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Abstract

Unveiling spatial expression patterns across tissues has been key for studying de-
velopmental processes, division of labor mechanisms, as well as variations in
health and disease. Along the rapid development of improved experimental as-
says, computational methods have been shown to successfully recover spatial
information from non-spatial single-cell data using reference atlases and/or as-
sumptions about tissue organization such as relative smoothness of expression.
However, spatial reconstruction can still be challenging for complex tissues, espe-
cially given a limited reference atlas. Here we show how information about tissue
microenvironments statistics, such as cell type neighborhoods, or co-localization
priors, can enhance tissue reconstruction in such cases. Specifically, we incorpo-
rate co-localization priors as a generalization of novoSpaRc, an optimal transport-
based framework for tissue reconstruction given single-cell data, which relies at its
core on an interpolation between a structural correspondence assumption between
expression and physical space and a potential reference atlas. We demonstrate
that incorporating cell type co-localization priors can enhance the reconstruction
of the mammalian organ of Corti and testicular spatial structure.

Introduction

The collective behavior and division of labor of cells in tissues, in health and disease, relies on
their interactions and global organization [1, 2, 3]. Computationally inferring such organization and
spatial expression patterns from single-cell data, such as single-cell RNA-sequencing (scRNA-seq)
data, is a rapidly-developing field, which includes diverse methodologies, relying on multiple types
of prior knowledge [4, 5, 6]. Still, methods struggle with reconstruction of complex, disordered
tissues, especially where a reference atlas is limited. Importantly, different tissues, even complex
and globally disordered, were shown to exhibit specific spatial features and cell type co-localization
rules [7, 8, 9], which thus can potentially contribute to spatial reconstruction.

Here we integrate such spatial features and generalize novoSpaRc, an optimal-transport-based
method for tissue reconstruction [4, 10]. novoSpaRc relies on an interpolation between a potentially
available reference atlas and a structural correspondence assumption which expresses a hypothesis
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about an underlying tissue organization principle reflecting relative, averaged smoothness of gene
expression across tissues. This assumption, however, generally holds within a single cell type and
not for complex, disordered tissues[4]. We leverage information about local cellular microenviron-
ments statistics, and as a proof of concept, focus on cell-type co-localization statistics, as an addi-
tional weighted term in the novoSpaRc framework. Specifically, we first construct a co-localization
matrix which captures cell-type neighborhood statistics which can either be learned from existing
data or known a-priori. Then, the co-localization matrix is integrated into a quadratic term which is
added to the objective of the generalized optimal transport formulation of novoSpaRc. Using two
examples of the mouse organ of Corti and testis, we show that co-localization prior can be used for
both layered and islet-patterned tissues, and can aid in recovering tissue structure and spatial gene
expression patterns.

Methods

Given scRNA-seq gene expression data, X ∈ RN×K (N cells and K genes), and a target space
of M locations corresponding to the physical tissue structure we wish to reconstruct, we aim to
infer an embedding T ∈ [0, 1]N×M of N cells to M locations which takes into consideration and
interpolates between three factors: (1) structural correspondence assumption, (2) a reference atlas,
and (3) a co-localization prior, in a way which generalizes the novoSpaRc framework [4, 10] to
include local microenvironment statistics. Together, we optimize T via the following generalized
optimal-transport formulation:

T ∗ = argmin
T∈CPcell,Ploc

(1− α− β)Csmooth(T ) + αCatlas(T ) + βCcoLoc − εH (T ) (1)

where CPcell,Ploc
=

{
T |T ∈ [0, 1]N×M , T1 = Pcell, 1T = Ploc

}
, 1Pcell = 1, Ploc1 = 1. The

first three terms are interpolated using the non-negative coefficients α, β such that α+ β ∈ [0, 1].

The first term corresponds to the structural correspondence assumption,

Csmooth(T ) =
∑
ijkl

L
(
Dexp

ik , Dphys
jl

)
TijTkl (2)

where Dexp ∈ RN×N is cell-cell similarity matrix, Dphys ∈ RM×M is location-location similarity
matrix, and L is a loss function which we take to be the quadratic loss (as described in [4, 10]).

The second term corresponds to the discrepancy between an embedding and knowledge regarding a
partial reference atlas,

Catlas(T ) =
∑
ij

Dexp,phys
ij · Tij (3)

where Dexp,phys ∈ RN×M is a cell-location discrepancy matrix between cells and locations accord-
ing to an available reference atlas (as described in [4, 10]).

The third term corresponds to co-localization priors,

CcoLoc =
∑
ijkl

L
(
DcoLoc

ik , Dneigh
jl

)
TijTkl (4)

where L = a · b, Dneigh ∈ {0, 1}M×M is the kNN adjacency matrix of locations in the target
space. DcoLoc is a matrix corresponding to the agreement between the cellular embedding and the
cell types co-localization prior,

DcoLoc = −Xlabel ·A ·Xlabel
T ∈ RN×N (5)

where Xlabel ∈ [0, 1]N×t is a labelled single-cell dataset, and A ∈ Rt×t is the co-localization
matrix, which captures the ‘attraction’ between t different labels, such as cell types. Specifically,
At1t2 describes the likelihood of cell type t1 to be located in the neighborhood (defined below) of
cell type t2.

A can be based either on quantitative estimates of spatially-informed measurements of labels (such
as those inferred from Slide-seq [11, 12] captured expression), or based on qualitative description
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of organization. In the former case, based on label indicators/compositional annotations across the
spatial sample, X ′

label ∈ [0, 1]M
′×t (M ′ locations in spatial sample, t labels), and their radius-based

nearest neighbors adjacency indicator matrix B ∈ {0, 1}M ′×M ′
, we compute A = X ′

label
T · B ·

X ′
label. In special cases, we can construct a proxy for the co-localization matrix A without requiring

a spatial sample of the data, as we show for the layered structure of the organ of Corti example
below.

The fourth term corresponds to entropic regularization, where H (T ) = −
∑

ij Tij log (Tij), and ε
is a non-negative regularization constant.

Expression over the target space, S ∈ RK×M , is consequently inferred by S = XTT ∗. Likewise,
labels over the target space, X∗

label ∈ [0, 1]M×t, are inferred by X∗
label = T ∗TXlabel. We solve this

minimization problem using projected gradient descent, a projection based on the Kullback-Leibler
metric rewritten as an instance of entropically-regularized optimal transport ([13]), which is then
computed using Sinkhorn’s fixed point iteration [14], similarly to [4].

Results

Reconstruction of the organ of Corti

The organ of Corti, a hearing receptor located in the mammalian cochlea, consists of ten layers
of different cell types that spiral from its base to its apex [15](Figure 1A). Based on data of the
transcriptional profiles of cells in the mammalian organ of Corti collected in [15], the variation in
expression across the base-apex axis was recently utilized to computationally order the cells along
this axis, for each cell type separately, both in the original study [15] and using novoSpaRc [10].
However, using a similar approach to map all cells together onto a 2-dimensional target space repre-
senting the unrolled tissue fails in recovering the layered-cell-type structure (Figure 1C, Figure 1E).
We used the layered structure exhibited by different cell types in the organ of Corti to construct a
co-localization matrix of cell types, reflecting the distances between layers along the medial-lateral
axis (Figure 1I). We then mapped all cells simultaneously onto the 2-dimensional target space,
using both the cell type co-localization prior and the structural correspondence prior ( Figure 1B,
Figure 1D, Figure 1F). We find that the two axes of the target space following reconstruction corre-
spond to medial-lateral cell type ordering (X-axis, Figure 1B, Figure 1D) and basal-apical ordering
(Y-axis,Figure 1F) of the cells. The cell type co-localization prior is crucial for faithful reconstruc-
tion in this case, which is optimized at an intermediate level of interpolation between the two priors
(β = 0.3; Figure 1H).

Reconstruction mouse testicular microenvironment

The testis are a well-structured organ consisting of seminiferous tubules with spermatogonial stem
cells at their basement membrane, and separated from each other with interstitial space that contains
supporting cells like macrophages and endothelial, and cells involved in the regulation of spermato-
genesis like Sertoli, and Leydig cells. Here we aimed to reconstruct a Slide-seq puck of the mouse
testis based on its synthetic dissociation [16] (Figure 2A). First, we tested our method on a patch
from the Slide-seq puck, where we both constructed the cell-type co-localization matrix and used
it to reconstruct the same patch (Figure 2E). Similarly to the organ of Corti reconstruction, the
co-localization prior enhances the quality of reconstruction of the testicular spatial structure (Fig-
ure 2B, Figure 2C). When interpolating between the co-localization prior and a reference atlas
composed of spatial expression of several marker genes (chosen as highly variable genes), we find
that while the quality of reconstruction increases with the size of the reference atlas (the number of
marker genes used for reconstruction), optimal reconstruction is achieved at intermediate interpola-
tion value (β = 0.4), leveraging co-localization information (Figure 2D). To further test whether
co-localization statistics can be learned from one sample and transferred to recover the organiza-
tion of another, we divided the Slide-seq puck into 16 patches and tested the contribution of the
co-localization prior across patches (Figure 3A, Figure 3B, Figure 3C). We find that even in this
more challenging case given an effectively noisy version of a co-localization prior, it contributes
to the spatial reconstruction of the tissue with a similar intermediate interpolation value (β = 0.3;
Figure 3D).
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Discussion

Here we showed how cell type co-localization statistics can be used to enhance the spatial recon-
struction of complex tissues, including the mammalian organ of Corti and testicular spatial structure.
We built on the novoSpaRc [4, 10] framework and demonstrated how interpolating between terms
capturing information about either the structural correspondence prior or a reference atlas and co-
localization statistics can improve the quality of spatial tissue reconstruction, compared to using
only the former terms, respectively.

In this work we aimed to show the potential for using spatial features, such as cell type co-
localization statistics, to enhance spatial reconstruction of single-cell data. We envision that the
analysis and incorporation of additional, more complex and more diverse, spatial features could
improve tissue reconstruction further, although such complexity will pose more challenging opti-
mization problems. More complex spatial features could potentially be analyzed and incorporated
using flexible frameworks such as Graph Neural Networks. Together, improving computational
methodologies for tissue reconstruction will aid in exposing the structural design principles that
shape functional, ordered and disordered tissues.
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Figure 1: Organ of Corti spatial reconstruction using co-localization priors. (A) The organ of
Corti illustration. Base-apex and medial-lateral axes (GER to HC). Cell-type abbreviations: greater
epithelial ridge (GER), inner border cell (IBC), inner hair cell (IHC), inner phalangeal cell (IPH),
inner pillar cell (IPC), outer pillar cell (OPC), outer hair cell (OHC), Deiters’ cell row 1–2 (DC12)
and Deiters’ cell row 3 (DC3), Hensen’s cell (HC). (B)-(C) Single cells were spatially reconstructed
using a 2-dimensional grid. Grid locations are colored according to the cell type which received
the highest probability in the reconstruction for that location, with (left) and without (right) co-
localization priors (D)-(E) Reconstructed cell type distributions projected on the X-axis. (F)-(G)
Reconstructed base-apex average membership distributions projected on the Y-axis. (H) Combined
averaged cell-type configuration score (number of fixed points) and apex-base score (AUC score) as
function of β value. (I) Attraction matrix heatmap. Parameters: (α, β, 1− α− β) = (0, 0.3, 0.7)
[left column, using co-localization prior, sub-figures B, D , F] and (0, 0, 1) [right column, only
smoothness, sub-figures C, E , G]; ε = 5e−3

5



(A)

(B) (C)

(D) (E)

(F) (G)

(H) (I)

6



(A)

(B) (C)

(D) (E)

Figure 2: Mouse testis spatial reconstruction using co-localization priors on a single patch of a
Slide-seq puck. (A) Focusing in on a patch from a Slide-seq puck of the mouse testis. Cell-type ab-
breviations: elongating/elongated spermatid (ES), round spermatid (RS), spermatocyte (SPC), sper-
matogonium (SPG). (B) Reconstructed cell type argmax across the patch using two testis marker
genes (TNP1 and SYCP1), with a co-localization prior, (α, β, 1− α− β) = (0.7, 0.3, 0) and (C)
without a co-localization prior, (1, 0, 0). (D) Average reconstruction score as function of number
of marker genes (over 40 iterations). Marker genes were randomly sampled among top 100 highly
variable genes. (E) Mouse testis attraction matrix heatmap. Parameters: D1(T ), D2(T ) were cal-
culated as in [10] with k = 5 and ε = 5e−3.
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(A) (B)

(C) (D)

Figure 3: Mouse testis spatial reconstruction using co-localization priors across patches of a
Slide-seq puck. (A) The full Slide-seq puck split in silico to 16 patches. Colors represent cell-type
annotations as specified in Figure 2A. (B) Reconstructed cell type argmax across the full puck using
only a reference atlas prior (based on marker genes TNP1 and and SYCP1). (C) Reconstructed cell
type argmax across the full puck using both the reference atlas and additionally, co-localization prior
based on a single patch. (D) Average cell-type reconstruction score as a function of β value. Error
bars represent standard deviation of the crossover co-localization-learning and testing across all 16
patches. For β = 1, no reference atlas information means that the reconstruction is not anchored
spatially and therefore does not directly correlate to the original tissue structure.
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