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Abstract

The assessment of orthodontic treatment need, standardized by the Index of Or-
thodontic Treatment Need (IOTN), is a cornerstone of clinical dentistry. The
conventional workflow for grading its Dental Health Component (DHC) is a la-
borious process, where physical study models must be prepared for the manual
measurement of geometric discrepancies. To overcome this, we formulate the task
of automated IOTN-DHC classification directly from scanned dental 3D models.
Furthermore, we conduct a study of retrospectively collected real clinical cases,
with ground truth labels annotated by an orthodontic specialist, to serve as the
benchmark for this problem. We propose DentalNet, a multi-modal deep learning
architecture which fuses information from 2D rendered views and 3D point clouds.
It achieves this by integrating a Vision Transformer for visual context and a Point
Transformer for precise geometry, via a cross-attention mechanism to learn the
critical inter-arch relationships that define malocclusion. On our 4-class classifi-
cation task, DentalNet outperforms the state-of-the-art models, achieving a mean
F1-score of 67.03% which significantly surpasses the best performing 2D and 3D
baselines i.e. ConvNeXtV2 (49.79%) and PointNet++ (55.36%) demonstrating the
utility of our multimodal approach.

1 Introduction

The Index of Orthodontic Treatment Need (IOTN) is a widely used standard to grade the severity of
dental malocclusions. It comprises two components: the Dental Health Component (DHC), which
focuses on clinical factors such as overjet, overbite, crossbite, and tooth displacement, and the
Aesthetic Component (AC), which reflects the visual appearance of the dentition. IOTN-DHC is the
objective component of the IOTN index while IOTN-AC is the subjective component of the index.
Despite its value, calculating IOTN still remains a manual task that can be labor-intensive and prone
to inter-operator variability.

Although digital dentistry and 3D intraoral scanning have become increasingly common, the auto-
mated classification of IOTN grades remains relatively underexplored. Obtaining expertly labeled
data is a significant bottleneck in this domain. Our study therefore, makes use of a novel clinical
dataset of 123 3D intraoral scans comprising samples of all 5 grades of DHC of IOTN. For the
purpose of developing a robust model, we have merged grade 1 and grade 2 into one class as the DHC
scale is inherently ordinal and a model must understand that misclassifications between adjacent
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grades (e.g., Grade 3 vs. 4) are a less severe error than one between distant grades (e.g., Grade 2 vs.
5).

The development of a robust automated system for IOTN grading holds significant clinical implica-
tions and would alleviate the time-consuming nature of manual assessment. This work establishes the
foundational elements for a new direction in automated orthodontic diagnostics. We provide the first
comprehensive solution to this problem, including a novel task formulation, a benchmark dataset,
and a high-performing baseline model. Our primary contributions are as follows:

• A Novel Multi-Modal Architecture (DentalNet): Proposes a deep learning framework
that fuses information from 2D rendered images and 3D point clouds. A cross-attention
mechanism is used to model the critical relationship between 2D and 3D mapping them to
give a holistic prediction.

• A New Clinical Study: Conducted a new study of retrospectively collected clinical cases,
this study is based on 123 3D intraoral scans with ground truth labels annotated by an
orthodontic specialist.

• Sets a New Benchmark: Sets a new benchmark for the task with a mean F1-score of
67.03%. This performance significantly surpasses the best 2D (ConvNeXtV2 at 49.79%)
and 3D (PointNet++ at 55.36%) baseline models.

2 Related Works

The Index of Orthodontic Treatment Need (IOTN) [4] is the clinical standard for grading malocclusion,
but its manual application is time-consuming and prone to inter-observer variability [5]. While deep
learning has been successfully applied to 2D dental images like radiographs for tasks such as tooth
detection [14] and landmark localization [1, 12], these approaches are inherently limited for IOTN
assessment. They cannot capture the precise three-dimensional morphology and crucial inter-arch
relationships that define the Dental Health Component (DHC) [8]. The advent of 3D intraoral
scanners has enabled the use of point cloud architectures like PointNet++ [17] for geometric analysis
[10, 9]. However, even when applied to full dental arches, these unimodal 3D methods often lack
an explicit mechanism to model the complex occlusal relationship between the two jaws, which is
fundamental to IOTN grading.

Multimodal fusion is a well-established strategy in medical imaging [11, 7] for integrating comple-
mentary data sources to improve diagnostic accuracy [2, 18]. In dentistry, however, this approach
remains comparatively underexplored, with limited studies combining data types like CBCT and
photographs for treatment planning [13, 20]. Crucially, to the best of our knowledge, no prior work
has developed a multimodal fusion framework specifically for the automated classification of IOTN-
DHC. This critical gap motivates our work, which combines the rich contextual information from
2D rendered views with the precise geometric data from 3D point clouds in a unified architecture to
address the limitations of unimodal approaches.

3 Methodology

The clinical assessment of IOTN grades relies on a dual understanding of the patient’s dentition:
a precise geometric measurement of malocclusion (e.g., overjet, overbite, crowding) and a visual
appraisal of aesthetic features. Standard deep learning models that process only 2D images or 3D
geometry in isolation struggle with this task. 2D models fail to capture precise 3D spatial relationships,
while 3D models often analyze jaws independently, missing the critical inter-arch relationship that
defines occlusion. Our proposed model, DentalNet, is a bespoke multi-modal architecture engineered
to emulate a clinician’s holistic reasoning by simultaneously interpreting 2D appearance and 3D
relational geometry. The overall architecture is depicted in Figure 1.

3.1 Data Modalities and Preprocessing

To create our multimodal dataset, we preprocess primary 3D STL mesh files for the upper and lower
jaws into two distinct modalities. First, we generate 2D data by rendering eight canonical views
(518× 518 pixels) to capture textural and holistic morphological information; a key step involves
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Figure 1: The DentalNet architecture. A multi-view 2D branch (left) and a dual 3D point cloud
branch (center) extract features in parallel. These are integrated via a bidirectional cross-attention
block (right) that explicitly models the inter-arch relationship for final classification.

overlaying the jaws with transparency to visualize their relative distances. Second, we create 3D
point clouds by uniformly sampling N = 2048 points from each mesh (Pupper, Plower), which are
then normalized by centering and scaling to fit within a unit sphere.

3.2 DentalNet Architecture

DentalNet is composed of three key components: a 2D branch for robust view-based feature extraction,
a 3D branch for fine-grained geometric analysis, and a fusion block designed to explicitly model the
occlusal relationship.

3.2.1 Multi-View 2D Branch

To extract a global, view-invariant feature from the eight rendered images, we leverage the power of
a pre-trained DINOv2 [16] Vision Transformer (ViT-Base) [6] which is trained on the LVD-142M
dataset. To mitigate overfitting on our small medical dataset, we employ a strong regularization
strategy by freezing all backbone weights except for the final transformer block, which is fine-tuned.
The features from the eight views {f1, ..., f8} are infused with learnable positional embeddings
to retain viewpoint information. We add a 2-layer Transformer Encoder to help understand the
sequential nature of the views.

3.2.2 Geometric 3D Branch

The 3D branch is engineered to learn directly from the raw point cloud representations of the
dental arches, Pupper and Plower. For this, we employ a Point Transformer encoder [21], an
architecture designed to process unordered point sets. The core of this encoder is a vector self-attention
mechanism [19, 3] applied within local point neighborhoods. This allows the network to dynamically
learn context-aware weights for aggregating features, making it highly effective at capturing intricate
geometric details like tooth curvature, cusp morphology, and inter-arch displacement without reliance
on a mesh topology. The encoder operates hierarchically, progressively downsampling the point
cloud to learn features at multiple scales, from fine-grained details to the overall arch form. To ensure
a consistent and comparable feature space, a single, shared-weight encoder processes both jaws. This
network culminates in a global pooling layer that produces compact 256-dimensional feature vectors,
Fupper and Flower, which robustly encapsulate the intrinsic geometries of their respective jaws.

3.2.3 Cross-Modal Fusion to model Dental occlusion

This stage is the core of our contribution, designed to explicitly model occlusal state. A purely
geometric assessment of malocclusion requires understanding how the upper and lower jaws relate
to one another. We achieve this by first concatenating the individual jaw features (Fupper, Flower)
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Table 1: A comparison of model performance on the
IOTN classification task. Results are reported as mean
F1 Score and Accuracy (± standard deviation in %) over
5-fold cross-validation.
Model Accuracy (%) F1 Score (%)
Random Baseline 25.00 25.00

2D Models
ResNet18 45.50 ± 4.33 37.96 ± 4.05
ViT 48.00 ± 5.00 44.95 ± 5.02
DINOv2 43.90 ± 7.00 39.69 ± 7.32
ConvNeXtV2 51.17 ± 8.72 49.79 ± 8.65

3D Models
PointNet 55.82 ± 9.42 55.67 ± 9.43
PointMLP 52.80 ± 6.37 50.40 ± 7.75
PointNet++ 56.56 ± 10.95 55.36 ± 11.32
DGCNN 52.31 ± 3.99 50.22 ± 4.18
PointNeXt 55.19 ± 4.39 54.55 ± 4.40
PointGPT 48.96 ± 6.91 46.83 ± 4.80

2D+3D Hybrid Model
DentalNet (ours) 67.60 ± 11.31 67.03 ± 10.96

and passing them through a linear layer to produce a unified geometric representation, F3D ∈ R512,
which captures the combined state of both arches.

Next, a bidirectional cross-attention mechanism integrates the 2D and 3D representations. This
allows each modality to query the other, enriching its own features with relevant context. For example,
the 3D geometry can be informed by visual cues of discoloration or wear from the 2D views, while
the 2D features can be grounded in the precise spatial information from the 3D model. This fusion
produces two refined feature vectors, F ′

2D and F ′
3D, which are finally concatenated and passed to

the main classifier. This explicit modeling of the inter-arch relationship is what allows DentalNet to
learn the subtle geometric discrepancies that define IOTN grades, a capability lacking in unimodal
approaches.

4 Results

Analysis of the IOTN-DHC classification results reveals a clear performance hierarchy by modality.
2D models, exemplified by ConvNeXtV2, consistently underperformed, achieving a maximum F1
score of just 49.79%. This limitation can be attributed to the loss of crucial 3D depth and relational
information during the projection of dental geometry onto 2D planes. 3D models, such as PointNet++,
which operate directly on point clouds, demonstrated a superior aptitude for geometric feature
extraction achieving an F1 score of 55.36%. Our proposed DentalNet, based on the multimodal
fusion strategy achieved the highest F1 score of 67.03%. This architecture surpasses the best
3D and 2D baselines by 11.67 and 17.24 percentage points, respectively. This outcome confirms
that bidirectional cross-attention mechanism successfully creates a synergistic representation that
integrates contextual visual understanding with precise geometric analysis.

5 Conclusion

We introduce DentalNet, a deep learning framework setting a new state-of-the-art benchmark for
automated IOTN-DHC grade classification. It uses multimodal data (3D point clouds and 2D images)
with 2D/3D branches and a cross-modal fusion block to model jaw relationships. This work also
utilizes a novel in-house 3D intraoral scan dataset, created due to the lack of publicly available
alternatives. Future work will aim to refine the architecture and expand the dataset.
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7 Appendix: Supplementary Diagrams and Details

Figure 2: Qualitative analysis of DentalNet’s multi-modal feature learning. From left to right: (1) A
sample 2D rendered view used as input. (2) Visualization of the DINOv2 patch features via Principal
Component Analysis (PCA), showing that the model learns to focus on clinically relevant dental
anatomy. (3) The feature map overlaid on the original scan, confirming that attention is concentrated
on the occlusal and incisal surfaces. (4) The corresponding 3D point cloud representation of the
complete dental arches.

Figure 3: The eight canonical views rendered from a 3D dental model to serve as input for the 2D
branch of DentalNet. This multi-view approach ensures that all clinically relevant angles, such as
frontal (occlusion), buccal (side bite), and occlusal (top/bottom), are captured.

7.1 Heavily Regularized Training Objective

Training a complex, multi-modal model on a small dataset presents a significant risk of overfitting.
To combat this, we employ a heavily regularized training objective based on deep supervision. In
addition to the primary classifier that acts on the final fused features, we attach three auxiliary
classification heads directly to the outputs of the unimodal branches (F2D, Fupper, and Flower).

This creates a multi-task learning environment where the total loss Ltotal forces each component of
the network to become a proficient feature extractor in its own right:

Ltotal = LCE(ŷfinal, y) + α
∑

b∈{2D,upper,lower}

LCE(ŷb, y) (1)

Here, LCE is the Cross-Entropy loss with label smoothing (ϵ = 0.1) [15], y is the ground truth label,
ŷ are the predictions from the final and auxiliary branch (b) classifiers, and α is a hyperparameter
balancing the regularization strength. This objective ensures that the feature extractors do not become
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lazy, improving the quality of the features available for the final fusion and enhancing overall model
robustness.

Table 2: Dataset distribution by IOTN grade.

IOTN Grade Count
5 38
4 32
3 34
1,2 19

Figure 4: Confusion matrix of DentalNet predictions.
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