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ABSTRACT

Large Language Models (LLMs) struggle with reasoning due to limited diversity
and inefficient search. We propose an embedding-based search framework that
optimises the embedding of the first token to guide generation. It combines (1)
Embedding perturbation for controlled exploration and (2) Bayesian optimisation
to refine embeddings via a verifier-guided objective, balancing exploration and
exploitation. This approach improves reasoning accuracy and coherence while
avoiding reliance on heuristic search. Experiments demonstrate superior correct-
ness with minimal computation, making it a scalable, model-agnostic solution.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable potential in various reasoning tasks.
Despite these advancements, they still face significant limitations in complex reasoning tasks |Light-
man et al.| (2024); Wang et al.| (2023a). Many existing approaches typically increase generation
diversity through multiple sampling (Lightman et al., 2024)), often controlled by temperature scal-
ing, which adjusts the randomness of token selection Brown et al.|(2024). Planning-based methods,
such as chain-of-thought reasoning Wei et al.|(2024); |Wang et al.|(2023a)) or tree-structured search
Yao et al.| (2023)), attempt to locate the correct answer by following language-based instructions.

Despite these efforts, two key challenges remain: (1) Enhancing generation diversity typically relies
on increasing the temperature parameter, which flattens the token distribution. This, however, does
not necessarily result in better coverage of the correct answer, as increasing low-probability token
likelihood indiscriminately may introduce noise rather than meaningful exploration Holtzman et al.
(2020). (2) Existing planning and search methods such as sampling multiple reasoning paths rely
heavily on heuristic strategies, guided by prompts (Hao et al., 2023} Q1 et al., [2024). However, these
approaches do not directly adjust for the model’s internal representations, thereby making the search
process inefficient and highly dependent on surface-level prompt variations. This often leads to a
“wild-goose chase”, where search remains constrained by randomness and indirect heuristics rather
than systematic optimisation.

To address these challenges, we propose a novel approach using controlled embedding exploration:
(1) By injecting a Gaussian embedding into the decoding of the first answer token, we can adjust
the distribution of low-probability tokens in a more controlled manner than uniform temperature
tuning, leading to more flexible generation. (2) Treating the LLM as a black box verifier, we apply
Bayesian optimisation (Frazier, 2018) on the injected embedding to maximise a verification-based
reward. This allows us to use observerd rewards to directly guide the exploration in the embedding
space. As a result, our method improves performance without requiring a strong verifier—even
when both generation and verification originate from the same model. As illustrated in Figure|[T] the
proposed method offers several advantages: (1) By employing a more flexible strategy for answer
generation, the model enables broader answer coverage within the candidate set. (2) In the search
phase, instead of relying on language-instruction-based searching or planning, our method directly
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Figure 1: Comparison of Mainstream and Proposed Approaches.

optimises the embedding of the first token using Bayesian optimisation. This optimisation operates
in the embedding space rather than the discrete token space and refines the model’s reasoning tra-
jectory while modifying only a single additional token in the decoding process. Moreover, since it
does not require access to the model’s parameters, it serves as an off-the-shelf solution that can be
easily applied to most mainstream LLMs for reasoning tasks.

Our contributions can be summarised as follows:

* By injecting a Gaussian random vector into the decoding of the first answer token, the
method provides a more controlled way to adjust the distribution of low-probability tokens,
leading to more flexible and diverse answer generation than standard temperature tuning.

* Instead of language-based instruction or heuristic search, our method directly optimises the
embedding of the first token, effectively reducing search complexity to the modification of
a single additional token in the decoding process, improving efficiency and accuracy.

* Our framework treats the LLM as a black box, enhancing logical consistency and answer
quality without accessing model parameters, allowing seamless integration into mainstream
LLMs. Experiments show that it outperforms traditional decoding in correctness while
being computationally efficient.

2 RELATED WORK

2.1 DECODING STRATEGIES AND DIVERSITY

Recent advances in LLM decoding aim to enhance diversity for tasks requiring creativity and ex-
ploration. Traditional methods such as greedy and beam search often produce repetitive outputs
Holtzman et al.| (2020); [Welleck et al.| (2019), while sampling-based approaches (top-k, nucleus)
introduce randomness but struggle to balance quality and diversity [Fan et al| (2018); [Holtzman et al.
(2020). High-temperature settings can lead to incoherent outputs Nguyen et al.| (2024), and adaptive
methods like min-p sampling Nguyen et al.| (2024)) require careful tuning. Debiasing-Diversifying
Decoding (D3) mitigates amplification bias but increases computational cost[Bao et al.| (2024). Cru-
cially, most methods overlook the impact of initial token selection, which significantly influences
reasoning outcomes (Wang & Zhou, (2024). Our approach addresses this by perturbing initial to-
ken embeddings with Gaussian noise, reshaping the probability distribution to improve exploration
while maintaining quality and efficiency.

2.2 EFFICIENT EXPLORATION OF SOLUTION SPACES

Efficient solution space exploration is crucial for enhancing LLM reasoning while maintaining prac-
tical computational costs. Increasing generated samples improves coverage [Brown et al.| (2024) but
is computationally prohibitive. Optimising test-time compute allocation is more effective than scal-
ing model size Snell et al.| (2024)), though it requires task-specific strategies. Mutual reasoning
frameworks leveraging self-play and MCTS Qi et al.| (2024)); [Yan et al.| (2024), as well as Tree of

Thoughts (ToT) (2023), explore multiple reasoning paths but incur high computational
overhead. Thought Space Explorer (TSE) Zhang et al. (2024a)) enhances reasoning breadth but at
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Figure 2: Overview of Our Approach. Starting with a natural language question prompt, the model
generates initial token embeddings w(!), which, due to greedy decoding, determine the entire out-
put. These embeddings are perturbed to create candidate embeddings 1., leading to outputs y;.x
through greedy search, which are then evaluated for coherence and verifier feedback. A Bayesian
optimisation framework updates its estimation of the space based on this feedback and selects the
next sampling point that maximises the expected improvement, balancing exploration and exploita-
tion to refine the search for high-quality outputs.

additional cost. Our method refines these approaches by integrating controlled initial-token em-
bedding perturbations with a strategic search algorithm inspired by MCTS and mutual reasoning.
By introducing exploration early through embedding perturbation and guiding search via a veri-
fier, we improve efficiency without excessive computational overhead, striking a balance between
exploration and exploitation to optimise reasoning performance.

3 PRELIMINARY: TEMPERATURE SCALING

A common approach for generating diverse outputs is temperature scaling, which controls the ran-
domness in the token generation process by modifying the softmax distribution over the model’s
output logits. For a given temperature 7 > 0, the probability of selecting token w®) at time step ¢ is
given by:

eXp(gt,’w(t) /T)
2w exp(lew/T)’

where w*~1) represents the sequence of tokens {w(!), ... w1} generated from the first token
up to the (¢ —1)*" token, ¢; ,, denotes the logit at time ¢ corresponding to token w, and 7 controls the
sharpness of the distribution. This scaling flattens the distribution but preserves the relative ranking
of token probabilities. When 7 is low, the results concentrate on a few high-probability tokens,
leading to overly deterministic generations with limited diversity. When 7 is high, the model may
sample low-probability tokens, leading to incoherent outputs.

Pw® | w(“*l);ﬁ,r) =

While this approach increases diversity, it lacks control, blindly flattening token probabilities; adapt-
ability, as it ignores verifier feedback; and efficiency, often requiring multiple samples or retraining
Joy et al., 2023} [Xie et al., 2024). These limitations make it ineffective for structured reasoning
tasks that demand precise and efficient exploration.

4 METHODOLOGY

Generating accurate answers in complex tasks requires both exploring reasoning paths and verifying
for their correctness. To achieve this, we propose a two-step framework as shown in Figure [2} (1)
Embedding perturbation applies a Gaussian adjustment to the first-token embedding for controlled
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modifications beyond uniform tuning. (2) Bayesian optimisation refines the perturbed embedding to
maximise a verifier-guided reward, improving reasoning path selection.

4.1 EMBEDDING PERTURBATION

Given a generative model gy and a natural language question prompt g, the first token w(?) is gen-
erated using greedy decoding, which selects the token with the highest probability from the model’s
predicted distribution:

w = argmax P(w | ¢;0),
where P(-) represents the probability distribution over the possible tokens predicted by the model

g6-

Let z € RP represent the embedding of the token w(!). This embedding serves as a prior, represent-
ing a “correct starting point” in the latent space. To explore the neighbourhood of this embedding,
we define a set of perturbed embeddings x; fort = 1,..., k as follows:

xr; = 2+ o0&, EiNN(O,I),

where ¢; represents random perturbations drawn from a standard normal distribution, and o is a
scaling factor controlling the magnitude of the perturbation. This formulation allows us to sample
from the local vicinity of the original embedding z, exploring variations around the initial token
representation.

For each perturbed embedding z;, we treat it as a new special token and add it to the current vo-
cabulary. This special token is then used as the first token for generating an answer. Since we use
greedy decoding, the choice of x; fully determines the entire output sequence. The remaining
tokens w(®, w® .. w() are deterministically generated based on z;:

w(t) = arg maxP(w | xi,w(2:t71)7q; 0)

We repeat this process k times, generating k different answers, where y = w(*%) represents the
complete output. Because the output is fully determined by z;, embedding perturbation effectively
serves as a sampling mechanism over the entire answer space.

4.2 EXPLORING THE EMBEDDING SPACE

While randomly sampling points with infinite computational resources could theoretically approx-
imate the optimal solution, this approach is highly inefficient, especially given the computational
expense of sampling with an LLM. Instead, we adopt Bayesian optimisation, which consists of two
key components: an objective function and an acquisition function that determine where to sample
next. We use Expected Improvement (EI) as our acquisition function, which offers a closed-form
solution (Frazier, |2018)) with negligible computational cost, making it significantly more efficient
by comparison. EI effectively balances exploration (searching uncertain regions) and exploitation
(refining promising areas), selecting the point with the highest EI at each iteration to guide the
optimisation process toward convergence.

Optimisation Objective. To evaluate the objective function with k£ sampled perturbed embed-
dings, we consider the sequence x1., = {z1,..., 2k}, where each z; € RP. The corresponding
answers are then generated as described above: 1., = {y1, ..., yx }. Comparing and refining mul-
tiple generated answers has been shown to improve performance (Miao et al., [2024). Additionally,
since LLMs are primarily trained for text generation rather than explicit judgment, prompting them
to regenerate and compare outputs can yield better results (Zhang et al.,[2024b). Building on these
insights, we propose a verifier-guided approach, where the model evaluates a batch of candidate an-
swers and produces a refined output y, = V(y1.x). The correctness of an answer y is then assessed
as a binary indicator (0 or 1), based on its alignment with the verifier’s final output.

The embedding space may not be uniform, implying that perturbations in different directions can
lead to uneven semantic shifts (Li et al., 2023} [Park et al., 2024). In some dimensions, even small
perturbations can significantly alter meaning, potentially disrupting grammar or context consistency
and leading to incoherent outputs. To address this issue, we introduce the coherence term to prune
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low-quality generations, ensuring that only outputs with desirable semantic and syntactic properties
are retained. To evaluate the quality of a generated output y, we define an objective function f(x)
that balances correctness and fluency:

f(x) = Tveriﬁer(y) + Tcoherence(y)7 (1)

where:

* Verifier Score (7yerifier): This is a binary indicator provided by the verifier, reflecting the
correctness of y:

rveriﬁer(?J) = ]l{yv:y} ;

* Coherence (7¢oherence): This term evaluates the fluency of the generated sequence based on
token probabilities:

T
rcoherence(y) = Z log JD(w(Z))7
=1

where P(w() is the probability of generating token w(?) from the LLM’s entire vocabu-
lary.

Bayesian Optimisation. Our goal is to maximise f(-), as defined in equation over the embedding
space R”. To optimise this black-box function, Bayesian optimisation uses a prior distribution on
the domain to represent our beliefs about the behavior of the function and iteratively updates this
prior using newly acquired data. Specifically, we model the prior joint distribution as a multivariate

Gaussian distribution:
f(‘rlzn) ~ N(,U/O(xlzn)a E0(371:717 xl:n));
where pio(21.,,) is the prior mean vector, and Xo(21.p,, 1.5, ) is the prior covariance matrix.

After observing f(x1.x), we aim to infer the value of f(x) at a new point z. Using Bayes’ rule
(Rasmussen & Williams, [2000), we update the posterior distribution of f(x) conditioned on these

observed values:
F@) | ferw) ~ N(uk (@), o7 (2)). 2)

Here, py(z) and o7 (x) represent the posterior mean and variance, respectively. A detailed dis-
cussion on the choice of the prior distribution and the computation of the posterior distribution is
provided in Appendix [B.2]

A naive way to find the maximiser at this stage would be to select among the previously evaluated
points x1,. ..,z the one with the highest observed function value. Let f; = max,,<k f(@m)
denote this value. If we were to sample another point z € R” and observe f(z), then the value of
the best observed point would either be f () (if f(x) > f7) or f; (if f(x) < f7). The improvement
in the value of the best observed point could be expressed as [f(z) — f;]T := max(f(z) — f},0).

While we would ideally choose x to maximise this improvement, f(z) is unknown until after the
evaluation. Instead, we select x that maximises the expected improvement under the posterior dis-
tribution, defined as

Ely(x) := Ex [[f(z) = fi]"], 3)
where [E;, denotes the expectation taken with respect to the posterior distribution equation [2] Using
integration by parts, we can write EI equation [3]in a closed-form expression:

El.(2) = [ () fz]++0k($)¢<M>

or(x)

Jinta) - o (MO ZIE),

where ¢ and ® denote the probability density function and the cumulative distribution function of
the standard normal distribution, respectively.

Our next sampling point, 3,1 € RP, is the maximiser of EI. We then iteratively update the poste-
rior distribution and the EI function. Details on how we select « to maximise El(z) can be found
in Appendix Convergence is considered achieved when the change in the objective function
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between consecutive iterations satisfies |fr — frx—1| < €, where € is a predefined threshold. Ad-
ditionally, the algorithm terminates after a maximum of K iterations if convergence has not been
reached.

In defining f(x), we assume an ideal verifier with perfect accuracy, meaning it provides an error-free
assessment of correctness. However, in practice, the verifier’s accuracy is less than 1, introducing
uncertainty into its evaluations. To address this noise in Bayesian optimisation, we use an adaptive
version of the EI acquisition function that explicitly incorporates observation uncertainty. This adap-
tation dynamically adjusts the exploration rate based on uncertainty, ensuring a higher probability
of convergence while balancing exploration and exploitation (Vakili et al., 2021} |Tran-The et al.,
2022). Theoretical foundations and implementation details are provided in Appendix B.4]

Dimension Reduction. One shortcoming of using traditional Bayesian optimisation methods for
identifying the point with maximum EI (Mockus| |1975; Hvarfner et al., [2024) is that they perform
poorly when the search space exceeds 20-30 dimensions due to the curse of dimensionality (Kan-
dasamy et al., | 2015; [Letham et al.| 2020; |Wang et al., 2023b). In high-dimensional spaces, surrogate
models require an exponentially larger number of points to accurately estimate the maximum of the
EI function, making optimisation highly inefficient. With the dimension of embedding vectors for
LLMs typically ranging from 768 to 8192 or more, traditional methods are impractical in our setting.

To address this, we leverage a dimension reduction approach based on random embeddings (Wang
et al., 2016; Nayebi et al.,[2019). Specifically, if a function f : RP — R has an effective dimension
de < D, then with high probability, there exists a lower-dimensional representation g(u) := f(Au),
where A is a random projection matrix. This allows optimisation to be performed in a lower-
dimensional space R¢ instead of the original R”. Using this approach, we iteratively optimise the
function in the reduced space and map solutions back to the original space. Theoretical foundations
and implementation details are provided in Appendix [B.3]

5 EXPERIMENTS
We benchmark our method against strong baselines and conduct ablation studies.

5.1 EXPERIMENTAL SETUP

Datasets and Models. We conduct experiments using three LLMs: Llama-3.1-8B-Instruct (Meta,
2024), Qwen2-7B-Instruct (Yang et al.| 2024])), and Mistral-8B-Instruct (Jiang et al.,[2023)). The mod-
els are evaluated on four benchmark datasets, including three complex mathematical tasks (GSM8K
(Cobbe et al., [2021)), GSM-Hard (Gao et al., 2022), SVAMP (Patel et al., 2021)), and one common-
sense reasoning task StrategyQA (Geva et al., [2021).

Baselines. Our baselines include: (1) CoT Prompting, which includes zero-shot CoT (Kojima
et al. 2022) and Few-Shot CoT (Wei et al 2022); (2) Self-Consistency Decoding (Wang et al.,
2023c), which involves sampling answers at various temperatures 7 € {0.4,0.6,0.8} and selecting
the final answer through majority voting; (3) FIRE (Chen et al., [2024)), which adjusts the decoding
process by setting the temperature of the first token to 30 to enhance diversity, while subsequent
tokens are generated using the standard temperature setting; (4) CoT-Decoding (Wang & Zhou)
2024])), which generates k£ answers by sampling the top-k tokens from the probability distribution of
the first token. Each of these top-k tokens is used as the starting point for decoding the remainder
of the answer; and (5) RAP (Hao et al.l [2023), which uses Monte Carlo Tree Search to explore
reasoning paths strategically, balancing exploration and exploitation to find solutions efficiently.
Note that RAP requires problem decomposition via examples; hence we only report its performance
in the few-shot setting.

Setup & Hyperparameters. Experiments are conducted in zero-shot and few-shot settings, with
prompts including 1, 2, 4, and 8 exemplars for few-shot settings. To reduce variance, each configu-
ration is repeated five times with different random seeds. We report the mean and standard deviation
of accuracy across all runs. The convergence threshold is set to 0.01.

Table [T] presents the accuracy of our method compared to baselines across four benchmarks and
three LLMs under zero-shot and few-shot (8-shot) settings. The full table can be found in Table E]in
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Table 1: Performances of different reasoning methods on Accuracy (%) across all benchmarks.

GSMBK GSM-Hard SVAMP StrategyQA
Model Method Zero Shot  Few Shot  Zero Shot Few Shot Zero Shot Few Shot Zero Shot Few Shot
COT 53.0400 774400 140400 28.0+00 61.0400 83.0100 585100 68.510.0

SC(r=04) 73011 804114 257104 318115 791410 870110 647107 Tl6ros
SC(r=06) 736125 806115 245111 312113 761439 877112 599100 713114
SC(r=08) 650120 8lliii 218415 308109 69.6400 874110 54410g 727110

LLaMA3-8B-Ins FIRE 738405 196409 252430 257121 815i0s 876400 630137 728415
CoT-Decoding 7394109 803117 248115 303115 832112 882:10 646116 73311s
RAP - 80.741.4 - 327410 - 87.9411 - 734411
Ours 7941, 843114 282418 357110 882113 902406 672107 75.610s
W/O Tyerifier 76.8+10 820405 263413 348:03 867112 895405 662125 743116
W/O Teoherence 774401 834407 279415 353413 846404  90.1p09  66.0113  75.0115
COT 645500 825100 400400 555100 435100 86.0100 63.0100  70.0t0.0

SC(r =0.4) 812406  857+15 475114 554407 723420 903412 671415 Tllirs
SC(r=06)  802s10 85409 462419 S34s0s TT3sre 9040 675400  69.141s
SC(r—08) 800100 85.1s1c 473213 554s00 786421 906415 670210 70.1sns

Qwen2-7B-Ins  FIRE 81.0+1.8 83.041.3 45.142.0 51.041.8 76.312.2 90.6.+0.2 67.610.8 68.110.8
CoT-Decoding  82.0405 845401 467125 52110 78641 897405 659115 69.555,
RAP - 86.2110 - 56.240.8 - 90.841.1 - 713113
Ours 88.6.1> 90.0:;4 537116 587105 834104 922,05 681:15 703113
W/O Tyerifier 87.0£10 897118 512401 583i10 735140 905115 660109 683116
w/o T 873120 892413 520415 600410 767414 907406  66.5405 695415
coT 420100 540100 145100 240100 52.0100 720400 620100 69.010.0

SC(r =0.4) 529405 583115 195410 260415 674405 778410 639415 726410
SC(1 = 0.6) 551436 574440 207415 253416 69.7116 78445 64.241 T1. 7108
SC(r=0.8)  502in 577126 19.0uno 26611, 683100 77.6011 649410 721115

Mistral-7B-Ins FIRE 47~2i2,9 56.1i3_2 18‘li1_9 26.3i1_4 67-1i1.9 78.4i1_2 64.2i1_0 71-0i2,2
CoT-Decoding 473130 582423 16.64107 274116 694125 78.6414 635415 727421
RAP - 58.611.8 - 27.641.2 - 794414 - 724443
Ours 614,05 62710 258.1s 325115 72250 82111, 6619 72815
W/O Tyerifier 595413 597128 248108 308121 695i23 798408 648106 718414

W/0 Teoherence 6124035 603425 255433 295123 702416 800110 655117 72.0413

Appendix [C.5] Our approach consistently outperforms the best-performing baseline across different
models, especially in the zero-shot setting (average improvement of 5% on GSM8K and 3% on
GSM-Hard). Similar gains appear in the few-shot setting, where our method achieves the highest
accuracy on most tasks and model variants. While effective, SC requires extensive hyperparameter
tuning (e.g. varying temperature values) for each individual model and dataset to achieve optimal
performance. In contrast, our more systematic search method improves solution quality consistently
without the need for separate tuning in each scenario.

Coverage Analysis. For each method, we calculate the probability of covering the correct answer
in at least one of the generated answers. Our approach consistently achieves the highest coverage
across all models and datasets. For instance, on GSM8K with LLaMA3-8B-Ins in the zero-shot set-
ting, our method attains 91.8% coverage, outperforming FIRE (84.5%) and CoT-Decoding (85.3%).
Detailed coverage probabilities for all models and datasets can be found in Table[7)in Appendix[C.5}
These results demonstrate that our controlled exploration strategy effectively enhances the likelihood
of generating correct answers, highlighting its robustness over traditional methods.

Effect of Exploration with Embedding Perturbations and Bayesian Optimisation. A natural
question to consider is why adding noise to embeddings leads to more diverse answer generation than
temperature tuning. We follow [Naik et al.| (2024) to investigate this from the perspective of neuron
activations in the Transformer’s MLP layers. As shown in Figure[3a] applying our method increases
the activation rate of neurons by roughly 3—4% in nearly all layers relative to the Self-Consistency
(SC) baseline, suggesting that our perturbations stochastically trigger more diverse neural pathways.

To probe whether a specific subset of “critical neurons” may be responsible for correct reasoning, we
identify neurons whose activations exhibit the strongest correlation with correctness. In Figure [3bl
we track the activation rate of these critical neurons across our Bayesian optimisation iterations. We
observe a steady increase, particularly in layers 15-30, suggesting that our iterative sampling and
verification procedure increasingly activates these key pathways.

Together, these findings support the hypothesis that our embedding perturbation and controlled ex-
ploration approach not only diversifies generation but also systematically uncovers and reinforces
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Figure 3: Transformer MLP activation and Bayesian optimisation convergence analysis.

the neuron activations crucial for deriving correct answers. For more detailed experimental proce-
dures, please refer to Appendix [C.2]

Convergence of Bayesian Optimisation. Typle 2: Proportion (%) of test examples that ter-

Another question regarding our search algo-  minate at the n™ iteration for each dataset and set-
rithm is how quickly and reliably it converges.  ting using LLaMA.

To investigate this, we track two key metrics :
. .. . . . Shot Iteration GSM8K GSM-Hard SVAMP  StrategyQA
across our Bayesian optimisation iterations: (1) T

: > - 65.0429  70.3130 648419 58.842.3

The evolution of the covariance matrix among .., 30.1iz9 244130 289115 3lling
; ; 4116 49416 54413 8.8+18

the sampled embedding points. As shown 08108 0dios  09i0e  Ldios

in Figure the covariance matrix becomes
more structured over iterations, showing higher  Few
correlations among top-performing candidates.
(2) The proportion of test examples that termi-
nate after the n'" iteration for each dataset in both zero-shot and few-shot settings, as reported in
Table |Zl With a maximum of 4 iterations, no search exceeds the fourth iteration, and only a small
fraction require iteration 4. This rapid termination suggests that the El-driven sampling strategy
quickly identifies promising regions of the embedding space for most queries, minimising the need
for further rounds of exploration.

76.849.0 774490 79.710.0 66.7+3.7
20.740s  20.6127  19.1428  26.6437
2.541.4 1.840.6 1.2410 6.1191
0.0x0.0 0.240.3 0.010.0 0.640.4

B W= W

Efficiency and Performance Analysis. Ta- Typle 3: Comparison of performance and to-

ble B presents a comparison of our approach  ken usage between our method and RAP across
with RAP in both performance and efficiency. pepchmarks.

Our method achieves better accuracy on all

. . . . Category Shot GSM8K GSM-Hard SVAMP  StrategyQA
tasks while drastically reducing computational Result (% RAP 807 32.7 87.9 734
head. Specificail . K esult (%) Ous 843 357 90.2 756
overhead. Specifically, our input token con- RAP 257108k 331521k 150585k 174262k

Input Token Count  org 1457.1% 18478k 11728k 1180.6k

RAP  334.1k 402.5k 241. 274.1k
Ours  211.9k 262.5k 162.4k 155.4k

sumption averages only 6.19% of RAP’s, and
our output token usage is 63.28% of RAP’s.
These results highlight that our method not only
improves accuracy but also substantially reduces token usage, thereby delivering superior overall ef-
ficiency.

Output Token Count

5.2 ABLATION STUDIES

Objective Function. To evaluate the importance of each reward component, we removed either the
verifier score (W/0 ryerifier) OF the coherence term (W/0 7'coherence) from our method. Tables |I|compare
these ablated variants with our full approach. In all tasks and model configurations, omitting either
term degrades both accuracy and coverage, indicating that both components are vital. The verifier
score clearly helps filter out incorrect or spurious solutions, while the coherence penalty ensures each
output remains semantically consistent, particularly for complex or multi-step reasoning. Indeed,
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both correctness-guided verification and semantic coherence play essential roles in navigating the
solution space effectively.

Impact of Lower-Dimensional Space Dimensionality. We evaluate our Bayesian optimisation
approach under various reduced dimensions before mapping back to the full embedding space (Fig-
ure[3). Across all four tasks and both zero- and few-shot settings, performance tends to improve up
to d = 50. Although increasing d to 60 sometimes yields a small additional gain, the differences are
minor, and d = 50 consistently achieves near-best or best results.

Impact of Special Token Placement. We

compare three ways of inserting the perturbed Taple 4: Comparison of accuracy and coverage

special token into the prompt: at the beginning  across different special token placements.
(First), somewhere in the middle (Middle), or

as an appended token (Last). Tableshows for Type  Shot Iteration GSMSK GSM-Hard SVAMP StrategyQA

- - 1 i First TT7i25 255513  85.0k00 67041

both zero shot and few-shot settings, placing geo I, Mlas e 80wa 60

the special token at the end of the prompt (Last) Result Last(ours) 794115 282015 882u13  672:07
1 3 First 82.1 29.0135 89.2.40.: 74.1

generally yields higher accuracy and better cov- Fow Made 85500 et sortt o Tpesh

erage. One possible explanation is that plac- Last(ours) 843114 357110  902:06 75608
. . s . Firs| 85.849.3 31.2 93.0 92.7.

ing the special token last ensures minimal dis- Zoo Mdde  Son mrt gast gt

ruption to the original semantics of the prompt,  Coverage Last(ours) I8srs 30415 93Bioq  937urs

. . . . First 920405 408112 947112 93.4u09

while still allowing our method to alter the ini- Few Middle 922410 447.5  Obios 931

Last (ours) 922405 498,10 958412 933418

tial token embedding and induce sufficiently di-
verse generation pathways.

Verifier Comparison: Judgement vs. Gen- Taple 5: Combined results for verifier strategies:

eration. Inspired by recent work suggesting (a) Binary Classification Accuracy and (b) Final
that LLMs can be more adept at generating Accuracy in Overall Framework.

correct outputs than critiquing existing ones

(Miao et al.l 2024; |Zhang et al., |2024b), we (a) Binary Classification Accuracy
explore four verifier strategies: Single-Judge, GSMS8K GSM-Hard SVAMP  StrategyQA
which evaluates each candidate independently;  Single-Judge 75.9 60.9 82.7 63.9
. . Multi-Jud 80.4 4638 87.5 67.3
Single-Generate, which regenerates a purport-  gingle Generate 250 07 07 17
edly correct answer for each candidate; Multi- _Multi-Generate (ours)  87.6 782 934 789
Judge, which scores multiple candidates col- (b) Final Accuracy in Overall Framework
lectively; and Multi-Generate, which pro- Zero-shot
. : . Verifi GSMSK  GSM-Hard SVAMP  StrategyQA
duces a new solution from multiple candidates, S_mle'] - — — o s (;; Zgyo
. . . ingle-Judge 3115 A6 O+1.4 Ui17
labeling any matching candidate as correct. The  wmuli-judge TTdyss 265125 865414  67.1i0s
. L Single-Generate 76.541.1 27.612.1 84.340.0 66.410.0
detailed 'deﬁr}ltlons of t'hese prompt templates ~ Jreie enera oA ez ssr  ero
are provided in Appendix [C.3] Fow-shot
Table [Sh reports the binary classification accu- ;’“iﬁ"" GSMSK GSMHard SVAMP StrategyQA
. ) ) . ingle-Tud 824515 350514 89611  72.041:
racies for each verifier. Multi-Generate yields vy judge. 82500 361t 0laa 3o
the highest verification accuracy on all datasets. ~ Single-Generate 824115 345a14 89Tun  TATyo
Multi-Generate 843414 35.7410 90.2406 75.6105

This indicates that leveraging the model’s gen-
erative capabilities leads to more reliable cor-
rectness assessment.

We compare final solution accuracy in Table[Sp. While single verifiers judge or generate answers in-
dividually, multi-candidate generation leads to the highest end-to-end performance. Multi-Generate
outperforms alternatives in both zero-shot and few-shot settings, harnessing the model’s generative
capacity more effectively than judgment-based verifiers. Notably, even substituting simpler verifiers
keeps our framework competitive with strong baselines, underscoring the robustness and efficacy
of generation-based verification. Details on how the number of sampled embeddings & influences
performance are provided in Appendix

6 CONCLUSIONS AND FUTURE DIRECTIONS

We introduce an embedding-based optimisation framework that enhances LLM reasoning by re-
fining the first-token embedding. By integrating controlled perturbations with Bayesian optimisa-
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tion, our method improves accuracy, is model-agnostic, and remains computationally efficient. Our
approach relies on a verifier that may provide unreliable feedback, impacting optimisation. Addi-
tionally, it operates at the token level without clear interpretability of how perturbations influence
reasoning. Future work will focus on improving verifier reliability, extending optimisation beyond
the first token, and enhancing interpretability to better understand perturbation effects on reasoning.
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A APPENDIX

B METHODOLOGY SUPPLEMENT

B.1 TECHNICAL DETAILS ON OPTIMISATION OBJECTIVE

Although we simply sum the two components, they naturally operate in a progressive, tie-breaking
manner. If two candidate outputs differ in their verifier scores, the one with the higher ryeifer Value
immediately results in a higher f(z). Only when the verifier scores are identical does Tcoherence SEIVE
to break the tie, making the process effectively hierarchical, even in this additive form.

B.2 TECHNICAL DETAILS ON BAYESIAN OPTIMISATION

In constructing the prior distribution, for a finite collection of points x1.,,, the prior joint distribution
on them is:

f(xl:n) ~ N(,U/O(xl:n)v EO(xlznvxlzn))v
where f(x1.,) = [f(x1), ..., f(@)]T, po(x1m) = [po(x1),. .., pmo(z,)] T, and the covariance
matrix is:
20(1‘1,.%1) e 20(1’1,1‘”)

E0(331:7“ xl:n) =

Eo(ivmxl) cee 20($n,$n)
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We set uo(x) = 0, indicating no additional preference for function values at the prior stage. For the
covariance matrix Yo(z;, z;), we use the Gaussian kernel with bandwidth ¢:

i — ;1
Yo(xi, ) = k(xq,x5) = exp<2€2ﬂ )

The kernel is chosen such that when z; and x; are close, the kernel value k(z;, z;) approaches 1,
indicating strong correlation, and when they are far apart, the kernel value approaches 0, reflecting
weak correlation.

After observing f(x1.;), we aim to infer the value of f(x) at a new point z. Using Bayes’ rule
(Rasmussen & Williams, [2000), we update the posterior distribution of f(x) conditioned on these

observed values:
F@) | f@rn) ~ N (ux(z), 07 (2)),
where the posterior mean and variance are given by

k() = So(2, 21:8) So (T4, T1:6) T (F(T1:8) —
po(z1:x)) + po(z),

op(z) = o(z,2) — [So(z, 21.6) S0 (T1:k, T1:8)
20($1:k,$)].

B.3 MAXIMISING EXPECTED IMPROVEMENT

To select the point = that maximises the expected improvement EIj (x), we adopt a sampling-based
approach. Specifically, we randomly sample a large number of candidate points from a standard
normal distribution. In our experiments, we generate 5000 points 1, s, ..., 5000, Where each
point z; € RP is sampled as:

z; ~N(O,DP, i=1,2...,5000.

For each sampled point, we compute the expected improvement EI(x) using equation 3] After
evaluating the expected improvement for all sampled points, we select the point with the maximum
El(z) as the next candidate for evaluation. This method provides an efficient and practical way to
approximate the global maximum of EI} (x) within the sampling budget.

B.4 ADAPTIVE EXPECTED IMPROVEMENT

In defining f(x), we assume an ideal verifier with perfect accuracy, meaning it provides an error-free
assessment of correctness. However, in practice, the verifier’s accuracy is less than 1, introducing
uncertainty into its evaluations. This results in noisy observations, where the observed score oy
deviates from the true function value f(xy). We model this noise as:

ok = f(@r) +mk, M ~ N(0,X]),

where ) is an objective noise constant, determined by the inherent noise level. To address this noise
in Bayesian optimisation, we use an adaptive version of the EI acquisition function that explicitly
accounts for the uncertainty in observations:

Eli(z) = [ue(x) — ]+ wkak(w)¢(W>
1o [ P(T) = fi
—|px(x) = £ |‘I’(wkgk($)k)’

where w;, = /v, + 1+ 1n(1/9) is the noise-adaptive scaling factor, and information gain term
is defined as:

Y = max I(o(z1:x); f (i)
1
=3 logdet(I + A" So(21:4, T1:1)).
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I(o(x1.); f(xi.r)) represents the mutual information between the function values and the noisy
observations, and ¢ is a hyperparameter in (0, 1), controlling the balance between exploration and
exploitation. This adaptation is inspired by the following observation (Vakili et al.| 2021; Tran-The
et al.;[2022): For any choice of 6 € (0, 1), with probability at least 1 — 0, the cumulative regret Rp

satisfies
T

Ry := Z[f;ck — f(z1)] = O(vrVT).
k=1
This sublinear bound ensures that, with high probability, the regret grows at a slower rate than the
number of iterations, thereby guaranteeing the convergence of the optimisation process.

We set 6 = 0.1, ensuring a 90% probability of convergence while balancing exploration and ex-
ploitation. A smaller § (e.g., 0.01) strengthens theoretical guarantees but increases exploration,
slowing convergence. A larger ¢ (e.g., 0.2) favours exploitation, accelerating convergence but weak-
ening guarantees. Our choice provides stability and efficiency without excessive exploration.

B.5 ADDRESSING THE CURSE OF DIMENSIONALITY IN BAYESIAN OPTIMISATION

Traditional Bayesian optimisation struggles in high-dimensional spaces due to the curse of dimen-
sionality, making it impractical for embedding vectors used in LLMs. To address this challenge, we
leverage the following result from high-dimensional optimisation (Wang et al., 2016} [Nayebi et al.,
2019)), which allows us to perform optimisation in a lower-dimensional space and to subsequently
map points back to the original space.

Let D be the dimension of the embedding vectors. A function f : R” — R is defined to have an
effective dimensionality d., with d, < D, if the following condition is satisfied: 3 a subspace E
of dimension d., such that Vo € E ¢ RP and z;, € E+ C RP, where E is the orthogonal
complement of F, the function satisfies: f(zg + 2, ) = f(xg). In other words, d. is the smallest
dimension that retains all variability of f. Now, for d > d., consider a random matrix A € RDxd
with independent A (0, 1) entries. Then,

Ve € RP| Ju € R? such that f(z) = f(Au).
This result implies that for any optimiser z* € RP, there exists a corresponding point u* € R¢
such that f(z*) = f(Au"*). Therefore, instead of performing optimisation in the high-dimensional
space, we can optimise the function g(u) := f(Au) in the lower-dimensional space.

Suppose our initial sampled points and their evaluations are denoted by the set U =
{(u1,g9(u1)), ..., (ug, g(ug))}, where each u; € R? has independent standard normal entries. Sim-
ilarly, we initialise A € R”*? as a random matrix with independent A/(0, 1) entries. We then find
the next point to sample u; ;1 € R by optimising the acquisition function:
up1 = argmax ETy(u | Uy),
u€ERC

where ET (- | Uy) represents the Expected Improvement conditioned on the current dataset L4, with
the objective function being g(-) on R?. Then, we augment the dataset

U1 = U U {(Ulc+17 f(AukJrl))}’
and iterate.

B.6 SETTING THE CONVERGENCE THRESHOLD
The convergence threshold e determines when the algorithm stops iterating. While smaller thresh-
olds generally lead to more precise results, they can also increase computational costs due to ad-

ditional iterations. We set ¢ = 0.01 in our experiments, as this value strikes a balance between
convergence quality and computational efficiency.

C MORE EXPERIMENTAL DETAILS

C.1 EXPERIMENT SETTINGS

For FIRE, CoT-Decoding, and RAP, we set the temperature to 0.8, following the settings of the
respective baselines. We evaluate each approach on the four benchmark datasets (GSM8K, GSM-
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Hard, SVAMP, and StrategyQA) by randomly sampling 200 test examples from each dataset. The
generation process is cut off once the output reaches a maximum length of 300 tokens.

C.2 ADDITIONAL DETAILS ON NEURON ACTIVATION ANALYSIS
C.2.1 OVERALL ACTIVATION RATE

We analyse the neuron activations in the GLU-based MLP layers of the LLaMA model (Naik et al.|
2024). Specifically, the hidden representation in the ¢-th layer is computed as:
h' = (actfn(R'W7) @ h'W3i) - Wi, 4)

where ® denotes element-wise multiplication, and act_fn(-) is a non-linear activation function. We
consider the j-th neuron inside the ¢-th FFN layer activated if its activation value [act,fn(hin)]
exceeds zero.

J

We compare Self-Consistency (SC) (Wang et al., 2023c) with our Bayesian-optimisation-based per-
turbation method. For a single question (i.e., same prompt), we generate 200 samples using LLaMA
and record neuron activations for each of the first 5 output tokens. We then visualise and compare
the average activation rates between SC and our approach in Figure ??.

C.2.2 KEY NEURON IDENTIFICATION AND VERIFICATION

We identify key neurons by analysing activation rates in SC-generated samples. We first separate
these samples into correct and incorrect categories. For each neuron j in layer ¢, we calculate the
activation difference:

Ai,j = ancorrect(ai»]') - anincorrect(aiaj%

where a; ; denotes the activation value of the j-th neuron in the ¢-th layer. Neurons are then ranked
by A, ;, and the top 5% with the largest positive values are selected as “key neurons.”

To validate the identified key neurons under our method, we focus exclusively on those neurons
marked as “key” by the SC analysis. Let avggc corect(Niey) denote the average activation of these
key neurons in SC’s correct samples. Likewise, avgoyy correct (Niey) a0d aVE0yr wrong (Niey) denote
the averages for our method’s correct and incorrect samples, respectively. We find:

AVEQurs, correct (N key )
a'VgSC, correct (M(ey )

= 1.004,

indicating that in correct cases, our method activates these key neurons at a level comparable to SC.
By contrast,

anOurs, wrong (Mwy)
anSC, correct (J\/key )

showing a markedly lower activation for incorrect samples under our method. These results confirm
that the SC-derived key neurons remain crucial for correct reasoning, and our perturbation approach
effectively utilises them while suppressing their activation in incorrect scenarios.

= 0.794,

C.3 PROMPTS FOR VERIFIERS

We provide four prompt templates corresponding to the verifier strategies introduced in Section[5.2]
These templates illustrate how each verifier approach is instantiated:

Single-Judge. This prompt asks the model to evaluate the correctness of a single final answer. The
user provides a question, along with a final answer, and the verifier must decide whether that answer
is correct.

Multi-Judge. This prompt provides multiple candidate answers and asks the verifier to assess their
correctness collectively. The user includes each candidate’s reasoning, and the verifier classifies
which answers are correct.
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Single-Generate. The prompt demonstrates a scenario where the verifier itself is prompted to
re-generate the correct solution for one candidate. If the newly generated solution matches the
candidate’s answer, the candidate is deemed correct.

Multi-Generate (Ours). This prompt processes all candidate answers together and generates a
new solution it believes to be correct. Any candidate matching this newly generated solution is
labeled as correct. This leverages the model’s generative capacity more thoroughly than pure classi-
fication, yielding better verification accuracy in practice.

Prompt for Single-Judge

Based on the given question and the previous answers, please provide your judgment on the correct-
ness of the final answer.

Question:
Jessie currently weighs 9 kilograms. After she started to go jogging every day, she lost 62 kilograms
in the first week and 140 kilograms in the second week. How much did she weigh before starting to

jog?

Answer:

9 4 62 4 140 = 211. So, Jessie weighed 211 kilograms after 2 weeks of jogging. Since she weighed
9 kilograms initially, she weighed 211 — 9 = 202 kilograms before starting to jog. Answer: 202

Correct:
0

Question:
{User Question}

Answer:
{Previous answers}

Correct:

C.4 EFFECT OF THE NUMBER OF SAMPLES k.

GSM8K GSM-Hard
0.93 '/.__‘_./’ 0.50
090 oas //0—0‘0
g o7 8 0.40
< <

035 o —"——e

0.81 + Result > Result
—e— Coverage 0.30 —e— Coverage

4 5 6 7 3 4 5 6 7
Sample Size (k) Sample Size (k)

SVAMP StrategyQA
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093 0 0.84
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—e— Result 0.72 —&— Result

0.85 —e— Coverage 0.66 —e— Coverage
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4 5 6 4 5 6
Sample Size (k) Sample Size (k)

Figure 4: Accuracy (solid lines) and standard deviation (shaded areas) across different sample sizes
k.

We investigate how the number of sampled embeddings & in each iteration influences final perfor-
mance. Figure [ shows that as k increases from 3 to 5, the final accuracy and coverage steadily rise
for all evaluated tasks, although gains tend to plateau or fluctuate slightly after k£ = 3. This upward
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Prompt for Multi-Judge

Based on the given question and the previous answers, please provide your judgment on the correct-
ness of the final answer.

Question:

Jack is stranded on a desert island. He wants some salt to season his fish. He collects 2 liters of
seawater in an old bucket. If the water is 20% salt, how many ml of salt will Jack get when all the
water evaporates?

Your previous answers:

0. Thought: 1250 ml of water evaporates, leaving 1000 ml of salt. Answer: 1000

1. Thought: The total amount of water is 2 liters = 2000 ml. The amount of salt is 20% of 2000 ml =
0.20 x 2000 ml = ((0.20 x 2000 = 400))400 ml. Answer: 400

2. Thought: 20% of 2 liters is 2 x - = ((2 x 20/100 = 0.4))0.4 liters. Since there are 1000 ml in
1 liter, 0.4 liters is 0.4 x 1000 = ((0.4 x 1000 = 400))400 ml. Answer: 400

3. Thought: 1 liter of seawater is 20% salt. So, 1 liter of seawater has 20% x 1 liter
= ((20 x 0.1 = 0.2))0.2 liters of salt. Since Jack has 2 liters of seawater, he will get
0.2 x 2 = ((0.2 x 2 = 0.4))0.4 liters of salt. Since there are 1000 ml in 1 liter, Jack will
get 0.4 x 1000 = ((0.4 x 1000 = 400))400 ml of salt. Answer: 400

4. Thought: 20% of 2 liters is 2 X =% = ((2 x 20/100 = 0.4))0.4 liters. There are 1000 ml in 1

100

liter, so 0.4 liters is 0.4 x 1000 = ((0.4 x 1000 = 400))400 ml. Answer: 400

Correct:
1,2,3,4

Question:
{User Question}

Your previous answers:
{Previous answers}

Correct:
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Prompt for Single-Generate

Based on the given question and the previous answers, please provide your analysis and final answer,
starting the final answer with ”Answer:”

Question:

Jack is stranded on a desert island. He wants some salt to season his fish. He collects 2 liters of
seawater in an old bucket. If the water is 20% salt, how many ml of salt will Jack get when all the
water evaporates?

Your previous answers:
1250 ml of water evaporates, leaving 1000 ml of salt. Answer: 1000

Analysis:
Let’s think step by step. Jack has 2 liters of seawater, and 20% of it is salt. 2 liters = 2000 ml, so the
amount of salt is 20% of 2000 ml = 0.20 x 2000 = 400 ml of salt.

Answer:
400

Question:
{User Question}

Your previous answers:
{Previous answers}

Analysis:

GSMBK GSM-Hard

30 35 40 45 50 55 60
Dimension

0730 35 40 45 50 55 60
Dimension

092 SVAMP 078 StrategyQA
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000 | _—"" | om ==
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o sht
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084 30 35 40 45 50 55 60 30 35 40 45 50 55 60
Dimension Dimension

Figure 5: Accuracy (solid lines) and standard deviation (shaded areas) across reduced dimensions.

trend suggests that a moderate increase in k promotes better exploration of potentially correct solu-
tions in the embedding space. Based on these observations, we adopt k = 5 as our default setting,
balancing solution diversity with computational cost.

C.5 ADDITIONAL RESULTS

Tables|[6and[7) present the full experimental results for all methods and configurations across the four
benchmarks and three LLMs (LLaMA3-8B-Instruct, Qwen2-7B-Instruct, and Mistral-7B-Instruct).
These tables extend the summary reported in the main text, showing detailed accuracy, coverage,
and standard deviations for zero-shot to 8-shot setups. They provide a comprehensive view of how
each baseline and our approach perform under various hyperparameter and prompt configurations.
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Prompt for Multi-Generate (ours)

Based on the given question and the previous answers, please provide your analysis and final answer,
starting the final answer with ” Answer:”

Question:

Artemis is making tea for a party. She knows her mom drinks an 8-ounce cup of tea and uses one
ounce of tea. She will use this same ratio for the party. The party has 12 people there and each of
them wants a 6-ounce cup of tea. How many ounces of tea does she need?

Your previous answers:

0. Thought: 8 ounces of tea for 1 cup, so 1 ounce of tea for é of a cup. For 12 people, she needs
12 x g = 9 ounces of tea. Answer: 9

1. Thought: 6 ounces of tea is needed for each person. Since there are 12 people, 12 x 6 = 72 ounces
of tea are needed. Since each ounce of tea is used for 1 cup, 72 ounces of tea will make 72 cups of tea.
Answer: 72

2. Thought: 6 ounces of tea is
of tea. Answer: 9

3. Thought: 12 X 6 = 72 ounces of tea needed. Since each ounce of tea is used for 1 cup, Artemis
needs 72 ounces of tea. Answer: 72

4. Thought: 8 ounces of tea is used for 1 cup. So for 6 ounces of tea, she will use & = % of the

8
amount of tea. For 12 people, she will need 12 x % = 9 ounces of tea. Answer: 9

6

2 % of an 8-ounce cup. For 12 people, she needs 12 X % = 9 ounces

Analysis:
Let’s think step by step. Artemis uses 1 ounce of tea for an 8-ounce cup, so for a 6-ounce cup, she

will use & = £ of an ounce of tea. For 12 people, she needs 12 x 2 = 9 ounces of tea.
Answer:

9

Question:

{User Question}

Your previous answers:
{Previous answers}

Analysis:

Table 6: Performances of different reasoning methods on Accuracy (%) across all benchmarks.

Method

LLaMA3-8B-Instruct

Qwen2-7B-Instruct

Mistral-7B-Instruct

Shot 0 Shot T Shot 2 Shot 4 Shot 8 Shot 0 Shot T Shot 2 Shot 4 Shot 8 Shot 0 Shot T Shot 2 Shot 4 Shot 8
GSMSK
53000 730100 735100 T90:00 Tldsoo 645i00 700s00 66.5:00 815100 825:00 420400 43.5i00 53500 54020,
730416 754128 757424 807111 804:14 812406 824118 837104 869:06 857115 529105 535:+15 59.9i03 583415
736125 134156 726110 803100 806115 802119 845151 842404 865100 854109 55.0ize 565100 596107 574010
SC(T = 0.8) 65.0400 745107 668:17 809:15 8lliyy  80.0i00 82.7i09 826107 854:0s 851i16 502106 Slé4iig 564io7 577126
FIRE 738105 T54s1s 764120 T84i35 79620 810415 810is0 736192 825:01 83.0i15 472400 5244p5 S538:1r 56150
CoT-Decoding 739119 767414 786117 8ldriy1s 803i17 820108 8l6ias 762105 857108 84.5:01 473430 564133 573105 5824103
RAP - 774417 794116 804:14 8074114 - 847120 857110 874100 8624110 - 57.6418 571417 58.641.8
Ours T9411s Tdiss 830i0s 835100 843.,4 8615 S88..4 SBdiio $98.05 900.,4 61ds 612.05 612:00 R
GSM-Hard
140100 2254100 245:00 265100 280i00 40.0100 39.0i00 48.0100 53.0:00 555:i00 145i00 220100 21.5:00 24.0+0.0
257104 253104 286112 322104 318i1s 47514 486414 537113 552i15 S54i0r 195i10 265:i1g 269114 261515
245411 257105 284114 320411 312433 462459 S50.0i29 5424107 56.0+11 534i06 207415 257400 278412 253116
21.8413 248419 282407 306112 308409 473413 478407 548415 557:13 554409 190400 268105 26.6410 26.641.1
252430 241415 270415 279:18 257401 451400 434405 529410 490125 510418 181419 258413 27.0407 263114
CoT-Decoding 248113 273116 280404 31.0118 303413 467403 441i1s 539415 S500i15 520410 166407 266126 28.04i0.7 274416
RAP - 267110 3diis 24iy 32Tiin - 532110 S55.di1s 559:i15 562i08 - 27455 280410 276415
Ours 282115 302115 353:14 332.06 357110 537116 574ioq7 575i08 574:10 587i05 258118 290i15 32.3:04 325415
SVAMP
CoT 610100 81.01o0 835100 840100 83.0:00 435100 830100 840100 855:00 86000 520400 650400 66.0400 72.0+0.0
SC(1 = 0.4) 791412 858415 865107 873108 87010 723420 902410 894105 903i09 903412 674425 745417 737410 778410
SC(r=0.6) 76.0i59 862105 868i17 869i12 877412 7T73i1s 906409 9025105 O9ldigy 90dios 697416 758415 756408 78400
SC(r=08) 696120 863125 86.9:10 874i15 874i1n 786121 903107 90.di1p 908ro7 90.6:12 683r09 75.0ior 76.6115 77.61411
FIRE 815108 86.6418 861413 861114 876420 763122 899414 897108 893:i00 906402 670419 777411 769407 784410
CoT-Decoding 832172 878110 875110 875113 882:10 78.6116 903104 90.0110 903110 897105 694425 778100 777115 78.6+1.4
RAP - 7844112 874110 868:10 879:14 - 90.840.7 912107 90.1:07 90.8i06 - 00:12 00413 794411
Ours 882015 89211, 888110 Sdios M2ios S3ds 923.0s dins N08.0s B2ips T2Ziss Tios Todirs 8211,
StrategyQA
5854100 630100 680100 675100 685100 63.0+00 545100 63.5:00 660:00 700400 62.0400 625400 635400 69.0+0.0
647107 684124 686117 692:12 Tl6sos 671415 67dsng 665412 69.1ers Tllirg 639415 576120 659501 726515
599100 699112 682108 707122 713115 675107 665117 674126 677114 690112 642110 587113 64.8:07 T1.7+08
544.,6 680420 679107 T04i09 7127115 670410 680i19 683i12 677525 7T01i0x 649410 599412 665504 7201y
63.0+37 708116 71.8+13 702190 72.8:15 67.6108 6849 684115 673110 68.1igs 642110 66.5:15 68.2:54 T1.0+2.2
CoT-Decoding  64.6416 71.1431 7ldioo 70.5:i00 733118 659115 683425 687107 67.5:i15 695:i07 635415 6824104 68.640.7 727421
RAP N T6s17 706510 151y Tders - 675015 682413 685015 Tl3si. - 685411 70.650.5 i T2durs
Ours 67.2.07 710409 723412 738:12 756405 681115 696116 697115 68905 703113 660419 700407 712414 727:10 728415
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Table 7: Coverage rates of correct answers across different models (%) on all benchmarks.

LLaMA3-8B-Instruct

Qwen2-7B-Instruct

Mistral-7B-Instruct

Method Shot 0 Shot 1 Shot 2 Shot 4 Shot 8 Shot 0 Shot 1 Shot 2 Shot 4 Shot 8 Shot 0 Shot 1 Shot 2 Shot 4 Shot 8
GSMSK
SC(7=0.4) 7984108 692428 757424 895:14 910415 931404 889i17 91410 935:i07 945:06 732430 693116 75.5i00 734410
SC(=0.6) T84ins 666i56 726110 906s13 Ollios 942:07 885415 924i07 938:0r 942i13 730415 727107 76241 735400
SC(7=0.8) T1.0412 621107 668+17 904116 902:16 929112 88.6415 916111 93.1:g9 938i07 7121418 700120 743108 732414
FIRE 845,15 839400 88.8.20 894111 882106 868115 78.1iss 842i15 90.6119 908109 63.1iss 704is5 709416 739105
CoT-Decoding 853117 88.01412 90.6+11 902108 90.5:09 884191 812i20 855124 92.0:09 917108 632424 726127 755105 76.6+1.2
RAP - 876400 89.1i13 889:15 89.5i0s - 883112 924410 934111 923407 - 724401 T45:13 75.641.3
Ours OT8 s Idaos 92801, Y26s1s 922105 959507 968100 968110 968,11 966.07 $5417 90101 823410 $25.00
GSM-Hard
SC(7=0.4) 273104 317105 386119 416118 434104 626416 534417 624410 643107 3lli1n 375416 409412 382415
SC(r=0.6) 282115 33.0s0s 380s14 399:25 430:1; 633100 562402 62411y 658214 302417 373100 388114 390105
SC(7=0.8) 25.1409 323124 378412 393112 422411 618105 549419 641110 651110 317114 382416 392110 37.0411
FIRE 320505 33duss 383114 399:11 406520 S544in; 493155 56719 606512 262495 374inn 39811 358016
CoT-Decoding  33.1:09 33.6119 398114 423110 422115 550110 493122 56.6113 615514 277112 369+10 403116 3844107
RAP - 3dsig 40215 41940 43945 - S3701e  60241a 642415 - 376110 406110 38410
Ours 01 i H6din, M3,y D80 0417 678100 0710 T, W07, 8335, 4., 522,
SVAMP
SC(m=0.4) 846411 91.8405 916416 928:04 929:06 917118 943106 939i07 94.0409 619117 852413 84541, 877404
SC(7=0.6) 821497 923402 927410 93.0:06 938104 923415 944406 946406 940410 675114 857405 863112 88.941.4
SC(7=0.8) 738426 917117 933405 935:i08 946107 925111 945i07 945i05 94.0409 721123 865108 87.0:1 882410
FIRE 89.9:05 937103 935i00 929i12 938413 9lSios 939111 94.Tiig 95107 682414 879115 89917 901115
CoT-Decoding  90.8:095 93.5112 942108 938108 939:13 912110 944105 942:07 934109 670129 89.5:05 887:113 904+,
RAP - 936011 938108 9dige Ohliis - 943115 947109 948,07 - 887510 897:14 907210
Ours 938201 955.00 955105 95.1s07 958412 970i07 968.05 95610 978.05 T81i0s 9217 9054 91010,
StrategyQA

SC(r=04) 853100 858415 847:10 840105 857i10 835115 847408 85741: 86717 73811 705001 T49:06 854410
SC(7=0.6) 841117 892100 863120 87.1:o3 885:i13 832114 854414 86419, 875113 750108 73.6412 769+10 88.0+1.0
SC(7=0.8) 86.61209 889427 871109 88.ligg 89.6:12 848117 849i25 869i13 882415 760114 T4ligg 772416 89.840.8
FIRE 912515 926510 90.1is1 89.10is; 906411 S4diig 87.0417 88415 89414 749416 810110 796514 897415
CoT-Decoding 924104 93411, 874114 89.1:0s 906116 847123 873118 869+1 889i04 756108 822428 797114 89.0+1.3
RAP 5 935010 896414 893515 Ollijs - 88.6514 87.6:00 887416 - 816515 792414 893115
Ours 937114 940113 93512 909:;3 933:,5 884107 89.0:0s 898.0s 904, 81243 841,97 824..6 90.25 1 4
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