
Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

NAVIGATING SOLUTION SPACES IN LARGE LAN-
GUAGE MODELS THROUGH CONTROLLED EMBED-
DING EXPLORATION

Qinglin Zhu1∗ Runcong Zhao1∗ Hanqi Yan1 Yulan He1,2 Yudong Chen3† Lin Gui1†

1King’s College London 2The Alan Turing Institute 3University of Warwick
{qinglin.1.zhu, runcong.zhao, hanqi.yan, yulan.he}@kcl.ac.uk
yudong.chen@warwick.ac.uk, lin.1.gui@kcl.ac.uk

ABSTRACT

Large Language Models (LLMs) struggle with reasoning due to limited diversity
and inefficient search. We propose an embedding-based search framework that
optimises the embedding of the first token to guide generation. It combines (1)
Embedding perturbation for controlled exploration and (2) Bayesian optimisation
to refine embeddings via a verifier-guided objective, balancing exploration and
exploitation. This approach improves reasoning accuracy and coherence while
avoiding reliance on heuristic search. Experiments demonstrate superior correct-
ness with minimal computation, making it a scalable, model-agnostic solution.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable potential in various reasoning tasks.
Despite these advancements, they still face significant limitations in complex reasoning tasks Light-
man et al. (2024); Wang et al. (2023a). Many existing approaches typically increase generation
diversity through multiple sampling (Lightman et al., 2024), often controlled by temperature scal-
ing, which adjusts the randomness of token selection Brown et al. (2024). Planning-based methods,
such as chain-of-thought reasoning Wei et al. (2024); Wang et al. (2023a) or tree-structured search
Yao et al. (2023), attempt to locate the correct answer by following language-based instructions.

Despite these efforts, two key challenges remain: (1) Enhancing generation diversity typically relies
on increasing the temperature parameter, which flattens the token distribution. This, however, does
not necessarily result in better coverage of the correct answer, as increasing low-probability token
likelihood indiscriminately may introduce noise rather than meaningful exploration Holtzman et al.
(2020). (2) Existing planning and search methods such as sampling multiple reasoning paths rely
heavily on heuristic strategies, guided by prompts (Hao et al., 2023; Qi et al., 2024). However, these
approaches do not directly adjust for the model’s internal representations, thereby making the search
process inefficient and highly dependent on surface-level prompt variations. This often leads to a
“wild-goose chase”, where search remains constrained by randomness and indirect heuristics rather
than systematic optimisation.

To address these challenges, we propose a novel approach using controlled embedding exploration:
(1) By injecting a Gaussian embedding into the decoding of the first answer token, we can adjust
the distribution of low-probability tokens in a more controlled manner than uniform temperature
tuning, leading to more flexible generation. (2) Treating the LLM as a black box verifier, we apply
Bayesian optimisation (Frazier, 2018) on the injected embedding to maximise a verification-based
reward. This allows us to use observerd rewards to directly guide the exploration in the embedding
space. As a result, our method improves performance without requiring a strong verifier—even
when both generation and verification originate from the same model. As illustrated in Figure 1, the
proposed method offers several advantages: (1) By employing a more flexible strategy for answer
generation, the model enables broader answer coverage within the candidate set. (2) In the search
phase, instead of relying on language-instruction-based searching or planning, our method directly

∗Equal Contribution, †Corresponding author.

1

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Updating 𝜀𝑖 according to
Gaussian optimisation

until converge
Darrell Allen their age ratio result … …

𝜀𝑘
… …

Darrell Allen their age ratio result … …

𝜀2

Darrell and Allen's ages are in the ratio of 7:11. If
their total age now is 162, calculate Allen's age 10
years from now.

Question

Decoding the Answer

Distribution of the first token

Darrell Allen their age ratio result … …

Darrell Allen their age ratio result … …

Tuning the temperature and flatting the curve,
but the order of candidates doesn’t change.

Adjusting the distribution by injecting different controllable Gaussian embedding.

Sampling and Iteratively
decoding the answer

Sampling and Iteratively
decoding the answer

Mainstream approach:

Our proposed approach:

Darrell Allen their age ratio result … …

𝜀1

LLM𝜃

Figure 1: Comparison of Mainstream and Proposed Approaches.

optimises the embedding of the first token using Bayesian optimisation. This optimisation operates
in the embedding space rather than the discrete token space and refines the model’s reasoning tra-
jectory while modifying only a single additional token in the decoding process. Moreover, since it
does not require access to the model’s parameters, it serves as an off-the-shelf solution that can be
easily applied to most mainstream LLMs for reasoning tasks.

Our contributions can be summarised as follows:

• By injecting a Gaussian random vector into the decoding of the first answer token, the
method provides a more controlled way to adjust the distribution of low-probability tokens,
leading to more flexible and diverse answer generation than standard temperature tuning.

• Instead of language-based instruction or heuristic search, our method directly optimises the
embedding of the first token, effectively reducing search complexity to the modification of
a single additional token in the decoding process, improving efficiency and accuracy.

• Our framework treats the LLM as a black box, enhancing logical consistency and answer
quality without accessing model parameters, allowing seamless integration into mainstream
LLMs. Experiments show that it outperforms traditional decoding in correctness while
being computationally efficient.

2 RELATED WORK

2.1 DECODING STRATEGIES AND DIVERSITY

Recent advances in LLM decoding aim to enhance diversity for tasks requiring creativity and ex-
ploration. Traditional methods such as greedy and beam search often produce repetitive outputs
Holtzman et al. (2020); Welleck et al. (2019), while sampling-based approaches (top-k, nucleus)
introduce randomness but struggle to balance quality and diversity Fan et al. (2018); Holtzman et al.
(2020). High-temperature settings can lead to incoherent outputs Nguyen et al. (2024), and adaptive
methods like min-p sampling Nguyen et al. (2024) require careful tuning. Debiasing-Diversifying
Decoding (D3) mitigates amplification bias but increases computational cost Bao et al. (2024). Cru-
cially, most methods overlook the impact of initial token selection, which significantly influences
reasoning outcomes Wang & Zhou (2024). Our approach addresses this by perturbing initial to-
ken embeddings with Gaussian noise, reshaping the probability distribution to improve exploration
while maintaining quality and efficiency.

2.2 EFFICIENT EXPLORATION OF SOLUTION SPACES

Efficient solution space exploration is crucial for enhancing LLM reasoning while maintaining prac-
tical computational costs. Increasing generated samples improves coverage Brown et al. (2024) but
is computationally prohibitive. Optimising test-time compute allocation is more effective than scal-
ing model size Snell et al. (2024), though it requires task-specific strategies. Mutual reasoning
frameworks leveraging self-play and MCTS Qi et al. (2024); Yan et al. (2024), as well as Tree of
Thoughts (ToT) Yao et al. (2023), explore multiple reasoning paths but incur high computational
overhead. Thought Space Explorer (TSE) Zhang et al. (2024a) enhances reasoning breadth but at

2

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

w𝟏
(𝟏)

w𝟏
(𝟐) …

w𝟐
(𝟏)

w𝟐
(𝟐) …

wk
(𝟏)

wk
(𝟐) …

𝑦1

𝑦2

𝑦𝑘

… …

𝑥1

𝑥2

𝑥𝑘

…

Diverse Outputs
𝑦1:𝑘

V
er

if
ie

r

r𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑟(𝑦1)

r𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑟(𝑦2)

r𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑟(𝑦𝑘)

𝒓𝒗𝒆𝒓𝒊𝒇𝒊𝒆𝒓(𝒚𝟏:𝒌)𝒓𝒄𝒐𝒉𝒆𝒓𝒆𝒏𝒄𝒆(𝒚𝟏:𝒌) +=𝒇(𝒙𝟏:𝒌)

𝒇 𝒙 | 𝒇(𝒙𝟏:𝒌)

LLM𝜃

𝒘(𝟏) 𝒘(𝟐) …

𝑥2

𝑥1

𝑥𝑘

𝑥𝑖 = 𝑧 + 𝜎𝜀𝑖

𝑬𝑰(𝒙)

𝑓 𝑥

𝐸𝐼 𝑥

Bayesian credible intervals for 𝑓(𝑥)

Estimate of 𝑓(𝑥)

·

The point maximise 𝐸𝐼(𝑥)

𝑧

𝑥2

𝑥1

𝑥𝑘

𝑧

Where to sample next

𝑥𝑘+1

𝑥

𝑥

Embedding of 𝑤(1)

Loop until
convergence

L
L

M
𝜃

Perturbed Embeddings
𝑥1:𝑘

: =

: =

: =

𝑘 += 1

Question prompt
q

Figure 2: Overview of Our Approach. Starting with a natural language question prompt, the model
generates initial token embeddings w(1), which, due to greedy decoding, determine the entire out-
put. These embeddings are perturbed to create candidate embeddings x1:k, leading to outputs y1:k
through greedy search, which are then evaluated for coherence and verifier feedback. A Bayesian
optimisation framework updates its estimation of the space based on this feedback and selects the
next sampling point that maximises the expected improvement, balancing exploration and exploita-
tion to refine the search for high-quality outputs.

additional cost. Our method refines these approaches by integrating controlled initial-token em-
bedding perturbations with a strategic search algorithm inspired by MCTS and mutual reasoning.
By introducing exploration early through embedding perturbation and guiding search via a veri-
fier, we improve efficiency without excessive computational overhead, striking a balance between
exploration and exploitation to optimise reasoning performance.

3 PRELIMINARY: TEMPERATURE SCALING

A common approach for generating diverse outputs is temperature scaling, which controls the ran-
domness in the token generation process by modifying the softmax distribution over the model’s
output logits. For a given temperature τ > 0, the probability of selecting token w(t) at time step t is
given by:

P (w(t) | w(1:t−1); θ, τ) =
exp(ℓt,w(t)/τ)∑
w exp(ℓt,w/τ)

,

where w(1:t−1) represents the sequence of tokens {w(1), . . . , w(t−1)} generated from the first token
up to the (t−1)th token, ℓt,w denotes the logit at time t corresponding to token w, and τ controls the
sharpness of the distribution. This scaling flattens the distribution but preserves the relative ranking
of token probabilities. When τ is low, the results concentrate on a few high-probability tokens,
leading to overly deterministic generations with limited diversity. When τ is high, the model may
sample low-probability tokens, leading to incoherent outputs.

While this approach increases diversity, it lacks control, blindly flattening token probabilities; adapt-
ability, as it ignores verifier feedback; and efficiency, often requiring multiple samples or retraining
(Joy et al., 2023; Xie et al., 2024). These limitations make it ineffective for structured reasoning
tasks that demand precise and efficient exploration.

4 METHODOLOGY

Generating accurate answers in complex tasks requires both exploring reasoning paths and verifying
for their correctness. To achieve this, we propose a two-step framework as shown in Figure 2: (1)
Embedding perturbation applies a Gaussian adjustment to the first-token embedding for controlled

3

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

modifications beyond uniform tuning. (2) Bayesian optimisation refines the perturbed embedding to
maximise a verifier-guided reward, improving reasoning path selection.

4.1 EMBEDDING PERTURBATION

Given a generative model gθ and a natural language question prompt q, the first token w(1) is gen-
erated using greedy decoding, which selects the token with the highest probability from the model’s
predicted distribution:

w(1) = argmax
w

P (w | q; θ),

where P (·) represents the probability distribution over the possible tokens predicted by the model
gθ.

Let z ∈ RD represent the embedding of the token w(1). This embedding serves as a prior, represent-
ing a “correct starting point” in the latent space. To explore the neighbourhood of this embedding,
we define a set of perturbed embeddings xi for i = 1, . . . , k as follows:

xi = z + σεi, εi ∼ N (0, I),

where εi represents random perturbations drawn from a standard normal distribution, and σ is a
scaling factor controlling the magnitude of the perturbation. This formulation allows us to sample
from the local vicinity of the original embedding z, exploring variations around the initial token
representation.

For each perturbed embedding xi, we treat it as a new special token and add it to the current vo-
cabulary. This special token is then used as the first token for generating an answer. Since we use
greedy decoding, the choice of xi fully determines the entire output sequence. The remaining
tokens w(2), w(3), . . . , w(L) are deterministically generated based on xi:

w(t) = argmax
w

P (w | xi, w
(2:t−1), q; θ).

We repeat this process k times, generating k different answers, where y = w(1:L) represents the
complete output. Because the output is fully determined by xi, embedding perturbation effectively
serves as a sampling mechanism over the entire answer space.

4.2 EXPLORING THE EMBEDDING SPACE

While randomly sampling points with infinite computational resources could theoretically approx-
imate the optimal solution, this approach is highly inefficient, especially given the computational
expense of sampling with an LLM. Instead, we adopt Bayesian optimisation, which consists of two
key components: an objective function and an acquisition function that determine where to sample
next. We use Expected Improvement (EI) as our acquisition function, which offers a closed-form
solution (Frazier, 2018) with negligible computational cost, making it significantly more efficient
by comparison. EI effectively balances exploration (searching uncertain regions) and exploitation
(refining promising areas), selecting the point with the highest EI at each iteration to guide the
optimisation process toward convergence.

Optimisation Objective. To evaluate the objective function with k sampled perturbed embed-
dings, we consider the sequence x1:k = {x1, . . . , xk}, where each xi ∈ RD. The corresponding
answers are then generated as described above: y1:k = {y1, . . . , yk}. Comparing and refining mul-
tiple generated answers has been shown to improve performance (Miao et al., 2024). Additionally,
since LLMs are primarily trained for text generation rather than explicit judgment, prompting them
to regenerate and compare outputs can yield better results (Zhang et al., 2024b). Building on these
insights, we propose a verifier-guided approach, where the model evaluates a batch of candidate an-
swers and produces a refined output yv = V(y1:k). The correctness of an answer y is then assessed
as a binary indicator (0 or 1), based on its alignment with the verifier’s final output.

The embedding space may not be uniform, implying that perturbations in different directions can
lead to uneven semantic shifts (Li et al., 2023; Park et al., 2024). In some dimensions, even small
perturbations can significantly alter meaning, potentially disrupting grammar or context consistency
and leading to incoherent outputs. To address this issue, we introduce the coherence term to prune

4

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

low-quality generations, ensuring that only outputs with desirable semantic and syntactic properties
are retained. To evaluate the quality of a generated output y, we define an objective function f(x)
that balances correctness and fluency:

f(x) = rverifier(y) + rcoherence(y), (1)

where:

• Verifier Score (rverifier): This is a binary indicator provided by the verifier, reflecting the
correctness of y:

rverifier(y) = 1{yv=y};

• Coherence (rcoherence): This term evaluates the fluency of the generated sequence based on
token probabilities:

rcoherence(y) =

T∑
i=1

logP (w(i)),

where P (w(i)) is the probability of generating token w(i) from the LLM’s entire vocabu-
lary.

Bayesian Optimisation. Our goal is to maximise f(·), as defined in equation 1, over the embedding
space RD. To optimise this black-box function, Bayesian optimisation uses a prior distribution on
the domain to represent our beliefs about the behavior of the function and iteratively updates this
prior using newly acquired data. Specifically, we model the prior joint distribution as a multivariate
Gaussian distribution:

f(x1:n) ∼ N
(
µ0(x1:n),Σ0(x1:n, x1:n)

)
,

where µ0(x1:n) is the prior mean vector, and Σ0(x1:n, x1:n) is the prior covariance matrix.

After observing f(x1:k), we aim to infer the value of f(x) at a new point x. Using Bayes’ rule
(Rasmussen & Williams, 2006), we update the posterior distribution of f(x) conditioned on these
observed values:

f(x) | f(x1:k) ∼ N (µk(x), σ
2
k(x)). (2)

Here, µk(x) and σ2
k(x) represent the posterior mean and variance, respectively. A detailed dis-

cussion on the choice of the prior distribution and the computation of the posterior distribution is
provided in Appendix B.2.

A naive way to find the maximiser at this stage would be to select among the previously evaluated
points x1, . . . , xk the one with the highest observed function value. Let f∗

k := maxm≤k f(xm)
denote this value. If we were to sample another point x ∈ RD and observe f(x), then the value of
the best observed point would either be f(x) (if f(x) ≥ f∗

k) or f∗
k (if f(x) < f∗

k). The improvement
in the value of the best observed point could be expressed as [f(x)− f∗

k]
+ := max(f(x)− f∗

k , 0).

While we would ideally choose x to maximise this improvement, f(x) is unknown until after the
evaluation. Instead, we select x that maximises the expected improvement under the posterior dis-
tribution, defined as

EIk(x) := Ek

[
[f(x)− f∗

k]
+
]
, (3)

where Ek denotes the expectation taken with respect to the posterior distribution equation 2. Using
integration by parts, we can write EI equation 3 in a closed-form expression:

EIk(x) =
[
µk(x)− f∗

k

]+
+ σk(x)ϕ

(
µk(x)− f∗

k

σk(x)

)
−
∣∣µk(x)− f∗

k

∣∣Φ(µk(x)− f∗
k

σk(x)

)
,

where ϕ and Φ denote the probability density function and the cumulative distribution function of
the standard normal distribution, respectively.

Our next sampling point, xk+1 ∈ RD, is the maximiser of EI. We then iteratively update the poste-
rior distribution and the EI function. Details on how we select x to maximise EIk(x) can be found
in Appendix B.3. Convergence is considered achieved when the change in the objective function

5

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

between consecutive iterations satisfies |fk − fk−1| < ϵ, where ϵ is a predefined threshold. Ad-
ditionally, the algorithm terminates after a maximum of K iterations if convergence has not been
reached.

In defining f(x), we assume an ideal verifier with perfect accuracy, meaning it provides an error-free
assessment of correctness. However, in practice, the verifier’s accuracy is less than 1, introducing
uncertainty into its evaluations. To address this noise in Bayesian optimisation, we use an adaptive
version of the EI acquisition function that explicitly incorporates observation uncertainty. This adap-
tation dynamically adjusts the exploration rate based on uncertainty, ensuring a higher probability
of convergence while balancing exploration and exploitation (Vakili et al., 2021; Tran-The et al.,
2022). Theoretical foundations and implementation details are provided in Appendix B.4.

Dimension Reduction. One shortcoming of using traditional Bayesian optimisation methods for
identifying the point with maximum EI (Mockus, 1975; Hvarfner et al., 2024) is that they perform
poorly when the search space exceeds 20–30 dimensions due to the curse of dimensionality (Kan-
dasamy et al., 2015; Letham et al., 2020; Wang et al., 2023b). In high-dimensional spaces, surrogate
models require an exponentially larger number of points to accurately estimate the maximum of the
EI function, making optimisation highly inefficient. With the dimension of embedding vectors for
LLMs typically ranging from 768 to 8192 or more, traditional methods are impractical in our setting.

To address this, we leverage a dimension reduction approach based on random embeddings (Wang
et al., 2016; Nayebi et al., 2019). Specifically, if a function f : RD → R has an effective dimension
de ≤ D, then with high probability, there exists a lower-dimensional representation g(u) := f(Au),
where A is a random projection matrix. This allows optimisation to be performed in a lower-
dimensional space Rd instead of the original RD. Using this approach, we iteratively optimise the
function in the reduced space and map solutions back to the original space. Theoretical foundations
and implementation details are provided in Appendix B.5.

5 EXPERIMENTS

We benchmark our method against strong baselines and conduct ablation studies.

5.1 EXPERIMENTAL SETUP

Datasets and Models. We conduct experiments using three LLMs: Llama-3.1-8B-Instruct (Meta,
2024), Qwen2-7B-Instruct (Yang et al., 2024), and Mistral-8B-Instruct (Jiang et al., 2023). The mod-
els are evaluated on four benchmark datasets, including three complex mathematical tasks (GSM8K
(Cobbe et al., 2021), GSM-Hard (Gao et al., 2022), SVAMP (Patel et al., 2021)), and one common-
sense reasoning task StrategyQA (Geva et al., 2021).

Baselines. Our baselines include: (1) CoT Prompting, which includes zero-shot CoT (Kojima
et al., 2022) and Few-Shot CoT (Wei et al., 2022); (2) Self-Consistency Decoding (Wang et al.,
2023c), which involves sampling answers at various temperatures τ ∈ {0.4, 0.6, 0.8} and selecting
the final answer through majority voting; (3) FIRE (Chen et al., 2024), which adjusts the decoding
process by setting the temperature of the first token to 30 to enhance diversity, while subsequent
tokens are generated using the standard temperature setting; (4) CoT-Decoding (Wang & Zhou,
2024), which generates k answers by sampling the top-k tokens from the probability distribution of
the first token. Each of these top-k tokens is used as the starting point for decoding the remainder
of the answer; and (5) RAP (Hao et al., 2023), which uses Monte Carlo Tree Search to explore
reasoning paths strategically, balancing exploration and exploitation to find solutions efficiently.
Note that RAP requires problem decomposition via examples; hence we only report its performance
in the few-shot setting.

Setup & Hyperparameters. Experiments are conducted in zero-shot and few-shot settings, with
prompts including 1, 2, 4, and 8 exemplars for few-shot settings. To reduce variance, each configu-
ration is repeated five times with different random seeds. We report the mean and standard deviation
of accuracy across all runs. The convergence threshold is set to 0.01.

Table 1 presents the accuracy of our method compared to baselines across four benchmarks and
three LLMs under zero-shot and few-shot (8-shot) settings. The full table can be found in Table 6 in

6

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 1: Performances of different reasoning methods on Accuracy (%) across all benchmarks.

Model Method GSM8K GSM-Hard SVAMP StrategyQA
Zero Shot Few Shot Zero Shot Few Shot Zero Shot Few Shot Zero Shot Few Shot

LLaMA3-8B-Ins

COT 53.0±0.0 77.4±0.0 14.0±0.0 28.0±0.0 61.0±0.0 83.0±0.0 58.5±0.0 68.5±0.0

SC(τ = 0.4) 73.0±1.6 80.4±1.4 25.7±0.4 31.8±1.8 79.1±1.2 87.1±1.0 64.7±0.7 71.6±0.8

SC(τ = 0.6) 73.6±2.5 80.6±1.5 24.5±1.1 31.2±1.3 76.1±3.9 87.7±1.2 59.9±2.0 71.3±1.5

SC(τ = 0.8) 65.0±2.0 81.1±1.1 21.8±1.3 30.8±0.9 69.6±2.0 87.4±1.2 54.4±2.6 72.7±1.2

FIRE 73.8±2.3 79.6±2.9 25.2±3.0 25.7±2.1 81.5±0.8 87.6±2.0 63.0±3.7 72.8±1.5

CoT-Decoding 73.9±1.9 80.3±1.7 24.8±1.3 30.3±1.3 83.2±1.2 88.2±1.0 64.6±1.6 73.3±1.8

RAP - 80.7±1.4 - 32.7±1.2 - 87.9±1.1 - 73.4±1.1

Ours 79.4±1.2 84.3±1.4 28.2±1.8 35.7±1.0 88.2±1.3 90.2±0.6 67.2±0.7 75.6±0.8

w/o rverifier 76.8±1.0 82.0±0.5 26.3±1.3 34.8±0.3 86.7±1.2 89.5±0.5 66.2±2.8 74.3±1.6

w/o rcoherence 77.4±2.1 83.4±0.7 27.9±1.5 35.3±1.3 84.6±2.4 90.1±0.9 66.0±1.3 75.0±1.5

Qwen2-7B-Ins

COT 64.5±0.0 82.5±0.0 40.0±0.0 55.5±0.0 43.5±0.0 86.0±0.0 63.0±0.0 70.0±0.0

SC(τ = 0.4) 81.2±0.6 85.7±1.5 47.5±1.4 55.4±0.7 72.3±2.0 90.3±1.2 67.1±1.5 71.1±1.6

SC(τ = 0.6) 80.2±1.9 85.4±0.9 46.2±1.9 53.4±0.6 77.3±1.2 90.4±0.6 67.5±0.7 69.1±1.2

SC(τ = 0.8) 80.0±0.9 85.1±1.6 47.3±1.3 55.4±0.9 78.6±2.1 90.6±1.2 67.0±1.0 70.1±0.8

FIRE 81.0±1.8 83.0±1.3 45.1±2.0 51.0±1.8 76.3±2.2 90.6±0.2 67.6±0.8 68.1±0.8

CoT-Decoding 82.0±2.8 84.5±2.1 46.7±2.3 52.1±1.0 78.6±1.6 89.7±0.5 65.9±1.5 69.5±2.1

RAP - 86.2±1.2 - 56.2±0.8 - 90.8±1.1 - 71.3±1.3

Ours 88.6±1.2 90.0±1.4 53.7±1.6 58.7±0.5 83.4±2.4 92.2±0.8 68.1±1.5 70.3±1.3

w/o rverifier 87.0±1.0 89.7±1.8 51.2±2.1 58.3±1.0 73.5±4.0 90.5±1.5 66.0±0.9 68.3±1.6

w/o rcoherence 87.3±2.0 89.2±1.3 52.0±1.5 60.0±1.0 76.7±1.4 90.7±0.6 66.5±0.5 69.5±1.5

Mistral-7B-Ins

COT 42.0±0.0 54.0±0.0 14.5±0.0 24.0±0.0 52.0±0.0 72.0±0.0 62.0±0.0 69.0±0.0

SC(τ = 0.4) 52.9±0.5 58.3±1.5 19.5±1.0 26.1±1.5 67.4±2.5 77.8±1.0 63.9±1.5 72.6±1.2

SC(τ = 0.6) 55.1±3.6 57.4±1.0 20.7±1.5 25.3±1.6 69.7±1.6 78.4±2.0 64.2±1.0 71.7±0.8

SC(τ = 0.8) 50.2±2.6 57.7±2.6 19.1±2.0 26.6±1.1 68.3±0.9 77.6±1.1 64.9±1.0 72.1±1.5

FIRE 47.2±2.9 56.1±3.2 18.1±1.9 26.3±1.4 67.1±1.9 78.4±1.2 64.2±1.0 71.0±2.2

CoT-Decoding 47.3±3.0 58.2±2.3 16.6±0.7 27.4±1.6 69.4±2.5 78.6±1.4 63.5±1.5 72.7±2.1

RAP - 58.6±1.8 - 27.6±1.2 - 79.4±1.1 - 72.4±1.3

Ours 61.4±2.5 62.7±1.0 25.8±1.8 32.5±1.5 72.2±2.2 82.1±1.2 66.1±1.9 72.8±1.5

w/o rverifier 59.5±1.3 59.7±2.8 24.8±0.8 30.8±2.1 69.5±2.3 79.8±0.8 64.8±0.6 71.8±1.4

w/o rcoherence 61.2±2.3 60.3±2.5 25.5±3.3 29.5±2.3 70.2±1.6 80.0±1.0 65.5±1.7 72.0±1.3

Appendix C.5. Our approach consistently outperforms the best-performing baseline across different
models, especially in the zero-shot setting (average improvement of 5% on GSM8K and 3% on
GSM-Hard). Similar gains appear in the few-shot setting, where our method achieves the highest
accuracy on most tasks and model variants. While effective, SC requires extensive hyperparameter
tuning (e.g. varying temperature values) for each individual model and dataset to achieve optimal
performance. In contrast, our more systematic search method improves solution quality consistently
without the need for separate tuning in each scenario.

Coverage Analysis. For each method, we calculate the probability of covering the correct answer
in at least one of the generated answers. Our approach consistently achieves the highest coverage
across all models and datasets. For instance, on GSM8K with LLaMA3-8B-Ins in the zero-shot set-
ting, our method attains 91.8% coverage, outperforming FIRE (84.5%) and CoT-Decoding (85.3%).
Detailed coverage probabilities for all models and datasets can be found in Table 7 in Appendix C.5.
These results demonstrate that our controlled exploration strategy effectively enhances the likelihood
of generating correct answers, highlighting its robustness over traditional methods.

Effect of Exploration with Embedding Perturbations and Bayesian Optimisation. A natural
question to consider is why adding noise to embeddings leads to more diverse answer generation than
temperature tuning. We follow Naik et al. (2024) to investigate this from the perspective of neuron
activations in the Transformer’s MLP layers. As shown in Figure 3a, applying our method increases
the activation rate of neurons by roughly 3–4% in nearly all layers relative to the Self-Consistency
(SC) baseline, suggesting that our perturbations stochastically trigger more diverse neural pathways.

To probe whether a specific subset of “critical neurons” may be responsible for correct reasoning, we
identify neurons whose activations exhibit the strongest correlation with correctness. In Figure 3b,
we track the activation rate of these critical neurons across our Bayesian optimisation iterations. We
observe a steady increase, particularly in layers 15–30, suggesting that our iterative sampling and
verification procedure increasingly activates these key pathways.

Together, these findings support the hypothesis that our embedding perturbation and controlled ex-
ploration approach not only diversifies generation but also systematically uncovers and reinforces

7

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

(a) MLP layer activation rates
across Transformer layers for the
first five tokens of generated an-
swers, sampled 200 times.

(b) Activation rates of critical MLP
neurons across Transformer layers
during initialization and iterations.

Accuracy

Covariance
Matrix

1st iteration 2nd iteration 3rd iterationInitialisation

(c) Visualization of the accu-
racy and covariance matrix evolu-
tion during Bayesian optimisation
across iterations.

Figure 3: Transformer MLP activation and Bayesian optimisation convergence analysis.

the neuron activations crucial for deriving correct answers. For more detailed experimental proce-
dures, please refer to Appendix C.2.

Table 2: Proportion (%) of test examples that ter-
minate at the nth iteration for each dataset and set-
ting using LLaMA.

Shot Iteration GSM8K GSM-Hard SVAMP StrategyQA

Zero

1 65.0±2.9 70.3±3.0 64.8±1.9 58.8±2.3

2 30.1±2.9 24.4±3.0 28.9±1.8 31.1±2.3

3 4.1±1.6 4.9±1.6 5.4±1.3 8.8±1.8

4 0.8±0.8 0.4±0.3 0.9±0.5 1.4±0.5

Few

1 76.8±2.2 77.4±2.2 79.7±2.0 66.7±3.7

2 20.7±0.8 20.6±2.7 19.1±2.8 26.6±3.7

3 2.5±1.4 1.8±0.6 1.2±1.0 6.1±2.1

4 0.0±0.0 0.2±0.3 0.0±0.0 0.6±0.4

Convergence of Bayesian Optimisation.
Another question regarding our search algo-
rithm is how quickly and reliably it converges.
To investigate this, we track two key metrics
across our Bayesian optimisation iterations: (1)
The evolution of the covariance matrix among
the sampled embedding points. As shown
in Figure 3c, the covariance matrix becomes
more structured over iterations, showing higher
correlations among top-performing candidates.
(2) The proportion of test examples that termi-
nate after the nth iteration for each dataset in both zero-shot and few-shot settings, as reported in
Table 2. With a maximum of 4 iterations, no search exceeds the fourth iteration, and only a small
fraction require iteration 4. This rapid termination suggests that the EI-driven sampling strategy
quickly identifies promising regions of the embedding space for most queries, minimising the need
for further rounds of exploration.

Table 3: Comparison of performance and to-
ken usage between our method and RAP across
benchmarks.

Category Shot GSM8K GSM-Hard SVAMP StrategyQA

Result (%) RAP 80.7 32.7 87.9 73.4
Ours 84.3 35.7 90.2 75.6

Input Token Count RAP 25710.8k 33152.1k 15058.5k 17426.2k
Ours 1457.1k 1847.8k 1172.8k 1180.6k

Output Token Count RAP 334.1k 402.5k 241.2k 274.1k
Ours 211.9k 262.5k 162.4k 155.4k

Efficiency and Performance Analysis. Ta-
ble 3 presents a comparison of our approach
with RAP in both performance and efficiency.
Our method achieves better accuracy on all
tasks while drastically reducing computational
overhead. Specifically, our input token con-
sumption averages only 6.19% of RAP’s, and
our output token usage is 63.28% of RAP’s.
These results highlight that our method not only
improves accuracy but also substantially reduces token usage, thereby delivering superior overall ef-
ficiency.

5.2 ABLATION STUDIES

Objective Function. To evaluate the importance of each reward component, we removed either the
verifier score (w/o rverifier) or the coherence term (w/o rcoherence) from our method. Tables 1 compare
these ablated variants with our full approach. In all tasks and model configurations, omitting either
term degrades both accuracy and coverage, indicating that both components are vital. The verifier
score clearly helps filter out incorrect or spurious solutions, while the coherence penalty ensures each
output remains semantically consistent, particularly for complex or multi-step reasoning. Indeed,

8

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

both correctness-guided verification and semantic coherence play essential roles in navigating the
solution space effectively.

Impact of Lower-Dimensional Space Dimensionality. We evaluate our Bayesian optimisation
approach under various reduced dimensions before mapping back to the full embedding space (Fig-
ure 5). Across all four tasks and both zero- and few-shot settings, performance tends to improve up
to d = 50. Although increasing d to 60 sometimes yields a small additional gain, the differences are
minor, and d = 50 consistently achieves near-best or best results.

Table 4: Comparison of accuracy and coverage
across different special token placements.

Type Shot Iteration GSM8K GSM-Hard SVAMP StrategyQA

Result

Zero
First 77.7±2.5 25.5±1.3 85.0±0.9 67.0±1.3

Middle 78.5±3.1 27.3±1.3 84.0±0.9 67.8±4.4

Last (ours) 79.4±1.2 28.2±1.8 88.2±1.3 67.2±0.7

Few
First 82.1±0.8 29.0±3.5 89.2±0.3 74.1±0.8

Middle 82.3±0.8 32.3±1.8 89.7±1.3 74.0±3.0

Last (ours) 84.3±1.4 35.7±1.0 90.2±0.6 75.6±0.8

Coverage

Zero
First 85.8±2.3 31.2±2.8 93.0±1.8 92.7±0.0

Middle 89.5±2.6 32.7±0.8 93.3±1.0 93.1±0.3

Last (ours) 91.8±1.4 37.0±1.5 93.8±0.4 93.7±1.3

Few
First 92.0±0.5 40.8±1.2 94.7±1.2 93.4±0.9

Middle 92.2±1.0 44.7±2.5 94.5±0.5 93.1±0.8

Last (ours) 92.2±0.8 49.8±1.0 95.8±1.2 93.3±1.8

Impact of Special Token Placement. We
compare three ways of inserting the perturbed
special token into the prompt: at the beginning
(First), somewhere in the middle (Middle), or
as an appended token (Last). Table 4 shows for
both zero-shot and few-shot settings, placing
the special token at the end of the prompt (Last)
generally yields higher accuracy and better cov-
erage. One possible explanation is that plac-
ing the special token last ensures minimal dis-
ruption to the original semantics of the prompt,
while still allowing our method to alter the ini-
tial token embedding and induce sufficiently di-
verse generation pathways.

Table 5: Combined results for verifier strategies:
(a) Binary Classification Accuracy and (b) Final
Accuracy in Overall Framework.

(a) Binary Classification Accuracy
GSM8K GSM-Hard SVAMP StrategyQA

Single-Judge 75.9 60.9 82.7 63.9
Multi-Judge 80.4 46.8 87.5 67.3
Single-Generate 78.0 40.7 82.7 71.7
Multi-Generate (ours) 87.6 78.2 93.4 78.9

(b) Final Accuracy in Overall Framework
Zero-shot

Verifier GSM8K GSM-Hard SVAMP StrategyQA

Single-Judge 76.3±1.5 28.1±1.6 83.0±1.4 63.0±1.7

Multi-Judge 77.4±2.2 26.5±2.2 86.5±1.3 67.1±0.8

Single-Generate 76.5±1.1 27.6±2.1 84.3±0.0 66.4±0.0

Multi-Generate 79.4±1.2 28.2±1.8 88.2±1.3 67.2±0.7

Few-shot
Verifier GSM8K GSM-Hard SVAMP StrategyQA

Single-Judge 82.4±1.5 35.0±1.4 89.6±1.4 72.0±1.3

Multi-Judge 82.5±1.3 36.1±2.1 90.1±0.9 73.2±1.2

Single-Generate 82.4±1.3 34.5±1.4 89.7±1.2 74.7±1.2

Multi-Generate 84.3±1.4 35.7±1.0 90.2±0.6 75.6±0.8

Verifier Comparison: Judgement vs. Gen-
eration. Inspired by recent work suggesting
that LLMs can be more adept at generating
correct outputs than critiquing existing ones
(Miao et al., 2024; Zhang et al., 2024b), we
explore four verifier strategies: Single-Judge,
which evaluates each candidate independently;
Single-Generate, which regenerates a purport-
edly correct answer for each candidate; Multi-
Judge, which scores multiple candidates col-
lectively; and Multi-Generate, which pro-
duces a new solution from multiple candidates,
labeling any matching candidate as correct. The
detailed definitions of these prompt templates
are provided in Appendix C.3.

Table 5a reports the binary classification accu-
racies for each verifier. Multi-Generate yields
the highest verification accuracy on all datasets.
This indicates that leveraging the model’s gen-
erative capabilities leads to more reliable cor-
rectness assessment.

We compare final solution accuracy in Table 5b. While single verifiers judge or generate answers in-
dividually, multi-candidate generation leads to the highest end-to-end performance. Multi-Generate
outperforms alternatives in both zero-shot and few-shot settings, harnessing the model’s generative
capacity more effectively than judgment-based verifiers. Notably, even substituting simpler verifiers
keeps our framework competitive with strong baselines, underscoring the robustness and efficacy
of generation-based verification. Details on how the number of sampled embeddings k influences
performance are provided in Appendix C.4.

6 CONCLUSIONS AND FUTURE DIRECTIONS

We introduce an embedding-based optimisation framework that enhances LLM reasoning by re-
fining the first-token embedding. By integrating controlled perturbations with Bayesian optimisa-

9

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

tion, our method improves accuracy, is model-agnostic, and remains computationally efficient. Our
approach relies on a verifier that may provide unreliable feedback, impacting optimisation. Addi-
tionally, it operates at the token level without clear interpretability of how perturbations influence
reasoning. Future work will focus on improving verifier reliability, extending optimisation beyond
the first token, and enhancing interpretability to better understand perturbation effects on reasoning.

ACKNOWLEDGMENTS

This work was supported in part by the UK Engi- neering and Physical Sciences Research Council
(EPSRC) through a Turing AI Fellowship (grant no. EP/V020579/1, EP/V020579/2) and a New
Horizons grant (grant no. EP/X019063/1), and In- novate UK through the Accelerating Trustworthy
AI programme (grant no. 10093055). A PhD studentship from the Chinese Scholarship Council
funds Qinglin Zhu. The authors also acknowledge the use of the King’s Computational Research,
Engineering, and Technology Environment (CREATE) at King’s College London.

REFERENCES

Keqin Bao, Jizhi Zhang, Yang Zhang, Xinyue Huo, Chong Chen, and Fuli Feng. Decoding matters:
Addressing amplification bias and homogeneity issue for llm-based recommendation, 2024. URL
https://arxiv.org/abs/2406.14900.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V. Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling,
2024. URL https://arxiv.org/abs/2407.21787.

Weizhe Chen, Zhicheng Zhang, Guanlin Liu, Renjie Zheng, Wenlei Shi, Chen Dun, Zheng Wu,
Xing Jin, and Lin Yan. Flaming-hot initiation with regular execution sampling for large language
models. arXiv preprint arXiv:2410.21236, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. In Iryna
Gurevych and Yusuke Miyao (eds.), Proceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers), pp. 889–898, Melbourne, Aus-
tralia, July 2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-1082. URL
https://aclanthology.org/P18-1082.

Peter I. Frazier. A tutorial on bayesian optimization, 2018. URL https://doi.org/10.
48550/arXiv.1807.02811. arXiv preprint.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. arXiv preprint arXiv:2211.10435, 2022.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did Aristotle
Use a Laptop? A Question Answering Benchmark with Implicit Reasoning Strategies. Transac-
tions of the Association for Computational Linguistics (TACL), 2021.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen Wang, Daisy Wang, and Zhiting Hu. Reasoning
with language model is planning with world model. In Houda Bouamor, Juan Pino, and Ka-
lika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pp. 8154–8173, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.507. URL https://aclanthology.org/2023.
emnlp-main.507/.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=rygGQyrFvH.

10

https://arxiv.org/abs/2406.14900
https://arxiv.org/abs/2407.21787
https://aclanthology.org/P18-1082
https://doi.org/10.48550/arXiv.1807.02811
https://doi.org/10.48550/arXiv.1807.02811
https://aclanthology.org/2023.emnlp-main.507/
https://aclanthology.org/2023.emnlp-main.507/
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Carl Hvarfner, Erik O. Hellsten, and Luigi Nardi. Vanilla bayesian optimization performs great
in high dimensions. In Proceedings of the 41st International Conference on Machine Learning
(ICML), volume 235, Vienna, Austria, 2024. PMLR.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Tom Joy, Francesco Pinto, Ser-Nam Lim, Philip H. S. Torr, and Puneet K. Dokania. Sample-
dependent adaptive temperature scaling for improved calibration. In Proceedings of the Thirty-
Seventh AAAI Conference on Artificial Intelligence (AAAI-23), 2023.

Kirthevasan Kandasamy, Jeff Schneider, and Barnabás Póczos. High dimensional bayesian opti-
misation and bandits via additive models. In Proceedings of the International Conference on
Machine Learning, pp. 295–304. PMLR, 2015.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Benjamin Letham, Roberto Calandra, Akshara Rai, and Eytan Bakshy. Re-examining linear embed-
dings for high-dimensional bayesian optimization. Advances in Neural Information Processing
Systems, 33:1546–1558, 2020.

Linyang Li, Ke Ren, Yunfan Shao, Pengyu Wang, and Xipeng Qiu. Perturbscore: Connecting dis-
crete and continuous perturbations in nlp. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.),
Findings of the Association for Computational Linguistics: EMNLP 2023, pp. 6638–6648, Sin-
gapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
findings-emnlp.442. URL https://aclanthology.org/2023.findings-emnlp.
442/.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=v8L0pN6EOi.

Meta. Introducing meta llama3: The most capable openly available llm to date, 2024. URL https:
//ai.meta.com/blog/meta-llama-3/.

Ning Miao, Yee Whye Teh, and Tom Rainforth. Selfcheck: Using llms to zero-shot check their own
step-by-step reasoning. In Proceedings of the International Conference on Learning Representa-
tions (ICLR), 2024.

J. Mockus. On bayesian methods for seeking the extremum. In Optimization Techniques IFIP
Technical Conference, pp. 400–404. Springer, 1975.

Ranjita Naik, Varun Chandrasekaran, Mert Yuksekgonul, Hamid Palangi, and Besmira Nushi. Di-
versity of thought improves reasoning abilities of llms. In Proceedings of the International Con-
ference on Learning Representations (ICLR), 2024.

Amin Nayebi, Alexander Munteanu, and Matthias Poloczek. A framework for bayesian optimiza-
tion in embedded subspaces. In Proceedings of the 36th International Conference on Machine
Learning (ICML), volume 97, pp. 4752–4761. PMLR, 2019.

Minh Nguyen, Andrew Baker, Clement Neo, Allen Roush, Andreas Kirsch, and Ravid Shwartz-
Ziv. Turning up the heat: Min-p sampling for creative and coherent llm outputs, 2024. URL
https://arxiv.org/abs/2407.01082.

Jae Hyeon Park, Gyoomin Lee, Seunggi Park, and Sung In Cho. Not All Classes Stand on
Same Embeddings: Calibrating a Semantic Distance with Metric Tensor. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024. URL
https://openreview.net/forum?id=zHUznVsBZp. Last modified: 13 Nov 2024.

11

https://aclanthology.org/2023.findings-emnlp.442/
https://aclanthology.org/2023.findings-emnlp.442/
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://arxiv.org/abs/2407.01082
https://openreview.net/forum?id=zHUznVsBZp

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pp. 2080–
2094, Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
naacl-main.168. URL https://aclanthology.org/2021.naacl-main.168.

Zhenting Qi, Mingyuan Ma, Jiahang Xu, Li Lyna Zhang, Fan Yang, and Mao Yang. Mutual reason-
ing makes smaller llms stronger problem-solvers, 2024. URL https://arxiv.org/abs/
2408.06195.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning.
MIT Press, 2006.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters, 2024. URL https://arxiv.org/
abs/2408.03314.

Hung Tran-The, Sunil Gupta, Santu Rana, and Svetha Venkatesh. Regret bounds for expected im-
provement algorithms in gaussian process bandit optimization. In Proceedings of the 25th In-
ternational Conference on Artificial Intelligence and Statistics (AISTATS), volume 151, Valencia,
Spain, 2022. PMLR.

Sattar Vakili, Kia Khezeli, and Victor Picheny. On information gain and regret bounds in gaussian
process bandits. In Arindam Banerjee and Kenji Fukumizu (eds.), Proceedings of The 24th Inter-
national Conference on Artificial Intelligence and Statistics (AISTATS), volume 130, pp. 82–90.
PMLR, April 2021.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng
Lim. Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large lan-
guage models. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 2609–2634, Toronto, Canada, July 2023a. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.acl-long.147. URL https://aclanthology.org/2023.
acl-long.147.

Xilu Wang, Yaochu Jin, Sebastian Schmitt, and Markus Olhofer. Recent advances in bayesian
optimization. ACM Computing Surveys, 55(13s):1–36, 2023b. doi: 10.1145/3582078.

Xuezhi Wang and Denny Zhou. Chain-of-thought reasoning without prompting, 2024. URL
https://arxiv.org/abs/2402.10200.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In Proceedings of the International Conference on Learning Representations (ICLR),
2023c. URL https://openreview.net/forum?id=1PL1NIMMrw. Poster presentation.

Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando De Freitas. Bayesian op-
timization in a billion dimensions via random embeddings. Journal of Artificial Intelligence
Research, 55(1):361–387, 2016.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Proceedings of the 36th International Conference on Neural Information Processing
Systems, NIPS ’22, Red Hook, NY, USA, 2024. Curran Associates Inc. ISBN 9781713871088.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason Weston.
Neural text generation with unlikelihood training, 2019. URL https://arxiv.org/abs/
1908.04319.

12

https://aclanthology.org/2021.naacl-main.168
https://arxiv.org/abs/2408.06195
https://arxiv.org/abs/2408.06195
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://aclanthology.org/2023.acl-long.147
https://aclanthology.org/2023.acl-long.147
https://arxiv.org/abs/2402.10200
https://openreview.net/forum?id=1PL1NIMMrw
https://arxiv.org/abs/1908.04319
https://arxiv.org/abs/1908.04319

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Johnathan Xie, Annie S. Chen, Yoonho Lee, Eric Mitchell, and Chelsea Finn. Calibrating language
models with adaptive temperature scaling. In Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 18128–18138. Association for Compu-
tational Linguistics, 2024.

Hanqi Yan, Qinglin Zhu, Xinyu Wang, Lin Gui, and Yulan He. Mirror: A multiple-perspective self-
reflection method for knowledge-rich reasoning, 2024. URL https://arxiv.org/abs/
2402.14963.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jin-
gren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin
Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao,
Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wen-
bin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng
Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu,
Zeyu Cui, Zhenru Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report, 2024. URL
https://arxiv.org/abs/2407.10671.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik R
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=5Xc1ecxO1h.

Jinghan Zhang, Fengran Mo, Xiting Wang, and Kunpeng Liu. Thought space explorer: Navigat-
ing and expanding thought space for large language model reasoning, 2024a. URL https:
//arxiv.org/abs/2410.24155.

Wenqi Zhang, Yongliang Shen, Linjuan Wu, Qiuying Peng, Jun Wang, Yueting Zhuang, and Weim-
ing Lu. Self-contrast: Better reflection through inconsistent solving perspectives. In Lun-Wei
Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 3602–3622, Bangkok,
Thailand, August 2024b. Association for Computational Linguistics. doi: 10.18653/v1/2024.
acl-long.197. URL https://aclanthology.org/2024.acl-long.197/.

A APPENDIX

B METHODOLOGY SUPPLEMENT

B.1 TECHNICAL DETAILS ON OPTIMISATION OBJECTIVE

Although we simply sum the two components, they naturally operate in a progressive, tie-breaking
manner. If two candidate outputs differ in their verifier scores, the one with the higher rverifier value
immediately results in a higher f(x). Only when the verifier scores are identical does rcoherence serve
to break the tie, making the process effectively hierarchical, even in this additive form.

B.2 TECHNICAL DETAILS ON BAYESIAN OPTIMISATION

In constructing the prior distribution, for a finite collection of points x1:n, the prior joint distribution
on them is:

f(x1:n) ∼ N (µ0(x1:n),Σ0(x1:n, x1:n)),

where f(x1:n) = [f(x1), . . . , f(xn)]
⊤, µ0(x1:n) = [µ0(x1), . . . , µ0(xn)]

⊤, and the covariance
matrix is:

Σ0(x1:n, x1:n) =

Σ0(x1, x1) . . . Σ0(x1, xn)
...

. . .
...

Σ0(xn, x1) . . . Σ0(xn, xn)

 .

13

https://arxiv.org/abs/2402.14963
https://arxiv.org/abs/2402.14963
https://arxiv.org/abs/2407.10671
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=5Xc1ecxO1h
https://arxiv.org/abs/2410.24155
https://arxiv.org/abs/2410.24155
https://aclanthology.org/2024.acl-long.197/

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

We set µ0(x) = 0, indicating no additional preference for function values at the prior stage. For the
covariance matrix Σ0(xi, xj), we use the Gaussian kernel with bandwidth ℓ:

Σ0(xi, xj) = k(xi, xj) = exp

(
−∥xi − xj∥2

2ℓ2

)
.

The kernel is chosen such that when xi and xj are close, the kernel value k(xi, xj) approaches 1,
indicating strong correlation, and when they are far apart, the kernel value approaches 0, reflecting
weak correlation.

After observing f(x1:k), we aim to infer the value of f(x) at a new point x. Using Bayes’ rule
(Rasmussen & Williams, 2006), we update the posterior distribution of f(x) conditioned on these
observed values:

f(x) | f(x1:k) ∼ N (µk(x), σ
2
k(x)),

where the posterior mean and variance are given by

µk(x) = Σ0(x, x1:k)Σ0(x1:k, x1:k)
−1(f(x1:k)−

µ0(x1:k)) + µ0(x),

σ2
k(x) = Σ0(x, x)−

[
Σ0(x, x1:k)Σ0(x1:k, x1:k)

−1

Σ0(x1:k, x)
]
.

B.3 MAXIMISING EXPECTED IMPROVEMENT

To select the point x that maximises the expected improvement EIk(x), we adopt a sampling-based
approach. Specifically, we randomly sample a large number of candidate points from a standard
normal distribution. In our experiments, we generate 5000 points x1, x2, . . . , x5000, where each
point xi ∈ RD is sampled as:

xi ∼ N (0, 1)D, i = 1, 2, . . . , 5000.

For each sampled point, we compute the expected improvement EIk(x) using equation 3. After
evaluating the expected improvement for all sampled points, we select the point with the maximum
EIk(x) as the next candidate for evaluation. This method provides an efficient and practical way to
approximate the global maximum of EIk(x) within the sampling budget.

B.4 ADAPTIVE EXPECTED IMPROVEMENT

In defining f(x), we assume an ideal verifier with perfect accuracy, meaning it provides an error-free
assessment of correctness. However, in practice, the verifier’s accuracy is less than 1, introducing
uncertainty into its evaluations. This results in noisy observations, where the observed score ok
deviates from the true function value f(xk). We model this noise as:

ok = f(xk) + ηk, ηk ∼ N (0, λI),

where λ is an objective noise constant, determined by the inherent noise level. To address this noise
in Bayesian optimisation, we use an adaptive version of the EI acquisition function that explicitly
accounts for the uncertainty in observations:

EIk(x) =
[
µk(x)− f∗

k

]+
+ ωkσk(x)ϕ

(
µk(x)− f∗

k

ωkσk(x)

)
−
∣∣µk(x)− f∗

k

∣∣Φ(µk(x)− f∗
k

ωkσk(x)

)
,

where ωk =
√
γk + 1 + ln(1/δ) is the noise-adaptive scaling factor, and information gain term γk

is defined as:

γk = max I(o(x1:k); f(xi:k))

=
1

2
log det(I + λ−1Σ0(x1:k, x1:k)).

14

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

I(o(x1:k); f(xi:k)) represents the mutual information between the function values and the noisy
observations, and δ is a hyperparameter in (0, 1), controlling the balance between exploration and
exploitation. This adaptation is inspired by the following observation (Vakili et al., 2021; Tran-The
et al., 2022): For any choice of δ ∈ (0, 1), with probability at least 1− δ, the cumulative regret RT

satisfies

RT :=

T∑
k=1

[
f∗
k − f(xk)

]
= O

(
γT

√
T
)
.

This sublinear bound ensures that, with high probability, the regret grows at a slower rate than the
number of iterations, thereby guaranteeing the convergence of the optimisation process.

We set δ = 0.1, ensuring a 90% probability of convergence while balancing exploration and ex-
ploitation. A smaller δ (e.g., 0.01) strengthens theoretical guarantees but increases exploration,
slowing convergence. A larger δ (e.g., 0.2) favours exploitation, accelerating convergence but weak-
ening guarantees. Our choice provides stability and efficiency without excessive exploration.

B.5 ADDRESSING THE CURSE OF DIMENSIONALITY IN BAYESIAN OPTIMISATION

Traditional Bayesian optimisation struggles in high-dimensional spaces due to the curse of dimen-
sionality, making it impractical for embedding vectors used in LLMs. To address this challenge, we
leverage the following result from high-dimensional optimisation (Wang et al., 2016; Nayebi et al.,
2019), which allows us to perform optimisation in a lower-dimensional space and to subsequently
map points back to the original space.

Let D be the dimension of the embedding vectors. A function f : RD → R is defined to have an
effective dimensionality de, with de ≤ D, if the following condition is satisfied: ∃ a subspace E
of dimension de, such that ∀xE ∈ E ⊂ RD and x⊥ ∈ E⊥ ⊂ RD, where E⊥ is the orthogonal
complement of E, the function satisfies: f(xE + x⊥) = f(xE). In other words, de is the smallest
dimension that retains all variability of f . Now, for d ≥ de, consider a random matrix A ∈ RD×d

with independent N (0, 1) entries. Then,
∀x ∈ RD, ∃u ∈ Rd such that f(x) = f(Au).

This result implies that for any optimiser x∗ ∈ RD, there exists a corresponding point u∗ ∈ Rd

such that f(x∗) = f(Au∗). Therefore, instead of performing optimisation in the high-dimensional
space, we can optimise the function g(u) := f(Au) in the lower-dimensional space.

Suppose our initial sampled points and their evaluations are denoted by the set Uk =
{(u1, g(u1)), . . . , (uk, g(uk))}, where each ui ∈ Rd has independent standard normal entries. Sim-
ilarly, we initialise A ∈ RD×d as a random matrix with independent N (0, 1) entries. We then find
the next point to sample uk+1 ∈ Rd by optimising the acquisition function:

uk+1 = argmax
u∈Rd

EIk(u | Uk),

where EIk(· | Uk) represents the Expected Improvement conditioned on the current dataset Uk with
the objective function being g(·) on Rd. Then, we augment the dataset

Uk+1 := Uk ∪ {(uk+1, f(Auk+1))},
and iterate.

B.6 SETTING THE CONVERGENCE THRESHOLD

The convergence threshold ϵ determines when the algorithm stops iterating. While smaller thresh-
olds generally lead to more precise results, they can also increase computational costs due to ad-
ditional iterations. We set ϵ = 0.01 in our experiments, as this value strikes a balance between
convergence quality and computational efficiency.

C MORE EXPERIMENTAL DETAILS

C.1 EXPERIMENT SETTINGS

For FIRE, CoT-Decoding, and RAP, we set the temperature to 0.8, following the settings of the
respective baselines. We evaluate each approach on the four benchmark datasets (GSM8K, GSM-

15

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Hard, SVAMP, and StrategyQA) by randomly sampling 200 test examples from each dataset. The
generation process is cut off once the output reaches a maximum length of 300 tokens.

C.2 ADDITIONAL DETAILS ON NEURON ACTIVATION ANALYSIS

C.2.1 OVERALL ACTIVATION RATE

We analyse the neuron activations in the GLU-based MLP layers of the LLaMA model (Naik et al.,
2024). Specifically, the hidden representation in the i-th layer is computed as:

hi =
(
act fn(h̃iW i

1)⊗ h̃iW i
3

)
·W i

2, (4)

where ⊗ denotes element-wise multiplication, and act fn(·) is a non-linear activation function. We
consider the j-th neuron inside the i-th FFN layer activated if its activation value

[
act fn(h̃iW i

1)
]
j

exceeds zero.

We compare Self-Consistency (SC) (Wang et al., 2023c) with our Bayesian-optimisation-based per-
turbation method. For a single question (i.e., same prompt), we generate 200 samples using LLaMA
and record neuron activations for each of the first 5 output tokens. We then visualise and compare
the average activation rates between SC and our approach in Figure ??.

C.2.2 KEY NEURON IDENTIFICATION AND VERIFICATION

We identify key neurons by analysing activation rates in SC-generated samples. We first separate
these samples into correct and incorrect categories. For each neuron j in layer i, we calculate the
activation difference:

∆i,j = avgcorrect(ai,j)− avgincorrect(ai,j),

where ai,j denotes the activation value of the j-th neuron in the i-th layer. Neurons are then ranked
by ∆i,j , and the top 5% with the largest positive values are selected as “key neurons.”

To validate the identified key neurons under our method, we focus exclusively on those neurons
marked as “key” by the SC analysis. Let avgSC, correct(Nkey) denote the average activation of these
key neurons in SC’s correct samples. Likewise, avgOurs, correct(Nkey) and avgOurs, wrong(Nkey) denote
the averages for our method’s correct and incorrect samples, respectively. We find:

avgOurs, correct(Nkey)

avgSC, correct(Nkey)
= 1.004,

indicating that in correct cases, our method activates these key neurons at a level comparable to SC.
By contrast,

avgOurs, wrong(Nkey)

avgSC, correct(Nkey)
= 0.794,

showing a markedly lower activation for incorrect samples under our method. These results confirm
that the SC-derived key neurons remain crucial for correct reasoning, and our perturbation approach
effectively utilises them while suppressing their activation in incorrect scenarios.

C.3 PROMPTS FOR VERIFIERS

We provide four prompt templates corresponding to the verifier strategies introduced in Section 5.2.
These templates illustrate how each verifier approach is instantiated:

Single-Judge. This prompt asks the model to evaluate the correctness of a single final answer. The
user provides a question, along with a final answer, and the verifier must decide whether that answer
is correct.

Multi-Judge. This prompt provides multiple candidate answers and asks the verifier to assess their
correctness collectively. The user includes each candidate’s reasoning, and the verifier classifies
which answers are correct.

16

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Single-Generate. The prompt demonstrates a scenario where the verifier itself is prompted to
re-generate the correct solution for one candidate. If the newly generated solution matches the
candidate’s answer, the candidate is deemed correct.

Multi-Generate (Ours). This prompt processes all candidate answers together and generates a
new solution it believes to be correct. Any candidate matching this newly generated solution is
labeled as correct. This leverages the model’s generative capacity more thoroughly than pure classi-
fication, yielding better verification accuracy in practice.

Prompt for Single-Judge

Based on the given question and the previous answers, please provide your judgment on the correct-
ness of the final answer.

Question:
Jessie currently weighs 9 kilograms. After she started to go jogging every day, she lost 62 kilograms
in the first week and 140 kilograms in the second week. How much did she weigh before starting to
jog?

Answer:
9 + 62 + 140 = 211. So, Jessie weighed 211 kilograms after 2 weeks of jogging. Since she weighed
9 kilograms initially, she weighed 211− 9 = 202 kilograms before starting to jog. Answer: 202

Correct:
0

Question:
{User Question}

Answer:
{Previous answers}

Correct:

C.4 EFFECT OF THE NUMBER OF SAMPLES k.

Figure 4: Accuracy (solid lines) and standard deviation (shaded areas) across different sample sizes
k.

We investigate how the number of sampled embeddings k in each iteration influences final perfor-
mance. Figure 4 shows that as k increases from 3 to 5, the final accuracy and coverage steadily rise
for all evaluated tasks, although gains tend to plateau or fluctuate slightly after k = 3. This upward

17

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Prompt for Multi-Judge

Based on the given question and the previous answers, please provide your judgment on the correct-
ness of the final answer.

Question:
Jack is stranded on a desert island. He wants some salt to season his fish. He collects 2 liters of
seawater in an old bucket. If the water is 20% salt, how many ml of salt will Jack get when all the
water evaporates?

Your previous answers:
0. Thought: 1250 ml of water evaporates, leaving 1000 ml of salt. Answer: 1000
1. Thought: The total amount of water is 2 liters = 2000 ml. The amount of salt is 20% of 2000 ml =
0.20× 2000 ml = ⟨⟨0.20× 2000 = 400⟩⟩400 ml. Answer: 400
2. Thought: 20% of 2 liters is 2× 20

100
= ⟨⟨2× 20/100 = 0.4⟩⟩0.4 liters. Since there are 1000 ml in

1 liter, 0.4 liters is 0.4× 1000 = ⟨⟨0.4× 1000 = 400⟩⟩400 ml. Answer: 400
3. Thought: 1 liter of seawater is 20% salt. So, 1 liter of seawater has 20% × 1 liter
= ⟨⟨20 × 0.1 = 0.2⟩⟩0.2 liters of salt. Since Jack has 2 liters of seawater, he will get
0.2 × 2 = ⟨⟨0.2 × 2 = 0.4⟩⟩0.4 liters of salt. Since there are 1000 ml in 1 liter, Jack will
get 0.4× 1000 = ⟨⟨0.4× 1000 = 400⟩⟩400 ml of salt. Answer: 400
4. Thought: 20% of 2 liters is 2 × 20

100
= ⟨⟨2 × 20/100 = 0.4⟩⟩0.4 liters. There are 1000 ml in 1

liter, so 0.4 liters is 0.4× 1000 = ⟨⟨0.4× 1000 = 400⟩⟩400 ml. Answer: 400

Correct:
1, 2, 3, 4

Question:
{User Question}

Your previous answers:
{Previous answers}

Correct:

18

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Prompt for Single-Generate

Based on the given question and the previous answers, please provide your analysis and final answer,
starting the final answer with ”Answer:”

Question:
Jack is stranded on a desert island. He wants some salt to season his fish. He collects 2 liters of
seawater in an old bucket. If the water is 20% salt, how many ml of salt will Jack get when all the
water evaporates?

Your previous answers:
1250 ml of water evaporates, leaving 1000 ml of salt. Answer: 1000

Analysis:
Let’s think step by step. Jack has 2 liters of seawater, and 20% of it is salt. 2 liters = 2000 ml, so the
amount of salt is 20% of 2000 ml = 0.20× 2000 = 400 ml of salt.

Answer:
400

Question:
{User Question}

Your previous answers:
{Previous answers}

Analysis:

Figure 5: Accuracy (solid lines) and standard deviation (shaded areas) across reduced dimensions.

trend suggests that a moderate increase in k promotes better exploration of potentially correct solu-
tions in the embedding space. Based on these observations, we adopt k = 5 as our default setting,
balancing solution diversity with computational cost.

C.5 ADDITIONAL RESULTS

Tables 6 and 7 present the full experimental results for all methods and configurations across the four
benchmarks and three LLMs (LLaMA3-8B-Instruct, Qwen2-7B-Instruct, and Mistral-7B-Instruct).
These tables extend the summary reported in the main text, showing detailed accuracy, coverage,
and standard deviations for zero-shot to 8-shot setups. They provide a comprehensive view of how
each baseline and our approach perform under various hyperparameter and prompt configurations.

19

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Prompt for Multi-Generate (ours)

Based on the given question and the previous answers, please provide your analysis and final answer,
starting the final answer with ”Answer:”

Question:
Artemis is making tea for a party. She knows her mom drinks an 8-ounce cup of tea and uses one
ounce of tea. She will use this same ratio for the party. The party has 12 people there and each of
them wants a 6-ounce cup of tea. How many ounces of tea does she need?

Your previous answers:
0. Thought: 8 ounces of tea for 1 cup, so 1 ounce of tea for 1

8
of a cup. For 12 people, she needs

12× 6
8
= 9 ounces of tea. Answer: 9

1. Thought: 6 ounces of tea is needed for each person. Since there are 12 people, 12× 6 = 72 ounces
of tea are needed. Since each ounce of tea is used for 1 cup, 72 ounces of tea will make 72 cups of tea.
Answer: 72
2. Thought: 6 ounces of tea is 6

8
= 3

4
of an 8-ounce cup. For 12 people, she needs 12× 3

4
= 9 ounces

of tea. Answer: 9
3. Thought: 12 × 6 = 72 ounces of tea needed. Since each ounce of tea is used for 1 cup, Artemis
needs 72 ounces of tea. Answer: 72
4. Thought: 8 ounces of tea is used for 1 cup. So for 6 ounces of tea, she will use 6

8
= 3

4
of the

amount of tea. For 12 people, she will need 12× 3
4
= 9 ounces of tea. Answer: 9

Analysis:
Let’s think step by step. Artemis uses 1 ounce of tea for an 8-ounce cup, so for a 6-ounce cup, she
will use 6

8
= 3

4
of an ounce of tea. For 12 people, she needs 12× 3

4
= 9 ounces of tea.

Answer:
9

Question:
{User Question}

Your previous answers:
{Previous answers}

Analysis:

Table 6: Performances of different reasoning methods on Accuracy (%) across all benchmarks.

Method LLaMA3-8B-Instruct Qwen2-7B-Instruct Mistral-7B-Instruct
Shot 0 Shot 1 Shot 2 Shot 4 Shot 8 Shot 0 Shot 1 Shot 2 Shot 4 Shot 8 Shot 0 Shot 1 Shot 2 Shot 4 Shot 8

GSM8K
COT 53.0±0.0 73.0±0.0 73.5±0.0 79.0±0.0 77.4±0.0 64.5±0.0 70.0±0.0 66.5±0.0 81.5±0.0 82.5±0.0 42.0±0.0 43.5±0.0 53.5±0.0 54.5±0.0 54.0±0.0

SC(τ = 0.4) 73.0±1.6 75.4±2.8 75.7±2.4 80.7±1.1 80.4±1.4 81.2±0.6 82.4±1.8 83.7±0.4 86.9±0.6 85.7±1.5 52.9±0.5 53.5±1.5 59.9±2.3 60.4±1.7 58.3±1.5

SC(τ = 0.6) 73.6±2.5 73.4±3.6 72.6±1.9 80.3±0.9 80.6±1.5 80.2±1.9 84.5±2.1 84.2±0.4 86.5±0.9 85.4±0.9 55.1±3.6 56.5±2.0 59.6±0.7 60.5±1.2 57.4±1.0

SC(τ = 0.8) 65.0±2.0 74.5±0.7 66.8±1.7 80.9±1.5 81.1±1.1 80.0±0.9 82.7±2.9 82.6±0.7 85.4±0.8 85.1±1.6 50.2±2.6 51.4±1.4 56.4±2.7 59.8±2.6 57.7±2.6

FIRE 73.8±2.3 75.4±1.8 76.4±2.0 78.4±3.2 79.6±2.9 81.0±1.8 81.0±2.9 73.6±2.2 82.5±2.1 83.0±1.3 47.2±2.9 52.4±2.3 53.8±1.7 60.6±0.9 56.1±3.2

CoT-Decoding 73.9±1.9 76.7±1.4 78.6±1.7 81.4±1.8 80.3±1.7 82.0±2.8 81.6±2.5 76.2±2.5 85.7±0.8 84.5±2.1 47.3±3.0 56.4±3.3 57.3±2.5 57.6±3.4 58.2±2.3

RAP - 77.4±1.7 79.4±1.6 80.4±1.4 80.7±1.4 - 84.7±2.0 85.7±1.0 87.4±0.9 86.2±1.2 - 57.6±1.8 57.1±1.7 59.8±1.6 58.6±1.8

Ours 79.4±1.2 79.4±2.8 83.0±0.8 83.5±0.9 84.3±1.4 88.6±1.2 88.8±1.4 88.4±1.0 89.8±2.5 90.0±1.4 61.4±2.5 61.2±2.5 61.2±0.9 61.4±1.9 62.7±1.0

GSM-Hard
COT 14.0±0.0 22.5±0.0 24.5±0.0 26.5±0.0 28.0±0.0 40.0±0.0 39.0±0.0 48.0±0.0 53.0±0.0 55.5±0.0 14.5±0.0 22.0±0.0 21.5±0.0 23.5±0.0 24.0±0.0

SC(τ = 0.4) 25.7±0.4 25.3±0.4 28.6±1.2 32.2±0.4 31.8±1.8 47.5±1.4 48.6±1.4 53.7±1.3 55.2±1.5 55.4±0.7 19.5±1.0 26.5±1.6 26.9±1.4 27.3±1.0 26.1±1.5

SC(τ = 0.6) 24.5±1.1 25.7±0.5 28.4±1.4 32.0±1.1 31.2±1.3 46.2±1.9 50.1±2.9 54.2±0.7 56.0±1.1 53.4±0.6 20.7±1.5 25.7±0.9 27.8±1.2 31.0±2.5 25.3±1.6

SC(τ = 0.8) 21.8±1.3 24.8±1.9 28.2±2.7 30.6±1.2 30.8±0.9 47.3±1.3 47.8±2.7 54.8±1.5 55.7±1.3 55.4±0.9 19.1±2.0 26.8±2.5 26.6±1.2 29.8±2.1 26.6±1.1

FIRE 25.2±3.0 24.1±1.5 27.0±1.5 27.9±1.8 25.7±2.1 45.1±2.0 43.4±2.5 52.9±1.9 49.0±2.5 51.0±1.8 18.1±1.9 25.8±1.3 27.0±1.7 25.5±2.8 26.3±1.4

CoT-Decoding 24.8±1.3 27.3±1.6 28.0±0.4 31.0±1.8 30.3±1.3 46.7±2.3 44.1±1.8 53.9±1.5 50.1±1.2 52.1±1.0 16.6±0.7 26.6±2.6 28.0±0.7 26.0±2.0 27.4±1.6

RAP - 26.7±1.0 31.4±1.2 32.4±1.1 32.7±1.2 - 53.2±1.9 55.1±1.2 55.9±1.3 56.2±0.8 - 27.4±1.5 28.0±1.0 28.4±1.7 27.6±1.2

Ours 28.2±1.8 30.2±1.2 35.3±1.4 33.2±0.6 35.7±1.0 53.7±1.6 57.4±0.7 57.5±0.8 57.4±1.2 58.7±0.5 25.8±1.8 29.1±1.2 32.3±0.4 30.0±1.2 32.5±1.5

SVAMP
COT 61.0±0.0 81.0±0.0 83.5±0.0 84.0±0.0 83.0±0.0 43.5±0.0 83.0±0.0 84.0±0.0 85.5±0.0 86.0±0.0 52.0±0.0 65.0±0.0 66.0±0.0 69.5±0.0 72.0±0.0

SC(τ = 0.4) 79.1±1.2 85.8±1.5 86.5±0.7 87.3±0.8 87.1±1.0 72.3±2.0 90.2±1.0 89.4±0.5 90.3±0.9 90.3±1.2 67.4±2.5 74.5±1.7 73.7±1.0 76.5±1.5 77.8±1.0

SC(τ = 0.6) 76.1±3.9 86.2±0.5 86.8±1.7 86.9±1.2 87.7±1.2 77.3±1.2 90.6±0.9 90.2±0.8 91.4±0.9 90.4±0.6 69.7±1.6 75.8±1.5 75.6±0.8 75.8±1.4 78.4±2.0

SC(τ = 0.8) 69.6±2.0 86.3±2.2 86.9±1.0 87.4±1.5 87.4±1.2 78.6±2.1 90.3±0.7 90.1±1.0 90.8±0.7 90.6±1.2 68.3±0.9 75.1±0.7 76.6±1.5 76.9±1.6 77.6±1.1

FIRE 81.5±0.8 86.6±1.8 86.1±1.3 86.1±1.4 87.6±2.0 76.3±2.2 89.9±1.4 89.7±0.8 89.3±0.9 90.6±0.2 67.1±1.9 77.7±1.1 76.9±2.7 77.8±1.2 78.4±1.2

CoT-Decoding 83.2±1.2 87.8±1.0 87.5±1.0 87.5±1.3 88.2±1.0 78.6±1.6 90.3±0.4 90.0±1.0 90.3±1.0 89.7±0.5 69.4±2.5 77.8±2.0 77.7±1.5 76.9±2.5 78.6±1.4

RAP - 78.4±1.2 87.4±1.0 86.8±1.0 87.9±1.1 - 90.8±0.7 91.2±0.7 90.1±0.7 90.8±0.6 - 0.0±1.2 0.0±1.3 78.4±1.4 79.4±1.1

Ours 88.2±1.3 89.2±1.5 88.8±1.0 89.1±0.8 90.2±0.6 83.4±2.4 92.3±0.8 92.4±0.8 90.8±0.8 92.2±0.8 72.2±2.2 79.0±0.9 78.4±1.3 80.0±1.4 82.1±1.2

StrategyQA
COT 58.5±0.0 63.0±0.0 68.0±0.0 67.5±0.0 68.5±0.0 63.0±0.0 54.5±0.0 63.5±0.0 66.0±0.0 70.0±0.0 62.0±0.0 62.5±0.0 63.5±0.0 68.5±0.0 69.0±0.0

SC(τ = 0.4) 64.7±0.7 68.4±2.4 68.6±1.7 69.2±1.2 71.6±0.8 67.1±1.5 67.4±2.0 66.5±1.2 69.1±1.2 71.1±1.6 63.9±1.5 57.6±2.0 65.9±0.7 70.2±1.9 72.6±1.2

SC(τ = 0.6) 59.9±2.0 69.9±1.2 68.2±0.8 70.7±2.2 71.3±1.5 67.5±0.7 66.5±1.7 67.4±2.6 67.7±1.4 69.1±1.2 64.2±1.0 58.7±1.3 64.8±0.7 69.6±1.2 71.7±0.8

SC(τ = 0.8) 54.4±2.6 68.0±2.0 67.9±0.7 70.4±0.9 72.7±1.2 67.0±1.0 68.0±1.9 68.3±1.2 67.7±2.5 70.1±0.8 64.9±1.0 59.9±1.2 66.5±0.4 69.9±1.4 72.1±1.5

FIRE 63.0±3.7 70.8±1.6 71.8±1.3 70.2±2.0 72.8±1.5 67.6±0.8 68.4±0.8 68.4±1.8 67.3±1.2 68.1±0.8 64.2±1.0 66.5±1.5 68.2±1.4 72.6±2.1 71.0±2.2

CoT-Decoding 64.6±1.6 71.1±3.1 71.4±2.0 70.5±2.0 73.3±1.8 65.9±1.5 68.3±2.5 68.7±0.7 67.5±1.5 69.5±2.1 63.5±1.5 68.2±0.4 68.6±0.7 70.6±1.6 72.7±2.1

RAP - 71.6±1.7 70.6±1.1 71.5±1.4 73.4±1.1 - 67.5±1.5 68.2±1.3 68.5±1.3 71.3±1.1 - 68.5±1.1 70.6±0.7 72.1±1.4 72.4±1.3

Ours 67.2±0.7 71.0±0.9 72.3±1.2 73.8±1.2 75.6±0.8 68.1±1.5 69.6±1.6 69.7±1.2 68.9±0.5 70.3±1.3 66.1±1.9 70.1±0.7 71.2±1.4 72.7±1.0 72.8±1.5

20

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 7: Coverage rates of correct answers across different models (%) on all benchmarks.

Method LLaMA3-8B-Instruct Qwen2-7B-Instruct Mistral-7B-Instruct
Shot 0 Shot 1 Shot 2 Shot 4 Shot 8 Shot 0 Shot 1 Shot 2 Shot 4 Shot 8 Shot 0 Shot 1 Shot 2 Shot 4 Shot 8

GSM8K
SC(τ=0.4) 79.8±0.8 69.2±2.8 75.7±2.4 89.5±1.4 91.0±1.5 93.1±0.4 88.9±1.7 91.4±1.0 93.5±0.7 94.5±0.6 73.2±3.0 69.3±1.6 75.5±2.2 74.9±1.9 73.4±1.0

SC(τ=0.6) 78.4±2.2 66.6±3.6 72.6±1.9 90.6±1.3 91.1±0.8 94.2±0.7 88.5±1.5 92.4±0.7 93.8±0.7 94.2±1.3 73.0±1.3 72.7±2.7 76.2±1.6 76.5±2.5 73.5±2.0

SC(τ=0.8) 71.0±1.2 62.1±0.7 66.8±1.7 90.4±1.6 90.2±1.6 92.9±1.2 88.6±1.5 91.6±1.1 93.1±0.9 93.8±0.7 71.2±1.8 70.1±2.0 74.3±2.8 74.5±2.8 73.2±1.4

FIRE 84.5±1.3 83.9±2.0 88.8±2.0 89.4±1.1 88.2±0.6 86.8±1.8 78.1±2.6 84.2±1.3 90.6±1.9 90.8±0.9 63.1±2.5 70.4±2.5 70.9±1.6 76.7±2.2 73.9±2.8

CoT-Decoding 85.3±1.7 88.1±1.2 90.6±1.1 90.2±0.8 90.5±0.9 88.4±2.1 81.2±2.0 85.5±2.4 92.0±0.9 91.7±0.8 63.2±2.4 72.6±2.7 75.5±2.5 74.3±2.3 76.6±1.2

RAP - 87.6±0.9 89.1±1.3 88.9±1.2 89.5±0.8 - 88.3±1.2 92.4±1.2 93.4±1.1 92.3±0.7 - 72.4±2.1 74.5±1.3 75.8±1.5 75.6±1.3

Ours 91.8±1.4 91.1±0.8 92.4±1.1 92.6±1.4 92.2±0.8 95.9±0.1 96.8±0.6 96.4±1.0 96.8±1.4 96.6±0.7 85.4±1.4 79.0±2.4 82.3±1.0 81.9±1.4 82.5±0.9

GSM-Hard
SC(τ=0.4) 27.3±0.4 31.7±0.5 38.6±1.9 41.6±1.8 43.4±0.4 62.6±1.6 53.4±1.7 62.4±1.2 62.6±1.7 64.3±0.7 31.1±1.1 37.5±1.6 40.9±1.2 39.9±1.6 38.2±1.5

SC(τ=0.6) 28.2±1.6 33.0±0.8 38.0±1.4 39.9±2.2 43.0±1.1 63.3±2.0 56.2±2.2 62.4±1.1 65.3±0.7 65.8±1.4 30.2±1.7 37.3±0.9 38.8±1.3 41.3±1.4 39.1±2.5

SC(τ=0.8) 25.1±0.9 32.3±2.4 37.8±1.2 39.3±1.2 42.2±1.1 61.8±0.5 54.9±1.9 64.1±1.0 63.8±1.8 65.1±1.0 31.7±1.4 38.2±1.6 39.2±1.0 40.9±1.8 37.0±1.1

FIRE 32.0±2.3 33.1±2.5 38.3±1.4 39.9±1.1 40.6±2.0 54.4±2.1 49.3±2.3 56.7±2.1 56.8±2.1 60.6±1.2 26.2±2.5 37.4±2.1 39.8±1.8 39.1±2.7 35.8±1.6

CoT-Decoding 33.1±0.9 33.6±1.9 39.8±1.4 42.3±1.2 42.2±1.5 55.1±1.0 49.3±2.2 56.6±1.3 57.4±0.6 61.5±1.4 27.7±1.2 36.9±1.0 40.3±1.6 38.5±1.4 38.4±0.7

RAP - 33.4±1.6 40.2±1.5 41.9±1.0 43.9±1.3 - 53.7±1.8 60.2±1.2 62.1±1.1 64.2±1.2 - 37.6±1.5 40.6±1.2 40.3±1.7 38.4±1.4

Ours 37.0±1.5 37.0±0.8 46.4±2.5 47.3±2.2 49.8±1.0 69.4±1.7 67.8±0.9 70.7±1.0 71.1±1.1 71.1±1.1 40.7±1.2 43.3±1.2 44.4±1.5 45.9±1.1 45.2±1.9

SVAMP
SC(τ=0.4) 84.6±1.1 91.8±0.5 91.6±1.6 92.8±0.4 92.9±0.6 91.7±1.8 94.3±0.6 93.9±0.7 93.7±0.4 94.0±0.9 61.9±1.7 85.2±1.3 84.5±1.1 86.3±1.3 87.7±0.4

SC(τ=0.6) 82.1±2.7 92.3±0.2 92.7±1.0 93.0±0.6 93.8±0.4 92.3±1.5 94.4±0.6 94.6±0.6 94.3±0.5 94.0±1.0 67.5±1.4 85.7±0.5 86.3±1.2 87.9±1.4 88.9±1.4

SC(τ=0.8) 73.8±2.6 91.7±1.7 93.3±0.5 93.5±0.8 94.6±0.7 92.5±1.1 94.5±0.7 94.5±0.5 94.1±0.9 94.0±0.9 72.1±2.3 86.5±0.8 87.1±1.1 88.3±1.0 88.2±1.2

FIRE 89.9±0.5 93.7±0.3 93.5±0.9 92.9±1.2 93.8±1.3 91.5±0.5 93.9±1.1 94.7±1.0 94.5±1.8 95.1±0.7 68.2±1.4 87.9±1.3 89.9±1.7 90.2±1.5 90.1±1.6

CoT-Decoding 90.8±0.8 93.5±1.2 94.2±0.8 93.8±0.8 93.9±1.3 91.2±1.0 94.4±0.5 94.2±0.7 94.6±1.0 93.4±0.9 67.0±2.9 89.5±0.5 88.7±1.3 88.9±1.7 90.4±1.2

RAP - 93.6±1.1 93.8±0.8 93.4±0.9 94.1±1.1 - 94.3±1.8 94.7±0.9 94.7±1.2 94.8±0.7 - 88.7±1.2 89.7±1.4 89.7±1.3 90.7±1.0

Ours 93.8±0.4 95.5±0.9 95.5±0.8 95.1±0.7 95.8±1.2 97.0±0.7 96.8±0.3 95.6±0.8 96.0±1.2 97.8±0.5 78.1±0.8 91.2±1.7 90.5±1.4 90.6±1.0 91.0±0.6

StrategyQA
SC(τ=0.4) 85.3±0.2 85.8±1.5 84.7±1.0 84.0±0.3 85.7±1.0 83.5±1.3 84.7±0.8 85.7±1.1 85.0±1.7 86.7±1.7 73.8±1.6 70.5±1.1 74.9±0.6 84.4±0.9 85.4±1.9

SC(τ=0.6) 84.1±1.7 89.2±2.0 86.3±2.0 87.1±2.3 88.5±1.3 83.2±1.4 85.4±1.4 86.4±2.1 85.9±1.4 87.5±1.3 75.0±0.8 73.6±1.2 76.9±1.0 86.1±1.0 88.0±1.0

SC(τ=0.8) 86.6±2.9 88.9±2.7 87.1±0.9 88.1±0.9 89.6±1.2 84.8±1.7 84.9±2.8 86.9±1.3 85.2±1.2 88.2±1.5 76.0±1.4 74.1±0.9 77.2±1.6 87.8±1.2 89.8±0.8

FIRE 91.2±1.5 92.6±1.0 90.1±2.1 89.1±2.1 90.6±1.1 84.4±1.6 87.0±1.7 88.4±2.2 88.1±2.3 89.4±1.4 74.9±1.6 81.0±1.0 79.6±1.4 86.4±1.7 89.7±1.5

CoT-Decoding 92.4±0.4 93.4±1.1 87.4±1.4 89.1±0.8 90.6±1.6 84.7±2.3 87.3±1.8 86.9±1.1 86.8±0.8 88.9±2.4 75.6±0.8 82.2±2.8 79.7±1.4 87.3±1.4 89.0±1.3

RAP - 93.5±1.2 89.6±1.4 89.3±1.5 91.1±1.3 - 88.6±1.4 87.6±0.9 88.6±1.2 88.7±1.6 - 81.6±1.5 79.2±1.3 86.6±1.2 89.3±1.2

Ours 93.7±1.4 94.0±1.3 93.5±1.2 90.9±1.3 93.3±1.8 88.4±0.7 89.0±0.8 89.8±0.8 91.6±0.8 90.4±1.0 81.2±1.3 84.1±0.7 82.4±1.6 87.3±0.9 90.2±1.4

21

	Introduction
	Related Work
	Decoding Strategies and Diversity
	Efficient Exploration of Solution Spaces

	Preliminary: Temperature Scaling
	Methodology
	Embedding Perturbation
	Exploring the Embedding Space

	Experiments
	Experimental Setup
	Ablation studies

	Conclusions and Future Directions
	Appendix
	Methodology Supplement
	Technical Details on Optimisation Objective
	Technical Details on Bayesian Optimisation
	Maximising Expected Improvement
	Adaptive Expected Improvement
	Addressing the Curse of Dimensionality in Bayesian Optimisation
	Setting the Convergence Threshold

	More Experimental Details
	Experiment Settings
	Additional Details on Neuron Activation Analysis
	Overall Activation Rate
	Key Neuron Identification and Verification

	Prompts for Verifiers
	Effect of the Number of Samples k.
	Additional Results

