
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EXPLORING DIFFUSION MODELS’ CORRUPTION STAGE
IN FEW-SHOT FINE-TUNING AND MITIGATING WITH
BAYESIAN NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Few-shot fine-tuning of Diffusion Models (DMs) is a key advancement, signifi-
cantly reducing training costs and enabling personalized AI applications. However,
we explore the few-shot fine-tuning dynamics of DMs and observe an unanticipated
phenomenon: during the fine-tuning process, image fidelity initially improves, then
unexpectedly deteriorates with the emergence of noisy patterns, only to recover
later with severe overfitting. We term the stage with generated noisy patterns as
corruption stage. To understand this corruption stage, we begin by heuristically
modeling the one-shot fine-tuning scenario, and then extend this modeling to more
general cases. Through this modeling, we identify the primary cause of this cor-
ruption stage: a narrowed learning distribution inherent in the nature of few-shot
fine-tuning. To tackle this, we apply Bayesian Neural Networks (BNNs) on DMs
with variational inference to implicitly broaden the learned distribution, and present
that the learning target of the BNNs can be naturally regarded as an expectation
of the diffusion loss and a further regularization with the pretrained DMs. This
approach is highly compatible with current few-shot fine-tuning methods in DMs
and does not introduce any extra inference costs. Experimental results demonstrate
that our method significantly mitigates corruption, and improves the fidelity, qual-
ity and diversity of the generated images in both object-driven and subject-driven
generation tasks. The code is available at an anonymous link1.

1 INTRODUCTION

Recent years have witnessed a surge in the development of Diffusion Models (DMs). These models
have showcased extraordinary capabilities in various applications, such as image editing (Kawar
et al., 2022) and video editing (Yang et al., 2022), among others. Particularly noteworthy is the
advent of few-shot fine-tuning methods (Hu et al., 2021; Ruiz et al., 2023; Qiu et al., 2023), in which
a pretrained model is fine-tuned to personalize generation based on a small set of training images.
These approaches have significantly reduced both memory and time costs in training. Moreover,
these techniques offer powerful tools for adaptively generating images based on specific subjects
or objects, embodying personalized AI and making AI accessible to everyone. In recent years, this
innovation has even fostered the emergence of several communities, such as civitai.com , which
boasts tens of thousands of checkpoints and millions of downloads.

Despite the importance and widespread usage of few-shot fine-tuning methods in DMs, these methods
often struggle or even fail when transferring from a large distribution (i.e., pretrained DMs’ learned
distribution) to a much smaller one (i.e., fine-tuned DMs’ learned distribution) using limited data (Qiu
et al., 2023; Ruiz et al., 2023). We are the first to identify when and how these failures occur, and
find that they are related to an unusual phenomenon: As shown in Fig. 1, the similarity between the
generated images and the training images initially increases during fine-tuning, but then unexpectedly
decreases, before increasing once more. Ultimately, the DMs are only capable of generating images
identical to the training images. Notably, on the stage with decreasing similarity, we observe there
appear some unexpected noisy patterns on the generated images, therefore we name it as corruption
stage.

1https://anonymous.4open.science/r/BNN-Finetuning-DMs-0C35

1

civitai.com
https://anonymous.4open.science/r/BNN-Finetuning-DMs-0C35

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Corruption
Stage

Training
Image:

(a) Few-shot fine-tuning process without BNNs.

Training
Image:

(b) Few-shot fine-tuning process with BNNs.

Figure 1: Image fidelity variation during few-shot fine-tuning with and without BNNs. Zero training
iteration indicates pretrained DMs. We fine-tune Stable Diffusion v1.5 with DreamBooth for 5 runs.

To understand this corruption stage, we carry out further analysis on the few-shot fine-tuning process.
Specifically, we start from heuristic modeling a one-shot case, i.e., using only one image during
fine-tuning, and then extend it to more general cases. The modeling provides an estimation of the
error scale remaining in the generated images. We further show how corruption stages emerge due to
the limited learned distribution inherent in few-shot tasks with this modeling.

Based on the analysis above, the solution to corruption should concentrate on expanding the learned
distribution. However, this expansion remains challenging in few-shot fine-tuning. Traditional
data augmentation methods, when applied to generative models, often face significant problems
such as leakage (Karras et al., 2020) and a reduction in generation quality (Daras et al., 2023).
Inspired by recent advancements in Bayesian Neural Networks (BNNs) (Blundell et al., 2015), we
propose to incorporate BNNs as a straightforward yet potent strategy to implicitly broaden the learned
distribution. We further present that its learning target can be regarded as an expectation of the
diffusion loss and an extra regularization loss related to the pretrained model. These two losses can
be adjusted to reach a trade-off between image fidelity and diversity. Our method does not introduce
any extra inference costs, and has good compatibility with existing few-shot fine-tuning methods
in DMs, including DreamBooth (Ruiz et al., 2023), LoRA (Hu et al., 2021), and OFT (Qiu et al.,
2023). Experimental results demonstrate that our method significantly alleviates the corruption issues
and substantially enhances the performance across various few-shot fine-tuning methods on diverse
datasets under different metrics.

In summary, our main contributions are as follows:

1. We observe an abnormal phenomenon during few-shot fine-tuning process on DMs: The image
fidelity first enhances, then unexpectedly worsens with the appearance of noisy patterns, before
improving again but with severe overfitting. We refer to the phase where noisy patterns appear as the
corruption stage. We hope this observation could inform future research on DMs.

2. We provide a heuristic modeling for few-shot fine-tuning process on DMs, explaining the emer-
gence and disappearance of the corruption stage. With this modeling, we pinpoint that the main issue
stems from the constrained learned distribution of DMs inherent in few-shot fine-tuning process.

3. We innovatively incorporate BNNs to broaden the learned distribution, hence relieving such
corruption. Experimental results confirm the effectiveness of this approach in improving on different
metrics, including text prompt fidelity, image fidelity, generation diversity, and image quality.

2 RELATED WORKS

2.1 DIFFUSION MODELS AND FEW-SHOT FINE-TUNING

Diffusion Models (DMs) (Ho et al., 2020; Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Song
et al., 2020) are generative models that approximate a data distribution through the gradual denoising
of a variable initially sampled from a Gaussian distribution. These models involve a forward diffusion
process and a backward denoising process. In the forward process, the extent of the addition of a
noise ε increases over time t, as described by the equation xt =

√
αtx0 +

√
1− αtε, where x0 is

a given original image and the range of time t is {1, . . . , 1000} in general cases. Conversely, in

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

the backward process, the DMs aim to estimate the noise with a noise-prediction module ϵθ and
subsequently remove it from the noisy image xt. The discrepancy between the actual and predicted
noise serves as the training loss, denoted as diffusion loss LDM := Eε∼N (0,1),t ||ϵθ(xt, t)− ε||22 .
Few-shot fine-tuning in DMs (Gal et al., 2022; Hu et al., 2021; Qiu et al., 2023; Ruiz et al., 2023) aims
at personalizing DMs with a limited set of images, facilitating the creation of tailored content. Gal
et al. (2022) introduced a technique that leverages new tokens within the embedding space of a frozen
text-to-image model to capture the concepts presented in provided images. Ruiz et al. (2023) further
proposed DreamBooth, which fine-tunes most parameters in DMs leveraging a reconstruction loss
that captures more precise details of the input images, with a class-specific preservation loss ensuring
the alignment with the textual prompts. Additionally, Hu et al. (2021) proposed LoRA, a lightweight
fine-tuning approach that inserts low-rank layers to be learned while keeping other parameters frozen.
Qiu et al. (2023) presented OFT, a method that employs orthogonal transformations to enhance the
quality of generation. Although these methods generally succeed in capturing the details of training
images, they suffer from the corruption stage observed in this paper.

2.2 BAYESIAN NEURAL NETWORKS

Bayesian Neural Networks (BNNs) are a type of stochastic neural networks characterized by treating
the parameters as random variables rather than fixed values (Blundell et al., 2015; Buntine, 1991;
Neal, 2012). The objective is to infer the posterior distribution P (θ|D) for the parameters θ given
a dataset D. It endows BNNs with several distinct advantages, such as the capability to model the
distributions for output, to mitigate overfitting, and to enhance model interpretability (Arbel et al.,
2023; Jospin et al., 2022). One prevalent variant of BNNs is the mean-field variational BNN, also
known as Bayes by Backprop, where the mean-field variational inference is applied to obtain the
variational distribution QW (θ) to approximate the posterior distribution P (θ|D) (Blundell et al.,
2015). Recent studies demonstrated that even a BNN module, which treats only a subset of parameters
as random variables while maintaining the rest as fixed, can retain the benefits associated with full
BNNs (Harrison et al., 2023; Kristiadi et al., 2020; Sharma et al., 2023). Our proposed method can
be regarded as a natural progression of BNN principles applied to few-shot fine-tuning in DMs.

3 CORRUPTION STAGE IN FEW-SHOT FINE-TUNING

In Sec. 3.1, we first present the observation on the corruption stage during few-shot fine-tuning of
DMs. In Sec. 3.2, to better observe and understand the issues and fine-tuning dynamics with the
corruption stage, we propose a heuristic modeling that uses Gaussian distribution as an approximation.
To address the challenges of modeling the dynamics of DMs during fine-tuning, we adopt reasonable
simplifications, supported by evidence from a specific case. In Sec. 3.3, we explain the emergence
and vanishing of the corruption stage by our modeling, and reveal the limited learned distribution is
the root cause of the corruption stage.

3.1 OBSERVATION

In this section, we explore the performance variation during the few-shot fine-tuning process of DMs.
Concretely, we fine-tune Stable Diffusion (SD) v1.52 (Rombach et al., 2022) with DreamBooth (Ruiz
et al., 2023) on different number of training images, and record the average Dino similarity between
the generated images and training images as a measure of the image fidelity (Qiu et al., 2023; Ruiz
et al., 2023).

As shown in Fig. 2, the variation of the image fidelity is not monotonous during fine-tuning.
Specifically, the few-shot fine-tuning process can be approximately divided into the following phases:

1. In the first a few iterations, the image fidelity improves quickly.
2. Later, there is an abnormal decrease in the image fidelity. We observe the generated images in

this phase present with increasing noisy patterns, i.e., the gradual emergence of the corruption
stage.
2https://huggingface.co/runwayml/stable-diffusion-v1-5

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Training Iterations

Corruption
Stage

(a) Fine-tuning on 1 image.

Training Iterations

Corruption
Stage

(b) Fine-tuning on 2 images.

Training Iterations

Corruption
Stage

(c) Fine-tuning on 6 images.

Figure 2: Illustration of image fidelity variation in few-shot fine-tuning under different numbers of
training images measured by Dino similarity. Higher Dino similarity indicates better image fidelity.
As the number of training images increases, the corruption occurs later, and its severity is reduced.

3. Subsequently, the generation fidelity recovers, and we observe the corruption patterns on generated
images progressively diminish, i.e. the gradual disappearance of the corruption stage. Once
corruption completely diminishes in this phase, the model enters a state close to overfitting, where
it can only generate images identical to the training images. As a result, it loses the ability to
produce diverse images.

Through the comparisons between Fig. 2a, Fig. 2b and Fig. 2c, it is worth noting that when the
number of training images increases, the onset of corruption is delayed and its severity is lessened.

3.2 HEURISTIC MODELING ON FEW-SHOT FINE-TUNING IN DMS

In this section, we begin by heuristically modeling one-shot fine-tuning scenarios and then extend it
to more general cases. This modeling is supported by an evidence on a specific case.

Heuristic Modeling for One-shot Fine-tuning on DMs. We start with a representative condition
where the dataset D contains only one training image x′. Under this condition, we suppose the
fine-tuned DMs with parameter θ model the joint distribution of any original image x0 and any
noisy image at time t, i.e., xt, as a multivariate Gaussian distribution Pθ(x0, xt). Concretely, its
marginal distribution of x0 is approximated as Pθ(x0) ≈ N (x′, σ2

1) when the model is fine-tuned
with only one image x′. Additionally, as the noisy image xt is obtained by a linear combination
xt =

√
αtx0 +

√
1− αtϵ between x0 and a unit Gaussian noise ϵ, the marginal distribution of xt

should approximate Pθ(xt) ≈ N (
√
αtx

′, αtσ
2
1 + (1 − αt)). Notably, the fine-tuning process in

fact narrows the KL divergence between Pθ(xt | x0 = x′) and N (
√
αtx

′, (1 − αt)), thus these
distributions should be increasingly close during fine-tuning (Qiu et al., 2023; Ruiz et al., 2023).

With this modeling, the main focus of the DMs, predicting the original image x0 based on a noisy
image xt, is represented as Pθ(x0|xt). We find that it in fact approximates a Gaussian distribution
related to both xt and the training image x′:

Pθ(x0|xt) ≈ N (x′ + δt(xt, x
′),

(1− αt)

αtσ2
1 + (1− αt)

),

where δt(xt, x
′) =

√
αtσ

2
1

αtσ2
1 + (1− αt)

(xt −
√
αtx

′).

(1)

The most possible x0 denoted as x̂0 in the view of the DMs is:

x̂0 = argmax
x0

Pθ(x0|xt) ≈ x′ + δt(xt, x
′). (2)

The derivation details are provided at the Appendix Sec. A. Notably, the error term δt(xt, x
′)

represents the difference between the predicted original image x̂0 and the training image x′. Intuitively,
σ1 can be treated as the “confidence” of the fine-tuned DM regenerating the training sample x′.

The accuracy of the above modeling is influenced by the number of training iterations. As fine-tuning
progresses, the approximation Pθ(x0) ≈ N (x′, σ2

1) becomes more precise, and the formulation more
closely reflects real-world scenarios. To illustrate an extreme case in this modeling, we consider a
scenario where σ1 = 0, i.e., δt = 0. Under this condition, for any input xt, the DMs consistently

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

reproduce the training image x′ as described by Eq. (2). This indicates that the DMs fully lose the
intrinsic denoising ability in this extreme scenario, only regenerating the training image instead.

In the opposite extreme, where σ1 = +∞, i.e., δt = 1√
αt
xt − x′, the model’s prediction for x0 is

exactly 1√
αt
xt. This indicates that the DMs entirely lose the ability to generate images. Instead, DMs

only rescale xt based on the factor αt at the time step t, leading to any noise in xt is also remaining
in the generated image.

Extension to More General Cases. We further extend our modeling to the case where D contains
multiple training samples. In specific, we assume the learned distribution of the original image
x0 of the DMs, i.e., Pθ(x0), is centered with an image set Iθ. Under few-shot fine-tuning, as the
training continues, Iθ gradually approximates the training dataset D. On the other hand, for the
pretrained DMs, they typically learn a much larger manifold, which can be interpreted as learning
with a sufficiently large Iθ. For all these DMs facing with noisy image xt, we simplify their behavior
as firstly finding a sample x∗ ∈ Iθ to minimize the error term δt(xt, x

∗), and then estimating the
corresponding x̂0 according to Eq. (2). With this simplification, the sufficiently large Iθ of pretrained
DMs enables them to find an x such that the error term δt(xt, x) approaches zero, thereby preventing
corruption in most instances.

Predicted original image
 for pretrained model ̂x0

Predicted original image
 for model fine-tuned on

1 image
̂x0

Predicted original image
 for model fine-tuned

on 6 images
̂x0

Figure 3: Denoised images from pretrained
and fine-tuned DMs using xt = 0 and t =
1000. The pretrained DMs do not largely
change xt as it is free of noise. In contrast,
both DMs fine-tuned on 1 and 5 images
transform xt to make it closely resembles
one sample within the training dataset D.

Support for the Modeling. To support the above
modeling closely approximates the practical scenarios,
we present a specific example where we set the “noisy”
image xt = 0, and then make both the pretrained and
fine-tuned DMs denoise this image xt which is entirely
free of noise. This is a special case as xt is free of
noise and the typical DM should leave it unchanged
to function effectively as a denoiser. According to our
modeling, both DMs should first find one sample x∗

within their own Iθ. Naturally, xt = 0 is within Iθ of
the pretrained DMs (See Appendix Sec. E for more
evidence). Therefore, the pretrained DMs should leave
this xt = 0 almost unchanged during denoising.

In comparison, the Iθ of the fine-tuned DMs should
gradually approximate the training dataset D. There-
fore, the fine-tuned DMs should first find one sample
x∗ ∈ D, and then predict the original image x0 as proportional to x∗ according to Eq. (2).

Experimental results provided in Fig. 3 support our analysis, where we can observe the pretrained
DMs do not largely change this xt = 0, but the fine-tuned DMs transform this xt to one of the
samples in its training dataset D. This supports that our modeling aligns with real-world scenarios
during few-shot fine-tuning.

3.3 EXPLANATION OF THE CORRUPTION STAGE.

1000 2000 3000 4000 5000 6000

Training Iterations

2

3

4

Estimated 1

Figure 4: Estimated σ1 under
different training iterations for
DreamBooth.

In this section, we explain the corruption stage according to our
heuristic modeling about few-shot fine-tuning process on DMs. We
first present the reason for the emergence of the corruption stage,
with an example showing the severity of such problem. We further
demonstrate why the corruption stage gradually disappears, resulting
in “overfitting” as the fine-tuning process continues.

Emergence of the Corruption Stage. As stated in Eq. (2), given any
noisy image xt, the fine-tuned DMs would predict the original image
x̂0 = x∗ + δt, where x∗ ∈ Iθ ≈ D after certain training iterations.
The scale of the error term δt is related to

∥∥xt −
√
αtx

∗
∥∥
2

and σ1.
We estimate σ1 based on xt sampled from N (0, 1−αt) and present
the average σ1,t among different ts in Fig. 4. It shows that the σ1

remains relatively high under moderate iterations, resulting in a significant δt once xt is not identical
to

√
αtx

∗.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Predicted original image
 for pretrained model̂x0

 Training image x′ Input image xt

 Additional noise δ′ Remained noise δt

Predicted original image
 for fine-tuned model̂x0

Figure 5: Experimental results for pretrained and fine-tuned
DMs with an additional noise δ′ introduced in a small region
of the noisy image xt at t = 100. The pretrained DMs effec-
tively remove δ′, producing high-quality images. Conversely,
the fine-tuned DMs fail to eliminate δ′, with output images
showing corruption patterns.

Concretely, for the case with only one
training image, i.e., D = {x′}, we
set the noisy image xt =

√
αtx

′ +√
1− αtε + δ′, where ε ∈ N (0, 1)

and δ′ is an additional noise intro-
duced to a small region of the im-
age. This δ′ simulates the case where
the generating process of DMs is in-
accurate in some ts. We further set
the time variable t = 100, and fine-
tune DMs with 1000 iterations, with
the estimated σ1 ≈ 4.8 as shown in
Fig. 4. According to Eq. (2) and
the analysis above, we can compute
∥δ100∥22 ≈ 2.65 ∥δ′∥22. It means the
additional noise δ′ introduced is even
expanded in this case, leading to a significant error term δt. Fig. 5 shows the experimental results
under this setting, where we observe a significant error term δt, resembling a corruption pattern, and
consisting with the above analysis.

Vanishing of the Corruption Stage. However, with the fine-tuning continues, σ1 drops as shown in
Fig. 4, leading to a decreasing prediction error δt. This indicates that the corruption stage vanishes,
and the fine-tuned DMs gradually move to the state where they only strictly regenerate the training
image x′ ∈ D. This is a classic case of “overfitting”, where the fine-tuned DMs lose their ability to
generate diverse outputs and thus become unusable.

In conclusion, the analysis in this Sec. 3.3 shows how the corruption stage happens when the learned
distribution of DMs is highly limited with small Iθ and a high standard deviation σ1.

4 APPLYING BNNS TO FEW-SHOT FINE-TUNING ON DMS

4.1 MOTIVATION

Based on our analysis, the corruption stage primarily arises from a limited learned distribution with a
small Iθ. Motivated by recent work on BNNs (Blundell et al., 2015; Harrison et al., 2023; Kristiadi
et al., 2020; Sharma et al., 2023), which model the parameters θ as random variables, we propose to
apply BNNs in the few-shot fine-tuning process on DMs as a simple yet effective method to expand
Iθ. Intuitively, the modeling of BNNs hinders the DMs to learn the exact distribution of the training
dataset D. Therefore, the DMs are encouraged to learn a larger and more robust distribution to
counter the randomness. Moreover, the sampling randomness during the fine-tuning process can be
regarded as an inherent data augmentation, indicating the corresponding Iθ is implicitly expanded.

4.2 FORMULATION

Modeling. BNNs model the parameters θ as random variables. Therefore, the learned distribution
of DMs with BNN is P (x|D) =

∫
P (x|θ)P (θ|D)dθ. Concretely, P (x|θ) is the image distribution

modeled by the DMs, and P (θ|D) is the posterior parameter distribution with a given dataset D.

As the posterior distribution P (θ|D) is intractable, a variational distribution QW (θ) is applied to
approximate it. We model the variational distribution of each parameter θ as a Gaussian distribution:
θ ∼ N (µθ, σ

2
θ), where W = {µθ, σθ} are trainable parameters. Considering the fine-tuning process,

we initialize the expectation term µθ from the corresponding parameter of the pretrained DMs,
denoted as θ0. Following previous work (Blundell et al., 2015), we apply the re-parameterization
trick to obtain the gradients of the parameters, as detailed in Appendix Sec. C.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Training. During the fine-tuning process, the DMs are trained by minimizing the Kullback–Leibler
(KL) divergence KL(QW (θ)||P (θ|D)), which is equivalent to minimizing

L = −
∫

QW (θ) log
P (θ,D)

QW (θ)
dθ = Eθ∼QW (θ) − logP (D|θ)︸ ︷︷ ︸

LDM

+KL(QW (θ)||P (θ))︸ ︷︷ ︸
Lr

. (3)

Following previous work (Zhang et al., 2022), the above loss L can be divided into two terms. In DMs,
the first term can be seen as the modeled probability for the training dataset D, and is equivalent to the
expectation of the diffusion loss LDM shown in Sec. 2.1 on the parameters θ. The second term can be
seen as a regularization restricting the discrepancy between the variational distribution QW (θ) and the
prior distribution P (θ). We name it as the regularization loss Lr. In few-shot fine-tuning, we regard
the pretrained DMs naturally represent the prior information, so we set the prior distribution P (θ)
from the pretrained DMs, i.e., P (θ) = N (θ0, σ

2), where σ is a hyperparameter which represents the
parameter randomness.

In practice, we formulate our learning target as a linear combination of LDM and Lr with a hyperpa-
rameter λ, i.e.,

W ∗ = argmin
W

Eθ∼QW (θ)LDM + λLr. (4)

The training process is summarized in Appendix Alg. 1. Empirically, we find that using only
Eθ∼QW (θ)LDM , i.e., setting λ as 0, is enough to improve few-shot fine-tuning. Nevertheless, we can
reach a further trade-off between the generation diversity and image fidelity by adjusting λ.

Inference. During the inference, we explicitly replace each parameter θ with its mean value µθ and
perform inference just as DMs without BNNs. It guarantees that we do not introduce any additional
costs compared to fine-tuned DMs without BNNs when deployed in production.

Motivated by previous approaches on BNN modules (Harrison et al., 2023; Kristiadi et al., 2020;
Sharma et al., 2023), we only model a subset of parameters as random variables in practice, which
reduces the computational costs. Fine-tuning DMs with BNNs is compatible with existing few-shot
fine-tuning methods, including DreamBooth (Ruiz et al., 2023), LoRA (Hu et al., 2021), and OFT
(Qiu et al., 2023). More details are presented in Appendix Sec. D.

5 EXPERIMENTS

We apply BNNs to different few-shot fine-tuning methods across different tasks. For object-driven
generation, where the fine-tuned DMs synthesize images with the details of given objects, we use
all the 30 classes from DreamBooth (Ruiz et al., 2023) dataset, each containing 4-6 images. For
subject-driven generation, where the fine-tuned DMs synthesize images with the identities of given
people, we follow previous research (Van Le et al., 2023), randomly selecting 30 classes of images
from CelebA-HQ (Liu et al., 2018), each containing 5 images. Most training settings follow previous
approaches (Hu et al., 2021; Qiu et al., 2023; Ruiz et al., 2023; Van Le et al., 2023). All experiments
are conducted with 5 different seeds by default and we report the average performance here. We use
Stable Diffusion v1.53 (SD v1.5) as the default model for fine-tuning. As for the BNNs, we set the
default initialized standard derivation σθ and prior standard derivation σ as 0.01. The λ is set as 0 by
default. We show more details in Appendix Sec. H.1.

Following previous approaches (Hu et al., 2021; Qiu et al., 2023; Ruiz et al., 2023), for each class, we
fine-tune one DM and generate 100 images with various prompts. These generated images are used
to measure the performance of different few-shot fine-tuning methods. In specific, we use Clip-T
(Radford et al., 2021) to measure the text prompt fidelity, Clip-I (Hessel et al., 2021) and Dino (Caron
et al., 2021) to assess image fidelity, and Lpips (Zhang et al., 2018) to evaluate generation diversity.
Additionally, we apply Clip-IQA (Wang et al., 2023) to measure no-reference image quality. We
show more details about these metrics in Appendix Sec. G.

5.1 QUANTITATIVE AND VISUALIZED COMPARISONS

We apply BNNs on different few-shot fine-tuning methods under both object-driven and subject-
driven generation tasks. As shown in Tab. 1 and Fig. 6, BNNs bring considerable improvements

3https://huggingface.co/runwayml/stable-diffusion-v1-5

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Performance of fine-tuning with BNNs under object-driven and subject-driven generation.
Object-Driven Generation: DreamBooth Dataset Subject-Driven Generation: CelebA Dataset

Method Clip-T↑ Dino↑ Clip-I↑ Lpips↑ Clip-IQA↑ Method Clip-T↑ Dino↑ Clip-I↑ Lpips↑ Clip-IQA↑
DreamBooth 0.246 0.614 0.771 0.611 0.875 DreamBooth 0.186 0.642 0.723 0.511 0.789

DreamBooth w/ BNNs 0.256 0.633 0.785 0.640 0.893 DreamBooth w/ BNNs 0.205 0.696 0.757 0.515 0.811
LoRA 0.252 0.542 0.722 0.650 0.864 LoRA 0.216 0.602 0.656 0.644 0.804

LoRA w/ BNNs 0.261 0.618 0.769 0.678 0.890 LoRA w/ BNNs 0.227 0.604 0.663 0.688 0.824
OFT 0.233 0.649 0.786 0.629 0.861 OFT 0.164 0.675 0.728 0.549 0.784

OFT w/ BNNs 0.242 0.661 0.791 0.646 0.884 OFT w/ BNNs 0.185 0.696 0.743 0.570 0.798

Input images

Input images

DreamBooth LoRA OFT

 w/o
BNNs

 w/
BNNs

LoRA OFTDreamBooth

Prompt: A [V] vase with a tree and autumn leaves in the background

Prompt: A photo of a [V] person smiling

Best-case generation Average-case generation

Best-case generation Average-case generation

 w/o
BNNs

 w/
BNNs

DreamBooth LoRA OFT DreamBooth LoRA OFT

Figure 6: Comparison of few-shot fine-tuning methods with and without BNNs across subject-driven
and object-driven scenarios. We show both best-case and average-case generated images measured
by Clip-I, Dino and Clip-IQA. See Appendix Sec. I and L for more details.

on all few-shot fine-tuning methods across text prompt fidelity (Clip-T) and image fidelity (Dino
and Clip-I). These improvements arise from the expanded learned distribution contributed by BNNs,
which makes the DMs more capable to generate reasonable images about the learned objects/subjects
based on different prompts. BNNs also largely enhance the no-reference image quality (Clip-IQA). It
is mainly because BNNs largely reduce the corruption phenomenon, which also partially improve the
image fidelity (Dino and Clip-I) as the corrupted images are semantically distant to training images.
Additionally, we observe BNNs boost the generation diversity (Lpips). We believe it naturally comes
from the randomness introduced by BNNs.

5.2 GENERALIZATION
Table 2: Performance under different DMs. All DMs are
fine-tuned with DreamBooth on DreamBooth dataset.

Clip-T↑ Dino↑ Clip-I↑ Lpips↑ Clip-IQA↑
w/o BNNs 0.246 0.614 0.771 0.611 0.875SD v1.5 w/ BNNs 0.256 0.633 0.785 0.640 0.893
w/o BNNs 0.248 0.594 0.762 0.618 0.872SD v1.4 w/ BNNs 0.249 0.620 0.777 0.656 0.895
w/o BNNs 0.240 0.563 0.739 0.604 0.875SD v2.0 w/ BNNs 0.248 0.610 0.764 0.649 0.925

In this section, we further demonstrate
BNNs can be applied to broader sce-
narios with notable performance im-
provement, including different DMs,
varying training steps and a different
number of training images. By de-
fault, we experiment on DreamBooth
with BNNs for fine-tuning.

Different DMs. Following previous work (Ye et al., 2024), we experiment on different DMs.
Concretely, besides default SD v1.5, we also experiment on SD v1.4 and SD v2.0 (Rombach et al.,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

2022). We provide training details in Appendix Sec. H.2. Tab. 2 indicates that applying BNNs on
different DMs of SD consistently improves few-shot fine-tuning across multiple metrics.

50 100 200 400

0.50

0.55

0.60

0.65

w/ BNNs
w/o BNNs

(a) Dino

50 100 200 400

0.75

0.80

0.85

0.90

w/ BNNs
w/o BNNs

(b) Clip-IQA

Figure 7: Comparison of performance with and
without BNNs on the DreamBooth dataset with
different training iterations per image.

Training Iterations. Fig. 7 shows that our
method consistently improves the image quality
(Clip-IQA). It also improves the image fidelity
(Dino) when the training steps are larger than
100 × Num, where Num represents the num-
ber of images utilized during fine-tuning. With
fewer iterations, the model suffers from underfit-
ting. In this case, BNNs may make the underfit-
ting problem further severe as BNNs encourage
the model to learn a larger distribution. This
results in the slightly decreased image fidelity
(Dino) observed in 100×Num.

4 8 12 16
0.4

0.5

0.6

0.7

w/ BNNs
w/o BNNs

(a) Dino

4 8 12 16
0.60

0.65

0.70

0.75

w/ BNNs
w/o BNNs

(b) Clip-IQA

Figure 8: Comparison of the performance with
different number of training images.

Numbers of Training Images. We also experi-
ment under different numbers of training images.
Concretely, we use the CelebA-HQ (Liu et al.,
2018) dataset as it contains enough images per
class. We randomly select five classes from the
CelebA-HQ dataset and conduct experiments
with different numbers of training images. We
fix the training iterations to 250×Num.

Fig. 8 illustrates that our method consistently
improves image fidelity and quality under differ-
ent numbers of training images. Such improve-
ment is more obvious with more training images. This is primarily because the 250×Num generally
results in more severe corruption problems when the training image number Num is larger, hence
BNNs bring in much improvement by expanding the learning distribution and relieving corruptions.

5.3 ABLATION STUDY

0 0.0025 0.005 0.01 0.02 0.04

0.4

0.6

0.8

Clip-IQA
Dino

(a) Different Initialized σθ

0 0.5 1 2 4 8 16

0.4

0.5

0.6

0.7

Lpips
Dino

(b) Different λ

Figure 9: Ablation study on different initialized σθ

and different λ.

Scale of Initialized σθ. The initialized standard
deviation σθ determines the extent of random-
ness during fine-tuning. We experiment with
applying BNNs under varying initialized σθ. Ex-
perimental results in Fig. 9a indicate that both
the image fidelity (Dino) and quality (Clip-IQA)
have been improved with a moderate initialized
σθ. However, when the initialized σθ is too large,
the DMs collapse and the performance rapidly
decreases. This indicates the DMs are almost
randomly updated because of the too large randomness introduced in this scenario.

Trade-off Between Diversity and Fidelity with Adjusted λ. Eq. (4) indicates λ controls the
trade-off between the generation diversity and image fidelity. As illustrated in Fig. 9b, an increasing
λ leads to improving generation diversity (Lpips), albeit at the expense of image fidelity (Dino).

Where to Apply BNNs. As mentioned in Sec. 4.2, we could model only a subset of parameters as
random variables, i.e., applying BNNs on a part of layers in DMs. By default, we apply BNNs to all
linear layers in the U-Net (Ronneberger et al., 2015) except the ones in the cross-attention modules
and explore how different choices influence the performance and the training costs.

As shown in Tab. 3, the DM can achieve relatively good performance with only the upblock of the
U-Net applied with BNNs, which reduces the ratio of the parameters modified to about 13.8%. We
can further decrease the training costs by only applying BNNs on the normalization layer, i.e., Layer
Normalization (LN) (Ba et al., 2016) and Group Normalization (GN) (Wu & He, 2018) layers. This
decreases the ratio of the parameters modified to about 0.02% with relatively strong performance.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Comparison of performance when BNNs are applied to different layers in DMs. All
experiments are conducted on DreamBooth dataset fine-tuning with DreamBooth. ‘N.A.’ refers to no
BNN applied. ‘CrossAttn’ refers to BNN applied to cross-attention modules. We report the GPU
memory costs and average time costs during fine-tuning for each class on one A100 GPU.

Layer Type CrossAttn Up Block Only Clip-T↑ Dino↑ Clip-I↑ Lpips↑ Clip-IQA↑ Memory Costs(MB) Time Costs(s)

N.A. 0.246 0.614 0.771 0.611 0.875 27236 933
Linear 0.256 0.633 0.785 0.640 0.893 31912 1107
Linear ! 0.259 0.614 0.776 0.646 0.890 29674 1040
Linear ! 0.272 0.611 0.760 0.672 0.897 33258 1157

LN+GN 0.254 0.650 0.792 0.643 0.889 27268 1088

Table 4: User study results of fine-tuned DMs with and without BNNs across various measurements
under both best-case and average-case scenarios. The table depicts the percentage of users favoring
generated images from fine-tuned DMs with and without BNNs.

Best-case Generation Average-case Generation
Method Subject Fidelity Text Alignment Image Quality Method Subject Fidelity Text alignment Image Quality

DreamBooth 34.4% 32.3% 30.2% DreamBooth 50.5% 35.6% 28.7%
DreamBooth w/ BNNs 65.6% 67.7% 69.8% DreamBooth w/ BNNs 49.5% 64.4% 71.3%

LoRA 48.0% 34.7% 31.6% LoRA 27.5% 26.5% 24.5%
LoRA w/ BNNs 52.0% 65.3% 68.4% LoRA w/ BNNs 72.5% 73.5% 75.5%

OFT 30.6% 34.7% 40.8% OFT 41.1% 26.8% 39.3%
OFT w/ BNNs 69.4% 65.3% 59.2% OFT w/ BNNs 58.9% 73.2% 60.7%

Additionally, when BNNs are applied to cross-attention modules, there is a significant increase in
text prompt fidelity (Clip-T) at the expenses of image fidelity (Dino and Clip-I). Intuitively, this is
because the input image aligns with only a limited set of prompts, and the applying of BNNs in
cross-attention modules produces a further broader distribution matching more prompts.

5.4 USER STUDY

User Study Setting. We conduct user study to comprehensively present the superiority of applying
BNNs on few-shot fine-tuning DMs. Concretely, we follow previous approaches (Qiu et al., 2023;
Ruiz et al., 2023) and conduct a structured human evaluation for generated images, involving 101
participants. For this purpose, we utilize the DreamBooth dataset and the CelebA-HQ dataset.
Subsequently, we generate four images per subject or object using a random prompt selected from 25
prompts across five models trained with different seeds. For comprehensive comparisons, we select
both the best and average cases from the generated images (see Appendix Sec. I for details).

Each participant is requested to compare image pairs generated by models that have been fine-tuned
with and without BNNs, using three baseline models: DreamBooth, LoRA, and OFT. For each task,
there are three binary-selection questions:

• Subject fidelity: Which of the given two images contains a subject or object that is most similar to
the following reference image (one from the training dataset)?

• Text alignment: Which of the given two images best matches the text description provided below
(the prompt used to generate the images)?

• Image quality: Which of the given two images exhibits the higher image quality?

Results. The results are presented in Tab. 4, which shows the percentage of participants favoring each
method (with and without BNNs) based on the criteria described above. It is evident that the methods
with BNNs are preferred in almost all scenarios for both best-case and average-case generations. This
preference is particularly significant in terms of text alignment and overall image quality.

6 CONCLUSION

In this paper, we focus on few-shot fine-tuning in DMs, and reveal an unusual “corruption stage”
where image fidelity first improves, then deteriorates due to noisy patterns, before recovering. With
theoretical modeling, we attribute this phenomenon to the constrained learned distribution inherent
in few-shot fine-tuning. By applying BNNs to broaden the learned distribution, we mitigate the
corruption. Experiment results across various fine-tuning methods and datasets underscore the
versatility of our approach.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Julyan Arbel, Konstantinos Pitas, Mariia Vladimirova, and Vincent Fortuin. A Primer on Bayesian
Neural Networks: Review and Debates. arXiv preprint arXiv:2309.16314, 2023.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer Normalization. arXiv preprint
arXiv:1607.06450, 2016.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight Uncertainty in
Neural Network. In ICML, 2015.

Wray L Buntine. Bayesian Backpropagation. Complex Systems, 5:603–643, 1991.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging Properties in Self-supervised Vision Transformers. In ICCV, 2021.

Giannis Daras, Kulin Shah, Yuval Dagan, Aravind Gollakota, Alex Dimakis, and Adam Klivans.
Ambient Diffusion: Learning Clean Distributions from Corrupted Data. In NeurIPS, 2023.

Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal Chechik, and Daniel
Cohen-Or. An Image Is Worth One Word: Personalizing Text-to-Image Generation Using Textual
Inversion. arXiv preprint arXiv:2208.01618, 2022.

James Harrison, John Willes, and Jasper Snoek. Variational Bayesian Last Layers. In AABI, 2023.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A Reference-
free Evaluation Metric for Image Captioning. arXiv preprint arXiv:2104.08718, 2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. In NeurIPS,
2020.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. LoRA: Low-Rank Adaptation of Large Language Models. In ICLR, 2021.

Laurent Valentin Jospin, Hamid Laga, Farid Boussaid, Wray Buntine, and Mohammed Bennamoun.
Hands-on Bayesian neural networks—A tutorial for deep learning users. IEEE Computational
Intelligence Magazine, 17(2):29–48, 2022.

Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Training
Generative Adversarial Networks with Limited Data. In NeurIPS, 2020.

Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri, and
Michal Irani. Imagic: Text-Based Real Image Editing With Diffusion Models. arXiv preprint
arXiv:2210.09276, 2022.

Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Being Bayesian, Even Just a Bit, Fixes
Overconfidence in ReLU Networks. In ICML, 2020.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Large-scale celebfaces attributes (celeba)
dataset. Retrieved August, 15(2018):11, 2018.

Radford M Neal. Bayesian Learning for Neural Networks, volume 118. Springer Science & Business
Media, 2012.

Zeju Qiu, Weiyang Liu, Haiwen Feng, Yuxuan Xue, Yao Feng, Zhen Liu, Dan Zhang, Adrian Weller,
and Bernhard Schölkopf. Controlling Text-to-Image Diffusion by Orthogonal Finetuning. In
NeurIPS, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning Transferable Visual
Models from Natural Language Supervision. In ICML, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
Resolution Image Synthesis With Latent Diffusion Models. In CVPR, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional Networks for Biomedical
Image Segmentation. In MICCAI, 2015.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation. In
CVPR, 2023.

Mrinank Sharma, Sebastian Farquhar, Eric Nalisnick, and Tom Rainforth. Do Bayesian Neural
Networks Need To Be Fully Stochastic? In AISTATS, 2023.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep Unsupervised
Learning Using Nonequilibrium Thermodynamics. In ICML, 2015.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In NeurIPS, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based Generative Modeling through Stochastic Differential Equations. arXiv preprint
arXiv:2011.13456, 2020.

Thanh Van Le, Hao Phung, Thuan Hoang Nguyen, Quan Dao, Ngoc Tran, and Anh Tran. Anti-
DreamBooth: Protecting Users from Personalized Text-to-image Synthesis. In ICCV, 2023.

Jianyi Wang, Kelvin CK Chan, and Chen Change Loy. Exploring Clip for Assessing the Look and
Feel of Images. In AAAI, 2023.

Yuxin Wu and Kaiming He. Group Normalization. In ECCV, 2018.

Ruihan Yang, Prakhar Srivastava, and Stephan Mandt. Diffusion Probabilistic Modeling for Video
Generation. arXiv preprint arXiv:2203.09481, 2022.

Xiaoyu Ye, Hao Huang, Jiaqi An, and Yongtao Wang. DUAW: Data-free Universal Adversarial
Watermark against Stable Diffusion Customization. In ICLR 2024 Workshop on Secure and
Trustworthy Large Language Models, 2024. URL https://openreview.net/forum?
id=XYD342nKy8.

Jiaru Zhang, Yang Hua, Tao Song, Hao Wang, Zhengui Xue, Ruhui Ma, and Haibing Guan. Improving
Bayesian Neural Networks by Adversarial Sampling. In AAAI, 2022.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The Unreasonable
Effectiveness of Deep Features as A Perceptual Metric. In CVPR, 2018.

12

https://openreview.net/forum?id=XYD342nKy8
https://openreview.net/forum?id=XYD342nKy8

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A DRIVATION OF EQ. (2)

We first restate our assumptions formally. For convenience, we use equal signs instead of approximate
signs in our assumptions and derivations.

• The joint distribution of x0 and xt is modeled by the DM as a multivariate Gaussian distribution

Pθ([x0, xt]
T) = N (µ,Σ) = N ([x′,

√
αtx

′]T ,

[
σ2
1 c
c αtσ

2
1 + (1− αt)

]
), (5)

where c represents the unknown covariance between x0 and xt.

• The conditional probability of xt given x0 = x′ is

Pθ(xt | x0 = x′) = N (
√
αtx

′, (1− αt)). (6)

Denote the inverse matrix of Σ as

Σ−1 =

[
λ11 λ12

λ21 λ22

]
=

1

|Σ|

[
αtσ

2
1 + 1− αt −c
−c σ2

1

]
, (7)

where |Σ| = σ2
1(αtσ

2
1 + (1− αt))− c2 is the determinant of Σ. According to the property of a joint

Gaussian distribution, the conditional distribution P (xt|x0) can be represented as

P (xt|x0) = N (
λ22

√
αtx′ + λ12x0 − λ12x

′

λ22
,

1

λ22
). (8)

According to Eq. (6),

1

λ22
= (1− αt), (9)

which means c = ±√
αtσ

2
1 . Hence we know the joint distribution is

Pθ([x0, xt]
T) = N (µ,Σ) = N ([x′,

√
αtx

′]T ,

[
σ2
1 ±√

αtσ
2
1

±√
αtσ

2
1 αtσ

2
1 + (1− αt)

]
). (10)

Repeatedly, according to the property of a joint Gaussian distribution, we have

P (x0|xt) = N (x′ ±
√
αtσ

2
1(y −

√
αtx

′)

αtσ2
1 + (1− αt)

,
1− αt

αtσ2
1 + 1− αt

). (11)

In practice, the positive sign is more reasonable as it indicates the deviations of the predicted image
x0 and the input noisy image xt are aligned. Therefore,

P (x0|xt) = N (x′ +

√
αtσ

2
1(y −

√
αtx

′)

αtσ2
1 + (1− αt)

,
1− αt

αtσ2
1 + 1− αt

). (12)

B PROOF FOR THE ERROR TERM APPROACHES ZERO DURING FINE-TUNING

In this section, we provide a direct proof for the error term approaching zero when the diffusion loss
approaches zero.

Proof. As previous work points out (Ho et al., 2020), the probability of a diffusion model on a given
distribution is lower bounded by its ELBO:

− logPθ(x0) ≥ Eq(x1:T |x0) log
Pθ(x0:T)

Q(x1:T |x0)
,

and is simplified to diffusion loss: LDM (x0) := Et,ϵ∈N(0,1)∥εθ(
√
αtx0 +

√
1− αtϵ, t)− ϵ∥2.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

The main target loss of fine-tuning methods is to directly minimize the diffusion loss for data
within the fine-tuning data distribution. This can be interpreted as minimizing the KL divergence
EQ(x

′
1:T |x′

0) log
Pθ(x

′
0:T)

Q(x′
1:T |x′

0)
, where Q(x′

0) represents the fine-tuning data distribution.

Under optimal conditions where LDM (x′
0) → 0, we have Pθ(x

′
0) → 1 and Pθ(x

′
t+1|x′

0) →
Q(x′

t+1|x′
0). This implies the identity of the learned P and fine-tuned data distribution Q, hence we

have

argmaxPθ(x0|xt) = argmaxQ(x0|xt) = x′.

It corresponds to σ1 = 0 in Eq. (1), leading to δt = 0.

It verifies the correctness of our modeling from another side, hence further supports our theoretical
analysis.

C DETAILS OF APPLYING BNNS

The training process of applying BNNs in fine-tuning is summarized in Alg. 1. To obtain the
gradients of the variational parameters, i.e., gradients of W = {µθ, σθ}, we apply the commonly
used reparameterization trick in BNNs. Concretely, we first sample a unit Gaussian variable εθ for
each θ, and then perform θ = µθ + σθ × εθ to obtain a posterior sample of θ. Hence, the gradients
can be calculated by

∂

∂W
L =

∂

∂W

[
EQW (θ)LDM + Lr

]
(13)

= Eεθ∼N (0,I)

[
∂LDM

∂θ

∂θ

∂W
+

∂Lr

∂W

]
. (14)

We refer to the Proposition 1 in previous work (Blundell et al., 2015) for the detailed derivation.

Algorithm 1: Fine-tuning DMs with BNNs

Input: Initialized variational parameters W = {µθ, σθ}, prior distributions P (θ) = N (θ0, σ
2),

fine-tuning dataset D, number of fine-tuning iterations N , hyperparameter λ
Output: Fine-tuned variational parameters W = {µθ, σθ}
for i = 0 to N − 1 do

Sample εθ ∼ N (0, I).
Compute θ = µθ + εθ ◦ σθ.
Sample x ∈ D, t ∼ U(1, 1000), noise εt ∼ N (0, 1)
Compute LDM = ∥εt − ϵθ(xt, t)∥2.
Compute Lr = KL(P (θ)∥N (µθ, σ

2
θ)).

Compute L = LDM + λLr

Backward L and update µθ, σθ.
end for

D APPLYING BNNS ON DIFFERENT FEW-SHOT FINE-TUNING METHODS

We provide code for implementation in anonymous repository available at link https://
anonymous.4open.science/r/BNN-Finetuning-DMs-0C35.

Applying BNNs on DreamBooth. DreamBooth is a full-parameter fine-tuning method, and is one
of the mainstream fine-tuning methods (Ruiz et al., 2023). Therefore, all parameters in DreamBooth
can be modeled as the BNNs parameters.

Applying BNNs on LoRA. LoRA (Hu et al., 2021) is a classic lightweight yet effective method
for few-shot fine-tuning. In LoRA layers, the weight matrix W ∈ Rd×k is modeled as a sum of
fixed weight from the pretrained model and a trainable low-rank decomposition: W = W0 +BA,

14

https://anonymous.4open.science/r/BNN-Finetuning-DMs-0C35
https://anonymous.4open.science/r/BNN-Finetuning-DMs-0C35

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 5: Prompts used for evaluation. [V] indicates the special token and [object] indicates the type
of the object.

Prompts for object-driven generation Prompts for subject-driven generation

a [V] [object] in the jungle a photo of a [V] person wearing sunglasses
a [V] [object] in the snow a photo of a [V] person with snowflakes in their hair
a [V] [object] on the beach a photo of a [V] person with beachy hair waves
a [V] [object] on a cobblestone street a photo of a [V] person wearing a beret
a [V] [object] on top of pink fabric a photo of a [V] person with a neutral expression
a [V] [object] on top of a wooden floor a photo of a [V] person with a contemplative look
a [V] [object] with a city in the background a photo of a [V] person laughing heartily
a [V] [object] with a mountain in the background a photo of a [V] person with an amused smile
a [V] [object] with a blue house in the background a photo of a [V] person with forest green eyeshadow
a [V] [object] on top of a purple rug in a forest a photo of a [V] person wearing a red hat
a [V] [object] wearing a red hat a photo of a [V] person with a slight grin
a [V] [object] wearing a santa hat a photo of a [V] person with a thoughtful gaze
a [V] [object] wearing a rainbow scarf a photo of a [V] person wearing a black top hat
a [V] [object] wearing a black top hat and a monocle a photo of a [V] person in a chef hat
a [V] [object] in a chef outfit a photo of a [V] person in a firefighter helmet
a [V] [object] in a firefighter outfit a photo of a [V] person in a police cap
a [V] [object] in a police outfit a photo of a [V] person wearing pink glasses
a [V] [object] wearing pink glasses a photo of a [V] person wearing a yellow headband
a [V] [object] wearing a yellow shirt a photo of a [V] person in a purple wizard hat
a [V] [object] in a purple wizard outfit a photo of a [V] person smiling
a red [V] [object] a photo of a [V] person frowning
a purple [V] [object] a photo of a [V] person looking surprised
a shiny [V] [object] a photo of a [V] person winking
a wet [V] [object] a photo of a [V] person yawning
a cube shaped [V] [object] a photo of a [V] person laughing

where W0 ∈ Rd×k,B ∈ Rd×r,A ∈ Rr×k with rank r (Hu et al., 2021). In our implementation, we
only convert the up matrix A into random variables, and the down matrix B is still kept as usual
trainable parameters to make P (W) a Gaussian distribution. This design also reduces additional
computational costs during training while keeps its effectiveness.

Applying BNNs on OFT. OFT is a few-shot fine-tuning method where the weights are tuned only
by orthogonal transformations (Qiu et al., 2023). In OFT layers, the weight matrix W ∈ Rd×k is
modeled as W = RW0, where R is guaranteed to be an orthogonal matrix by R = (I + 0.5(Q−
QT))(I − 0.5(Q − QT))−1, and Q is the trainable parameter in the original OFT method. To
guarantee the orthogonality is not destroyed by random sampling in BNNs, we only convert the
trainable parameter Q into random variables. Therefore, after the above transformation, R is kept as
an orthogonal matrix, and W is kept as an orthogonalization transformation of the original pretrained
W0.

E DETAILS OF THE VALIDATION EXPERIMENTS

Proof for xt = 0 is within the Iθ of the pretrained DMs. We provide two proofs that xt = 0 is
within the Iθ of the pretrained DMs. The SD v1.5 is used as the pretrained DM.

• As shown in Fig. 10a, we use the prompt “a simple, solid gray image with no textures or variations”
to generate images, and we observe the pretrained DM is capable of generating such images free of
noise.

• We use the Img2Img Pipeline4 provided by diffusers with no prompt provided, i.e., unconditional
generation. Then we set the input image as a blank one and the img2img strength as 0.1, which
means input noisy image x100 = α100ε, where ε ∈ N (0, 1). As shown in Fig. 10b. we can also
observe the denoised result is completely free of noise.

4https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_
diffusion_img2img.py

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(a) Generated Images based on a given prompt.

Input Image Generated Image

(b) Img2img result for pure-color image as input.

Figure 10: Proof for xt = 0 is within the Iθ of the pretrained DM.

Inference Step=1 Inference Step=2 Inference Step=5 Inference Step=50

Pretrain DM

DM Finetuned on
1 image (1000 iters)

DM Finetuned on
1 image (5000 iters)

DM Finetuned on
5 images (75000 iters)

Figure 11: More results for generated images when input xt = 0 under different DMs and different
inference steps.

Both results support our argument that xt = 0 is naturally within Iθ of the pretrained DMs.

Settings for Experiments in Sec. 3.3. We fine-tune an SD v1.5 with DreamBooth without PPL
loss (Ruiz et al., 2023). The learning rate is fixed to 5 × 10−6 and only the U-Net (Ronneberger
et al., 2015) is fine-tuned. We use the backpack class in DreamBooth dataset as an example, and use
prompt “a [V] backpack” to train where the “[V]” is the special token. We set x100 = 0 and show the
one-step denoised result using the Img2Img Pipeline provided by diffusers. During denoising, for
both pretrained and fine-tuned DMs, the prompt is fixed to “a [V] backpack”. More results are shown
in Fig. 11.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 6: Standard deviation of the results shown in Tab. 1.

Object-Driven Generation: DreamBooth Dataset Subject-Driven Generation: CelebA Dataset
Method Clip-T Dino Clip-I Lpips Clip-IQA Method Clip-T Dino Clip-I Lpips Clip-IQA

DreamBooth 0.0017 0.0057 0.0037 0.0051 0.0028 DreamBooth 0.0065 0.0179 0.0115 0.0087 0.0078
DreamBooth w/ BNNs 0.0016 0.0056 0.0035 0.0054 0.0023 DreamBooth w/ BNNs 0.0036 0.0102 0.0090 0.0191 0.0095

LoRA 0.0018 0.0087 0.0045 0.0048 0.0084 LoRA 0.0034 0.0085 0.0059 0.0060 0.0068
LoRA w/ BNNs 0.0032 0.0104 0.0064 0.0072 0.0021 LoRA w/ BNNs 0.0025 0.0049 0.0163 0.0078 0.0065

OFT 0.0030 0.0063 0.0041 0.0081 0.0045 OFT 0.0026 0.0194 0.0141 0.0130 0.0115
OFT w/ BNNs 0.0010 0.0028 0.0026 0.0062 0.0068 OFT w/ BNNs 0.0024 0.0078 0.0066 0.0061 0.0094

F ADDITIONAL SUPPORT FOR OUR MODELING

To further support our modeling in Sec. 3.2, we present more results with xt = kx′ for different
ks. When giving the training prompt, according to our modeling in Eq. (2), a fine-tuned DM should
predict the original image x̂0 = (1 +

√
αtσ

2
1

αtσ2
1+(1−αt)

(k −√
αt))x

′, which is a scaling of x′.

In comparison, the generated result for the pretrained model should not exhibit a similar correlation
with the given training sample kx′, as kx′ is not part of the pretrained dataset or its training distribution
Iθ. Experimental results shown in Fig. 12 support our analysis, hence further confirming the
rationality of our modeling.

Figure 12: Denoised images from pretrained and fine-tuned DMs using xt = kx′ for different ks.

G METRICS

We use the following metrics to robustly measure different aspects of the fine-tuned DMs:

Text prompt fidelity: Following previous papers (Qiu et al., 2023; Ruiz et al., 2023) , we use
the average similarity between the clip (Radford et al., 2021) embeddings of the text prompt and
generated images, denoted as Clip-T.

Image fidelity: Following previous papers (Qiu et al., 2023; Ruiz et al., 2023), we compute the
average similarity between the clip (Radford et al., 2021) and dino (Caron et al., 2021) embeddings
of the generated images and training images, denoted as Clip-I (Hessel et al., 2021) and Dino.

Generation Diversity: We compute the average Lpips (Zhang et al., 2018) distance between the
generated images of the fine-tuned DMs, following previous papers (Qiu et al., 2023; Ruiz et al.,
2023).

Image quality: We find that corruption largely decreases the visual quality of the images, making
them unusable. However, full-reference images quality measurement cannot fully represent this
kind of degradation in image quality. Therefore, we propose to add a no-visual quality metric for
measurements. We use Clip-IQA (Wang et al., 2023) for measurements, which is one of the SOTA
no-reference image quality measurements.

H SETTINGS OF FINE-TUNING

We experiment on applying BNNs on different fine-tuning methods with one A100 GPU. All
experiments are conducted under all 30 classes with 5 different seeds by default and we report the
average performance. The standard deviation of our main result in Tab. 1 is shown in Tab. 6.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

H.1 FEW-SHOT FINE-TUNING HYPER-PARAMETERS

The details of the parameters in the few-shot fine-tuning methods on our default model, i.e., SD v1.5,
are presented below. We use Num to represent the number of images utilized for training.

Dreambooth: We use the training script provided by Diffusers5. Only the U-Net is fine-tuned during
the training process. By default, the number of training steps is set to 200×Num on DreamBooth
dataset and 250×Num on CelebA, with a learning rate of 5× 10−6. The batch size is set to 1, and
the number of class images used for computing the prior loss is 200×Num by default. The prior loss
weight remains fixed at 1.0. For the DreamBooth dataset, the training instance prompt is “a photo of
a [V] {class prompt}”, where{class prompt} refers to the type of the image (such as dog, cat and so
on). For the CelebA dataset, the training instance prompt is “a photo of a [V] person”.

LoRA: We use the training script provided by Diffusers6. All default parameters remain consistent
with the case in Dreambooth (No Prior), with the exception of the learning rate and training steps,
which are adjusted to 1× 10−4 and to 400×Num, respectively.

OFT: We use the training script provided by the authors7. All default parameters remain consistent
with the case in Dreambooth (No Prior), with the exception of the learning rate, which is adjusted to
1× 10−4.

For all experiments involving the applying of BNNs, we maintain the default settings for the number
of learning steps, learning rate, training prompts, and other hyper-parameters.

For evaluation purposes, each training checkpoint generates four images per prompt, resulting in a
total of 100 images from 25 different prompts. The prompts used for evaluation are displayed in
Tab. 5, encompassing a broad set to thoroughly assess the variety and quality of the DMs.

H.2 TRAINING SETTING FOR DMS WITH DIFFERENT ARCHITECTURES

In this section, we provide training settings for applying BNNs on different DMs under DreamBooth.
The learning rate is fixed to 5 × 10−6 in all cases. The numbers of training iterations are set as
200×Num and 400×Num for SD v1.4 and SD v2.0, respectively. For BNNs applying on SD v1.4,
we set the hyperparameter λ = 0.1. All other hyperparameters are set as default.

I BEST-CASE V.S. AVERAGE-CASE GENERATION

In practical scenarios, users typically generate multiple images and manually choose the most suitable
one for use. Therefore, comparing the best cases essentially evaluates the quality of the chosen
images, while the comparison of average cases assesses the difficulty of selecting an adequate image.
Conversely, worst-case scenarios may hold less practical relevance, as users may regenerate images
until achieving a satisfactory result, effectively bypassing such cases.

Therefore, we place emphasis on presenting best-case and average-case generation in this paper.
Specifically, we first filter the generated images by selecting the top 90% using CLIP-T and Dino
to ensure alignment with the prompt and the learned concept. Subsequently, we employ CLIP-
IQA to identify both the top-quality and average-quality images. This approach provides a more
comprehensive evaluation of the models’ performance.

Nonetheless, we also include some comparisons of the worst-case generation results before and after
applying BNNs illustrated in Fig. 13 for comprehensiveness. Concretely, we present the images with
the lowest image qualities evaluated using CLIP-IQA. Our experiments span 10 random classes in
the DreamBooth Dataset, with DreamBooth as the baseline fine-tuning method. The results show that
DMs fine-tuned without BNNs usually present the corruption while BNNs successfully mitigate it,
leading to better generation quality.

5https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth.py
6https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth_lora.py
7https://github.com/Zeju1997/oft

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 13: Visualization of worst-case generations measured by CLIP-IQA.

J LIMITATIONS AND FUTURE WORK

Even though few-shot fine-tuning DMs with BNNs applied has shown promising improvements,
this paper also introduces a few interesting open problems. Firstly, the extra randomness may make
fine-tuning slower. This may lower the generation quality when the DMs are under-fitting. In addition,
the ability of learning extremely detailed patterns in the image may be reduced when the number of
fine-tuning iterations is insufficient. Future work could focus on these problems.

K BROADER IMPACT

This paper focuses on advancing few-shot fine-tuning techniques in DMs to provide more effective
tools for creating personalized images in various contexts. Previous few-shot fine-tuning methods
have faced corruption phenomenon, as mentioned in this paper. Our approach, utilizing BNNs,
addresses this phenomenon and provides generated images with higher quality.

However, there is potential for misuse, as malicious entities could exploit these technologies to
deceive or misinform. Such challenges underscore the critical need for continuous exploration in
this field. The development and ethical application of personalized generative models are not only
paramount but also ripe for future research.

L MORE VISUALIZATIONS

We show more visualized results in Fig. 14 and Fig. 15.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Input images

Input images

DreamBooth LoRA OFT

 w/o
BNNs

 w/
BNNs

LoRA OFTDreamBooth

Prompt: A [V] backpack in the snow

Prompt: A photo of a [V] person in a purple wizard hat

Best-case generation Average-case generation

Best-case generation Average-case generation

 w/o
BNNs

 w/
BNNs

DreamBooth LoRA OFT DreamBooth LoRA OFT

Input images

Input images

DreamBooth LoRA OFT

 w/o
BNNs

 w/
BNNs

LoRA OFTDreamBooth

Prompt: A [V] cat in the jungle

Prompt: A photo of a [V] person wearing a black top hat

Best-case generation Average-case generation

Best-case generation Average-case generation

 w/o
BNNs

 w/
BNNs

DreamBooth LoRA OFT DreamBooth LoRA OFT

Figure 14: More visualizations on subject-driven and object-driven scenarios.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Input images

Input images

DreamBooth LoRA OFT

 w/o
BNNs

 w/
BNNs

LoRA OFTDreamBooth

Prompt: A [V] boot on top of a dirt road

Prompt: A photo of a [V] person with snowflakes in their hair

Best-case generation Average-case generation

Best-case generation Average-case generation

 w/o
BNNs

 w/
BNNs

DreamBooth LoRA OFT DreamBooth LoRA OFT

Figure 15: More visualizations on subject-driven and object-driven scenarios.

21

	Introduction
	Related Works
	Diffusion Models and Few-shot Fine-tuning
	Bayesian Neural Networks

	Corruption Stage in Few-shot Fine-tuning
	Observation
	Heuristic Modeling on Few-shot Fine-tuning in DMs
	Explanation of the Corruption Stage.

	Applying BNNs to Few-shot Fine-tuning on DMs
	Motivation
	Formulation

	Experiments
	 Quantitative and Visualized Comparisons
	Generalization
	Ablation Study
	User Study

	Conclusion
	Drivation of Eq. (2)
	Proof for the Error term Approaches Zero during Fine-tuning
	Details of Applying BNNs
	Applying BNNs on Different Few-shot Fine-tuning Methods
	Details of the Validation Experiments
	Additional Support for Our Modeling
	Metrics
	Settings of Fine-tuning
	Few-shot Fine-tuning Hyper-parameters
	Training Setting for DMs with Different Architectures

	Best-case v.s. Average-case Generation
	Limitations and Future Work
	Broader Impact
	More Visualizations

