to the fitted RNNs. These per-301

turbations are acute spatiotemporal optogenetic inactivations of each area during different302

time periods (see Figure 3B). As an example, we show the effect of an inactivation of wS1303

during the whisker period in the model in Fig. 3. In panel C, we display the simulated304

trial of a fitted bioRNN with and without perturbations side by side. The two trials are305

simulated with the same random seed, and this example shows that an early perturbation306

in wS1 can change a lick decision from hit to miss in the model (Fig. 3C).307

Consistent with the synthetic dataset, we now find with this in vivo dataset that modeling308

cell-type connectivity yields better prediction of the causal effect of optogenetic perturbation.309

We denote by ∆pD the in vivo change in lick probability across Go trials in response to310

optogenetic perturbations. The perturbations were performed in different periods for each311

area in Esmaeili et al. (2021) (stimulation, delay, or choice periods). For all areas and time312

windows, we measure the corresponding ∆p̂ in the model. On average, the error change313

probability obtained with the σRNN model is |∆pD − ∆p̂| = 21% which is significantly314

worse than the bioRNN model’s 16% (t-test p-value is 0.014, see Figure 3D). As in the315

synthetic dataset, we find this to be consistent over multiple bioRNN model variants, and316

we find that imposing Dale’s law and local inhibition best explain the improvement in317

perturbation-robustness. We also measure that the spiking bioRNN predicts the change in318

lick probability slightly better than the “No Spike” bioRNN model. Conversely, adding the319

sparsity prior does not seem to improve the perturbed hit-rate prediction on the real data as320

seen in the recurrent artificial dataset (RefCirc2) and not in the feedforward case (RefCirc1)321

as shown in Suppl. Fig. S5. In this sense, in vivo perturbation testing emerges as a hard322

test to evaluate modeling strategies combining deep learning and biophysical modeling.323

To further analyze the consistency of the perturbations in the model, we can compare324

the perturbation map showing changes in lick probability obtained from acute inactivation325

in the data and the model. The Suppl. Fig. S7 summarizes visually which area has a critical326

role at specific time points. The changes of lick probability in area wS1, ALM and tjM1327

are accurately predicted by the bioRNN. In contrast, our model tends to underestimate the328

causal effect induced by the inactivations of wS2, wM1 and wM2 (Suppl Fig S7). Overall,329

our model is consistent with a causal chain of interaction from wS1 to ALM and continuing330

to tjM1.331

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2025. ; https://doi.org/10.1101/2024.09.27.615361doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.27.615361
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4: Measuring circuit gradients with µ-perturbations A-B. Numerical verifi-
cation for equation (1). A shows the change of jaw movement ∆Y following inactivations in
a “No Spike” bioRNN. From left to right, we reduce the size of the spatiotemporal window
for the optogenetic stimulation. B. Gradients values

∑
i,t

dY
du that approximate ∆Y from

A using equation (1). C-D. Verification that gradients predict the change of movement on
single trials. In C, we display the gradients and jaw movement for three different trials,
the neurons targeted by the µ-perturbation are boxed and the perturbed jaw movement is
blue. Results averaged for every 100ms stimulation windows are shown in D: positive (resp.
negative) modulated means that the 20 neurons with highest (resp. lowest) gradients are
targeted, random neurons are selected for the shuffled case.

2.3 Applications for experimental electrophysiology332

With future progress in recording technology and reconstruction methods, network recon-333

struction may soon predict the effect of optogenetic perturbation with even higher accu-334

racy. In this section, we explore possible consequences and applications for experimental335

electrophysiology. We demonstrate in the following that (1) perturbation-robust bioRNNs336

enable us to estimate gradients of the recorded circuits, (2) which in turn enable us to337

target µ-perturbations in the recorded circuit and optimally increase (or decrease) induced338

movements in our simulated mouse. The so-called “recorded circuit” is a bioRNN trained339

on the in vivo dataset that we use as a proxy experimental preparation. Its mathemati-340

cal underpinnings enable us to make rigorous theoretical considerations and the design of341

forward-looking in silico experiments.342

µ-perturbations measure brain gradients We first prove a mathematical relationship343

between gradients in the recorded circuit and µ-perturbations. We define the integrated344

movement as Y =
∑

t yt where yt is the movement of the jaw at time t generated by the345

model, and we denote ∆Y � as the change of movement caused by the µ-perturbation. If346

the circuit has well-defined gradients (e.g. say a “No spike” bioRNN model trained on the347
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in vivo recordings in the previous section), using a Taylor expansion, we find that:348

∆Y � =
∑
i,t∈I

dY

dut
i

∆ut
i + ϵ, (1)

where I are the neuron and time indices selected for the optogenetic intervention. The349

error term ϵ is negligible when the current ∆ut
i induced by the light is small. We first350

confirm this approximation with numerical visualization in Fig. 4A: we display movement351

perturbations ⟨∆Y �⟩ in the circuit with time windows of decreasing sizes (⟨·⟩ indicates a352

trial average). When the time window is small, and the perturbation is only applied to353

excitatory or inhibitory cells in Fig. 4A, one can appreciate visually the similarity with the354

binned gradient ⟨
∑

i,t
dY
dut

i
⟩ in Fig. 4B. Proceeding to a quantitative verification of equation355

(1), we now compare the effect of small perturbations targeting only 20 neurons on a single-356

trial. We use the gradient
∑

i,t
dY
dut

i
(see Fig. 4C) to predict the outcome of µ-perturbation357

as follows: for each trial, and each 100ms time window, we identify 20 neurons in the358

model with highest (or lowest) gradients
∑

i,t
dY
dut

i
. We then re-simulate the exact same trial359

with identical random seed, but induce a µ-perturbation on selected neurons (see rectangles360

in Figure 4). If we target neurons with strongly positive gradients, the perturbed jaw361

movements are strongly amplified ∆Y � > 0; conversely, if we target neurons with negative362

gradients the jaw movements are suppressed ∆Y � < 0. Although the equation (1) is only363

rigorously valid for models with well-defined gradients like the “No Spike” model, we also364

confirm in Fig. 4D that this numerical verification also holds in a spiking circuit model365

where the gradients are replaced with surrogate gradients (Neftci et al., 2019).366

An implication of equation (1) is that the measurements ⟨∆Y �⟩ that can be recorded in367

vivo are estimates of the gradients ⟨
∑

i,t
dY
dut

i
⟩ in the recorded circuit. Yet, measuring detailed368

gradient maps (or perturbation maps) as displayed in Fig. 4 would be costly in vivo as it369

requires to average ∆Y � over dozens of trials for each spatio-temporal window. Instead,370

gradient calculation in a bioRNN model (that was fitted to the experimental preparation) is371

a rapid mathematical exercise. If the extracted model is valid, then the gradients
∑

i,t
dY
dut

i
372

in the bioRNN approximate (1) the effect of µ-perturbations ∆Y � in the experimental373

preparation; (2) the gradient
∑

i,t
dY
dut

i
in the recorded circuit.374

Targeting in vivo µ-perturbations with bioRNN gradients Building on this theo-375

retical finding, we build a speculative experimental setup where the bioRNN gradients are376

used to target a µ-perturbation and increase (or decrease) the movements Y in the ex-377

perimental preparation in real time. We show a schematic of this speculative closed-loop378

experiment in Fig. 5C extending contemporary read-write elecotrophysiology setups (Packer379

et al., 2015; Adesnik and Abdeladim, 2021; Grosenick et al., 2015; Papagiakoumou et al.,380

2020). We demonstrate in silico in Fig. 5A-B how this experiment could use bioRNN gradi-381

ents to bias the simulated mouse movement Y . As a preparation step, and before applying382

perturbations, we assume that the bioRNN is well fitted to the recorded circuit and we383

collect a large databank B of simulated trials from the fitted bioRNN. Then in real-time,384

we record the activity from the experimental preparation until the time t∗ at which the385

stimulation will be delivered (Step 1 in Fig. 5A, t∗ is 100ms before the decision period).386

Rapidly, we find the trial with the closest spike trains in the databank of simulated trials387

(Step 2) and use the corresponding gradient maps to target neurons with the highest gra-388

dient dY
du in the model (Step 3). The targeted stimulation is then delivered immediately389

at t∗ to the experimental preparation (Step 4). When testing this in silico on our artificial390

experimental preparation, we show in Fig. 5C that this approach can bias the quantity of391

jaw movement Y driven by the circuit in a predictable way. The amount of movement is392

consistently augmented if we target neurons with the highest dY
du (or diminished if we target393

neurons with the lowest dY
du ).394
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Figure 5: Gradient targeted µ-perturbations could precisely bias an animal be-
havior A. Protocol to deliver an optimal µ-perturbation on the experimental preparation
based on jaw gradients. (Step 1) The circuit is recorded until stimulation time t∗. (Step
2) The closest bioRNN trial to the ongoing recorded trial is retrieved from the databank
B. (Step 3) We select the neurons with the highest (or lowest) gradient value for the µ-
perturbation. (Step 4) The µ-perturbation is delivered at t∗. B. Effect of the µ-perturbation
using the artificial setup A under different light protocols. Practically, for “High gradient”,
we keep step 3 as it is, for “Low gradient”, we change the sign of the gradient, and for “Zero
gradient”, we pick the 40 neurons with lowest gradient norm. C. Speculative schematic of
a close-up setup implementing the protocol A inspired by the all optical “read-write” setup
from Aravanis et al. (2007); Packer et al. (2015).
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3 Discussion395

Finding the right level of detail to model recorded phenomena has sparked intensive de-396

bates in computational neuroscience. When the goal is to achieve the strongest predictive397

power, generalist deep learning models have proven successful across many scientific disci-398

plines, questioning how biophysical modeling plays a role in this context. Our results show399

that perturbation testing is a new approach to evaluate the implementation of biophysical400

features in a deep learning system. Our key finding about perturbation testing relies on401

the difficulty for deep learning models to predict the effect of optogenetic perturbations402

out-of-distribution (meaning, the perturbed trials are not available in the training set of403

the data-constrained model). We see that standard deep learning RNNs generalize poorly404

to perturbed trials, even when they achieved the best fit on the unperturbed test set. In405

contrast, this is alleviated with our bioRNN, which implements biophysical constraints that406

are relevant to the nature of the perturbation. In our case, modeling cell type connectivity407

is crucial because the optogenetic perturbations are targeted to these genetically encoded408

cell types. In this sense, we believe that these features were successful on the perturbation409

tests because they are central to modeling the perturbation of the deep learning system.410

Perturbation testing emerges as a quantitative tool to search for data-constrained models411

beyond two standard types of incomplete brain models in computational neuroscience: (1)412

physiologically detailed models intended to explain brain mechanisms but do not enable413

powerful quantitative predictions; (2) deep learning models with high predictive power but414

capturing a wrong biophysical mechanism, causing erroneous generalizations. We view our415

work as a simple and reasonable way to combine deep learning and biophysical modeling,416

while rigorously evaluating the combined models.417

Our reconstruction method and modeling choices when building the data-constrained418

bioRNN are innovative and are validated on perturbation tests. We achieve a reconstruction419

of the sensory-motor pathway in the mouse cortex during a sensory detection task from420

electrophysiology data. The model is optimized to explain electrophysiological recordings421

and generalizes better than standard models to in vivo optogenetic interventions. We found422

unambiguously that anatomically informed sign and connectivity constraints for dominant423

excitatory and inhibitory cell types improve the model robustness to optogenetic perturba-424

tions. We also find that assuming that inhibitory connections are short and do not project425

to other areas is crucial to pass our optogenetic Perturbation test. Modeling spiking neuron426

dynamics and adding a sparsity prior yielded more nuanced results and was not decisive,427

showing that making a difference on Perturbation testing is challenging. In hindsight, we428

conclude that adding biological constraints becomes beneficial when (1) they model the429

interaction between the circuit and the perturbation mechanism; (2) their implementation430

should not impair the efficiency of the optimization process.431

Broadly speaking, this hindsight is also supported by other results elsewhere in neuro-432

science. For instance, biologically inspired topological networks having higher correlation433

for neighboring neurons are more consistent with comparable causal interventions in the434

Monkey’s visual system Schrimpf et al. (2024), and detailed cell-type distribution and con-435

nectome improve models of vision in the fly brain Lappalainen et al. (2023); Cowley et al.436

(2024). For future work, there is a dense knowledge of unexploited physiological data at the437

connectivity, laminar or cell-type level that could be added to improve a cortical model like438

ours (Harris et al., 2019; Liu et al., 2022; Udvary et al., 2022; Staiger and Petersen, 2021;439

Rimehaug et al., 2023). By submitting the extended models to the relevant perturbation440

tests, it becomes possible to measure quantitatively the goodness of their biological mecha-441

nism implementations. We do not rule out, that significant improvements on perturbation442

tests can also be achieved with other means (e.g. by training deep learning architectures Az-443

abou et al. (2024); Pandarinath et al. (2018); Ye et al. (2023) on larger datasets to enable444

generalization, or with generic regularization techniques like low-rank connectivity Dubreuil445

et al. (2022); Valente et al. (2022)). However, in a similar way as the σRNN was apriori446

an excellent predictor on our initial test-set, any powerful brain model will likely have fail-447
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ure modes that can be well characterized and measured with an appropriate perturbation448

test. So perturbation tests could become a central component of an iterative loop to identify449

needed data collection or model improvements towards robust brain models.450

To highlight the importance of perturbation-robust circuit models, we have discussed451

possible implications for experimental neuroscience in section 2.3. We build the RNN twin452

of the biological circuit from unperturbed electrode recordings. By implementing the correct453

biophysical constraints, the RNN becomes perturbation robust (i.e. it predicts the effect of454

causal perturbation) even without including perturbation data in the RNN training. We455

then demonstrated in silico that gradients of this RNN produce sensitivity maps to target456

micro-stimulation of the biological circuit. As a result, we could design a hypothetical closed-457

loop setup combining read-write electrophysiology with a brain model to influence the brain458

activity or behavior, having potentially important practical and ethical consequences. More459

conceptually, we have shown theoretically that the gradients of a perturbation robust RNN460

are also consistent with the gradients of the recorded biological circuits. In perspective461

with the foundational role of gradients in machine learning theory LeCun et al. (2015);462

Richards and Kording (2023), it enables the measurement of “brain gradients” and lays a463

computational link between in vivo experimental research and decades of theoretical results464

on artificial learning and cognition.465
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4 Methods466

4.1 Mathematical toy model of the difficult causal inference be-467

tween H1 and H2468

Let’s consider two simplistic mathematical models that both depend on two binary random469

variables A and B which represent that putative area A is active as A = 1 and area B as470

B = 1. With this notation, we can construct two hypothetical causal mechanisms H1 (“a471

feedforward hypothesis”) and H2 (“a recurrent hypothesis”), which are radically different.472

The empirical frequency p(A,B) of the outcome does not allow us to differentiate whether473

the system was generated by a feedforward mechanism H1 or a recurrent mechanism H2.474

Schematically, we can represent the two mechanism hypotheses as follows:475

(H1) A −→ B, (2)

(H2) A←→ B . (3)

For hypothesis H1: we assume that external inputs are driving the activity of area A such476

that A = 1 is active with probability p0, and there are strong feed-forward connections from477

A to B causing systemically B = 1 as soon as A = 1. Alternatively, in H2, we assume478

that areas A and B receive independent external inputs with probability p1 = 1−
√
1− p0.479

Each of these two inputs is sufficient to cause A = 1 or B = 1, and the two areas are480

also strongly connected, so A = 1 always causes B = 1 and vice versa. Under these481

hypothetical mechanisms H1 and H2, one finds that the empirical probability table p(A,B)482

is identical 3: pH2(A = 1, B = 1) = 2p1 − p21 = p0 (“Hit trial”, both areas are active),483

p(A = 0, B = 0) = 1 − p0 (“Miss trial”, the areas are quiescent). In both cases, the484

possibility that only one area is active is excluded by construction. So for any A and B485

pH1(A,B) = pH2(A,B) and in other words, even if we observe an infinite number of trials486

and compute any statistics of the binary activations A and B, discriminating the two possible487

causal interactions (H1 versus H2) is impossible.488

A solution to discriminate between hypotheses H1 and H2 is to induce a causal pertur-489

bation. We can discriminate between our two hypotheses if we can impose a perturbation490

that forces the inactivation of area B in both mathematical models. In mathematical terms491

we refer to the do operator from causality theory. Under the feedforward mechanism H1492

and inactivation of B, A is not affected pH1 (A = 1 | do (B = 0)) = p0. Under the recurrent493

hypothesis, H2, and inactivation of B, A is activated only by its external input such that494

pH2 (A = 1 | do (B = 0)) = p1 ̸= p0. So the measurement of the frequency of activation495

of area A under inactivation of B can discriminate between H1 and H2 which illustrates496

mathematically how a causal perturbation can be decisive to discriminate between those497

two hypothetical mechanisms.498

4.2 Neuron and jaw movement model499

We model neurons as leaky-integrate and fire (LIF) neurons. The output of every neuron500

j at time t is a binary outcome ztj (spike if ztj = 1, no spike if ztj = 0) generated from its501

membrane voltage vtj . The following equations give the dynamics of the membrane voltage502

vtj :503

3To prove this: a and b to denote the binary external inputs into A and B, so we have: pH2(A = 1, B =
1) =

∑
a,b p(A = 1, B = 1|a, b)p(a, b) = p(a = 1, b = 1) + p(b = 0, a = 1) + p(b = 1, a = 0) where we used

that p(A = 1, B = 1|a, b) is 0 or 1, then using p(a = 1) = p(b = 1) = p1 and the independence between a
and b we find: p(A = 1, B = 1) = 2p1 − p21 = p0
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vtj = αjv
t−1
j + (1− αj)u

t
j − vthr,jz

t−1
j + ξtj (4)

ut
j =

∑
d,i

W rec,d
ij

zt−d
i

δt
+

∑
i

W in
ij

xt
i

δt
(5)

where W d
ij , and W in,d

ij are the recurrent and input weight matrices. The timestep of the504

simulation δt is 2 ms when we simulate the real dataset and 1 ms otherwise. The superscript505

d denotes the synaptic delay; every synapse has one synaptic delay of either 2 or 3 ms.506

With αj = exp
(
− δt

τm,j

)
, we define the integration speed of the membrane voltage, where507

τm = 30 ms for excitatory and τm = 10 ms for inhibitory neurons. The noise source508

ξtj is a Gaussian random variable with zero mean and standard deviation βjvthr,j
√
δt (βj509

is typically initialized at 0.14). The input xt
i is a binary pulse signal with a duration of510

10 ms. For the real dataset, we have two binary pulse input signals, one for the whisker511

deflection and one for the auditory cue. The spikes are sampled with a Bernoulli distribution512

ztj ∼ B(exp(
vt
j−vthr,j

v0
)), where v0 is the temperature of the exponential function and vthr,j513

is the effective membrane threshold. After each spike, the neuron receives a reset current514

with an amplitude of vtrh,j and enters an absolute refractory period of 4 ms, during which515

it cannot fire.516

For networks fitted to the real dataset, we also simulate the jaw movement. The jaw517

movement trace y is controlled by a linear readout from the spiking activity of all excitatory518

neurons. Specifically, y is computed as y = exp(ỹ) + b, where b is a scaling parameter and519

ỹt is given by ỹt = αjawỹ
t−1 +(1−αjaw)

∑
d,j W

jaw
j zt−d

j . Here, W jaw
j is the output weight520

matrix (linear readout) for the jaw, and τjaw = 5ms defines αjaw = exp(− δt
τjaw

), which521

controls the integration velocity of the jaw trace.522

4.3 Session-stitching and network structure523

As in (Sourmpis et al., 2023), we simulate multi-area cortical neuronal activity fitted to524

electrophysiology neural recordings. Before we start the optimization, we define and fix525

each neuron’s area and cell type in the model by uniquely assigning them to a neuron from526

the recordings. For the real dataset from Esmaeili et al. (2021), the cell type is inferred from527

the cell’s action potential waveform (with fast-spiking neurons classified as inhibitory and528

regular-spiking neurons as excitatory). Most electrophysiology datasets include recordings529

from multiple sessions, and our method would typically require simultaneous recordings of all530

neurons. To address this challenge, similarly to (Sourmpis et al., 2023) we use the technique531

called “session-stitching” which allows neighboring modeled neurons to be mapped with532

neurons recorded across multiple sessions. This effectively creates a “collage” that integrates533

data from multiple sessions within our model. This approach has practical implications for534

our optimization process. Specifically, the trial-matching loss includes a term for each535

session, with the overall loss calculated as the average across all sessions (see 4.5).536

For both the real and the synthetic datasets, we simulate each area with 250 LIF neurons537

and impose that each area has 200 excitatory neurons and 50 inhibitory. Respecting the ob-538

servation that inhibitory neurons mostly project in the area that they belong to (Tamamaki539

and Tomioka, 2010; Markram et al., 2004), we don’t allow for across-area inhibitory con-540

nections. The “thalamic” input is available to every neuron of the circuit, and the “motor”541

output for the real dataset, i.e., jaw movement, is extracted with a trained linear readout542

from all the excitatory neurons of the network, see 4.2.543

4.4 Reference circuits for hypotheses 1 and 2544

To build a synthetic dataset that illustrates the difficulty of separating the feedforward (H1)545

and recurrent hypotheses (H2), we construct two reference spiking circuit models RefCirc1546
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and RefCirc2. The two networks consists of two areas A and B, and their activity follows the547

hard causal inference problem from method 4.1, making it hard to distinguish A1 and A2548

when recording the co-activation of A and B. Moreover, to make the problem even harder,549

the two networks are constructed to make it almost impossible to distinguish between H1550

and H2 with dense recordings: the two circuits are designed to have the same PSTH and551

single-trial network dynamics despite their structural difference, one is feedforward and the552

other is recurrent.553

To do so, RefCirc1 and 2 are circuit models that start from random network initializations554

following the specifications described in Methods 4.2 and 4.3. The only difference is that555

we do not allow feedback connections from A to B in RefCirc1, the construction below556

is otherwise identical. The synaptic weights of the two circuits are optimized with the557

losses described in Methods 4.5 to fit the identical target statistics in all areas: the same558

PSTH activity for each neuron and the same distribution of single-trial network dynamics.559

The target statistics are chosen so the activity in RefCirc1 and 2 resemble kinematics and560

statistics from a primary and a secondary sensory area. The baseline firing rates of the561

neurons is dictated by the target PSTH distribution and it follows a log-normal distribution,562

with excitatory neurons having a mean of 2.9 Hz and a standard deviation of 1.25 Hz and563

inhibitory neurons having a mean of 4.47 Hz and a standard deviation of 1.31 Hz. The564

distribution of single-trial activity is given by the targeted single-trial dynamics: in RefCirc1565

and 2, the areas A and B respond to input 50% of the time with a transient population566

average response following a double exponential kernel characterized by τrise = 5 ms and567

τfall = 20 ms. Mimicking a short signal propagation between areas, these transients have568

a 4 ms delay in area A and 12 ms delay in B (relative to the onset time of the stimulus).569

To impose a ”behavioral” hit versus miss distribution that could emerge from a feedforward570

and recurrent hypothesis (see method 4.1), the targeted population-averaged response of571

each trial is either a double-exponential transient in both area A and B (”Hit trials”), or572

remains at a baseline level in both areas (”Miss trials”) in the remaining trials. At the573

end of the training, we verified that RefCirc1 and RefCirc2 generate very similar network574

activity in the absence of perturbation (see Figure S1). The circuits are then frozen and575

used to generate the synthetic dataset. We generate 2000 trials from these RefCircs, 1000576

of which are used for the training set and 1000 for the testing set.577

4.5 Optimization and loss function578

The optimization method we use to fit our models is back-propagation through time579

(BPTT). To overcome the non-differentiability of the spiking function, we use surrogate580

gradients (Neftci et al., 2019). In particular, we use the piece-wise linear surrogate deriva-581

tive from Bellec et al. (2018b). For the derivative calculations, we use
vt
j−vthr,j

v0
and not582

exp(
vt
j−vthr,j

v0
). We use sample-and-measure loss functions that rely on summary statistics,583

as in (Bellec et al., 2021; Sourmpis et al., 2023), to fit the networks to the data. Our loss584

function has two main terms: one to fit the trial-averaged activity of every neuron (Lneuron),585

and one to fit the single trial population average activity (Ltrial), L = Lneuron + Ltrial. The586

two terms of the loss function are reweighted with a parameter-free multi-task method587

(Défossez et al., 2023) that enables the gradients to have comparable scales.588

As in Sourmpis et al. (2023): (1) To calculate the trial-averaged loss, we first filter the589

trial-averaged spiking activity T t
neuron,j(z) =

1
K

∑
k z

t
j,k ∗ f using a rolling average window590

(f) of 8 ms. We then normalize it by the trial-averaged filtered data activity, (zD are591

recorded spike trains)592

T ′t
neuron,j(z) = (T t

neuron,j(z)− ⟨T t
neuron,j(z

D)⟩t)/(σt(T t
neuron,j(z

D)), (6)
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where ⟨.⟩t is the time average, and σt the standard deviation over time. The trial-averaged593

loss function is defined as:594

Lneuron =
N∑
j

T∑
t

∥T ′t
neuron,j(z)− T ′t

neuron,j(z
D)∥2 , (7)

where T is the number of time points in a trial and N is the number of neurons. For the595

real dataset, where we want to fit also the jaw movement, we have an additional term for596

the trial-averaged filtered and normalized jaw, ∥
∑T

t T ′t
neuron(y)− T ′t

neuron(y
D)∥2, where y is597

the simulated jaw movement and yD the recorded jaw movement.598

(2) To calculate the trial-matching loss, we first filter the population-average activity599

of each area A, T t
A,k(z) =

1
|A|

∑
j∈A zt

j,k ∗ f , using a rolling average window of 32 ms. We600

then normalize it by the population-averaged filtered activity of the same area from the601

recordings, T ′t
A,k(z) = (T t

A,k(z)− ⟨T t
A,k(z

D)⟩k)/σk(T t
A,k(z

D)), and concatenate all the areas602

that were simultaneously recorded, T ′t
trial,k(z) = (T ′t

A1,k, T ′t
A2,k), where ⟨.⟩k is the trial average,603

and σk the standard deviation over trials. The trial-matching loss is defined as:604

Ltrial = min
π

K∑
k

T∑
t

∥T ′t
trial,k (z)− T ′t

trial,π(k)

(
zD) ∥2 , (8)

where π is an assignment between pairs of K recorded and generated trials π : {1, . . .K} →605

{1, . . .K}. Note that the minimum over π is a combinatorial optimization that needs to be606

calculated for every evaluation of the loss function. For the real dataset, we consider the jaw607

movement as an additional area, and we concatenate it to the T ′t
trial,k = (T ′t

A1,k, T ′t
A2,k, T ′t

jaw,k).608

Based on this loss function, we optimize the following parameters: W rec,d
ij , W in,d

ij , vthr,j ,609

and β for the RefCircs. For the RNNs, we optimize only the recurrent connectivity W rec,d
ij ,610

and the rest are fixed from the RefCircs. For the real dataset, additionally to the parameters611

optimized in the RefCircs, we also optimize the jaw’s linear readout W jaw
j and its scaling612

parameter b.613

Implementing Dale’s law and local inhibition In our network, the recurrent weights614

W rec are computed as the elementwise product of two matrices: W̃ rec, which encodes the615

strength of synaptic efficacies and is always positive, and W rec
sign, which has a fixed sign616

determined by the neurotransmitter type of the presynaptic neuron and |W rec
sign| = 1:617

W rec = W̃ rec ◦W rec
sign (9)

To enforce Dale’s law during optimization, we set any negative values of W̃ rec to zero618

at each iteration as in Bellec et al. (2018a). Similarly, to constrain only local inhibitory619

connections during optimization, we zero out any changes in the synaptic efficacies of across-620

areas inhibitory connections at each iteration. In simplified models, Dale’s law or the local621

inhibition constraint can be disrupted by omitting this correction step.622

The success of the network optimization highly depends on the initialization of the re-623

current weight matrices. To initialize signed matrices we follow the theoretical Rajan and624

Abbott (2006) and practical insights Bellec et al. (2018b); Cornford et al. (2020) developed625

previously. After defining the constraints on the weight signs W rec
sign, the initialization am-626

plitude W̃ rec for each target neuron is adjusted to a zero-summed input weights (the sum of627

incoming excitatory inputs is equal to the sum of inhibitory inputs). Then the weight ampli-628

tude is re-normalized by the modulus of its largest eigenvalue of W rec, so all the eigenvalues629

of this matrix W rec have modulus 1 or smaller.630

Stopping criterion for the optimization For the synthetic dataset, we train the models631

for 4000 gradient descent steps. For the real dataset, due to limited data and a noisy test632
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set, we select the final model based on the optimization step that yields the best trial-633

type accuracy (closest to the trial-type accuracy from the data), derived from the jaw trace634

and whisker stimulus, along with the highest trial-matched Pearson correlation between the635

model and the recordings.636

Sparsity regularization There is a plethora of ways to enforce sparsity. In this work,637

we use weight regularization. In particular, we use the l 1
2
norm of the recurrent and input638

weights that promote a high level of sparsity (Xu et al., 2012). To avoid numerical instabil-639

ities, we apply this regularization only for synaptic weights above α and prune all synapses640

below α. (we set α = 1e−7). The regularized loss function becomes:641

Lall = L+ λ1||W in||
1
2
1
2

+ λ2||W rec,d||
1
2
1
2

+ λ3||W across,d||
1
2
1
2

, (10)

where W across,d are the connections from one area to the other.642

For the synthetic dataset, we choose the level of across-area sparsity by performing a643

small grid search for λ3. In particular, the sparsity level λ3 is the maximum value λ3 where644

the performance remains as good as without sparsity, see Suppl. Fig S3. For the real645

dataset, we use the same value λ3 as the one we found for the full reconstruction method646

of bioRNN1.647

4.6 Perturbation test of in silico optogenetics648

In systems neuroscience, a method to test causal interactions between brain regions uses649

spatially and temporally precise optogenetic activations or inactivations (Esmaeili et al.,650

2021; Guo et al., 2014). Usually, inactivations refer to the strong activation of inhibitory651

neurons for cortical areas. These inhibitory neurons have strong intra-area connections that652

effectively “silence” their local-neighborhood (Helmstaedter et al., 2009).653

Our model can simulate these perturbations and allow us to compare the causal mecha-654

nisms of two networks based on their responses to optogenetic perturbations. We implement655

activations and inactivations as a strong input current to all the neurons in one area’s excita-656

tory or inhibitory population. For the RefCircs and reconstructed RNNs, we use a transient657

current that lasts 40 ms, from 20 ms before to 20 ms after the input stimulus. The strength658

of the current (light power) varies until there is an effect in the full reconstruction method659

bioRNN1. For the synthetic dataset in Figure 2 (except for panel D), we inject a current of660

∆ut
i = 0.08 into excitatory neurons for activations and ∆ut

i = 1 into inhibitory neurons for661

inactivations. For the real dataset, we perform optogenetics inactivations in three different662

periods. As in Esmaeili et al. (2021), we silence the cortical circuit during the whisker663

presentation, the time between the whisker and auditory stimulus, or when the animal was664

licking for the reward. In particular, we use transient currents to the inhibitory neurons665

during (i.) 100 ms before and after the whisker presentation, (ii.) 100 ms after the whisker666

presentation till 100ms before the onset of the auditory cue, and (iii.) after the auditory667

cue till the end of our simulation. For cases (i.) and (ii.), we linearly decreased the strength668

of the current to avoid rebound excitation. The light power is chosen so that our model669

has the best results in reproducing the lick probability of the recordings. It is important670

to mention that the perturbation data are not used to optimize the network but to test671

whether the resulting network has the same causal interactions with the recordings.672

For the RefCircs and bioRNNs, we evaluate the effect of the perturbations directly from673

the neural activity. We use the distance of network dynamics Ltrial to compare the two674

perturbed networks. For the real dataset, we compare the effect of the inactivations on675

the behavior; as behavior here, we mean whether the mouse/model licked. We classify the676

licking action using a multilayer perceptron with two hidden layers with 128 neurons each.677

The classifier is trained with the jaw movement of the real dataset, which was extracted from678

video filming using custom software, to predict the lick action, which was extracted from a679

piezo sensor placed in the spout. This classifier predicted lick correctly 94% of the time. We680
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then used the same classifier on the jaw movement from the model to determine whether681

there was a “lick” or not. For the comparisons in both the artificial and real datasets, we682

trained multiple models with different random seeds for each variant and aggregated the683

results. The different random seeds affect both the weight initialization and the noise of our684

model. In particular, we used from 3 to 6 different random seeds for each different model685

variant.686

5 Data availability statement687

The code for this project is open sourced and published at688

https://github.com/Sourmpis/BiologicallyInformed. The dataset for the artificial dataset689

can be downloaded/generated on our code repository. The in vivo dataset was published690

openly for the previous publication Esmaeili et al. (2021). The dataset is accessible at:691

https://zenodo.org/records/4720013.692
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Défossez, A., Copet, J., Synnaeve, G., and Adi, Y. (2023). High fidelity neural audio737

compression. Transactions on Machine Learning Research.738

Deny, S., Ferrari, U., Mace, E., Yger, P., Caplette, R., Picaud, S., Tkačik, G., and Marre,739
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Method name Real Dataset vs Reconstructed network
bioRNN 0.76 ± 0.14
σRNN 0.62 ± 0.12

No sparsity 0.77 ± 0.15
Non-local inhibition 0.79 ± 0.15

No Dale’s law 0.68 ± 0.13
No TM 1.63 ± 0.55
No spike 0.64 ± 0.13

Table 2: Trial-matching loss test loss Ltrial of the different reconstruction methods with the
real recordings from (Esmaeili et al., 2021) ± indicates the 95% confidence interval.
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Figure S1: Modeling “optogenetic” perturbations. A. Two different network hypothe-
ses for implementing a detection task. In RefCirc1, area A projects to area B but not vice
versa. In RefCirc2, the areas are recurrently connected. B. Raster plots of all neurons in
RefCirc1 during a single hit trial under normal conditions (control, left) and under optoge-
netic perturbation of excitatory (middle) and inhibitory (right) neurons. The duration of
the light stimulus is shown with a blue shading. C. Same for RefCirc2 D. Trial-averaged
activity of the two circuits during Hit (blue: RefCirc1; green: RefCirc2) and Miss (yellow:
RefCirc 1; red: RefCirc2) trials. A trial is classified as “Hit” if area A reaches a transient
firing rate above 8Hz; and otherwise as “Miss”. For the control case, the maximal difference
between the trial average activity of the two networks is below 0.51 Hz (zoom inset).
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Figure S2: Fitting Reconstructed networks to the synthetic dataset. A. Schematic
representation of the RefCirc1 and bioRNN1. and probability of hit trials. B. Histogram
of the firing rate distribution of the RefCirc1 and all the RNN1 versions. We observe that
all RNN1 versions fit well with the RefCirc1. C. Left: Neuron loss of the different RNN1
variants. Right: Trial-matching loss of the different RNN1 variants. We observe that the
model without the trial-matching loss function behaves considerably worse. The whiskers
show the 95% confidence interval of the mean across trials. D-F. Same as A-B for RefCirc2
and RNNs2.

Figure S3: Picking the sparsity level. A. Grid search for the optimal maximum
regularization strength (λ3) without a drop in performance. As a performance measure, we
used the trial-matching loss, Ltrial.

Figure S4: Trial averaged traces across RNN variants. Trial-averaged activity in
area A under activation/inactivation of area B. Dashed black lines indicate the activity of
RefCirc1 (thick dashed) and RefCirc2 (thin dashed). All the RNNs are tested with the same
reference circuit and training data, each bioRNN model variant is shown with a different
color.
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Figure S5: A Hit frequency prediction error |∆pD − ∆p̂| as in Figure 2E. In contrast to
Figure 2E, here we show separately the change of hit probability for RefCirc1 (left) and
RefCirc2 (right).

Figure S6: Reconstruction of the real recordings. A. Probability of hit trials of the
different variant models. B. Histogram of the firing rate distribution from the real recordings
and all the variants. C. Top: Neuron loss of the different RNN1 variants. All RNN versions
have a similar loss value. Bottom: Trial-matching loss of the different model variants. We
observe that the model without the trial-matching loss function behaves considerably worse.
The whiskers show the 95% confidence interval.
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Figure S7: A Change of lick probability under inactivation of all areas in all the different
temporal windows. We show the ∆p from the data and reconstruction model variants.
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