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Abstract
Diffusion Probabilistic Models (DPMs) show sig-
nificant potential in image generation, yet their
performance hinges on having access to large
datasets. Previous works, like Generative Adver-
sarial Networks (GANs), have tackled the limited
data problem by transferring pretrained models
learned with sufficient data. However, those meth-
ods are hard to utilize in DPMs because of the dis-
tinct differences between DPM-based and GAN-
based methods, which show the integral of the
unique iterative denoising process and the need
for many time steps with no target noise in DPMs.
In this paper, we propose a novel DPM-based
transfer learning method, called DPMs-ANT, to
address the limited data problem. It includes
two strategies: similarity-guided training, which
boosts transfer with a classifier, and adversarial
noise selection, which adaptively chooses targeted
noise based on the input image. Extensive exper-
iments in the context of few-shot image genera-
tion tasks demonstrate that our method is efficient
and excels in terms of image quality and diversity
compared to existing GAN-based and DPM-based
methods.

1. Introduction
Generative models, such as GANs (Brock et al., 2018; Guo
et al., 2020; Khan et al., 2022), VAEs (Kingma & Welling,
2013; Rezende et al., 2014), and autoregressive models
(Van den Oord et al., 2016; Chen et al., 2018; Grill et al.,
2020), have made remarkable successes in various fields
across images (Brock et al., 2018; Razavi et al., 2019), text
(Brown et al., 2020), and audio (Dhariwal et al., 2020) by
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utilizing vast amounts of unlabeled data for training. Dif-
fusion probabilistic models (DPMs) (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Nichol & Dhariwal, 2021), which
are designed to replicate data distributions by learning to
invert multistep noise procedures, have recently experienced
significant advancements, enabling the generation of high-
definition images with broad diversity. Although DPMs
have emerged as a potent tool for image generation with
remarkable results in terms of both quality and diversity,
modern DPMs heavily rely on extensive amounts of data
to train the large-scale parameters of their networks (Cao
et al., 2022). This dependency can lead to overfitting and
a failure to generate diverse and high-quality images with
limited training data. Additionally, diffusion sampling with
guidance struggles to generate images with a large domain
gap. Unfortunately, gathering sufficient data is not always
feasible in certain situations.

Transfer learning can be an effective solution to this chal-
lenge, as it applies knowledge from a pretrained generative
model trained on a large dataset to a smaller one. The fun-
damental idea is to begin training with a source model that
has been pre-trained on a large dataset, and then adapt it to
a target domain with limited data. Several techniques have
been proposed in the past to adapt pre-trained GAN-based
models (Wang et al., 2018; Karras et al., 2020a; Wang et al.,
2020; Li et al., 2020) from large-scale source datasets to
target datasets using a limited number of training samples.
Typically, methods for few-shot image generation either
enhance the training data artificially using data augmenta-
tion to prevent overfitting (Zhang et al., 2018; Karras et al.,
2020a), or directly evaluate the distance between the pro-
cessed image and the target image (Ojha et al., 2021; Zhao
et al., 2022).

Nevertheless, applying prior GAN-based techniques to
DPMs is challenging due to the differences in training
processes between GAN-based and DPM-based methods.
GANs can quickly generate a final processed image from
latent space, while DPMs only predict less noisy images at
each step and request a large number of timesteps to gener-
ate a high-quality final image. Such an iterative denoising
process poses two challenges when transferring diffusion
models. The first challenge is that the transfer direction
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Figure 1. Two sets of images generated from corresponding fixed noise inputs at different stages of fine-tuning DDPM from FFHQ to
10-shot Sunglasses. The perceptual distance, LPIPS (Zhang et al., 2018), between the generated image and the target image is shown on
each generated image. When the bottom image successfully transfers to the target domain, the top image is already overfitting.

needs to be estimated on noisy images. The single-pass
generation of GANs allows them to directly compare the
generated clean images with the target image (Li et al.,
2020; Ojha et al., 2021; Zhao et al., 2022), which is not eas-
ily applicable to diffusion models. The current DPM-based
few-shot method, DDPM pairwise adaptation (DDPM-PA)
(Zhu et al., 2022), substitutes the high quality real final im-
age with the predicted blurred final in the intermediate time
step to address this problem. However, comparing the target
image with the blurry image can be problematic and inac-
curate, as the predicted image may not accurately represent
the domain of the generated images. It leads to the produc-
tion of DDPM-PA final images that are fuzzy and distorted.
Moreover, even if the transfer direction can be available,
we still face a more fundamental second challenge resulting
from the noise mechanism in diffusion models. The diffu-
sion and denoising process utilize fully random Gaussian
noise, which is independent of the input image and makes no
assumption of it. We observe that such non-targeted noise
imposes unbalanced effects on different images, leading
to divergent transferring pace in terms of training iteration
needed. As demonstrated in Figure 1, while one image (the
green box image in the lower row) might be adequately
transferred from the source to the target domain, another
(the red boxed images in the lower row) may become overly
similar to the target image due to severe overfitting. Conse-
quently, an extensive number of iterations are required to
transfer and train effectively within the normally distributed
noise. This is especially challenging when the gradient di-
rection is noisy due to limited images, leading to overfitting
problems.

In this paper, to handle the challenge of transferring direc-
tion estimation for diffusion models, we propose to leverage
a similarity measurement to estimate the gap between the
source and the target, which circumvents the necessity of

comparing individual images. Building upon this, we in-
troduce a similarity-guided training approach to fine-tune
the pre-trained source model to the target domain. It em-
ploys a classifier to estimate the divergence between the
source and target domains, leveraging existing knowledge
from the source domain to aid in training the target domain.
This method not only helps in bridging the gap between
the source and target domains for diffusion models but also
addresses the unstable gradient direction caused by limited
target data in the few-shot setting by implicitly compar-
ing the sparse target data with the abundant source data.
More importantly, to tackle the challenge of non-targeted
noise in diffusion models, we propose a novel min-max
training process, i.e., adversarial noise selection, to dy-
namically choose the noise according to the input image.
The adversarial noise scheme enhances few-shot transfer
learning by minimizing the “worse-case” Gaussian noise
which the pre-trained model fails to denoise on the target
dataset. This strategy also significantly reduces the train-
ing iterations needed and greatly improves the efficiency of
transfer learning for diffusion models. Our adversarial strat-
egy with similarity measurement excels in a few-shot image
generation tasks, speeding up training, achieving faster con-
vergence, and creating images that fit the target style while
resembling the source images. Experiments on few-shot im-
age generation tasks demonstrate that our method surpasses
existing GAN-based and DDPM-based techniques, offering
superior quality and diversity.

2. Related Work
2.1. Diffusion Probabilistic Models

DDPM (Ho et al., 2020) has been leveraged as an effec-
tive generative model that circumvents the adversarial train-
ing inherent in GANs (Goodfellow et al., 2020). DDPMs,
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by enabling the diffusion reverse process, are capable of
reconstructing images. However, DDPM suffers from a
long computational time because of extensive iterative time
steps. DDIM (Song et al., 2020) addresses this issue by
“implicating” the model, which allows it to function with
far fewer iterations and dramatically reduces the inference
time compared to DDPM. Conversely, a fresh approach to
the diffusion model is the score-based model via stochas-
tic differential equation (SDE), wherein the diffusion and
the denoising processes are both modeled by SDEs. Song
& Ermon (2019) initially proposed the generation of sam-
ples from latent noise via the dynamic Langevin sampling
method. Variational diffusion models (VDM) (Kingma
et al., 2021) introduced an innovative method that merges
the capabilities of Variational Autoencoders (VAE) and dif-
fusion models. This hybrid approach resulted in notable
enhancements in the quality and diversity of generated sam-
ples. Knowledge Distillation for Diffusion Models (KDDM)
(Huang et al., 2024) developed a strategy that substantially
decreases the inference time required by diffusion models,
without sacrificing the quality of the outputs. Addition-
ally, Yu et al. (2022); Karras et al. (2022) use higher-order
solvers to replace the original reverse process in diffusion
models, enabling faster sampling. For fast high-quality and
high-resolution image generation, Latent Diffusion Models
(LDMs) (Rombach et al., 2022) gradually transform random
noise into the target image through a diffusion process on
the latent representation space.

2.2. Few-shot Image Generation

Existing methods predominantly adopt an adaptation
pipeline where a foundational model is pre-trained on the
source domain with a large number of training data, and then
adjusted to a smaller target domain. In contrast, few-shot
image generation strives to envision new and diverse exam-
ples while circumventing overfitting to the limited training
images of the target domain. FreezeD (Mo et al., 2020)
addresses overfitting by locking parameters in the high-
resolution layers of the discriminator. MineGAN (Wang
et al., 2020) incorporates additional networks to fine-tune
the noise inputs of the generator. EWC (Li et al., 2020)
uses elastic weight consolidation, making it difficult to mod-
ify essential weights that possess high Fisher information
values. CDC (Ojha et al., 2021) introduces cross-domain
consistency loss and patch-level discrimination to forge a
connection between the source and target domains. DCL
(Zhao et al., 2022) uses contrastive learning to distance the
generated samples from the actual images and maximize
the similarity between the corresponding pair of images in
the source and target domains. Similar to CDC, DDPM-PA
(Zhu et al., 2022) adapts pre-trained diffusion models on ex-
tensive source domains to target domains with cross-domain
consistency loss and patch-level discrimination. GAN-based

methods, like CDC and DCL, require the final generated
image during training. In contrast, DPMs’ training process
aims at predicting the next stage of noised images and can
only yield a blurry predicted image during the training stage.

3. Preliminary
Diffusion models approximate the data distribution q(x0)
by pθ(x0), where pθ(x0) is modeled in the form of latent
variable models. According to (Ho et al., 2020), at timestep
t, the diffusion process adding Gaussian noise with variance
βt ∈ (0, 1) to the data can be expressed as:

q(xt|x0) = N (xt; ᾱtx0, (1− ᾱt)I),

xt =
√
ᾱtx0 +

√
1− ᾱtϵ ,

where x0 ∼ q(x0), αt := 1− βt, ᾱt :=
∏t
i=0 (1− βi) and

ϵ ∼ N (0, I). Ho et al. (2020) train a U-Net (Ronneberger
et al., 2015) model parameterized by θ to fit the data distri-
bution q(x0) by maximizing the lower variation limit. The
DDPM training loss with model ϵθ(xt, t) can be expressed
as:

Lsample(θ) := Et,x0,ϵ ∥ϵ− ϵθ(xt, t)∥2 . (1)

Based on (Song et al., 2020), the reverse process of DPMs
(DDPM and DDIM) at timestep t can be expressed as fol-
lowing:

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱtϵθ(xt, t)

ᾱt

)
︸ ︷︷ ︸

predicted x0

+
√
1− ᾱt−1 − σ2

t · ϵθ(xt, t)︸ ︷︷ ︸
direction pointing to xt

+ σtϵt︸︷︷︸
random noise

,

where σt = η
√
(1− ᾱt−1)/(1− ᾱt)

√
1− ᾱt/ᾱt−1 and

η = 0 (Song et al., 2020) or η = 1 (Ho et al., 2020) or
η =

√
(1− ᾱt)/(1− ᾱt−1) (Ho et al., 2020). Furthermore,

Dhariwal & Nichol (2021) propose the conditional reverse
noise process as:

pθ,ϕ(xt−1|xt, y)
≈ N (xt−1;µθ(xt, t) + σ2

t γ∇xt log pϕ(y|xt), σ2
t I), (2)

where µθ(xt, t) = 1√
αt

(
xt − 1−αt√

1−ᾱt
ϵθ(xt, t)

)
and γ is a

hyperparameter for conditional control. For the sake of clar-
ity in distinguishing these two domains, this paper uses S
and T to represent the source and target domain, respec-
tively.

4. Transfer Learning in Diffusion Models via
Adversarial Noise

In this section, we introduce DPMs-ANT, a DPM-based
transfer learning method, which contains two key strategies:
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similarity-guided training (in Section 4.1) and adversarial
noise selection (in Section 4.2). After that, the complete
DPMs-ANT procedure included the adaptor is detailed in
Algorithm 1.

4.1. Similarity-Guided Training

We use similarity to measure the gap between the source
and target domains. It is computed using a noised image
xt at timestep t instead of the final image. Drawing inspira-
tion from (Dhariwal & Nichol, 2021; Liu et al., 2023), we
express the difference in domain between the source and
the target in terms of the divergence in similarity measures.
Initially, we assume a model that can predict noise with the
source and target domains, denoted as θ(S,T ). Similar to
Equation (2), the reverse process for the source and target
images can be written as:

pθ(S,T ),ϕ(xt−1|xt, y = Y )

≈ N (xt−1;µθ(S,T )
+ σ2

t γ∇xt
log pϕ(y = Y |xt), σ2

t I) ,

(3)

where Y is S or T for source or target domain im-
age generation, respectively. We can consider µ(xt) +
σ2
t γ∇xt log pϕ(y = S|xt) as the source model θS ,

which only synthesize image on the source domain re-
spectively. For brevity, we denote pθS ,ϕ(x

S
t−1|xt) =

pθ(S,T ),ϕ(xt−1|xt, y = S). We define pθT ,ϕ(x
T
t−1|xt) simi-

larly by replacing S with T . Therefore, the KL-divergence
between the output of source model θS and the target θT
with the same input xt at timestep t, is defined as:

DKL
(
pθS ,ϕ(x

S
t−1|xt), pθT ,ϕ(xTt−1|xt)

)
= Et,x0,ϵ

[
∥∇xt log pϕ(y = S|xt)−

∇xt log pϕ(y = T |xt)∥2
]
, (4)

where pϕ is a classifier to distinguish xt. The detailed deriva-
tion is in the Appendix. We consider ∇xt

log pϕ(y = S|xt)
and ∇xt

log pϕ(y = T |xt) as the similarity measures of the
given xt in the source and target domains, respectively.

Transfer learning primarily focuses on bridging the gap be-
tween the image generated by the current fine-tuning model
and the target domain image. Inspired by Equation (4) on
source and target distance, we can utilize pϕ(y = T |xTt )
to align the current model with the target for target domain
transfer learning. Specifically, we employ a fixed pre-trained
binary classifier that differentiates between source and tar-
get images at time step t to enhance the training process.
Similarly with the vanilla training loss in DPMs (Ho et al.,
2020), i.e., Equation (1), we use the KL-divergence between
the output of current model θ and target model θT at time

step t as:

min
θ

Et,x0,ϵ

[
∥ϵt − ϵθ(xt, t)−

σ̂2
t γ∇xt

log pϕ(y = T |xt)
∥∥2] , (5)

where ϵt ∼ N (0, I), ϵθ is the pre-trained neural network
on source domain, γ is a hyper-parameter to control the
similarity guidance, σ̂t = (1− ᾱt−1)

√
αt

1−ᾱt
, and pϕ is the

binary classifier differentiating between source and target
images. Equation (5) is defined as similarity-guided DPMs
training loss. The full derivation is provided in the Ap-
pendix. We leverage the pre-trained classifier to indirectly
compare the noised image xt with both domain images,
subtly expressing the gap between the currently generated
image and the target image. By minimizing the output of
the neural network with corrected noise, we bridge the gap
in the diffusion model and bolster transfer learning. Fur-
thermore, similarity guidance enhances few-shot transfer
learning by avoiding misdirection towards the target image,
as ∇xt

log pϕ(y = T |xt) acts as an indirect indicator, rather
than straightly relying on the original image. Compared to
with or without the indirect indicator (i.e., Equation (1) vs.
Equation (5)), the latter easily overfits over the few-shot
target training images, while the former can mitigate this
problem due to the generalization of the classifier pϕ.

4.2. Adversarial Noise Selection

Despite potentially determining the transfer direction, we
still encounter a fundamental second challenge originating
from the noise mechanism in diffusion models. As men-
tioned, the model needs to be trained to accommodate the
quantity of noise ϵt over many iterations. However, increas-
ing iterations with limited images may lead to overfitting of
the training samples, thereby reducing the diversity of the
generated samples. On the other hand, training with too few
iterations might only successfully transform a fraction of
the generated images into the target domain as Figure 1.

To counter these issues, we propose an adaptive noise se-
lection method, Adversarial Noise (AN) selection. This
approach utilizes a min-max training process to reduce the
actual training iterations required and ensure the generated
images closely resemble the target images. After the model
has been trained on a large dataset, it exhibits a strong noise
reduction capability for source datasets. This implies it only
needs to minimize specific types of Gaussian noise with
which the trained model struggles or fails to denoise with
the target domain sample. The first step in this process
is to identify the maximum approximated Gaussian noise
with the current model, and then specifically minimize the
model using this noise. Based on Equation (5), this can be
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Algorithm 1 Training DPMs with ANT
Require: binary classifier pϕ, pre-trained DPMs ϵθ, learn-

ing rate η
1: repeat
2: x0 ∼ q(x0);
3: t ∼ Uniform({1, · · · , T});
4: ϵ ∼ N (0, I);
5: for j = 0, · · · , J − 1 do
6: Update ϵj via Equation (7);
7: end for
8: Compute L(ψ) with ϵ⋆ = ϵJ via Equtaion (8);
9: Update the adaptor model parameter: ψ = ψ −

η∇ψL(ψ);
10: until converged.

mathematically formulated as follows:

min
θ

max
ϵ

Et,x0

[
∥ϵ− ϵθ(xt, t)−

σ̂2
t γ∇xt log pϕ(y = T |xt)

∥∥2] . (6)

Although finding the exact maximum noise is challenging
as Equation (6), the finite-step gradient ascent strategy can
be used to solve the inner maximization problem approx-
imately. Specifically, the inner maximization of Gaussian
noise can be interpreted as finding the “worse-case” noise
corresponding to the current neural network. Practically, the
similarity-guided term is disregarded, as this term is hard to
compute differential and is almost unchanged in the process.
We utilize the multi-step gradient ascent as expressed below:

ϵj+1 = Norm
(
ϵj+

ω∇ϵj
∥∥ϵj − ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ

j , t)
∥∥2) , (7)

where j ∈ {0, 1, · · · , J − 1}, ω is a hyperparameter that
represents the “learning rate” of the negative loss function,
and Norm(·) is a normalization function that approximately
ensures the mean and standard deviation of ϵj+1 is 0 and I,
respectively. The initial value, ϵ0, is sampled from the Gaus-
sian distribution, i.e., ϵ0 ∼ N (0, I). Since minimizing the
“worse-case” Gaussian noise is akin to minimizing all Gaus-
sian noises that are “better” than it, we can more accurately
correct the gradient computed with limited data, effectively
addressing the underfitting problem during a limited number
of iterations.

4.3. Optimization

To save training time and memory, we implement an addi-
tional adaptor module (Noguchi & Harada, 2019) to learn
the shift gap (i.e, Equation (4)) based on xt in practice. Dur-
ing the training, we freeze the parameters θ and only update
the adaptor parameters ψ. The overall loss function can be

expressed as follows,

L(ψ) ≡ Et,x0

[
∥ϵ⋆ − ϵθ,ψ(x

⋆
t , t)−

σ̂2
t γ∇x⋆

t
log pϕ(y = T |x⋆t )

∥∥2] ,
s.t. ϵ⋆ =argmax

ϵ

∥∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)

∥∥2 ,
ϵ⋆mean = 0 and ϵ⋆std = I, (8)

where ϵ⋆ is the “worse-case” noise, the x⋆t =
√
ᾱtx0 +√

1− ᾱtϵ
⋆ is the corresponding noised image at the

timestep t and ψ is certain extra parameter beyond pre-
trained model. We link the pre-trained U-Net model with
the adaptor layer (Houlsby et al., 2019) as xlt = θl(xl−1

t ) +
ψl(xl−1

t ), where xl−1
t and xlt represents the l-th layer of

the input and output, and θl and ψl denote the l-th layer
of the pre-trained U-Net and the additional adaptor layer,
respectively.

The full training procedure of our method, named DPMs-
ANT, is outlined in Algorithm 1. Initially, as in the tra-
ditional DDPM training process, we select samples from
target datasets and randomly choose a timestep t and stan-
dard Gaussian noise for each sample. We employ limited
extra adaptor module parameters with the pre-train model.
Subsequently, we identify the adaptive inner maximum as
represented in Equation (7) with the current neural network.
Based on these noises, we compute the similarity-guided
DDPM loss as Equation (5), which bridges the discrepancy
between the pre-trained model and the scarce target sam-
ples. Lastly, we execute backpropagation to only update the
adaptor module parameters.

5. Experiments
To demonstrate the effectiveness of our approach, we per-
form a series of few-shot image generation experiments
using a limited set of just 10 training images with the same
setting as DDPM-PA (Zhu et al., 2022). We compare our
method against state-of-the-art GAN-based and DDPM-
based techniques, assessing the quality and diversity of
the generated images through both qualitative and quantita-
tive evaluations. This comprehensive comparison provides
strong evidence of the superiority of our proposed method
in the context of few-shot image generation tasks. The code
is available at https://github.com/ShinyGua/DPMs-ANT.

5.1. Visualization on Toy Data

To conduct a quantitative analysis, we traine a diffusion
model to generate 2-dimensional toy data with two Gaussian
noise distributions. The means of the Gaussian noise dis-
tributions for the source and target are (1, 1) and (−1,−1),
and their variances are denoted by I. We train a simple neu-
ral network with source domain samples and then transfer
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(a) Gradient of Output Layer (b) Heat-map of DDPM (c) Heat-map of DDPM-ANT

Figure 2. Visualizations of gradient changes and heat maps. Figure (a) shows gradient directions with various settings: the cyan line
denotes the gradient computed on 10,000 samples in one step; the blue, red, and orange lines are gradients of baseline method (i.e.,
traditional DDPM), our method DDPM-ANT w/o AN (i.e, using similarity-guided training only), and our full method DDPM-ANT,
computed on 10 samples in one step, respectively; the red points in the background are “worse-case” noises by adversarial noise selection.
Figures (b) and (c) depict heat maps of the baseline and our method, with cyan and yellow lines representing the generation sampling
process value with the original DDPM and our method, respectively.

this pre-trained model to target samples.

Figure 2(a) illustrates the output layer gradient direction of
four different settings in the first iteration, with the same
noise and timestep t. The cyan line, computed with ten
thousand different samples, is considered a reliable refer-
ence direction (close to 45 degrees southwest). For 10-shot
samples, we repeat them a thousand times into one batch
to provide a unified comparison with ten thousand differ-
ent samples. The blue and red lines represent the gradient
computed with the traditional DDPM as the baseline and
similarity-guided training in a 10-shot sample, respectively.
The orange line represents our method, DDPM-ANT, in a
10-shot sample. The gradient of our method is closer to the
reliable reference direction, demonstrating that our approach
can effectively correct the issue of the noisy gradient. The
red points in the background symbolize “worse-case” noise,
which is generated through adversarial noise selection. This
figure shows how the noise distribution transitions from a
circle (representing a normal Gaussian distribution) to an
ellipse. The principal axis of this ellipse is oriented along
the gradient of the model parameters. This illustrates the
noise distribution shift under our adversarial noise selec-
tion approach, which effectively fine-tunes the model by
actively targeting the “worse-case” noise that intensifies the
adaptation task.

Figures 2(b) and (c) present heatmaps of the baseline and
our method in only one dimension, respectively. The cyan
and yellow lines denote the values of the generation sam-
pling process using the original DDPM and our method. The
heat maps in the background illustrate the distribution of
values for 20,000 samples generated by the original DDPM
(baseline) and our method. The lighter the color in the back-
ground, the greater the number of samples present. There

is a significantly brighter central highlight in (c) compared
to (b), demonstrating that our method can learn the distri-
bution more quickly than the baseline method. The yellow
and cyan lines in the two figures are approximately parallel,
providing further evidence that our method can learn the
gap rapidly.

5.2. Experimental Setup

Datasets. Following (Ojha et al., 2021), we use FFHQ
(Karras et al., 2020b) and LSUN Church (Yu et al., 2015)
as source datasets. For the target datasets, we employe
10-shot Babies, Sunglasses, Raphael Peale, Sketches, and
face paintings by Amedeo Modigliani, which correspond to
the source domain FFHQ. Additionally, we utilize 10-shot
Haunted Houses and Landscape drawings as target datasets
corresponding to the LSUN Church source domain.

Configurations. We evaluate our method not only on the
DDPM framework but also in LDM. For this, we employ a
pre-trained DDPM similar to DDPM-PA and use pre-trained
LDMs as provided in (Rombach et al., 2022). We restrict
our fine-tuning to the shift module of the U-Net, maintaining
the pre-trained DPMs and autoencoders in LDMs as they
are. For the l-th shift adaptor layer ψ, it can be expressed as:
ψl(xl−1) = f(xl−1Wdown)Wup (Houlsby et al., 2019). We
project the input downward using Wdown, transforming it
from its original dimension Rw×h×r to a lower-dimensional
space with a bottleneck dimension Rw

c ×h
c ×d. Following

this, we apply a nonlinear activation function f(·) and ex-
ecute an upward projection with Wup. We set c = 4 and
d = 8 for DDPMs, while c = 2 and d = 8 for LDMs. To en-
sure the adapter layer outputs are initialized to zero, we set
all the extra layer parameters to zero. For similarity-guided
training, we set γ = 5. We utilize a model pre-trained on the
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Target Domain

CDC

DCL

DDPM-PA

DDPM-ANT
(Ours)

LDM-ANT
(Ours)

Source Domain

CDC

DCL

DDPM-PA

DDPM-ANT
(Ours)

LDM-ANT
(Ours)

Figure 3. The 10-shot image generation samples on LSUN Church → Landscape drawings (top) and FFHQ → Raphael’s paintings
(bottom). When compared with other GAN-based and DDPM-based methods, our method, ANT, yields high-quality results that more
closely resemble images of the target domain style, with less blurring.

ImageNet dataset, provided by (Dhariwal & Nichol, 2021),
and subsequently fine-tune it with a new binary classifier
head on a limited set of 10 target domain images. For ad-
versarial noise selection, we set J = 10 and ω = 0.02. We
employ a learning rate of 5×10−5 for DDPMs and 1×10−5

for LDMs to train with approximately 300 iterations and a
batch size of 40.

Evaluation Metrics. To evaluate the diversity of gener-
ation, we use Intra-LPIPS and FID following CDC (Ojha
et al., 2021). For Intra-LPIPS, we generate 1,000 images,
each of which will be assigned to the training sample with
the smallest LPIPS distance. The Intra-LPIPS measure-
ment is obtained by averaging the pairwise LPIPS distances
within the same cluster and then averaging these results
across all clusters. A model that flawlessly duplicates train-
ing samples will have an Intra-LPIPS score of zero, which
indicates a lack of diversity. However, higher Intra-LPIPS
scores imply greater generation diversity, an essential qual-

ity for an efficient few-shot image generation technique.
This allows for a more robust assessment of our method’s
generation quality in comparison to other generative models.
FID is a widely used metric for assessing the generation
quality of generative models by calculating the distribution
distances between generated samples and datasets. However,
FID may become unstable and unreliable when applied to
datasets with few samples, such as the 10-shot datasets used
in this paper. Following DDPM-PA (Zhu et al., 2022), we
provide FID evaluations using larger target datasets, such
as Sunglasses and Babies, consisting of 2,5 k and 2,7k and
images, respectively.

Baselines. To adapt pre-trained models to target domains
using a limited number of samples, we compare our work
with several GAN-based and DDPMs baselines that share
similar objectives, including TGAN (Wang et al., 2018),
TGAN+ADA (Karras et al., 2020a), EWC (Li et al., 2020),
CDC (Ojha et al., 2021), DCL (Zhao et al., 2022), and

7
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Table 1. Intra-LPIPS (↑) results for both DDPM and GAN-based baselines are presented for 10-shot image generation tasks. These tasks
involve adapting from the source domains of FFHQ and LSUN Church. “Parameter Rate” means the proportion of parameters fine-tuned
compared to the pre-trained model’s parameters. The best results are marked as bold.

Methods Parameter FFHQ → FFHQ → FFHQ → LSUN Church → LSUN Church →
Rate Babies Sunglasses Raphael’s paintings Haunted houses Landscape drawings

TGAN 100% 0.510±0.026 0.550±0.021 0.533±0.023 0.585±0.007 0.601±0.030
TGAN+ADA 100% 0.546±0.033 0.571±0.034 0.546±0.037 0.615±0.018 0.643±0.060
EWC 100% 0.560±0.019 0.550±0.014 0.541±0.023 0.579±0.035 0.596±0.052
CDC 100% 0.583±0.014 0.581±0.011 0.564±0.010 0.620±0.029 0.674±0.024
DCL 100% 0.579±0.018 0.574±0.007 0.558±0.033 0.616±0.043 0.626±0.021

DDPM-PA 100% 0.599±0.024 0.604±0.014 0.581±0.041 0.628±0.029 0.706±0.030
DDPM-ANT (Ours) 1.3% 0.592±0.016 0.613±0.023 0.621±0.068 0.648±0.010 0.723±0.020

LDM-ANT (Ours) 1.6% 0.601±0.018 0.613±0.011 0.592±0.048 0.653±0.010 0.738±0.026

Table 2. FID (↓) results of each method on 10-shot FFHQ → Ba-
bies and Sunglasses. The best results are marked in bold.

Methods TGAN ADA EWC CDC DCL PA ANT

Babies 104.79 102.58 87.41 74.39 52.56 48.92 46.70
Sunglasses 55.61 53.64 59.73 42.13 38.01 34.75 20.06

DDPM-PA (Zhu et al., 2022). All baselines are implemented
based on StyleGAN2 codebase (Karras et al., 2020b).

5.3. Overall Performance

Qualitative Evaluation. Figure 3 presents samples from
GAN-based and DDPM-based methods for 10-shot LSUN
Church → Landscape drawings (top) and FFHQ →
Raphael’s paintings (bottom). The samples generated by
GAN-based baselines contain unnatural blurs and artifacts.
Our results (lines 2 and 6) are more nature and close to the
target image style. This illustrates the effectiveness of our
approach in handling complex transformations while main-
taining the integrity of the original image features. Whereas
the current DDPM-based method, DDPM-PA (third row),
seems to underfit the target domain images, resulting in a sig-
nificant difference in color and style between the generated
images and the target images. Our method preserves many
shapes and outlines while learning more about the target
style. As demonstrated in Figure 1, our method, ANT, main-
tains more details such as buildings (above), human faces
(below) and other intricate elements in the generated im-
ages. Moreover, ANT-generated images exhibit a color style
closer to the target domain, especially compared to DDPM-
PA. Compared to other methods, our approach (based on
both DDPMs and LDMs) produces more diverse and real-
istic samples that contain richer details than existing tech-
niques.

Quantitative Evaluation. In Table 1, we show the Intra-
LPIPS results for DPMs-ANT under various 10-shot adapta-

tion conditions. DDPM-ANT yields a considerable improve-
ment in Intra-LPIPS across most tasks compared to other
GAN-based and DDPMs-based methods. Furthermore,
LDM-ANT excels beyond state-of-the-art GAN-based ap-
proaches, demonstrating its potent capability to preserve
diversity in few-shot image generation. Notably, the result
for LSUN Church → Landscape drawings improved from
0.706 (DDPM-PA) to 0.723 (DDPM-ANT). The FID results
are presented in Table 2, where ANT also shows remark-
able advances compared to other GAN-based or DPM-based
methods, especially in FFHQ → 10-shot Sunglasses with
20.06 FID. We provide more results for other adaptation sce-
narios in the Appendix. Our method can transfer the model
from the source to the target domain not only effectively
but also efficiently. Compared to other methods that require
around 5,000 iterations, our approach only necessitates ap-
proximately 300 iterations (about 3k equivalent iterations
due to the finite-step gradient ascent strategy) with limited
parameter fine-tuning. The time cost of the baseline with
adaptor and 5,000 iterations (same as DDPM-PA) is about
4.2 GPU hours, while our model (DPMs-ANT) with only
300 iterations takes just 3 GPU hours.

5.4. Ablation Study

Figure 4 presents an ablation study, with all images synthe-
sized from the same noise. Compared to directly fine-tuning
the entire model (1st row), only fine-tuning the adaptor layer
(2nd row) can achieve competitive FID results (38.65 vs.
41.88). The DPMs-ANT without adversarial noise selection
(DPMs-ANT w/o AN) and all DPMs-ANT (3rd and 4th row)
are trained with an extra adaptor layer to save time and GPU
memory, and our analysis focuses on the last three rows.
More time and GPU memory experiment can be found in
Appendix B.

The first two columns demonstrate that all methods can
successfully transfer the model to sunglasses, with the ANT
containing richer high-frequency details about sunglasses
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Baseline
FID:38.65

Adaptor
FID: 41.88

DPMs-ANT
w\o AN

FID: 26.41

DPMs-ANT
FID:20.06

Figure 4. This figure shows our ablation study, where all models
are trained for 300 iterations on a 10-shot sunglasses dataset and
measured with FID (↓): the first line - baseline (direct fine-tuning
model), second line - Adaptor (fine-tuning only few extra parame-
ters), third line - DPMs-ANT w/o AN (only using similarity-guided
training), and final line - DPMs-ANT (our method).

Table 3. FID and Intra-LPIPS results of DPM-ANT from FFHQ
→ Sunglasses with different classifiers (trained on 10 and 100
images).

Intra-LPIPS (↑) FID (↓)

10-shot classifier 0.613 ± 0.023 20.06
100-shot classifier 0.637 ± 0.013 22.84

and background items. The extra adaptor layer effectively
saves time and GPU memory with minimal impact on FID.
Thus we use this adaptor in our method and rest experiment.

The 3rd and 4th columns show that the similarity-guided
method (3rd row) can produce images of people wearing
sunglasses, while the traditional method (2nd row) does not
achieve this. The last two columns highlight the effective-
ness of the adaptive noise selection method in ANT. The
step-by-step transformation showcased in the 5th column
provides a clear demonstration of how our method transfers
the source face through an intermediate phase, in which the
face is adorned with glasses, to a final result where the face is
wearing sunglasses. This vividly illustrates the effectiveness
of our proposed strategies in progressively increasing the
transfer process. The FID scores further illustrate the effec-
tiveness of our proposed strategies; it decreases from 41.88
(with direct adaptation) to 26.41 (with similarity-guided
training) and then to 20.66 (with DPMs-ANT), indicating a
progressive improvement in the quality of generated images.

5.5. Effects of Classifier Analysis.

In this subsection, we study the effects of the classifier for
similarity-guided training with limited data. Table 3 is the
FID and Intra-LPIPS results for classifiers trained on 10
and 100 images on the FFHQ → Sunglasses datasets. This
indicates that only 10 images are sufficient to guide the train-

ing process. This effectiveness is largely attributed to the
classifiers being trained on noised targeted images among
T (1000 steps) as Equation (1), ensuring a robust gradient
for training. Therefore, this experiment demonstrates that
classifiers used for similarity-guided training can be well
trained with only 10 images.

6. Conclusion
In conclusion, the application of previous GAN-based tech-
niques to DPMs encounters substantial challenges due to
the distinct training processes of these models. To overcome
these challenges, we introduce ANT to train DPMs with a
novel adversarial noise selection and the similarity-guided
strategy that improves the efficiency of the diffusion model
transfer learning process. Our proposed method accelerates
training, achieves faster convergence, and produces images
that fit the target style while resembling the source images.
Experimental results on few-shot image generation tasks
demonstrate that our method surpasses existing state-of-
the-art GAN-based and DDPM-based methods, delivering
superior image quality and diversity.

Limitations
In this subsection, we acknowledge some limitations of
our method. Given that our goal is to transfer the model
from the source domain to the target domain, the images
we generate will feature characteristics specific to the target
domain, such as sunglasses as shown in Figure 4. This can
potentially lead to inconsistency in the generated images,
and there is a risk of privacy leakage. For instance, the
reflection in the sunglasses seen in the 3rd and 4th columns
of the 3th row in Figure 4 is very similar to the one in
the target image. This could potentially reveal sensitive
information from the target domain, which is an issue that
needs careful consideration in applying this method.
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A. Detailed Derivations
A.1. Source and Target Model Distance

This subsection introduces the detailed derivation of source and target model distance, Equation (4) as follows,

DKL
(
pθS ,ϕ(x

S
t−1|xt), pθT ,ϕ(xTt−1|xt)

)
= DKL

(
pθ(S,T ),ϕ(xt−1|xt, y = S), pθ(S,T ),ϕ(xt−1|xt, y = T )

)
≈ DKL(N (xt−1;µθ(S,T )

+ σ2
t γ∇xt

log pϕ(y = S|xt), σ2
t I),N (xt−1;µθ(S,T )

+ σ2
t γ∇xt

log pϕ(y = T |xt), σ2
t I))

= Et,x0,ϵ

[
1

2σ2
t

∥∥µθ(S,T )
+ σ2

t γ∇xt log pϕ(y = S|xt)− µθ(S,T )
− σ2

t γ∇xt log pϕ(y = T |xt)
∥∥2]

= Et,x0,ϵ

[
C1 ∥∇xt

log pϕ(y = S|xt)−∇xt
log pϕ(y = T |xt)∥2

]
, (9)

where C1 = γ/2 is a constant. Since C1 is the constant of the scale, we can ignore this constant of the scale for the transfer
gap and Equation (9) is the same as Equation (4).

A.2. Similarity-Guided Loss

In this subsection, we introduce the full proof how we obtain a similarity-guided loss, Equation (5). Inspired by (Ho et al.,
2020), training is carried out by optimizing the typical variational limit on negative log-likelihood:

E[− log pθ,ϕ(x0|y = T )] ≤ Eq
[
− log

pθ,ϕ(x0:T |y = T )

q(x1:T |x0)

]

= Eq

− log p(xT )−
∑
t≥1

log
pθ,ϕ(xt−1|xt, y = T )

q(xt|xt−1)

 := L . (10)

According to (Ho et al., 2020), q(xt|x0) can be expressed as:

q(xt|x0) = N
(
xt;

√
ᾱtx0, (1− ᾱt)

)
. (11)

Training efficiency can be obtained by optimizing the random elements of L in Equation (10) using the stochastic gradient
descent. Further progress is made via variance reduction by rewriting L in Equation (10) with Equation (11) as Ho et al.
(2020):

L = Eq[DKL (q(xT |x0, p(xT |y = T ))︸ ︷︷ ︸
LT

+
∑
t>1

DKL (q(xt−1|xt, x0), pθ,ϕ(xt−1|xt, y = T ))︸ ︷︷ ︸
Lt−1

− log pθ,ϕ(x0|x1, y = T )︸ ︷︷ ︸
L0

] . (12)

As Dhariwal & Nichol (2021), the conditional reverse noise process pθ,ϕ(xt−1|xt, y) is:

pθ,ϕ(xt−1|xt, y) ≈ N
(
xt−1;µθ(xt, t) + σ2

t γ∇xt log pϕ(y|xt), σ2
t I
)
. (13)

The Lt−1 with Equation (13) can be rewrited as:

Lt−1 := DKL (q(xt−1|xt, x0), pθ,ϕ(xt−1|xt, y = T ))

= Eq
[

1

2σ2
t

∥∥µ̃t(xt, x0)− µt(xt, x0)− σ2
t γ∇xt

log pϕ(y|xt)
∥∥2]

= Et,x0,ϵ

[
C2

∥∥ϵt − ϵθ(xt, t)− σ̂2
t γ∇xt

log pϕ(y = T |xt)
∥∥2] , (14)

where C2 =
β2
t

2σ2
tαt(1−ᾱt)

is a constant, and σ̂t = (1− ᾱt−1)
√

αt

1−ᾱt
. We define the Lt−1 as similarity-guided DPMs train

loss during training as (Ho et al., 2020).
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B. Additional Experiments
In this section, we present additional experimental results, including the qualitative evaluation of FFHQ → Sunglasses and
FFHQ → Babies in Appendix B.1, the quantitative evaluation of FFHQ → Sketches and FFHQ → Amedeo’s paintings
in Appendix B.2, the sensitivity analysis in Appendix B.3, and an anonymous user study in Appendix B.4 to compare the
proposed method with DDPM-PA.

B.1. Additional Qualitative Evaluation

CDC

DCL

DDPM-PA

DDPM-ANT
(Ours)

LDM-ANT
(Ours)

Source Domain

CDC

DCL

DDPM-PA

DDPM-ANT
(Ours)

LDM-ANT
(Ours)

Target Domain

Figure 5. The 10-shot image generation samples on FFHQ → Sunglasses and FFHQ → Babies.

In Figure 5, we provide qualitative results for the GAN-based and DDPM-based methods for the 10-shot FFHQ → Sunglasses
and Babies task. The quantitative results are provided in Table 1. Compared to the GAN-based method (shown in the 2nd
and 3rd rows), our approach (shown in the 5th and 6th rows) generates images of faces wearing sunglasses, displaying
a wide variety of detailed hairstyles and facial features. Moreover, DPMs-ANT produces samples with more vivid and
realistic reflections in the sunglasses. In particular, our method also manages to generate more realistic backgrounds.
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Quantitative Evaluation of Different Iteration. As shown in Figure 6, the first row demonstrate that the orangial
train the DPMs with limited iterations is hard to get a successfully transfer. The second raw shows that training with our
similarity-guide method can boost the convergence to the taget domain. The third rows show that training further with
adversrial noise can even faster converge. As shown in the 150 iteration of the right pictures, compared to the training with a
similarity guide only (2nd row), ANT can get the face with sunglasses image.

DPMs

DPMs +
Similarity-Guided

DPMs + 
ANT

Iterations Iterations
50 100 150 200 50 100 150 200

Figure 6. This figure shows our ablation study with all models trained for in different iterations on a 10-shot sunglasses dataset: the first
line - baseline (direct fine-tuning model), second line - DPMs-ANT w/o AN (only using similarity-guided training), and third line -
DPMs-ANT (our method).

B.2. Additional Quantitative Evaluation

As depicted in Table 4, our proposed DPMs-ANT method demonstrates superior performance over contemporary GAN-based
and DPMs-based methods in terms of generation diversity for the given adaptation scenarios in FFHQ → Sketches and
FFHQ → Amedeo’s paintings. Especially, we achieve 0.544±0.025 for the FFHQ → sketches, much better than other
methods.

Table 4. The Intra-LPIPS (↑) results for both DDPM-based strategies and GAN-based baselines are presented for 10-shot image generation
tasks. The best results are marked as bold.

Methods FFHQ → FFHQ →
Sketches Amedeo’s paintings

TGAN 0.394±0.023 0.548±0.026
TGAN+ADA 0.427±0.022 0.560±0.019
EWC 0.430±0.018 0.594±0.028
CDC 0.454±0.017 0.620±0.029
DCL 0.461±0.021 0.616±0.043

DDPM-PA 0.495±0.024 0.626±0.022
DDPM-ANT (Ours) 0.544±0.025 0.620±0.021

B.3. Sensitivity Analysis

In this subsection, we study the effects of hyperparameters, including γ , ω for the adversarial noise selection, and the count
of training iterations. All hyperparameters experiments are conducted using a pre-trained LDM, and for evaluation purposes,
we generate 1,000 and 10,000 images to compute the Intra-LPIPS and FID metrics, respectively.

Effects of Similarity-guided Training Scale γ. Table 5 shows the changes in FID (↓) and Intra-LPIPS (↑) scores for
FFHQ → Sunglasses as γ (in Equation (6)) increases. Initially, the FID score decrease, as the generated images gradually
become closer to the target domain. At γ = 5, the FID reaches its lowest value of 18.13. Beyond this point, the FID
score increases as the generated images become too similar to the target images or become random noise, as in the failed
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Table 5. Effects of γ in FFHQ → Sunglasses case in terms of FID and Intra-LPIPS.

γ FID (↓) Intra-LPIPS (↑)

1 20.75 0.641 ± 0.014
3 18.86 0.627 ± 0.013
5 18.13 0.613 ± 0.011
7 24.12 0.603 ± 0.017
9 29.48 0.592 ± 0.017

Table 6. Effects of ω in FFHQ → Sunglasses case in terms of FID and Intra-LPIPS.

ω FID (↓) Intra-LPIPS (↑)

0.01 18.42 0.616 ± 0.020
0.02 18.13 0.613 ± 0.011
0.03 18.42 0.613 ± 0.016
0.04 19.11 0.614 ± 0.013
0.05 19.48 0.623 ± 0.015

Table 7. Effects of training iteration in FFHQ → Sunglasses case in terms of FID and Intra-LPIPS.

Iteration FID (↓) Intra-LPIPS (↑)

0 111.32 0.650 ± 0.071
50 93.82 0.666 ± 0.020

100 58.27 0.666 ± 0.015
150 31.08 0.654 ± 0.017
200 19.51 0.635 ± 0.014
250 18.34 0.624 ± 0.011
300 18.13 0.613 ± 0.011
350 20.06 0.604 ± 0.016
400 21.17 0.608 ± 0.019

case, leading to lower diversity and fidelity. The Intra-LPIPS score consistently decreases with increasing gamma, further
supporting the idea that larger values of γ lead to overfitting with the target image. Therefore, we select γ = 5 as a trade-off.

Effects of Adversarial Noise Selection Scale ω. As shown in Table 6, the FID (↓) and Intra-LPIPS (↑) scores for the
FFHQ → sunglasses vary with an increase of ω (from Equation (7)). Initially, the FID score decreases as the generated
images gradually grow closer to the target image. When ω = 0.02, the FID reaches its lowest value of 18.13. Beyond this
point, the FID score increases because the synthesized images become too similar to the target image, which lowers diversity.
The Intra-LPIPS score consistently decreases as ω increases, further supporting that larger ω values lead to overfitting with
the target image. We also note that the results are relatively stable when ω is between 0.1 and 0.3. As such, we choose
ω = 0.02 as a balance between fidelity and diversity.

Effects of Training Iteration. As illustrated in Table 7, the FID (↓) and Intra-LPIPS (↑) for FFHQ → Sunglasses vary
as training iterations increase. Initially, the FID value drops significantly as the generated image gradually resembles the
target image, reaching its lowest at 18.13 with 300 training iterations. After this point, the FID score stabilizes after around
400 iterations as the synthesized images closely mirror the target image. The Intra-LPIPS score steadily decreases with an
increase in iterations up to 400, further suggesting that a higher number of iterations can lead to overfitting to the target
image. Therefore, we select 300 as an optimal number of training iterations, which offers a balance between image quality
and diversity.

GPU Memory. Table 8 illustrates the GPU memory usage for each module in batch size 1, comparing scenarios with and
without the use of an adaptor. It reveals that our module results in only a slight increase in GPU memory consumption.
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Table 8. GPU memory consumption (MB) for each module, comparing scenarios with and without the use of the adaptor.

DPMs DPMs+SG DPMs+AN DPMs+ANT

w/o Adaptor 17086 17130 17100 17188
w/ Adaptor 6010 6030 6022 6080

B.4. Anonymous User Study

We carried out an additional anonymous user study to assess the qualitative performance of our method in comparison to
DDPM-PA. In this study, participants were shown three sets of images from each dataset, featuring DDPM-PA, our method
(DDPM+ANT), and images from the target domain. For each set, we displayed five images from each method or the target
image, as illustrated in our main paper. To maintain anonymity and neutrality, we labeled the methods as A/B instead of
using the actual method names (PA and ANT). We recruited volunteers through an anonymous online platform for this study.
During the study, participants were tasked with choosing the set of images (labeled as A or B, corresponding to PA or ANT)
that they believed demonstrated higher quality and a closer resemblance to the target image set.

Of the 60 participants, a significant 73.35% favored our method (DDPM+ANT), indicating that it produced images of
superior quality and more effectively captured the intricate types of target domains, as shown in Table 4. Although this
experiment did not comprehensively account for factors such as the participants’ gender, age, regional background, and
others, the results nonetheless suggest that our images possess better visual quality to a notable extent.

Table 9. Anonymous user study to assess the qualitative performance of our method (ANT) in comparison to DDPM-PA.

Sunglasses Babies Landscape Raphael’s paintings Average

DDPM-PA 20.0% 33.3% 20.0% 33.3% 26.65%
ANT 80.0% 66.7% 80.0% 66.7% 73.35%
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