
Semantic-Preserving Adversarial Attacks on LLMs: An Adaptive Greedy
Binary Search Approach

Anonymous ACL submission

Abstract

Large Language Models (LLMs) increasingly001
rely on automatic prompt engineering in002
graphical user interfaces (GUIs) to refine003
user inputs and enhance response accuracy.004
However, the diversity of user requirements005
often leads to unintended misinterpretations,006
where automated optimizations distort original007
intentions and produce erroneous outputs.008
To address this challenge, we propose the009
Adaptive Greedy Binary Search (AGBS)010
method, which simulates common prompt011
optimization mechanisms while preserving012
semantic stability. Our approach dynamically013
evaluates the impact of such strategies on014
LLM performance, enabling robust adversarial015
sample generation. Through extensive016
experiments on open and closed-source LLMs,017
we demonstrate AGBS’s effectiveness in018
balancing semantic consistency and attack019
efficacy. Our findings offer actionable020
insights for designing more reliable prompt021
optimization systems. Code is available at:022
https://anonymous.4open.science/r/A5E7202F.023

1 Introduction024

The rapid deployment of large language models025

across industries has led to a paradigm shift in026

human-computer interaction, with leading manu-027

facturers increasingly integrating automatic sug-028

gestion optimization directly into the user inter-029

face. Systems such as Microsoft’s Bing Copi-030

lot (Microsoft, 2023) and the data-efficient plug-031

and-play suggestion enhancement system (PAS)032

(Zheng et al., 2024) embody this trend, employing033

complex algorithms to reconstruct user queries to034

improve response accuracy. These systems typi-035

cally operate through a multi-stage refinement pro-036

cess that may include vocabulary normalization,037

intent disambiguation, and context-aware expan-038

sion—processes that have shown significant effec-039

tiveness in standardized testing environments.040

Selection
(+) Step

Selection
(-) Step

Sub Sentence 1

Original Question

Similarity

Sub Sentence 2

Original Question

Similarity

[START]

Ranked
Candidates

QA-Dataset

𝑐j

𝑥𝑖

[START]

Ranked
Candidates

QA-Dataset

Figure 1: The core of adaptive greedy binary search.
After identifying the keyword xi for each clause and
masking it, we use this method to determine the ωj that
replaces xi and semantically compare the new clause
with the original to guide the selection of top-k posi-
tions.

However, these automatic suggestion engineer- 041

ing systems have exposed their fundamental lim- 042

itations in real-world applications. As shown in 043

Figure 1, static optimization strategies often lead to 044

semantic drift—a phenomenon in which iterative 045

suggestion modifications gradually deviate from 046

the user’s original intent—in the face of the inher- 047

ent diversity of user contexts, language patterns, 048

and task requirements. This drift is particularly se- 049

vere in edge cases, where automated systems may: 050

(1) incorrectly resolve lexical ambiguities, (2) over- 051

fit common query patterns while ignoring specific 052

requests, or (3) inadvertently amplify subtle biases 053

present in the training data. More worryingly, these 054

optimizations create attack surfaces for adversarial 055

attacks, as demonstrated by recent research on just- 056

in-time injection vulnerabilities (Zou et al., 2023; 057

Maloyan and Namiot, 2025). 058

To address these challenges, we propose the 059

Adaptive Greedy Binary Search (AGBS) frame- 060

work, which outperforms the current state-of-the- 061

art methods in three key dimensions: 062

Dynamic Semantic Stability: Unlike traditional 063

1

https://anonymous.4open.science/r/A5E7202F

beam search methods that apply fixed constraints,064

AGBS implements an adaptive threshold mecha-065

nism that dynamically adjusts the semantic sim-066

ilarity bounds based on real-time analysis of the067

effects of instantaneous perturbations. This innova-068

tion enables precise control of the balance between069

attack strength and semantic preservation.070

Hierarchical Cue Decomposition: AGBS adopts071

a novel hierarchical decomposition strategy to first072

identify key semantic units (keywords, clauses, and073

contextual markers) in the cue, and then applies tar-074

geted perturbations while maintaining grammatical075

and pragmatic coherence.076

Through extensive experiments, we demonstrate077

that AGBS can successfully induce targeted mis-078

behavior in 2400 test cases of commercial LLMs079

while maintaining an average BERTScore of ap-080

proximately 0.80 compared to the original prompts.081

These findings not only validate the effectiveness082

of our approach but also reveal fundamental limita-083

tions of current prompt optimization methods. Our084

main contributions include:085

Formalize the attack surface of just-in-time op-086

timization with a novel adversarial attack strat-087

egy achieving high success rates across LLMs and088

datasets;089

Integrate AGBS into automatic prompt learning090

to improve the concealment and success rate of091

adversarial attacks against complex scenarios and092

diversified inputs;093

Provide practical guidelines for developing more094

robust just-in-time optimization systems that bal-095

ance practicality and security.096

2 Related Work097

2.1 Adversarial Attacks on Deep Neural098

Networks099

Adversarial attack research mainly changes the in-100

put to detect the vulnerability of the model: since101

deep neural networks are vulnerable to adversarial102

samples, small perturbations may lead to serious103

classification errors (Szegedy, 2013). In response104

to this phenomenon, the fast gradient representation105

method (FGSM) (Goodfellow et al., 2014) shows106

how to induce model errors by generating pertur-107

bations through gradients. In the field of natural108

language processing, the discrete nature of text109

data makes text adversarial attacks more challeng-110

ing (Li et al., 2018), so researchers have proposed a111

variety of complex attack methods that can bypass112

defense techniques (Carlini and Wagner, 2017). On113

the other hand, adversarial training can effectively 114

improve the robustness of the model, which has 115

been proven to be one of the effective methods to 116

improve the robustness of the model (Mądry et al., 117

2017). These studies have not only promoted the 118

development of adversarial attack techniques and 119

defense strategies but also had an important im- 120

pact on the application of artificial intelligence in 121

security-sensitive fields. 122

2.2 Adversarial Attacks for Large Language 123

Models 124

Adversarial attacks based on both white-box and 125

black-box pose a significant threat to LLMs. In 126

the white-box scenario, gradient-based distribu- 127

tion attack (GBDA) (Guo et al., 2021) leverages 128

the Gumbel-Softmax technique for optimization 129

with a differentiable adversarial loss, and uses 130

BERTScore and perplexity to enhance the percepti- 131

bility and fluency of the attack. HotFlip (Ebrahimi 132

et al., 2018) manipulates adversarial text by map- 133

ping text operations to a vector space and com- 134

puting derivatives, while AutoPrompt (Shin et al., 135

2020) leverages a gradient-based strategy to opti- 136

mize the prompt template. Wallace et al. (Wallace 137

et al., 2021) introduced methods for discovering 138

universal adversarial triggers to change model out- 139

puts. However, these gradient-based attacks do not 140

apply to closed-source large language models. 141

Black-box adversarial attacks leverage various 142

techniques to exploit vulnerabilities in NLP mod- 143

els. Ribeiro et al. (Ribeiro et al., 2018) introduced 144

SEAs, a token manipulation method to identify and 145

mitigate excessive sensitivity in models. BERT- 146

Attack (Li et al., 2020) uses context-aware word re- 147

placements to subtly modify inputs. Hint injection 148

attacks, such as target hijacking and hint leakage, 149

embed harmful instructions to deceive LLMs, as 150

explored by McKenzie (McKenzie et al., 2023) and 151

Perez & Ribeiro (Perez and Ribeiro, 2022). Other 152

black-box methods include query-free techniques 153

like BadNets (Gu et al., 2017) and model replace- 154

ment strategies (Papernot et al., 2017). Goal-driven 155

attacks maximize KL divergence, equivalent to in- 156

creasing Mahalanobis distance between clean and 157

adversarial text embeddings, effectively targeting 158

LLMs (Zhang et al., 2024b,a). These approaches 159

highlight diverse tactics for addressing model secu- 160

rity challenges (Wang et al., 2024). 161

2

2.3 Adversarial Attacks with Beam Search162

The TABS (Choi et al., 2022) method combines163

semantic beam search with contextual semantic fil-164

tering while maintaining the Top-k candidate adver-165

sarial sentences and effectively narrows the search166

space through semantic filtering to maintain seman-167

tic consistency. In the improved beam search algo-168

rithm (Zhao et al., 2021), each iteration selects the169

K nodes from the previous iteration, and the word170

selection range is expanded by backtracking the171

iteration to improve efficiency. In leveraging trans-172

ferability and improved beam search (Zhu et al.,173

2022), multiple words are randomly selected for174

replacement, multiple candidate sentences are gen-175

erated for semantic filtering, and finally, the beam176

width selects the sentence with the highest defense.177

In Beam Attack (Zhu et al., 2023), the semantic fil-178

tering method is used to improve the semantic sim-179

ilarity of candidate words, and the words with the180

highest similarity are selected for replacement to181

generate the best adversarial attack samples (Wang182

et al., 2024). When the above methods generate183

adversarial samples for the pre-trained language184

model, semantic pre-screening cannot correct the185

bias in time, and when semantic constraints are186

imposed and unqualified samples are re-generated,187

it will increase the computational cost.188

3 Methodology189

Scope and Objectives: Starting with a text t con-190

sisting of multiple sentences, the goal is to generate191

a new text t′ that can effectively challenge LLMs192

like ChatGPT while preserving the original mean-193

ing of t. Otherwise, we believe the attack text t′194

targets a text unrelated to t. Here, we use S(t′, t)195

to indicate the similarity between the semantics of196

the texts t and t′. When the LLM outputs O(t)197

and O(t′) are inconsistent, t′ is identified as an ad-198

versarial example for O. The target formula is as199

follows:200

O(t) = r, O(t′) = r′, S(t, t′) ∈ σ, (1)201

Here, r and r′ represent the outputs of the model202

O for texts t and t′, respectively, with r also being203

the ground truth for text t. We introduce the sim-204

ilarity function S(., .) and a small threshold σ to205

evaluate the semantic relationship between the two206

texts. In our work, our attack satisfies the following207

conditions:208

• Effective: The attack ensures that the adver-209

sarial text maintains a high semantic similarity210

with the original input, such that S(t, t′) ∈ σ. 211

If S(t, t′) exceeds or falls below the threshold 212

σ, the adversarial text is deemed invalid. 213

• Imperceptible: Defense mechanisms (e.g., 214

jamming code detection) are often embedded 215

in LLM to make direct attacks easy to iden- 216

tify. Therefore, the perturbations introduced 217

in the adversarial text t′ are carefully designed 218

to remain contextually appropriate, ensuring 219

the natural fluency and coherence of the text 220

are not disrupted. For example, by selecting 221

alternative words that have similar semantics 222

but can change the output of the model, t′ is 223

difficult to be detected by the defense mecha- 224

nism, so as to improve the attack concealment 225

and success rate. 226

3.1 Adversarial Attacks with Adaptive Local 227

Search 228

Adversarial samples must achieve the desired at- 229

tack effect while preserving the semantic integrity 230

of the input samples. To induce incorrect model 231

outputs, it is crucial to maintain a controlled seman- 232

tic deviation between the adversarial examples and 233

the original inputs. Next, we will use a step-by-step 234

adaptive local search method to make the similar- 235

ity between adversarial samples and input samples 236

approximately equal to θ. Given a sentence input 237

X , it is divided into n sub-clauses xi, where each 238

sub-clause terminates at a designated position ti 239

(referred to as a "checking point"). By definition, 240

the positions are ordered as t1 < t2 < · · · < tn. 241

For the original sentence, this can be represented 242

as 243

X = {x1, x2, . . . , xT } , (1) 244

Where T denotes the total number of sub-clauses in 245

sentence X . We split it into several sub-clauses and 246

defined the endpoint of each sub-clause as a check- 247

ing point. Checking points for each sentence serves 248

as a positioning sentence adaptive process, and po- 249

sitions punctuation points for calculating similarity 250

with the original sentence. Let the position of the 251

i-th checking point be ti, where the points’ posi- 252

tions are t1 < t2 < · · · < tn in sub-clause, and n 253

represents the number of checking points. During 254

the generation process, at each checking point ti, 255

the similarity is computed between the partially 256

generated sentence 257

X̂1:ti = {x̂1, x̂2, . . . , x̂ti}, (2) 258

3

Adaptive Greedy
Binary Search

[START] Ranked
Candidate
selection

+Step

-Step

Perturbed
Samples

[Masked]

Words
Perturbed
Sentences

LLMs

Response

Attack
Tomas ate 1.5 pounds of
chocolate fudge last week.
Katya ate half a pound of
peanut butter fudge, while
Boris ate 2 pounds. How
many ounces of fudge did
the 3 friends eat in total?

QA-Datasets

Part-of-speech
Extraction

PoS-Mask

Embedding

Figure 2: The framework of Adaptive Greedy Binary Search for adversarial attack. There are three components
in AGBS. (a). PoS (Part-of-Speech) extraction and masking. (b). Generation of AGBS perturbed samples. (c).
Perturbed Samples Attack.

and the corresponding segment of the original sen-259

tence260

X1:ti = {x1, x2, . . . , xti}. (3)261

in same-length sub-clause positions of ti.262

At each checking point ti, we set a similar-263

ity threshold σsim and dynamically adjust the264

selection of candidate words cp in Top-k candi-265

date set C based on the current similarity value266

Sim(X1:ti , X̂1:ti).267

Let the set of candidate words at checking point268

ti be defined as269

C(ti) = {c1, c2, . . . , ck}, (4)270

where cj represents the j-th candidate word in the271

Top-k ranking, and smaller subscript j represents a272

higher Top-k ranking for cj in set C. Initially, we273

select the middle-ranked word c⌊k/2⌋ as the starting274

candidate.275

The dynamic adjustment process based on the276

similarity threshold σth is as follows:277

If the original sub-clause xi contains masked278

keywords (tagged as ’VB’, ’VBZ’, ’VBD’, ’VBN’,279

or ’NNS’), the following adjustments are applied:280

σsim = Sim(X1:ti , X̂1:ti), (5)281

indicating that the generated sentence deviates too282

much from the original. Here we use BertTok-283

enizer to get the embeddings of X1:tiand X̂1:tiand284

compute the cosine similarity between them to get285

σsim.286

To make the generated sentence closer to the287

original, we adjust the candidate word down in the288

Top-k list by one step position s, perform a "Rank +289

s " operation, and move the selected position from290

j to j − s,291

If Sim(X1:ti , X̂1:ti) < σth, cp ← cj−s. (6)292

Conversely, if the similarity value in Equation 5293

exceeds the threshold σth, it indicates that the gen-294

erated sentence is overly similar to the original,295

potentially failing to achieve the intended attack ef- 296

fect. In this case, we adjust the candidate word up 297

in the Top-k list, performing a "Rank - s" operation, 298

If Sim(X1:ti , X̂1:ti) > σth, cp ← cj+s. (7) 299

Through the threshold judgment of similarity σth, 300

the selection order of candidate words is dynam- 301

ically adjusted so that the generated sentence not 302

only maintains a reasonable similarity with the orig- 303

inal sentence but also can achieve the attack goal of 304

modifying the selection of candidate words in real- 305

time based on the similarity between the generated 306

sentence and the original sentence, thereby control- 307

ling the reasonableness and attack effectiveness of 308

the generated output. 309

3.2 Dynamic generation of sub-clauses 310

At each generation step, the newly generated result 311

X̂ti is integrated into the masked position of the 312

original sentence X1 : ti, with the current context 313

x̂ti updated to xmi . These updates ensure that the 314

next generation step is based on the newly updated 315

context, gradually optimizing the generation pro- 316

cess. 317

Initially, the masked sentence XM is given by: 318

XM = {x1, . . . , xmi−1, [MASK], xmi+1, . . . , xT },
(8) 319

where [MASK] indicates the masked word at po- 320

sition mi. For [MASK] position mi, beam search 321

progressively expands the candidates to generate 322

the complete sentence. 323

We set the model prediction probability distri- 324

bution to be P (c | XM) , ∀c ∈ C, which is the 325

conditional probability of the model for each word 326

C in the vocabulary c, given the input sentence. In 327

this step, BERT is employed to predict the word for 328

the [MASK] position, producing the logits output 329

as follows: 330

logits(c) = BERT (XM , xmi) (9) 331

4

logits(c) is the raw score of the word c ∈ C, we332

apply softmax to logits to generate a probability333

distribution normalized over the entire candidate334

set C,335

P (c | XM) =
exp(logits(c))∑
c∈C exp(logits(c))

(10)336

We sort the probability distribution P (c | XM)337

to select the Top-K candidates with the highest338

probability P (c | XM) = {c1, c2, . . . , ck}. Here339

we pick cp as the best candidate, which x̂mi = cp.340

At the i-th generation step, the model generates x̂ti341

to replace the masked word, updating the sentence:342

XM = {x1, . . . , xmi−1, x̂ti , xmi+1, . . . , xT }.
(11)343

Finally, the updated context for the next step is:344

X̂F = X̂1:tn = {x̂1, x̂2, . . . , x̂tn} . (12)345

where X̂1:ti+1 represents the part of the sentence346

that has been generated so far, including all results347

up to the current step.348

During each step of the generation process, we349

continuously update the partially generated sen-350

tence based on similarity calculations and dynamic351

candidate word adjustment strategies until the en-352

tire sentence is completed. This process continues353

to perform similarity calculations and candidate354

adjustments until the last segment of the sentence355

is generated.356

Let the final generated sentence be X̂F, and its357

generation process can be described by the follow-358

ing formula:359

X̂F =

n∏
i=1

P (X̂ti | XM, X̂1:ti−1 , Sim(X1:ti , X̂1:ti)), (13)360

Here, X̂ti denotes the word generated at step361

i,XM represents the original masked sentence,362

X̂1:ti−1 corresponds to the portion of the sentence363

generated up to step ti, and Sim
(
X1:ti , X̂1:ti

)
364

evaluates the semantic similarity between the origi-365

nal and generated sentences at position ti.366

4 Experiments367

4.1 Experimental Details368

Datasets: We selected the following datasets,369

including the QA scenario numerical response370

datasets GSM8K (Cobbe et al., 2021), Math QA371

(Amini et al., 2019), Strategy QA (Geva et al.,372

2021), and SVAMP (Patel et al., 2021) with nu- 373

meric responses, and SQuAD (Rajpurkar et al., 374

2016), SQuAD 2.0 (Rajpurkar et al., 2018), Movie 375

QA (Tapaswi et al., 2016) and Complex Web Ques- 376

tions (Talmor and Berant, 2018) with textual re- 377

sponses in QA scenario. Datasets details will be 378

listed in the Appendix A. 379

Parameter Settings: We set the semantic similar- 380

ity threshold to σ= 0.80. The strength of candidate 381

words is 13000, the number of randomly selected 382

questions is 300, and the BERT used is the pre- 383

trained BERT (bert-large-uncased) model. This 384

model has 24 transformer encoding layers, and the 385

dimension of the hidden layer is 1024. There are 16 386

attention heads in this version of the BERT model. 387

The detailed Appendix C.2 is for the setting of 388

beam width. The response criteria in numbers and 389

text are described in Appendix B. 390

Victim Models: In the evaluation for AGBS 391

method, we selected ChatGPT-4/4o (Radford et al., 392

2020), Llama 3.1/3.2 (Dubey et al., 2024), Qwen 393

2.5 (Yang et al., 2024), Gemma 2 (Team et al., 394

2024), and Phi-3.5 (Abdin et al., 2024) series of 395

LLMs, where each LLM selected a variety of 396

weight parameter sizes. Appendix A.2 provides 397

a detailed description of the victim models. 398

Evaluation Metrics: Assume that the test set is 399

D, the set of all question-answer pairs predicted 400

correctly by the LLM model f is T , and a(x) repre- 401

sents the attack sample generated by the clean input. 402

Then we can define the following three evaluation 403

indicators, 404

• Clean Accuracy The Clean Accuracy mea- 405

sures the accuracy of the model when dealing 406

with clean inputs Aclean = |T |
|D| . 407

• Attack Accuracy The Attack Accuracy met- 408

ric measures the accuracy of adversarial attack 409

inputs Aattack =
|
∑

(x,y)∈T f(a(x))=y|
|D| . 410

• Attack Success Rate (ASR) The attack 411

success rate indicates the rate at which a 412

sample is successfully attacked. Now we 413

formally describe it as follows ASR = 414
|
∑

(x,y)∈T f(a(x)) ̸=y|
|T | It is worth noting that for 415

the above three measurements, we have the 416

following relationship ASR = 1− Aattack
Aclean

. 417

• Average inference time (AVG) We assume 418

that the time cost to infer sample is T, then 419

our average inference time is Tavg, then Tavg 420

is: Tavg = 1
n

∑n
i=1 Ti 421

5

Algorithm 1 Adaptive Greedy Binary Search (AGBS)
Input: Original sentence X = {x1, x2, . . . , xT }, similarity threshold σth, Top-k candidate set C =
{c1, c2, . . . , ck}, search range k, masked sentence XM , similarity function Sim(·), mask position mi,
checking points ti.
Output: adversarial sentence XF

1: Split X into n sub-clauses based on POS tags (VB, VBZ, VBD, VBN, NNS), obtaining X1:ti

2: Initialize XF ← X ▷ Adversarial sentence initialization
3: Initialize candidate position cp ← c⌊k/2⌋ ▷ Start with middle-ranked word
4: for Each checking point ti do
5: Initialize candidate set C(ti)← {c1, c2, . . . , ck}
6: Update X̂1:ti ← {x̂1, x̂2, . . . , x̂ti−1, cp} ▷ Integrate current candidate word
7: Update XM ← {x1, . . . , xmi−1, cp, xmi+1, . . . , xT } ▷ Update masked sentence
8: Compute similarity σsim ← Sim(X1:ti , X̂1:ti) ▷ Evaluate semantic similarity
9: if σsim < σth then

10: Adjust cp ← cp+s ▷ Move to higher-ranked s steps if σsim < σth
11: else if σsim > σth then
12: Adjust cp ← cp−s ▷ Move to lower-ranked s steps if σsim > σth
13: end if
14: end for
15: Set XF ← X̂1:tn ▷ Concatenate all generated sub-clauses into final output
16: return XF

4.2 Implementation Details422

Our parameters are set as follows: In our greedy423

binary search procedure, we set the upper search424

range to 13,000 and the semantic threshold to σ=425

0.8. This threshold is represented by σ as the thresh-426

old to adjust the Top-k candidate position at each427

step, while we set the clause position and the greedy428

binary search mechanism at the beginning of the429

second sentence. The length norm α = 0.7 is the430

initial value; Step X is set to 50. The embedding431

shapes of the predicted clause and the main clause432

are both [1,768].433

For our experiments, we established two distinct434

categories of question-answering (QA) scenarios.435

The first category, numerical response QA, primar-436

ily encompasses datasets such as GSM8K, SVAMP,437

and Math QA. The second category, text response438

QA, is represented by datasets including SQuAD,439

Strategy QA, and Movie QA. To create our exper-440

imental environment, we randomly selected 300441

question-answer pairs from these datasets to serve442

as the evaluation range.443

4.3 Main Attack Results444

We first evaluate the common open-source and445

closed-source LLMs, mainly to test the attack suc-446

cess rate on various LLMs under the adaptive447

greedy search method. The main datasets included448

are the QA datasets of text-type and numerical re- 449

sponses scenarios. The detailed experimental re- 450

sults are as follows in Table 1 and Table 2. 451

According to the main attack evaluation results 452

in Table 1. We can see that the AGBS method 453

achieves good attack results in numerical responses, 454

QA, and text reply scenarios. From the model’s per- 455

spective, the overall experiment shows that LLM 456

with a larger parameter number in the same model 457

is relatively more resistant. The AGBS method on 458

the Numerical Response Test shows a high ASR for 459

the GSM8K dataset and all tested LLMS. On the 460

SVAMP dataset, the AGBS method only has a high 461

ASR on the llama 3.1/3.2 and Qwen2.5 LLMs and 462

has a good attack effect. However, it does not have 463

a high ASR on the Gemma2 model. Part of the 464

reason may be that Gemma2 itself does not have a 465

high Clean Accuracy, thus limiting the exploration 466

of the attack success rate. Except for llama3.1-70B 467

in Math QA, which has many parameters, all other 468

models show high ASR. In summary, it can be said 469

that our AGBS method has achieved a good attack 470

effect on the numerical response test. 471

In other datasets are text response scenarios, 472

which contain SQAUD, Strategy QA, and Movie 473

QA datasets, and the results can be seen in Table 2. 474

This data set shows that the higher ASR occurs 475

in the LLMs with smaller weights under the same 476

model. For example, Qwen 2.5-0.5B and 1.5B 477

6

Models GSM8K SVAMP Math QA

Aclean Aattack ASR ↑ AVG Aclean Aattack ASR ↑ AVG Aclean Aattack ASR ↑ AVG

gpt-4o-latest 47.50 15.00 68.42 2.21s 88.00 33.33 62.13 0.55s 32.40 22.33 31.08 0.82s
gpt-4-turbo 27.50 2.50 90.91 2.31s 84.67 38.00 55.12 0.55s 48.50 34.50 28.87 1.12s
llama3.1-8B 17.50 7.50 57.14 1.49s 17.33 8.00 53.84 0.81s 8.67 4.67 46.12 0.23s
llama3.1-13B 47.50 5.00 89.47 1.72s 47.83 27.33 42.86 1.15s 13.67 11.67 17.12 1.27s
llama3.2-1B 17.50 0.00 100.00 1.78s 31.76 3.33 89.49 0.97s 7.00 3.00 57.14 0.25s
llama3.2-3B 47.50 5.00 89.47 1.38s 39.33 5.33 86.45 0.83s 3.00 1.00 66.67 0.15s
qwen2.5-1.5B 47.50 5.00 89.47 1.97s 14.38 9.70 32.55 1.21s 5.67 2.67 52.91 0.75s
qwen2.5-7B 15.00 7.50 50.00 1.91s 53.00 22.00 58.49 1.05s 10.33 2.00 80.64 0.69s
qwen2.5-14B 22.50 5.00 77.78 2.49s 76.67 27.67 63.91 1.31s 64.86 39.18 39.59 1.16s
gemma2-9B 12.50 7.50 40.00 1.24s 60.27 19.67 67.58 0.75s 7.67 3.67 52.15 0.44s
gemma2-27B 70.00 10.00 85.71 0.85s 31.44 29.77 5.31 0.21s 10.33 2.00 80.64 1.28s
phi3.5-3.8B 22.50 0.00 100.00 3.35s 14.33 6.00 58.13 2.91s 1.00 0.00 100.00 1.73s

Table 1: Comparison of attack effects of AGBS on different LLMs and datasets (Numerical response test)

Models SQUAD Strategy QA Movie QA

Aclean Aattack ASR ↑ AVG Aclean Aattack ASR ↑ AVG Aclean Aattack ASR ↑ AVG

gpt-4o-latest 54.52 43.49 20.23 0.63s 55.33 43.45 21.47 0.70s 76.06 56.31 25.97 0.81s
gpt-4-turbo 51.84 32.43 37.44 0.78s 57.33 43.70 23.77 0.56s 77.99 58.91 24.46 0.96s
llama3.1-8B 33.78 30.43 9.92 0.56s 43.33 42.33 2.31 1.07s 66.41 60.62 8.72 0.36s
llama3.1-13B 47.83 27.33 42.86 1.13s 47.33 35.68 24.61 1.42s 79.54 75.29 5.34 0.92s
llama3.2-1B 16.39 9.03 44.91 1.82s 54.00 46.33 14.20 0.26s 42.08 37.84 10.08 0.34s
llama3.2-3B 28.09 22.41 20.22 0.36s 34.33 29.33 14.56 0.23s 64.48 59.07 8.39 0.38s
qwen2.5-1.5B 14.38 9.70 32.55 0.38s 43.00 41.00 4.65 0.42s 33.20 30.45 8.28 0.38s
qwen2.5-7B 20.74 19.40 6.46 0.72s 55.00 36.57 33.51 0.46s 36.68 34.75 5.26 0.69s
qwen2.5-14B 30.77 30.43 1.10 1.12s 55.67 44.43 20.19 0.68s 66.02 62.93 4.68 1.16s
gemma2-9B 34.11 27.42 19.61 0.45s 54.00 48.36 10.44 0.17s 62.16 59.85 3.72 0.44s
gemma2-27B 44.15 37.79 14.41 0.85s 64.00 59.67 6.77 0.21s 69.11 67.57 2.23 0.94s
phi3.5-3.8B 14.33 6.00 58.13 3.36s 20.67 19.67 4.84 2.30s 33.59 31.66 5.75 0.36s

Table 2: Comparison of attack effects of AGBS on different LLMs and datasets (Text response test)

achieve high ASR on our adversarial attack test.478

However, by increasing the weight of the Llama479

and Qwen models, for example, to a scale greater480

than 20B (20 billion parameters), the models show481

obvious resistance to our AGBS method, and our482

ASR drops sharply on the above scale models. This483

phenomenon can be said to be the point at which484

our future work can improve.485

Overall, comparing results in the Table 1 and Ta-486

ble 2 tables, we can observe that AGBS performs487

better in the numerical response QA scenario than488

in the text response QA scenario. We believe that489

direct perturbation adversarial attacks against se-490

mantic boundaries may be difficult to perform ad-491

versarial attacks against reasoning about semantic492

perturbations, and we will further explore the se-493

mantic change angle decomposition of the AGBS494

method in Table 3.495

4.4 Comparison to other mainstream methods496

We compare the mainstream adversarial attack497

methods and find the intersection of these methods498

that can be tested to conduct comparative experi-499

ments. It contains the adversarial attack generation500

methods TextFooler (Li et al., 2018), TextBugger501

(Jin et al., 2020), and DeepWordBug (Gao et al.,502

2018). There are also methods for assessing model 503

robustness, such as BertAttack (Li et al., 2020), 504

StressTest (Ribeiro et al., 2020), and CheckList 505

(Ribeiro et al., 2020). The above Attack Suc- 506

cess Rate experimental data are from PromptBench 507

(Zhu et al., 2024). The main results of this experi- 508

ment can be seen in Table 3. The Query situation 509

of various methods is also shown in the Table 3. In 510

addition, we set the statistics of the average con- 511

sumption time of adversarial sample generation 512

and the average successful total semantic similarity 513

for the AGBS method, which can better show the 514

characteristics of our AGBS method. The specific 515

experimental results are shown in Table 2. 516

The results of our longitudinal comparison ex- 517

periments on GPT-3.5-turbo are shown in Table 3. 518

Here, we count the query mode of the above at- 519

tack methods as a supplement so our efficiency 520

comparison range can be determined well in the 521

subsequent experiments. In many similar studies, 522

SQUAD 2.0 and Math QA datasets are selected as 523

our experimental control Baseline. The relevant 524

experimental results show that our AGBS method 525

far exceeds similar classical methods and currently 526

reaches SOTA. 527

7

Models SQuAD2.0 Math SVAMP

Aclean Aattack ASR Aclean Aattack ASR Aclean Aattack ASR

BertAttack (Li et al., 2020) 71.16 24.67 65.33 72.30 44.82 38.01 88.00 77.41 12.03
DeepWordBug (Gao et al., 2018) 70.41 65.68 6.72 72.30 48.36 33.11 88.00 64.83 26.33
TextFooler (Jin et al., 2020) 72.87 15.60 78.59 72.30 46.80 35.27 88.00 43.62 50.43
TextBugger (Li et al., 2018) 71.66 60.14 16.08 72.30 47.75 33.96 88.00 60.72 20.77
Stress Test (Ribeiro et al., 2020) 71.94 70.66 1.78 72.30 39.59 45.24 - - -
CheckList (Ribeiro et al., 2020) 71.41 68.81 3.64 72.30 36.90 48.96 - - -
G2PIA (Zhang et al., 2024b) 68.30 14.00 79.50 72.30 52.37 27.57 88.00 69.42 21.11
Target-Driven (Zhang et al., 2024a) 71.16 14.91 83.02 72.30 33.39 53.82 88.00 64.87 20.28

Our Method 71.16 12.48 83.09 72.33 28.50 60.61 88.00 33.33 62.13

Table 3: Comparison of the effectiveness of the AGBS method with other SOTA adversarial attack methods

4.5 Ablation Study528

4.5.1 Parameter Sensitive Study529

This section will mainly conduct parameter sen-530

sitivity tests on σ and our X . We will conduct531

specific experiments on multiple sets of parameters532

under the same dataset and LLM to determine the533

best set of parameters. Where σ makes us judge534

the parameter of the critical semantic similarity535

value, and X is the specific step size that we adjust536

when adjusting beam search dynamically. While537

ω is the beam width at each step of our specific538

beam search, we will explore the three parameters539

to determine the best combination. We select two540

open sources and one closed-source common large541

model to conduct parameter sensitivity tests on the542

GSM8K dataset. The results are shown in Table 4.

Target Models σ ω Aclean Aattack ASR

0.3 0.7 17.50 8.50 51.43
llama3.1-8B 0.8 0.7 17.50 7.50 57.14

0.8 0.3 17.50 15.00 14.29

0.3 0.7 15.00 9.50 36.67
qwen2.5-7B 0.8 0.7 15.00 7.50 50.00

0.8 0.3 15.00 15.00 0.00

0.3 0.7 50.00 15.00 70.00
gemma2-9B 0.8 0.7 50.00 5.00 90.00

0.8 0.3 50.00 17.50 65.00

0.3 0.7 27.50 12.50 54.55
gpt-4 0.8 0.7 27.50 2.50 90.91

0.8 0.3 27.50 9.75 64.55

Table 4: Hyperparameter sensitivity analysis for σ and
ω of AGBS attack.543

The results of the sensitivity experiments for544

hyperparameters are shown in the Table 4. We545

selected the open-source models llama3.1-8B,546

Qwen2.5-7B, Gemma2-9B, and OpenAI’s closed-547

source model gpt-4-0125-preview as the target548

models for our parameter sensitivity experiments.549

It can be seen from the experimental results that550

when we take the best ASR as the hyperparameter551

index when σ and ω are set to 0.8 and 0.7, respec-552

tively, our AGBS strategy can play the greatest at-553

tack effect, and we choose this group of parameters554

as our best AGBS strategy parameters. 555

4.6 Dynamic Optimization Study 556

In this part of the ablation study, we will explore 557

whether our dynamic optimization strategy truly 558

works with beam search. We will compare the Dy- 559

namic and Static strategies. The static strategy is 560

to omit the selection position adjustment of Top-K, 561

fixed middle-ranked position as C⌊k/2⌋ as a candi- 562

date. The results are shown in Table 5.

Type Target Models Aclean Aattack ASR

Dynamic llama3.1-8B 17.50 7.50 57.14
Static llama3.1-8B 17.50 15.00 14.23

Dynamic llama3.2-3B 47.50 5.00 89.47
Static llama3.2-3B 47.50 27.75 41.58

Dynamic qwen2.5-7B 15.00 7.50 50.00
Static qwen2.5-7B 15.00 12.50 16.67

Dynamic gpt-4-turbo 27.50 2.50 90.91
Static gpt-4-turbo 27.50 17.50 36.36

Table 5: Experimental comparison of dynamic and static
strategies on AGBS attack

563

The experimental results show that the ASR of 564

the dynamic Beam Search strategy is significantly 565

higher than that of the static strategy, especially on 566

GPT-4-turbo and llama3.2-3B. 567

5 Conclusion 568

The AGBS method offers an effective approach 569

for adversarial attacks on LLMs by combining au- 570

tomatic prompt engineering with dynamic greedy 571

search, ensuring semantic stability and high attack 572

success rates. It reduces semantic biases from di- 573

verse inputs, enhancing attack concealment and 574

effectiveness in QA tasks. Experiments demon- 575

strate AGBS’s robustness across various LLMs, in- 576

cluding ChatGPT, Llama, Qwen, and Gemma, em- 577

phasizing its value in testing and improving LLM 578

security. Future work will extend AGBS to multi- 579

modal tasks and multi-turn conversations, address- 580

ing vulnerabilities in complex LLM applications 581

and enhancing their resilience. 582

8

Limitation583

This study is limited to automatic prompt engineer-584

ing based on beam search and does not involve585

prompt engineering of other methods. In addition,586

only the most common number and text response587

QA scenarios of LLMs are introduced in the appli-588

cation environment, and VQA (Visual Question An-589

swering) and multi-round QA scenarios of LLMs590

are not practiced.591

Ethics Statement592

Adversarial attacks against large language models593

are crucial to enhance their robustness. However,594

the techniques developed to exploit vulnerabilities595

in LLMs found in this paper could be used for ma-596

licious purposes against LLMs, such as making597

LLMs produce misinformation or even hallucina-598

tions. In short, we aim to find effective ways to at-599

tack large language models to encourage the model600

creator or manager to fix and improve the LLM vul-601

nerabilities to improve the robustness of the LLMs602

under test.603

References604

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan,605
Jyoti Aneja, Ahmed Awadallah, Hany Awadalla,606
Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harki-607
rat Behl, et al. 2024. Phi-3 technical report: A highly608
capable language model locally on your phone. arXiv609
preprint arXiv:2404.14219.610

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik611
Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-612
jishirzi. 2019. Mathqa: Towards interpretable math613
word problem solving with operation-based for-614
malisms. arXiv preprint arXiv:1905.13319.615

Nicholas Carlini and David Wagner. 2017. Towards616
evaluating the robustness of neural networks. In 2017617
ieee symposium on security and privacy (sp), pages618
39–57. Ieee.619

YunSeok Choi, Hyojun Kim, and Jee-Hyong Lee. 2022.620
Tabs: Efficient textual adversarial attack for pre-621
trained nl code model using semantic beam search.622
In Proceedings of the 2022 Conference on Empiri-623
cal Methods in Natural Language Processing, pages624
5490–5498.625

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,626
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias627
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro628
Nakano, et al. 2021. Training verifiers to solve math629
word problems. arXiv preprint arXiv:2110.14168.630

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,631
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,632

Akhil Mathur, Alan Schelten, Amy Yang, Angela 633
Fan, et al. 2024. The llama 3 herd of models. arXiv 634
preprint arXiv:2407.21783. 635

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing 636
Dou. 2018. Hotflip: White-box adversarial examples 637
for text classification. Preprint, arXiv:1712.06751. 638

Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun 639
Qi. 2018. Black-box generation of adversarial text 640
sequences to evade deep learning classifiers. In SPW, 641
pages 50–56. IEEE. 642

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, 643
Dan Roth, and Jonathan Berant. 2021. Did aristo- 644
tle use a laptop? a question answering benchmark 645
with implicit reasoning strategies. arXiv preprint 646
arXiv:2101.02235. 647

Ian J Goodfellow, Jonathon Shlens, and Christian 648
Szegedy. 2014. Explaining and harnessing adver- 649
sarial examples. arXiv preprint arXiv:1412.6572. 650

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. 651
2017. Badnets: Identifying vulnerabilities in the 652
machine learning model supply chain. arXiv preprint 653
arXiv:1708.06733. 654

Chuan Guo, Alexandre Sablayrolles, Hervé Jégou, 655
and Douwe Kiela. 2021. Gradient-based adver- 656
sarial attacks against text transformers. Preprint, 657
arXiv:2104.13733. 658

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter 659
Szolovits. 2020. Is bert really robust? a strong base- 660
line for natural language attack on text classification 661
and entailment. In AAAI, volume 34, pages 8018– 662
8025. 663

Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting 664
Wang. 2018. Textbugger: Generating adversarial 665
text against real-world applications. arXiv preprint 666
arXiv:1812.05271. 667

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue, 668
and Xipeng Qiu. 2020. BERT-ATTACK: adversarial 669
attack against BERT using BERT. In EMNLP, pages 670
6193–6202. Association for Computational Linguis- 671
tics. 672

Aleksander Mądry, Aleksandar Makelov, Ludwig 673
Schmidt, Dimitris Tsipras, and Adrian Vladu. 2017. 674
Towards deep learning models resistant to adversarial 675
attacks. stat, 1050(9). 676

Narek Maloyan and Dmitry Namiot. 2025. Adversar- 677
ial attacks on llm-as-a-judge systems: Insights from 678
prompt injections. arXiv preprint arXiv:2504.18333. 679

Ian R McKenzie, Alexander Lyzhov, Michael Pieler, 680
Alicia Parrish, Aaron Mueller, Ameya Prabhu, Euan 681
McLean, Aaron Kirtland, Alexis Ross, Alisa Liu, 682
et al. 2023. Inverse scaling: When bigger isn’t better. 683
arXiv preprint arXiv:2306.09479. 684

Microsoft. 2023. Bing copilot: Your ai companion for 685
search. Accessed on 2024-10-10. 686

9

https://arxiv.org/abs/1712.06751
https://arxiv.org/abs/1712.06751
https://arxiv.org/abs/1712.06751
https://arxiv.org/abs/2101.02235
https://arxiv.org/abs/2101.02235
https://arxiv.org/abs/2101.02235
https://arxiv.org/abs/2101.02235
https://arxiv.org/abs/2101.02235
https://arxiv.org/abs/2104.13733
https://arxiv.org/abs/2104.13733
https://arxiv.org/abs/2104.13733
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.500
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.500
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.500
https://www.bing.com/
https://www.bing.com/
https://www.bing.com/

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow,687
Somesh Jha, Z Berkay Celik, and Ananthram Swami.688
2017. Practical black-box attacks against machine689
learning. In ACCC, pages 506–519.690

Arkil Patel, Satwik Bhattamishra, Navin Goyal, et al.691
2021. Are nlp models really able to solve692
simple math word problems? arXiv preprint693
arXiv:2103.07191.694

Fábio Perez and Ian Ribeiro. 2022. Ignore previous695
prompt: Attack techniques for language models.696
Preprint, arXiv:2211.09527.697

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,698
Adam B. Santoro, Samuel Chaplot, Aditya Patra, and699
Ilya Sutskever. 2020. Chatgpt: A language model for700
conversational agents. OpenAI.701

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.702
Know what you don’t know: Unanswerable ques-703
tions for squad. In Proceedings of the 56th Annual704
Meeting of the Association for Computational Lin-705
guistics (Volume 2: Short Papers), pages 65–70.706

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and707
Percy Liang. 2016. Squad: 100,000+ questions for708
machine comprehension of text. In Proceedings of709
the 2016 Conference on Empirical Methods in Natu-710
ral Language Processing, pages 2383–2392. Associ-711
ation for Computational Linguistics.712

Marco Tulio Ribeiro, Sameer Singh, and Carlos713
Guestrin. 2018. Semantically equivalent adversar-714
ial rules for debugging NLP models. In ACL, pages715
856–865.716

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,717
and Sameer Singh. 2020. Beyond accuracy: Behav-718
ioral testing of nlp models with checklist. arXiv719
preprint arXiv:2005.04118.720

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV721
au2, Eric Wallace, and Sameer Singh. 2020. Auto-722
prompt: Eliciting knowledge from language mod-723
els with automatically generated prompts. Preprint,724
arXiv:2010.15980.725

C Szegedy. 2013. Intriguing properties of neural net-726
works. arXiv preprint arXiv:1312.6199.727

Alon Talmor and Jonathan Berant. 2018. The web as728
a knowledge-base for answering complex questions.729
In Proceedings of the 2018 Conference of the North730
American Chapter of the Association for Computa-731
tional Linguistics: Human Language Technologies,732
pages 574–584. Association for Computational Lin-733
guistics.734

Makarand Tapaswi, Yukun Zhu, Rainer Stiefelhagen,735
Antonio Torralba, Raquel Urtasun, and Sanja Fidler.736
2016. Movieqa: Understanding stories in movies737
through question-answering. In Proceedings of the738
IEEE Conference on Computer Vision and Pattern739
Recognition.740

Gemma Team, Morgane Riviere, Shreya Pathak, 741
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati- 742
raju, Léonard Hussenot, Thomas Mesnard, Bobak 743
Shahriari, Alexandre Ramé, et al. 2024. Gemma 2: 744
Improving open language models at a practical size. 745
arXiv preprint arXiv:2408.00118. 746

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gard- 747
ner, and Sameer Singh. 2021. Universal adversarial 748
triggers for attacking and analyzing nlp. Preprint, 749
arXiv:1908.07125. 750

Taowen Wang, Zheng Fang, Haochen Xue, Chong 751
Zhang, Mingyu Jin, Wujiang Xu, Dong Shu, 752
Shanchieh Yang, Zhenting Wang, and Dongfang Liu. 753
2024. Large vision-language model security: A sur- 754
vey. In International Conference on Frontiers in 755
Cyber Security, pages 3–22. Springer. 756

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, 757
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan 758
Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2 759
technical report. arXiv preprint arXiv:2407.10671. 760

Chong Zhang, Mingyu Jin, Dong Shu, Taowen Wang, 761
Dongfang Liu, and Xiaobo Jin. 2024a. Target-driven 762
attack for large language models, ccf b. In European 763
Conference on Artificial Intelligence (ECAI), 2024. 764

Chong Zhang, Mingyu Jin, Qinkai Yu, Chengzhi Liu, 765
Haochen Xue, and Xiaobo Jin. 2024b. Goal-guided 766
generative prompt injection attack on large language 767
models. arXiv preprint arXiv:2404.07234. 768

Tengfei Zhao, Zhaocheng Ge, Hanping Hu, and Ding- 769
meng Shi. 2021. Generating natural language adver- 770
sarial examples through an improved beam search 771
algorithm. arXiv preprint arXiv:2110.08036. 772

Miao Zheng, Hao Liang, Fan Yang, Haoze Sun, Tian- 773
peng Li, Lingchu Xiong, Yan Zhang, Youzhen Wu, 774
Kun Li, Yanjun Shen, Mingan Lin, Tao Zhang, Gu- 775
osheng Dong, Yujing Qiao, Kun Fang, Weipeng 776
Chen, Bin Cui, Wentao Zhang, and Zenan Zhou. 777
2024. Pas: Data-efficient plug-and-play prompt aug- 778
mentation system. arXiv preprint arXiv:2407.06027. 779

Bin Zhu, Zhaoquan Gu, Yaguan Qian, Francis Lau, and 780
Zhihong Tian. 2022. Leveraging transferability and 781
improved beam search in textual adversarial attacks. 782
Neurocomputing, 500:135–142. 783

Hai Zhu, Qinyang Zhao, and Yuren Wu. 2023. Bea- 784
mattack: Generating high-quality textual adversarial 785
examples through beam search and mixed seman- 786
tic spaces. In Pacific-Asia Conference on Knowl- 787
edge Discovery and Data Mining, pages 454–465. 788
Springer. 789

Kaijie Zhu, Qinlin Zhao, Hao Chen, Jindong Wang, and 790
Xing Xie. 2024. Promptbench: A unified library 791
for evaluation of large language models. Journal of 792
Machine Learning Research, 25(254):1–22. 793

10

https://arxiv.org/pdf/2103.07191.pdf
https://arxiv.org/pdf/2103.07191.pdf
https://arxiv.org/pdf/2103.07191.pdf
https://arxiv.org/abs/2211.09527
https://arxiv.org/abs/2211.09527
https://arxiv.org/abs/2211.09527
https://openai.com/research/chatgpt
https://openai.com/research/chatgpt
https://openai.com/research/chatgpt
https://arxiv.org/abs/2010.15980
https://arxiv.org/abs/2010.15980
https://arxiv.org/abs/2010.15980
https://arxiv.org/abs/2010.15980
https://arxiv.org/abs/2010.15980
https://arxiv.org/abs/1512.02902
https://arxiv.org/abs/1512.02902
https://arxiv.org/abs/1512.02902
https://arxiv.org/abs/1908.07125
https://arxiv.org/abs/1908.07125
https://arxiv.org/abs/1908.07125
https://arxiv.org/abs/2407.06027
https://arxiv.org/abs/2407.06027
https://arxiv.org/abs/2407.06027

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr,794
J Zico Kolter, and Matt Fredrikson. 2023. Univer-795
sal and transferable adversarial attacks on aligned796
language models. arXiv preprint arXiv:2307.15043.797

11

Appendix798

Contents799

1 Introduction 1800

2 Related Work 2801

2.1 Adversarial Attacks on Deep Neu-802

ral Networks 2803

2.2 Adversarial Attacks for Large Lan-804

guage Models 2805

2.3 Adversarial Attacks with Beam806

Search 3807

3 Methodology 3808

3.1 Adversarial Attacks with Adaptive809

Local Search 3810

3.2 Dynamic generation of sub-clauses 4811

4 Experiments 5812

4.1 Experimental Details 5813

4.2 Implementation Details 6814

4.3 Main Attack Results 6815

4.4 Comparison to other mainstream816

methods 7817

4.5 Ablation Study 8818

4.5.1 Parameter Sensitive Study 8819

4.6 Dynamic Optimization Study . . . 8820

5 Conclusion 8821

Appendix 12822

A Experiment details 12823

A.1 Dataset details 12824

A.2 Victim Models Details 13825

B Criteria description on QA scenarios 13826

B.1 Text Response Criteria: 13827

B.2 Numerical Response Criteria: . . . 13828

B.3 Detailed Prompts 13829

B.3.1 Ollama text responses830

prompts 13831

B.3.2 Ollama numerical re-832

sponses prompts 13833

B.3.3 OpenAI text responses834

prompts 13835

B.3.4 OpenAI numerical836

responses prompts 14837

C Research on changes of AGBS Semantic838

Similarity 14839

C.1 Semantic Similarity of Single-840

Dataset Attack Samples 14841

C.2 Attack success rate variation under 842

AGBS search scope variation . . . 14 843

D Additional experiments results 15 844

D.1 The Additional experiments of the 845

main experiment 15 846

A Experiment details 847

A.1 Dataset details 848

GSM8K: The GSM8K dataset (Cobbe et al., 2021) 849

is a high-quality and linguistically diverse dataset 850

of mathematical word problems introduced by 851

OpenAI. It contains 8000 questions extracted from 852

Google searches, each with 8 similar questions. 853

The GSM8K dataset aims to train the model on 854

these problems to improve its performance when 855

dealing with imperfect matching problems. 856

857

Math QA: The Math QA dataset (Amini et al., 858

2019) by Aliyun comprises curated math word 859

problems with detailed explanations, principles, 860

choices, and solution annotations. 861

862

Strategy QA: The Strategy QA (Geva et al., 863

2021) dataset is specifically designed for 864

question-answering tasks and contains many 865

question-and-answer pairs for training and evaluat- 866

ing question-answering systems. 867

868

SVAMP: The SVAMP dataset (Patel et al., 2021) 869

is a dataset for question-answering tasks, which 870

contains many question-and-answer pairs designed 871

to help train and evaluate question-answering 872

systems. 873

874

SQUAD: SQuAD (Stanford Question Answering 875

Dataset) (Rajpurkar et al., 2016) is a widely used 876

question-answering dataset. It contains more than 877

100,000 question-answering pairs derived from 878

Wikipedia articles. The strength of the SQuAD 879

dataset lies in its large scale, high quality, and the 880

diversity of contexts and questions it contains. 881

882

SQUAD 2: SQuAD 2.0 (Rajpurkar et al., 2018)is 883

an upgraded version of the SQuAD dataset, 884

which introduces unanswerable questions based 885

on the original answerable questions. These 886

unanswerable questions are similar in form to the 887

12

answerable questions, but the paragraphs do not888

contain answers.889

890

Complex Web Questions: The ComplexWe-891

bQuestions (CWQ) (Talmor and Berant, 2018)892

dataset is based on Freebase, which contains893

questions and Web Snippet files.894

895

Movie QA: The Movie QA (Tapaswi et al., 2016)896

dataset contains 14,944 questions about 408897

movies, covering multiple question types ranging898

from simple to complex. The dataset is unique in899

that it contains a variety of information sources,900

such as Video clips, subtitles, scripts, and DVS901

(Described Video Service).902

903

A.2 Victim Models Details904

ChatGPT: This dialogue generation model905

developed by OpenAI can produce conversations906

that closely mimic human interactions (Radford907

et al., 2020). By training on a large number of908

datasets, it gains a lot of knowledge and insights.909

In the experiments, GPT-4-Turbo and GPT-4-o are910

selected as the victim models in the OpenAI family.911

912

Llama 3.1/3.2: Llama 3.1 and 3.2 are advanced913

language models developed by Meta AI (Dubey914

et al., 2024). Trained on various datasets, Llama915

improves language understanding and generation916

capabilities and is suitable for various application917

scenarios such as chatbots and content authoring.918

In the experiments, our attack methods will test the919

7B, 13B, and 70b versions of llama 3.1 and 1B and920

3B versions of llama 3.2.921

922

Qwen2.5: The Qwen 2.5 is a new series of large923

language models from the Alibaba Group (Yang924

et al., 2024). It contains the 0.5b, 1.5b, 7b, 72b. In925

this experiment, we will select Qwen2.5 with the926

main parameter size for experiments.927

928

Gemma2: Google’s Gemma 2 model (Team et al.,929

2024) is available in three sizes, 2B, 9B, and 27B,930

featuring a brand-new architecture designed for931

class-leading performance and efficiency.932

933

Phi3.5: Proposed by Microsoft, Phi-3.5 is a934

lightweight LLM designed for data analysis and935

medical diagnosis, featuring high accuracy and936

scalability (Abdin et al., 2024). This experiment937

focuses on the Phi-3.5-3.8b model.938

B Criteria description on QA scenarios 939

B.1 Text Response Criteria: 940

When the length of the answer in the QA data pair 941

is greater than or equal to three words, the LLMs 942

reply and the standard answer in the QA data pair 943

are crossed, and the same word is more than two 944

words, which is correct, and less than or equal 945

to two words, which is wrong. When the answer 946

length in the QA data pair is less than three words, 947

the intersection of the two must contain the answer 948

in the QA data pair. Otherwise, the situation is 949

judged as an error. 950

Let A and B be the sets of words in the LLM’s 951

response and the QA pair’s standard answer, respec- 952

tively. Let |A ∩B| denote the number of common 953

words between A and B. 954

For answers with three or more words: 955

Correctness =

{
Correct if |A ∩B| > 2

Incorrect if |A ∩B| ≤ 2
(14) 956

For answers with less than three words: 957

Correctness =

{
Correct if B ⊆ A ∩B

Incorrect if B ⊈ A ∩B
(15) 958

B.2 Numerical Response Criteria: 959

The final numerical result in the LLM’s response 960

should be exactly the same as the answer in each 961

QA data pair. Let Nr and Na be the numerical 962

responses of the dataset’s QA pair and standard 963

answers, respectively. So if Nr = Na, this case 964

is judged to be the correct answer. If the Nr is 965

not equal to Na, the case is judged to be a wrong 966

answer. The case where the decision is correct is 967

strictly enforced, equal to the decision. 968

B.3 Detailed Prompts 969

B.3.1 Ollama text responses prompts 970

Please give me a brief answer directly
and promise to answer in English:

B.3.2 Ollama numerical responses prompts 971

Give me the numerical answers directly,
without giving the intermediate steps:

B.3.3 OpenAI text responses prompts 972

Please give me a brief answer directly
to the following questions and promise
to answer in English:

13

B.3.4 OpenAI numerical responses prompts973

Give me the numerical answers directly
in the following questions, without
giving the intermediate steps:

C Research on changes of AGBS974

Semantic Similarity975

In the results of changes in AGBS semantic simi-976

larity, we will focus on exploring the detailed prop-977

erties of the AGBS method under these changes.978

These include the change in semantic similarity979

when generating attack samples for a single dataset,980

the correlation between semantic change and attack981

accuracy under the AGBS strategy, and the change982

in total ASR by adjusting the limited beam search983

beam width. This section will set up three kinds984

of experiments to achieve these three aspects of985

interpretability exploration.986

C.1 Semantic Similarity of Single-Dataset987

Attack Samples988

In this part, we will evaluate the semantic changes989

of the same dataset under the AGBS method on990

different LLMs, where we select the GSM8K991

and SVAMP datasets in llama3.1-8B, qwen2.5:7B,992

qwen2.5:14B, gemma2:9B, and llama3.2:3B, re-993

spectively. Samples of successful attacks on these994

chosen LLMs generate a change in semantic simi-995

larity. The results of the average variation trend of996

position and semantic similarity for word selection997

are shown in Figure 3, Figure 4.998

0 5 10 15 20 25 30
Steps

14000

14200

14400

14600

14800

15000

15200

15400

Po
sit

io
n

Dynamic Optimization Beam Search Position Change Trend

llama3.1:8b
qwen2.5:7b
qwen2.5:14b
gemma2:9b
llama3.2:3b

Figure 3: Dynamic optimization beam search position
change trend

According to the results shown in the Figure 3,999

the similarity and selection of position-changing1000

trends could be analyzed by visualizations. Al-1001

though the semantic changes of the AGBS strategy1002

0 5 10 15 20 25 30
Steps

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Si
m

ila
rit

y

llama3.1:8b
qwen2.5:7b
qwen2.5:14b
gemma2:9b
llama3.2:3b

Figure 4: Dynamic optimization beam search semantic
similarity change trend

on the same dataset in different LLMs are slightly 1003

different, the overall position trend is still the same. 1004

For example, in Figure 3, we can see roughly the 1005

same inflectional point when selecting the position 1006

of words on AGBS. This approximate inflection 1007

point can prove that our dynamic strategy works 1008

and that adaptive greedy binary search on different 1009

LLMs is effective. 1010

At the same time, from Figure 4 on our seman- 1011

tic similarity change trend graph, we can see that 1012

the semantic similarity change of our AGBS strat- 1013

egy on different LLMs has the same trend. For 1014

example, a similarity inflection point is generated 1015

at about 18 and 19 steps. However, the magnitude 1016

of similarity variation is different for each LLM. 1017

In our experimental results, the semantic similarity 1018

changes on llama3.2:3b and gemma2:9b are the 1019

largest, and the changes on qwen2.5:7b, 14b, and 1020

llama3.1:8b are more similar, which can be under- 1021

stood as our AGBS strategy is more suitable for the 1022

type of LLMs. 1023

C.2 Attack success rate variation under 1024

AGBS search scope variation 1025

In this experiment, we explore the correlation be- 1026

tween the search scope setting and the attack suc- 1027

cess rate. The search scope directly affects the 1028

efficiency of our algorithm, so exploring the rela- 1029

tionship between the search scope and our attack 1030

rate is the key to balancing attack effectiveness and 1031

algorithm complexity. 1032

We will select the search scope range in order of 1033

magnitude to verify the attack on the QA pairs we 1034

extracted from the validation set. We must know 1035

the relationship between semantic similarity and 1036

attack success rate to determine our search scope. 1037

14

Our results are shown in the Table 6.1038

According to our experimental results in Table 6,1039

we can observe that under our AGBS strategy, our1040

attack effect reaches the best state when the search1041

scope is 13,000, and the ASRs are almost the high-1042

est. However, there are some special cases, such1043

as the performance of GSM8K and SVAMP on1044

Qwen2.5-14B in the QA scenario, both of which1045

have the best performance at a beam width of1046

10000. The 10000 beam width on Qwen2.5-14B1047

also outperforms the other cases on the GSM8K1048

dataset. The 10000 beam width on Qwen2.5-14B1049

also outperforms the other cases on GSM8K. So,1050

we set the beam width of the AGBS strategy to1051

13,000 as our optimal hyperparameter value.1052

Furthermore, we draw the line chart of the at-1053

tack success rate of the same model under different1054

search scopes. The below Figure 5 and Figure 61055

are the ASR variation curves under different search1056

scopes on llama3.2-3B, llama3.1-8B, qwen2.5-7B,1057

and qwen2.5-14B, respectively. It is evident that1058

the attack accuracy is affected by the search scope1059

variation and thus affects the final ASR variation.1060

At a lower search scope, the performance is lim-1061

ited for each dataset under various LLMs, and a1062

reasonable commonality range is between 10,0001063

and 13,000.1064

In conclusion, we believe that the search scope of1065

AGBS plays a relatively critical role in determining1066

the performance of our AGBS strategy. This part1067

of our research identifies the best hyperparameters1068

for the AGBS policy.1069

D Additional experiments results 1070

Below are the results of additional adversarial at- 1071

tack experiments on the AGBS method. 1072

D.1 The Additional experiments of the main 1073

experiment 1074

The following results in Table 7 and Table 8 show 1075

the additional results of the comparison of attack ef- 1076

fects of AGBS on different LLMs of the all dataset. 1077

The target model includes llama-3.1-70B, llama- 1078

3.3-70B, Qwen2.5-0.5B, and Gemma2-2 B. 1079

15

Models Search scope GSM8K SQUAD SVAMP

Aclean Aattack ASR ↑ Aclean Aattack ASR ↑ Aclean Aattack ASR ↑

2000 55.00 10.00 81.82 26.76 22.07 17.53 43.00 8.67 79.84
6000 47.50 2.50 94.74 26.09 23.08 11.54 40.33 7.00 82.64

Llama3.2-3B 10000 25.00 2.50 90.00 25.08 21.74 13.32 38.00 7.33 80.71
13000 42.50 2.50 94.12 25.42 17.48 31.24 39.00 6.00 84.62
16000 40.00 2.50 93.75 25.08 21.40 14.67 36.00 7.33 79.64
2000 27.50 12.50 54.54 32.11 29.10 9.37 20.33 10.67 47.52
6000 20.00 5.00 75.00 31.10 26.76 13.95 18.33 6.33 65.47

Llama3.1-8B 10000 22.50 2.50 88.89 31.10 29.43 11.11 18.33 10.67 41.79
13000 25.00 2.50 90.00 35.45 29.77 16.02 16.33 10.00 38.76
16000 17.50 7.50 57.14 34.11 28.76 15.68 17.00 10.67 37.24
2000 15.00 10.00 33.33 20.40 17.73 13.09 53.33 20.00 62.50
6000 10.00 6.25 37.50 20.74 18.73 9.69 54.33 18.67 65.64

Qwen2.5-7B 10000 17.50 10.00 42.86 20.74 19.73 4.87 54.67 19.67 64.02
13000 15.00 7.50 50.00 20.40 14.36 29.61 54.00 16.45 69.54
16000 10.00 7.50 25.00 19.40 18.39 5.21 52.67 22.33 62.96
2000 10.00 7.50 2.50 32.78 28.43 13.27 71.67 27.00 62.33
6000 22.50 7.50 66.67 31.10 29.43 5.37 74.33 28.00 62.33

Qwen2.5-14B 10000 28.34 7.50 73.54 33.11 29.10 12.11 76.33 26.67 65.06
13000 17.50 12.50 28.57 32.44 26.67 17.79 73.33 26.00 64.54
16000 17.50 7.50 57.14 32.11 30.10 6.26 75.00 29.33 60.89

Table 6: The result of attack success rate via the AGBS search scope changes experiments (Llama3.2-3B/8B,
Qwen2.5-7B/4)

Models GSM8K SVAMP Math QA

Aclean Aattack ASR ↑ AVG Aclean Aattack ASR ↑ AVG Aclean Aattack ASR ↑ AVG

llama3.1-70B 47.50 15.00 68.42 3.44s 74.50 32.82 55.95 3.05s 13.67 11.33 17.12 0.14s
llama3.3-70B 72.50 17.50 75.86 9.45s 77.67 40.00 48.50 4.92s 32.33 23.67 26.79 1.45s
qwen2.5-0.5B 32.50 2.50 92.31 1.84s 8.70 0.00 100.00 1.47s 6.00 2.33 61.17 1.81s
gemma2-2B 50.00 5.00 90.00 1.49s 37.67 12.33 67.27 0.74s 46.72 34.79 25.54 0.38s

Table 7: Comparison of attack effects of AGBS on different LLMs and datasets (Numerical response test)

Models SQUAD Strategy QA Movie QA

Aclean Aattack ASR ↑ AVG Aclean Aattack ASR ↑ AVG Aclean Aattack ASR ↑ AVG

llama3.1-70B 49.83 44.15 11.40 2.01s 49.67 47.00 5.38 2.03s 79.54 75.29 5.34 2.23s
llama3.3-70B 52.17 49.16 5.77 2.53s 50.33 47.33 5.96 1.49s 78.76 75.29 4.41 1.90s
qwen2.5-0.5B 9.03 8.03 11.07 0.64s 26.67 25.33 5.02 1.09s 20.08 10.46 47.91 0.80s
gemma2-2B 19.40 15.97 17.68 0.38s 51.67 36.67 29.03 0.26s 62.16 48.59 21.83 0.39s

Table 8: Comparison of attack effects of AGBS on different LLMs and datasets (Text response test)

16

2000 4000 6000 8000 10000 12000 14000 16000
Beam Width

0

20

40

60

80

Va
lu

e

llama3.1-8b - GSM8K Dataset
A_clean
A_attack
ASR

(a) GSM8K on llama3.1-8B

2000 4000 6000 8000 10000 12000 14000 16000
Beam Width

10

15

20

25

30

35

Va
lu

e

llama3.1-8b - SQUAD Dataset

A_clean
A_attack
ASR

(b) SQUAD on llama3.1-8B

2000 4000 6000 8000 10000 12000 14000 16000
Beam Width

10

20

30

40

50

60

Va
lu

e

llama3.1-8b - SVAMP Dataset
A_clean
A_attack
ASR

(c) SVAMP on llama3.1-8B

Figure 5: The relationship between the AGBS search
scope and the attack success rate. (Part I)

2000 4000 6000 8000 10000 12000 14000 16000
Beam Width

0

20

40

60

80

Va
lu

e

llama3.2-3b - GSM8K Dataset

A_clean
A_attack
ASR

(a) GSM8K on llama3.2-3B

2000 4000 6000 8000 10000 12000 14000 16000
Beam Width

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

Va
lu

e
llama3.2-3b - SQUAD Dataset

A_clean
A_attack
ASR

(b) SQUAD on llama3.2-3B

2000 4000 6000 8000 10000 12000 14000 16000
Beam Width

10

20

30

40

50

60

70

80

Va
lu

e

llama3.2-3b - SVAMP Dataset

A_clean
A_attack
ASR

(c) SVAMP on llama3.2-3B

Figure 6: The relationship between the AGBS search
scope and the attack success rate. (Part II)

17

2000 4000 6000 8000 10000 12000 14000 16000
Beam Width

10

20

30

40

50

Va
lu

e

qwen2.5-7B - GSM8K Dataset
A_clean
A_attack
ASR

(a) GSM8K on qwen2.5-7B

2000 4000 6000 8000 10000 12000 14000 16000
Beam Width

5

10

15

20

25

30

Va
lu

e

qwen2.5-7B - SQUAD Dataset
A_clean
A_attack
ASR

(b) SQUAD on qwen2.5-7B

2000 4000 6000 8000 10000 12000 14000 16000
Beam Width

20

30

40

50

60

70

Va
lu

e

qwen2.5-7B - SVAMP Dataset

A_clean
A_attack
ASR

(c) SVAMP on qwen2.5-7B

Figure 7: The relationship between the AGBS search
scope and the attack success rate. (Part III)

2000 4000 6000 8000 10000 12000 14000 16000
Beam Width

0

10

20

30

40

50

60

70

Va
lu

e

qwen2.5-14B - GSM8K Dataset
A_clean
A_attack
ASR

(a) GSM8K on qwen2.5-14B

2000 4000 6000 8000 10000 12000 14000 16000
Beam Width

5

10

15

20

25

30

Va
lu

e
qwen2.5-14B - SQUAD Dataset

A_clean
A_attack
ASR

(b) SQUAD on qwen2.5-14B

2000 4000 6000 8000 10000 12000 14000 16000
Beam Width

30

40

50

60

70

Va
lu

e

qwen2.5-14B - SVAMP Dataset

A_clean
A_attack
ASR

(c) SVAMP on qwen2.5-14B

Figure 8: The relationship between the AGBS search
scope and the attack success rate. (Part IV)

18

	Introduction
	Related Work
	Adversarial Attacks on Deep Neural Networks
	Adversarial Attacks for Large Language Models
	Adversarial Attacks with Beam Search

	Methodology
	Adversarial Attacks with Adaptive Local Search
	Dynamic generation of sub-clauses

	Experiments
	Experimental Details
	Implementation Details
	Main Attack Results
	Comparison to other mainstream methods
	Ablation Study
	Parameter Sensitive Study

	Dynamic Optimization Study

	Conclusion
	Appendix
	Experiment details
	Dataset details
	Victim Models Details

	Criteria description on QA scenarios
	Text Response Criteria:
	Numerical Response Criteria:
	Detailed Prompts
	Ollama text responses prompts
	Ollama numerical responses prompts
	OpenAI text responses prompts
	OpenAI numerical responses prompts

	Research on changes of AGBS Semantic Similarity
	Semantic Similarity of Single-Dataset Attack Samples
	Attack success rate variation under AGBS search scope variation

	Additional experiments results
	The Additional experiments of the main experiment

