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Abstract

We study sequential bilateral trade where sellers and buyers valuations are com-
pletely arbitrary (i.e., determined by an adversary). Sellers and buyers are strategic
agents with private valuations for the good and the goal is to design a mechanism
that maximizes efficiency (or gain from trade) while being incentive compatible,
individually rational and budget balanced. In this paper we consider gain from
trade which is harder to approximate than social welfare.
We consider a variety of feedback scenarios and distinguish the cases where the
mechanism posts one price and when it can post different prices for buyer and
seller. We show several surprising results about the separation between the differ-
ent scenarios. In particular, we show that (a) it is impossible to achieve sublinear
α-regret for any α < 2, (b) but with full feedback sublinear 2-regret is achievable
(c) with a single price and partial feedback one cannot get sublinear α regret for
any constant α (d) nevertheless, posting two prices even with one-bit feedback
achieves sublinear 2-regret, and (e) there is a provable separation in the 2-regret
bounds between full and partial feedback.

1 Introduction

The bilateral trade problem arises when two rational agents, a seller and a buyer, wish to trade a good;
they both hold a private valuation for it, and their goal is to maximize their utility. The solution to
the problem consists in designing a mechanism that intermediates between the two parties to make
the trade happen. Ideally, the mechanism should maximize social welfare even though the agents
act strategically (incentive compatibility) and should guarantee non-negative utility to the agents
(individual rationality). Furthermore, we are interested in mechanisms for bilateral trade that do
not subsidize the agents (budget balance). Obvious mechanisms that satisfy incentive compatibility,
individual rationality, and budget balanced, are posted price mechanisms. Two common metrics are
used to measure the efficiency of a mechanism: social welfare subsequent to trade and gain from
trade (i.e., the increase in social welfare). Consider a mechanism that posts prices p (price for the
seller) and q (price for the buyer) to agents with valuations s and b, formally we have:

• Social Welfare: SW(p, q, s, b) = s+ (b− s) · I{s ≤ p ≤ q ≤ b} 1

• Gain from trade: GFT(p, q, s, b) = (b− s) · I{s ≤ p ≤ q ≤ b}
1We use I{Q} for the indicator variable that takes the value 1 if the predicated Q is true and zero otherwise.
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It is clear from these expressions that if we are interested in exact optimality then maximizing gain
from trade is equivalent to maximizing social welfare. However, Myerson and Satterthwaite [1983]
showed that there is no mechanism for bilateral trade that is simultaneously social welfare maxi-
mizing (alternately, gain from trade maximizing), incentive compatible, individually rational, and
budget balanced2. It follows that the best one can hope for is an incentive compatible, individually
rational, and budget balanced mechanism that approximates the optimal social welfare. This creates
an asymmetry between the two metrics: a multiplicative c approximation to the maximal gain from
trade implies an approximation at least as good (≥ c) to the maximal social welfare but not vice
versa. Ergo, it is harder to approximate the gain from trade than to approximate social welfare. For
example, consider an instance where the seller has valuation 0.99 and the buyer is willing to pay up
to 1: irrespective of if a trade occurs or not, 99% of the optimal social welfare is guaranteed. I.e., a
mechanism that posts a price of zero and generates no trade gets a good approximation to the social
welfare. Contrariwise, the gain from trade is non-zero only if the mechanism manages to post prices
in the narrow [0.99, 1] interval.

The vast body of work subsequent to Myerson and Satterthwaite [1983] primarily considers the
Bayesian version of the problem, where agents’ valuations are drawn from some distribution and
the efficiency is evaluated in expectation with respect to the valuations’ randomness. There are
many incentive compatible mechanisms that give a constant approximation to the social welfare
(in the Bayesian setting), e.g., see Blumrosen and Dobzinski [2014]. On the other hand, finding a
constant approximation to the gain from trade has been a long standing problem and only a very
recent paper of Deng et al. [2022] has given a Bayesian incentive compatible mechanism for this
problem. In this paper, we deal with the harder scenario where an adversary determines seller and
buyer valuations (i.e., valuations are not drawn from some distribution). Ergo, positive results in the
Bayesian setting are inapplicable in our setting.

Following Cesa-Bianchi et al. [2021a], we consider the sequential adversarial bilateral trade problem,
where at each time step t, a new seller-buyer pair arrives. The seller has some private valuation st ∈
[0, 1] representing the smallest price she is willing to accept; conversely, the buyer holds as private
information bt ∈ [0, 1], i.e., the largest price she is willing to pay to get the good. Concurrently, the
mechanism posts price pt to the seller and qt to the buyer. If they both accept (st ≤ pt and qt ≤ bt),
then the trade happens at those prices, otherwise the agents leave forever. By the requirement that
the mechanism is budget balanced, the prices posted by the mechanism are such that pt ≤ qt. At
the end of each time step, the mechanism receives some feedback that depends on the outcome of
the trade. Ideally, we would like to have a strategy for the sequential bilateral trade problem whose
average gain from trade converges to that of the best fixed posted price mechanism in hindsight.
However, as Cesa-Bianchi et al. [2021a] showed, this is a hopeless task.

Our goal in this work is then to achieve mechanisms whose average performance converges to a
constant factor of the best fixed posted price mechanism in hindsight. We would like to find the
smallest α ≥ 1 such that the α-regret [Kakade et al., 2009] is sublinear in the time horizon T :

max
p,q

T∑
t=1

GFT(p, q, st, bt)− α · E

[
T∑

t=1

GFT(pt, qt, st, bt)

]
.

If the goal is only to maximize gain from trade, there is never any sense in offering two different
prices (to the seller and buyer). However, critically, offering two prices is provably helpful in the
context of a learning algorithm.

To conclude the description of our learning framework, we specify the type of feedback received by
the mechanism. We focus on the two extremes of the feedback spectrum. On the one hand, we study
the full feedback model, where, after prices are posted, the mechanism learns both seller and buyer
valuations (st, bt). On the other hand, we investigate a more realistic partial feedback model, the
one-bit feedback, where the learner only discovers if a trade took place or not. We also consider an
intermediate (partial feedback) model, called the two-bit feedback model. In this model, the learner
posts (one or two) prices, and learns if the buyer is willing to trade and if the seller is willing to trade,
at these prices. Clearly, a trade actually occurs only if both are willing to trade. Note that these two
models enforce the desirable property that buyers and sellers only communicate to the mechanism a
minimal amount of information useful for the trade, without disclosing their actual valuations.

2This impossibility result holds even when the (private) agents valuations are assumed to be drawn from
some (public) random distributions and the incentive compatibility is only enforced in expectation.
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Full Feedback Two-bit feedback One-bit feedback

Single price O(
√
T ) - Theorem 2 Ω(T ) - Theorem 4

Two prices Ω(
√
T ) - Theorem 3 Ω(T 2/3) - Theorem 6 O(T 3/4) - Theorem 5

Table 1: Summary of 2-regret results in various settings.

1.1 Overview of our Results

We present our results for the adversarial sequential bilateral trade problem (see also Table 1).

• We show that no learning algorithm can achieve sublinear α-regret for any α < 2 (Theo-
rem 1). This holds in the full feedback model (and thus for both partial feedback models).

• We give a learning algorithm with full feedback that achieves Õ(
√
T ) 2-regret3 (Theorem 2)

and show that no algorithm can improve upon this (Theorem 3).
• We show that if limited to a single price, no learning algorithm achieves sublinear α-regret

for any constant α in either partial feedback model: one or two-bit feedback (Theorem 4).
• Given the negative results above, we show that allowing the learning algorithm to post two

prices gives sublinear 2-regret even for one-bit feedback (Theorem 5). This means that our
learning algorithm achieves, on average, at least half of the gain from trade of the best fixed
price in hindsight, using only one bit of feedback at each step!

• We show a separation between partial versus full feedback by giving a Ω(T 2/3) lower
bound in the former model on the 2-regret for any learning algorithm (Theorem 6).

The gaps in Table 1 may appear misleading because upper bounds in weaker models apply in
stronger models and lower bounds in stronger models apply in weaker models. The only remaining
open gap in our results is between the Ω(T 2/3) lower bound and the O(T 3/4) upper bound that hold
for two prices and partial feedback (either one or two-bit feedback). It is also worth noting that
in our worst case model, two prices are required but one-bit suffices for sublinear 2-regret. This
is a different qualitative behavior than the one observed in the stochastic case [Cesa-Bianchi et al.,
2021a], where it is enough to use one single price but the two-bit feedback is required to achieve
sublinear (1-)regret. One may wonder why two prices are helpful at all in our adversarial setting,
given their suboptimality in maximizing the gain from trade. It turns out that by randomizing over
two prices it is possible to estimate the (non-stochastic) valuations of the agents.

1.2 Technical challenges

From experts to prices. As already observed in Cesa-Bianchi et al. [2021a], the full feedback
model nicely fits into the prediction with experts framework [Cesa-Bianchi and Lugosi, 2006]: there
is a clear mapping between expert and prices and the mechanism can easily reconstruct the gain
that each price/expert experiences using the feedback received. The main challenge here is given
by the continuous nature of the possible prices, as the usual experts framework assumes a finite
number of experts. There are workarounds that exploit some regularity of the gain function such
as the Lipschitz property or convexity/concavity [see, e.g., Cesa-Bianchi and Lugosi, 2006, Hazan,
2016, Slivkins, 2019]. Unfortunately, gain from trade is not such a function. Moreover, in our
adversarial setting, we cannot adopt the smoothing trick used in Cesa-Bianchi et al. [2021a], where
they assume some regularity on the agents’ distribution to argue that E [GFT(·)] becomes Lipschitz.
Our main technical tool to address this issue is a discretization claim that allows us to compare the
performance of the best fixed price in [0, 1] with that of the best on a finite grid.

A magic estimator. Consider any of the two partial feedback models; there at each time step t the
learner only receives minimal information about what happened at time t: namely, one or two-bit
versus the full knowledge of GFTt(·). Note that this type of feedback is strictly more difficult than
the classic bandit feedback [Cesa-Bianchi and Lugosi, 2006], where the learner always observes at
least the gain its action incurred. Our main technical tool to circumvent this issue is given by the
design of a procedure that, posting two randomized prices, is able to estimate the GFT in a given
price. This unbiased estimator is then used in a carefully designed block decomposition of the time
horizon to achieve sublinear 2-regret in presence of this very poor feedback.

3The Õ hides poly-logarithmic terms
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Lower bounds. For our lower bounds we adopt two different strategies. In Theorems 1 and 4 we
construct randomized instances where no algorithm can learn anything: the only prices the learner
could use to discriminate between different instances are cautiously hidden, while all the other prices
do not reveal any useful information, given the type of feedback considered. The randomized in-
stances used in Theorems 3 and 6 involve instead a more structured approach; given the challenge
posed by the contemporary handling of the multiplicative and additive part of the 2-regret. To this
end, we carefully hide the optimal ex-post prices and make it hard for the learner to achieve small
(1-)regret with respect to some “second best” prices. A crucial task we often face is to “hide" some
small finite sets of critical prices from the learning algorithm. We employ two techniques to do so:
random shifts (as in the proof of Theorem 4) and repeatedly dividing overlaps (Theorems 1 and 3).

1.3 Related work

The work most closely related to ours is Cesa-Bianchi et al. [2021a]. There, the authors study the
same sequential bilateral trade problem as we do, with the objective of minimizing the (1-)regret
with respect to the best fixed price. They focus on the (easier) stochastic model, where the adversary
chooses a distribution over valuations and not a deterministic sequence like we do. A full charac-
terization of the minimax regret regimes is offered, for the same type of feedback we consider (the
one-bit feedback is only addressed in the extended version [Cesa-Bianchi et al., 2021b]4) and with
various regularity assumptions on the underlying random distributions. Cesa-Bianchi et al. [2021a]
also provide the first result for the adversarial setting we consider, showing that no learning algo-
rithm can achieve sublinear 1-regret. Regret minimization in the context of economics has been
studied in many papers [e.g., Morgenstern and Roughgarden, 2015, Cesa-Bianchi et al., 2015, Ho
et al., 2016, Daskalakis and Syrgkanis, 2016, Lykouris et al., 2016]. In particular, Kleinberg and
Leighton [2003] studied the one-sided pricing problem, proving a Õ(T 2/3) upper bound on the re-
gret in the adversarial setting and opening a fruitful line of research [Blum et al., 2004, Blum and
Hartline, 2005, Bubeck et al., 2019]. The notion of α-regret has been formally introduced by Kakade
et al. [2009] but was already present in Kalai and Vempala [2005]. It has then found applications
in linear [Garber, 2021] and submodular optimization [Roughgarden and Wang, 2018], learning
with sleeping actions [Emamjomeh-Zadeh et al., 2021], combinatorial auctions [Roughgarden and
Wang, 2019] and market design [Niazadeh et al., 2021]. We mention that our work fits in the line of
research that studies online learning with feedback models different from full information and the
bandit ones; our one and two-bit feedback models share similarities with the feedback graphs model
(see e.g., Alon et al. [2017], van der Hoeven et al. [2021], Esposito et al. [2022]) and the partial
monitoring framework (see e.g., Bartók et al. [2014], Lattimore and Szepesvári [2019]).

While Myerson and Satterthwaite [1983] were the first to thoroughly investigate the bilateral trade
problem in the Bayesian setting with their famous impossibility result, it was the seminal paper of
Vickrey [Vickrey, 1961] that introduced the problem, proving that any mechanism that is welfare
maximizing, individually rational, and incentive compatible may not be budget balanced. In the
Bayesian setting, it was only very recently that Deng et al. [2022] gave the first (Bayesian) incen-
tive compatible, individually rational, and budget balanced mechanism achieving a constant factor
approximation of the optimal gain from trade. Prior to this paper, a posted price O

(
log 1

r

)
approx-

imation bound was achieved by [Colini-Baldeschi et al., 2017], with r being the probability that a
trade happens (i.e., the value of the buyer is higher than the value of the seller). The literature also
includes many individually rational, incentive compatible, and budget balanced mechanisms achiev-
ing a constant factor approximation of the optimal social welfare. Blumrosen and Dobzinski [2014]
proposed a simple posted price mechanism, the median mechanism, yielding a 2-approximation of
the optimal social welfare; the same authors then implemented a randomized fixed price mechanism
improving the approximation to e/(e−1) [Blumrosen and Dobzinski, 2021]. Recently, Dütting et al.
[2021] showed that even posting one single sample from the seller distribution as price is enough
to achieve a 2 approximation to the optimal social welfare. The class of fixed price mechanism
is of particular interest as it has been shown that all (dominant strategy) incentive compatible and
individually rational mechanisms that enforce a stricter notion of budget balance, i.e., the so-called

4Cesa-Bianchi et al. [2021b] use a definition of gain from trade that is slightly different than ours when the
prices posted to seller and buyer differ. In practice, however, the two definitions are equivalent. In particular,
all our lower bounds apply automatically to their definition, while the analyses of our learning algorithms carry
over exactly the same also with their definition.

4



Learning Protocol of Sequential Bilateral Trade
for time t = 1, 2, . . . do

a new seller/buyer pair arrives with (hidden) valuations (st, bt) ∈ [0, 1]2

the learner posts prices pt, qt ∈ [0, 1]
the learner receives a (hidden) reward GFTt(pt, qt) := GFT(pt, qt, st, bt) ∈ [0, 1]
a feedback zt is revealed

strong budget balance (where the mechanism is not allowed to subsidize or extract revenue from the
agents) are indeed fixed price [Hagerty and Rogerson, 1987, Colini-Baldeschi et al., 2016].

2 Preliminaries

The formal protocol for the sequential bilateral trade follows Cesa-Bianchi et al. [2021a]. At each
time step t, a new pair of seller and buyer arrives, each with private valuations st and bt in [0, 1]; the
learner posts two prices: pt ∈ [0, 1] to the seller and qt ∈ [0, 1] to the buyer. A trade happens if and
only if both agents agree to trade, i.e., when st ≤ pt and qt ≤ bt. Since we want our mechanism to
enforce budget balance, we require that pt ≤ qt for all t. When a trade occurs, the learner is awarded
the resulting increase in social welfare, i.e., bt−st. The learner then observes some feedback zt. The
gain from trade at time t depends on the valuations st and bt and on the price posted. To simplify
the notation we introduce the following:

GFTt(p, q) := GFT(p, q, st, bt) = I{st ≤ p ≤ q ≤ bt} · (bt − st)

When the two prices are equal, we omit one of the arguments to simplify the notation.

Given any constant α ≥ 1, the α-regret of a learning algorithm A against a sequence of valuations
S on time horizon T is defined as follows

Rα
T (A,S) := max

p,q∈[0,1]2

T∑
t=1

GFTt(p, q)− α ·
T∑

t=1

E [GFTt(pt, qt)] .

In the right side of the equation, the dependence on S is contained in the GFTt(·). Note that the
expectation in the previous formula is with respect to the internal randomization of the learning
algorithm: pt and qt are the (possibly random) prices posted by A.

The α-regret of a learning algorithm A, without specifying the dependence of the sequence, is
defined as its α-regret against the “worst” sequence of valuations: Rα

T (A) := supS Rα
T (A,S).

Stated differently, the performance of an algorithm is measured against an oblivious adversary that
generates the sequence of valuations ahead of time: the learner has to perform well on all possible
sequences. In this paper we study the minimax α-regret, Rα,⋆

T , that measures the performance of the
best (learning) algorithm versus the optimal fixed price in hindsight, on the worst possible instance:
Rα,⋆

T := infA Rα
T (A). The set of learning algorithms we consider depends on which of the various

settings we are dealing with. In this paper we consider a variety of such settings (i.e., how many
prices are posted, what feedback is available, see below Sections 2.1 and 2.2).

2.1 Single Price vs. Two Prices — Seller price and Buyer price

We consider two families of learning algorithms, differing in the nature of the probe they perform,
corresponding to two notions of what it means to be budget balanced:

Single price mechanisms. If we want to enforce a stricter notion of budget balance, namely strong
budget balance, the mechanism is neither allowed to subsidize nor extract revenue from the system.
This is modeled by imposing pt = qt, for all t. If pt = qt we use the notation GFTt(pt) to represent
the gain from trade at time t.

Two price mechanisms. If we require that the mechanism enforces (weak) budget balance, it can
post two different prices, pt to the seller and qt to the buyer, as long as pt ≤ qt. I.e., we only require
that the mechanism never subsidize a trade, we do not require that the mechanism not make a profit.
In this setting we use the notation GFTt(pt, qt) to represent the gain from trade at time t.
Observation 1. Note that the only reason to post two prices is to obtain information. For any pair
of prices (p, q) with p < q posting any single price π ∈ [p, q] guarantees no less gain from trade.
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In particular, any budget balanced algorithm that knows the future and seeks to maximize gain from
trade while repeatedly posting the same prices will never choose two different prices.

2.2 Feedback models

We consider three types of feedback, presented here in increasing order of difficulty for the learner.
(Note that full feedback “implies” two-bit feedback which in turn implies one-bit feedback):

Full feedback. In the full feedback model, the learner receives both seller and buyer valuations,
immediately after posting prices: formally, zt = (st, bt). E.g., both seller and buyer send sealed
bids that are opened immediately after the [one or two] price[s] are revealed. By Observation 1,
in the full feedback model there is no reason to post two prices, as all the relevant information is
revealed anyway.

Two-bit feedback. In two-bit feedback the algorithm observes separately if the two agents agree on
the given price, i.e., the feedback at time t is zt = (I{st ≤ pt}, I{qt ≤ bt}).
One-bit feedback The one-bit feedback is arguably the minimal feedback the learner could get: the
only information revealed is whether the trade occurred or not, i.e., zt = I{st ≤ pt ≤ qt ≤ bt}.

2.3 Regret due to discretization

Our first theoretical result concerns the study of how discretization impacts the regret. In particular,
we compare the performance of the best fixed price taken from the continuous set [0, 1] to that
of the best fixed price chosen from some discrete grid Q ⊂ [0, 1]. Optimizing over a continuous
set may seemingly be a problem because our object, gain from trade, is discontinuous (thus non-
Lipschitz), non-convex and non-concave; one cannot use the “standard approach" that makes use of
such regularity conditions. What we show in the following Claim (whose proof is deferred to the
Appendix together with all the other missing proofs) is that it is possible to compare the performance
of the best continuous fixed price with twice that of the best fixed price on the grid.

Claim 1 (Discretization error). Let Q = {q0 = 0 ≤ q1 ≤ q2 · · · ≤ qn = 1} be any finite
grid of prices in [0, 1] and let δ(Q) be the largest difference between two contiguous prices, i.e.,
maxi=1,...,n |qi − qi−1|, then for any sequence S = (s1, b1), . . . , (sT , bT ) and any price p we have

T∑
t=1

GFTt(p) ≤ 2 ·max
q∈Q

T∑
t=1

GFTt(q) + δ(Q) · T.

Let A be any learning algorithm that posts prices (pt, qt), then the following inequality holds:

R2
T (A) ≤ 2 sup

S

{
max
q∈Q

T∑
t=1

GFTt(q)−
T∑

t=1

E [GFTt(pt, qt)]

}
+ δ(Q) · T. (1)

Before moving to the next section, we spend some words to compare our discretization result with
the one in Cesa-Bianchi et al. [2021a] (Second decomposition Lemma). There the authors exploit
the stochastic nature of the valuations to argue that E [GFTt(·)] is Lipschitz, under some regularity
assumptions on the random distributions. We study the adversarial model, thus we cannot use this
“smoothing” procedure; this is why we lose an extra multiplicative factor of 2.

3 Full Feedback

In this section, we study the full feedback model, where the learner receives as feedback both seller
and buyer valuations after posting a single price (see Observation 1). The learner can thus evaluate
GFTt(p) for all p ∈ [0, 1], independently of the price posted. Even with this very rich feedback,
we show that the impossibility result from Cesa-Bianchi et al. [2021a], i.e., no learning algorithm
achieves sublinear regret (1-regret) in the sequential bilateral trade problem, can be extended to hold
for α-regret for all α ∈ [1, 2).

Theorem 1 (Lower bound on (2 − ε)-regret). In the full-feedback model, for all ε ∈ (0, 1] and
horizons T , the minimax (2− ε)-regret satisfies R2−ε,⋆

T ≥ 1
8εT.
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To prove Theorem 1 we use Yao’s Minimax Theorem: a randomized family of valuations sequences
is constructed, with the property that any deterministic learner would suffer, on average, linear 2− ε
regret against it. The detailed proof is deferred to the Appendix, but we sketch here the main ideas.
Specifically, any valuations sequence from the randomized family consists of (sell, buy) prices that
have the form (0, bi) or (si, 1), for some carefully designed {si}i and {bi}i. These sequences
are generated iteratively in a way such that all realized [sell, buy] segments overlap and the next
segment is chosen at random among two disjoint options (0, bi) or (si, 1). Since all realized [sell,
buy] segments overlap, there is at least one price in the intersection of all intervals: this is the optimal
fixed price in hindsight. Conversely, at each time step no learner can post a price that guarantees a
trade with probability greater than 1/2, thus yielding the lower bound.

Moving to positive results, there is a clear connection between our problem in the full feedback
and the prediction with experts framework [Cesa-Bianchi and Lugosi, 2006]. In particular, if we
simplify the task of the learner to be competitive against the best price in a finite grid, we can use
classical results on prediction with experts as a black box. Combining this with our discretization
result (Claim 1), we show an Õ(

√
T ) upper bound on the 2-regret. The details are postponed to the

Appendix.

Theorem 2 (Upper bound on 2-regret given full feedback). In the full-feedback setting, there exists
a learning algorithm A whose 2-regret, for T large enough, respects R2

T (A) ≤ 5 ·
√
T · log T .

We conclude the full feedback analysis with a lower bound that shows that the previous result is
tight up to a logarithmic factor: the minimax 2-regret of the full feedback problem is Θ̃(

√
T ).

Theorem 3 (Lower bound on 2-regret given full feedback). In the full-feedback model, for all hori-
zons T large enough, the minimax 2-regret satisfies R2,⋆

T ≥ 1
13

√
T .

The proof uses once again Yao’s Theorem and consists in constructing a randomized family of
sequences such that any deterministic learning algorithm suffers, in expectation, a Ω(

√
T ) 2-regret.

The detailed construction is deferred to the Appendix and it involves the careful combination of two
scaled copies of the hard sequences used in the proof of Theorem 1.

4 Partial Feedback

In this section, we study the partial feedback models where the learner receives very limited informa-
tion on the realizations of the gain from trade. Specifically, one or two bits that describe the relative
positions of the prices proposed to the agents and their valuations.

4.1 Lower bound on α-regret posting single price given two-bit feedback

Consider a learner that is constrained to post one single price at every iteration; the same to both
seller and buyer. For this class of algorithms we show a very strong impossibility result, namely
that for any constant α, there exists no algorithm achieving sublinear α-regret. We prove this in the
two-bit feedback model and thus it trivially holds also if given one-bit feedback. The core of the
lower bound construction (details are postponed to the Appendix) resides in the possibility for the
adversary to hide a large interval between many shorter ones; a learner posting only one price will
not be able to locate it using partial feedback (which consists in just counting the number of intervals
on the left and on the right).

Theorem 4 (Lower bound on α-regret posting single price, two-bit feedback). In the two-bit feed-
back model where the learner is allowed to post one single price, for all horizons T ∈ N and any
constant α > 1, the minimax α-regret satisfies Rα,⋆

T ≥ 1
128α3T.

4.2 Upper bound on the 2-regret, posting two prices and given one-bit feedback

The main result in this section is presented in Theorem 5: it is possible to achieve sublinear 2-regret
with one-bit feedback (and by posting two prices). We find this to be the most surprising result in
this paper. The crucial ingredient of our approach is an unbiased estimator, ĜFT, of the gain from
trade that uses two prices and one single bit of feedback. This seems quite remarkable. The gain
from trade is a discontinuous function composed by two different objects: the difference (b− s) and
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Estimation procedure of GFT using two prices and one-bit feedback
Input: price p
Toss a biased coin with head probability p
if head then Draw U u.a.r. in [0, p] and set p̂← U , q̂ ← p
else Draw V u.a.r. in [p, 1] and set p̂← p, q̂ ← V
Post price p̂ to the seller and q̂ to the buyer and observe the one-bit feedback I{s ≤ p̂ ≤ q̂ ≤ b}
Return: ĜFT(p)← I{s ≤ p̂ ≤ q̂ ≤ b} ▷ Unbiased estimator of GFT(p)

the indicator variable I{p ∈ [s, b]}. Both these two objects are easy to estimate independently, but
for the gain from trade we need an estimator of their product. To estimate GFT(p) for any fixed
price p, we construct an estimation procedure that considers both features at the same time: it tosses
a biased coin with head probability p; if head, it posts price p to the buyer and a price drawn u.a.r. in
[0, p] to the seller; if tails, it posts price p to the seller and a price drawn u.a.r. in [p, 1] to the buyer.
The formal procedure is described in the pseudocode, while the following lemma proves that this
procedure yields an unbiased estimator of the gain from trade.

Lemma 1. Fix any agents’ valuations s, b ∈ [0, 1]. For any price p ∈ [0, 1], it holds that ĜFT(p) is

an unbiased estimator of GFT(p): E
[
ĜFT(p)

]
= GFT(p), where the expectation is with respect

to the randomness of the estimation procedure.

Proof. Note that p is fixed and known to the learner, s and b are fixed but unknown and the learner
has to estimate the fixed but unknown quantity GFT(p) = I{s ≤ p ≤ q ≤ b} · (bt − st) using only
the two-bit feedback. To analyze the expected value of ĜFT(p) we define two random variables:

Xs(p) = I{s≤U≤p≤b}, Xb(p) = I{s≤p≤V≤b}, where U ∼ Unif(0, p) and V ∼ Unif(p, 1).

If p ̸∈ [s, b], the two random variables attain value 0 with probability 1 (and are thus both unbiased
estimators of GFT(p) in that case). Consider now p ∈ [s, b] and compute their expectation:

E [Xs(p)] = P (s ≤ U ≤ p ≤ b) = P (s ≤ U) =
p− s

p
,

E [Xb(p)] = P (s ≤ p ≤ V ≤ b) = P (V ≤ b) =
b− p

1− p
.

The estimator ĜFT(p) works as follows: with probability p it posts prices (U, p), otherwise (p, V ),
then receives the one-bit feedback from the agents and returns it. Conditioning on the result of the
toss of the biased coin it is then easy to compute the expected value of ĜFT(p):

E
[
ĜFT(p)

]
= pE [Xs(p)] + (1− p)E [Xb(p)] = I{s ≤ p ≤ q ≤ b} (b− s) = GFT(p).

This estimation procedure becomes a powerful tool to estimate the gain from trade that the learner
would have extracted at time t posting price p using randomization and one single bit of feedback.
Note here that the possibility of posting two different prices is crucial: as we have argued in the pre-
vious section, one single price is not able to do that, even for two-bit feedback. Given the estimator
ĜFT (actually, it consists of a family of estimators: one for each price p) we present our learning
algorithm BLOCK-DECOMPOSITION. Similarly to what is done in Chapter 4 of Nisan et al. [2007],
the learner divides the time horizon in S time blocks Bτ of equal length5 and uses as subroutine
some expert algorithm E on a meta-instance that considers each time block as a time step and each
price in a suitable grid Q as an action. In each block the learner posts the same price pτ in all but
|Q| time steps, where it uses ĜFT to estimate the total gain from trade obtained in Bτ by all prices
in Q. The details of BLOCK-DECOMPOSITION are presented in the pseudocode, and its guarantees
are detailed in the following Theorem, whose proof is deferred to the Appendix.
Theorem 5 (Upper bound on 2-regret posting two prices, one-bit feedback). In the one-bit feedback
model where the learner is allowed to post two prices, the 2-regret of BLOCK-DECOMPOSITION

(BD) is such that R2
T (BD) ≤ 5T 3/4

√
log(T ), for appropriate choices of the expert algorithm E ,

grid Q and number of blocks S.
5For ease of exposition we assume that S divides T . This is without loss of generality in our case, as one

can always add some dummy time steps for an additive regret of at most T/S.
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BLOCK-DECOMPOSITION (BD)
1: Input: time horizon T , number of blocks S, grid Q and expert algorithm E
2: ∆← T/S, K ← |Q|
3: Bτ ← {(τ − 1) ·∆+ 1, . . . , τ ·∆}, for all τ = 1, 2, . . . , S
4: Initialize E with time horizon S and K actions, one for each pi ∈ Q
5: for each round τ = 1, 2, . . . , S do
6: Receive from E the price pτ
7: Select uniformly at random an injection hτ : Q→ Bτ ▷ We need ∆ >> |Q|
8: for each round t ∈ Bτ do
9: if hτ (pi) = t for some price pi then

10: Use the estimator ĜFT(pi) at time t and call its output ĜFTτ (pi)

11: else: Post price pτ and ignore feedback
12: Feed to E the estimated gains {ĜFTτ (pi)}i=1,...,K

4.3 Lower bound on 2-regret, posting two prices and two-bit feedback

In this section, we complement the positive results for the single price and two-bit feedback setting
with a lower bound on the 2-regret achievable in the (easier) two-price and two-bit feedback setting.
This lower bound strongly depends on a powerful characterization result from the partial monitoring
literature [Bartók et al., 2014] and consists in constructing a class of instances with the following
structure that mimics an “hard” partial monitoring game. The [0, 1] interval is divided into 4 disjoint
regions, the first one is composed of a single optimal price p⋆, then two intervals that are candidates
to be the second best after p⋆. The only way for the learner to actually discriminate between the two
candidates and assess which is the actual second best is to post prices in the last, suboptimal region
of the [0, 1] interval. The construction is such that there is a multiplicative factor 2 between the gain
from trade of p⋆ and that of the second best. For the learner it is impossible to locate the single point
p⋆ (given the structure of the feedback), and its regret with respect to the second best prices is at
least Ω(T 2/3). The reader familiar with the learning literature would recognize the similarity of this
structure to the classical revealing action problem [Cesa-Bianchi et al., 2006].

The randomized family of instances that are hard to learn for any deterministic learner is easy to
describe: at the beginning, the adversary randomly and uniformly select one of the two following
distributions over valuations (s, b) and then draws T i.i.d. samples from it:

(0, 1
2 ) with probability 1

4 + ε

( 13 ,
1
2 ) with probability 1

4 − ε

( 12 ,
2
3 ) with probability 1

4

( 12 , 1) with probability 1
4


(0, 1

2 ) with probability 1
4

( 13 ,
1
2 ) with probability 1

4

( 12 ,
2
3 ) with probability 1

4 − ε

( 12 , 1) with probability 1
4 + ε

We can compute the expected performance E [GFT (p)] of any price p against them (the first, re-
spectively second, column corresponds to the first, respectively second, distribution)

1
8 + ε

2 if p ∈ [0, 1
3 )

1
6 + ε

3 if p ∈ [ 13 ,
1
2 )

1
3 + ε

3 if p = 1
2

1
6 if p ∈ ( 12 ,

2
3 ]

1
8 if p ∈ ( 23 , 1]



1
8 if p ∈ [0, 1

3 )
1
6 if p ∈ [ 13 ,

1
2 )

1
3 + ε

3 if p = 1
2

1
6 + ε

3 if p ∈ ( 12 ,
2
3 ]

1
8 + ε

2 if p ∈ ( 23 , 1]

It is clear that the best price is 1
2 , which yields an expected gain from trade that is approximately

a multiplicative factor 2 larger than the one induced by the second best price, i.e. p ∈ [ 13 ,
1
2 ) or

p ∈ ( 12 ,
2
3 ] depending on the instance in question. The two candidates to be the second best price

are an additive Θ(ε) factor away while posting prices in [0, 1
3 ) ∪ ( 23 , 1] gives a constant loss. The

crucial property is that the only way the learner can discriminate between the two instances is to
post prices in the low gain region [0, 1

3 ) ∪ ( 23 , 1]. For example, posting a price of 1
3 the learner

observes a trade with probability exactly 1
2 in both the distributions, while posting 0 yields a trade

with probability 1
4 + ε in the first case while exactly 1

4 in the second (thus allowing some learning
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to happen). Moreover, the learner cannot take advantage of the possibility of posting more than one
price: the only useful thing to learn is where the extra ε probability is, and there is no way of doing it
without suffering a constant instantaneous regret; not even with two-bits of feedback. We formalize
these considerations in the following lemma, whose proof is deferred to the Appendix.
Lemma 2. Consider the class of learning algorithms that can post two prices (both different from
1/2) and receive two-bit feedback. For any A in this class, there exists a sequence from the family
we described such that the following bound on the regret holds, for some constant c > 0:

max
p ̸=1

2

T∑
t=1

GFT(p)− E

[
T∑

t=1

GFTt(pt, qt)

]
≥ cT 2/3.

To conclude our lower bound, we need to show how to hide to the learner the price 1/2 that is clearly
optimal. It is sufficient to add a small, random, perturbation of the instance.
Theorem 6 (Lower bound on regret for two prices and two-bit feedback). In the two-bit feedback
model where the learner is allowed to post two prices, for all horizons T ∈ N, the minimax 2-regret
satisfies R2,⋆

T ≥ c̃T 2/3 for some constant c̃.

Proof. Let δ > 0 be an arbitrarily small constant. We perturb each instance of the family we have
constructed earlier in the following way: the adversary draws uniformly at random a shift x ∈ [0, δ],
then adds it to all valuations and finally it divides them all by 1 + δ. The valuations are still in [0, 1]
and the optimal price p⋆ has now become 1

2(1+δ) +
x

1+δ . The learner has now no way of pinpointing
the exact location of p⋆ since it is impossible to locate a specific point in [0, δ] using two-bit feedback.
Finally, the addition of new, independent, random noise does not make the learning of the second
best price easier, i.e., the bound of Lemma 2 holds. Thus, for any learning algorithm A, we have:

E
[
R2

T (A)
]
≥E

[
max
p∈[0,1]

T∑
t=1

GFTt(p)− 2max
p ̸=p⋆

T∑
t=1

GFTt(p)

]

+ 2 · E

[
max
p ̸=p⋆

T∑
t=1

GFTt(p)−
T∑

t=1

GFTt(pt, qt)

]
≥δΘ(T ) + cT 2/3 ≥ c̃ · T 2/3.

5 Discussion, Extensions, and Open Problems

In this paper, we investigate the sequential bilateral trade problem with adversarial valuations. We
study various feedback scenarios and consider the possibility of the mechanism to post one price vs.
when it can post different prices for buyer and seller. We identify the exact threshold of α that allows
sublinear α-regret. We show that with partial feedback it is impossible to achieve sublinear α-regret
for any constant α with a single price while 2-regret is achievable with 2 prices. Finally, we show
a separation in the minimax 2-regret between full and partial feedback. Although in this paper we
only consider the gain from trade, our positive results trivially hold with respect to social welfare.
Furthermore, by modifying our lower bound from Theorem 1 it is possible to show that sublinear
α-regret is not achievable for α < 2 with respect to social welfare. An obvious open problem, with
respect to both gain from trade and to social welfare, consists in determining the exact regret term as
a function of T . Clearly, there is a gap in our Table of results, and the exact term is yet unclear also
for social welfare. We focus on the sequential problem where at each step one buyer and one seller
appear. It would be interesting to study the model where multiple buyers and multiple sellers arrive
at each time step and sellers have values for their goods, buyers have values for the different goods.

Acknowledgments and Disclosure of Funding

Yossi Azar was supported in part by the Israel Science Foundation (grant No. 2304/20). Federico
Fusco was supported by the ERC Advanced Grant 788893 AMDROMA Algorithmic and Mecha-
nism Design Research in Online Markets and MIUR PRIN grant Algorithms, Games, and Digital
Markets (ALGADIMAR).

10



References
Noga Alon, Nicolò Cesa-Bianchi, Claudio Gentile, Shie Mannor, Yishay Mansour, and Ohad Shamir.

Nonstochastic multi-armed bandits with graph-structured feedback. SIAM J. Comput., 46(6):
1785–1826, 2017.

Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a meta-
algorithm and applications. Theory Comput., 8(1):121–164, 2012.

Gábor Bartók, Dean P. Foster, Dávid Pál, Alexander Rakhlin, and Csaba Szepesvári. Partial moni-
toring - classification, regret bounds, and algorithms. Math. Oper. Res., 39(4):967–997, 2014.

Avrim Blum and Jason D. Hartline. Near-optimal online auctions. In SODA, pages 1156–1163.
SIAM, 2005.

Avrim Blum, Vijay Kumar, Atri Rudra, and Felix Wu. Online learning in online auctions. Theoreti-
cal Computer Science, 324(2-3):137–146, 2004.

Liad Blumrosen and Shahar Dobzinski. Reallocation mechanisms. In EC, page 617. ACM, 2014.

Liad Blumrosen and Shahar Dobzinski. (almost) efficient mechanisms for bilateral trading. Games
Econ. Behav., 130:369–383, 2021.

Sébastien Bubeck, Nikhil R. Devanur, Zhiyi Huang, and Rad Niazadeh. Multi-scale online learning:
Theory and applications to online auctions and pricing. J. Mach. Learn. Res., 20:62:1–62:37,
2019.

Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge University
Press, UK, 2006.

Nicolò Cesa-Bianchi, Gábor Lugosi, and Gilles Stoltz. Regret minimization under partial monitor-
ing. Math. Oper. Res., 31(3):562–580, 2006.

Nicolò Cesa-Bianchi, Claudio Gentile, and Yishay Mansour. Regret minimization for reserve prices
in second-price auctions. IEEE Trans. Inf. Theory, 61(1):549–564, 2015.

Nicolò Cesa-Bianchi, Tommaso R. Cesari, Roberto Colomboni, Federico Fusco, and Stefano
Leonardi. A regret analysis of bilateral trade. In EC, pages 289–309. ACM, 2021a.

Nicolò Cesa-Bianchi, Tommaso R. Cesari, Roberto Colomboni, Federico Fusco, and Stefano
Leonardi. Bilateral trade: A regret minimization perspective. CoRR, abs/2109.12974, 2021b.

Riccardo Colini-Baldeschi, Bart de Keijzer, Stefano Leonardi, and Stefano Turchetta. Approxi-
mately efficient double auctions with strong budget balance. In SODA, pages 1424–1443. SIAM,
2016.

Riccardo Colini-Baldeschi, Paul W. Goldberg, Bart de Keijzer, Stefano Leonardi, and Stefano
Turchetta. Fixed price approximability of the optimal gain from trade. In WINE, volume 10660
of Lecture Notes in Computer Science, pages 146–160. Springer, 2017.

Constantinos Daskalakis and Vasilis Syrgkanis. Learning in auctions: Regret is hard, envy is easy.
In FOCS, pages 219–228. IEEE Computer Society, 2016.

Yuan Deng, Jieming Mao, Balasubramanian Sivan, and Kangning Wang. Approximately efficient
bilateral trade. In STOC, pages 718–721. ACM, 2022.

Paul Dütting, Federico Fusco, Philip Lazos, Stefano Leonardi, and Rebecca Reiffenhäuser. Efficient
two-sided markets with limited information. In STOC, pages 1452–1465. ACM, 2021.

Ehsan Emamjomeh-Zadeh, Chen-Yu Wei, Haipeng Luo, and David Kempe. Adversarial online
learning with changing action sets: Efficient algorithms with approximate regret bounds. In ALT,
volume 132 of Proceedings of Machine Learning Research, pages 599–618. PMLR, 2021.

Emmanuel Esposito, Federico Fusco, Dirk van der Hoeven, and Nicolò Cesa-Bianchi. Learning on
the edge: Online learning with stochastic feedback graphs. To appear in NeurIPS, Preprint on the
arXiv abs/2210.04229, 2022.

11



Dan Garber. Efficient online linear optimization with approximation algorithms. Math. Oper. Res.,
46(1):204–220, 2021.

Kathleen M Hagerty and William P Rogerson. Robust trading mechanisms. Journal of Economic
Theory, 42(1):94–107, 1987.

Elad Hazan. Introduction to online convex optimization. Found. Trends Optim., 2(3-4):157–325,
2016.

Chien-Ju Ho, Aleksandrs Slivkins, and Jennifer Wortman Vaughan. Adaptive contract design for
crowdsourcing markets: Bandit algorithms for repeated principal-agent problems. J. Artif. Intell.
Res., 55:317–359, 2016.

Sham M. Kakade, Adam Tauman Kalai, and Katrina Ligett. Playing games with approximation
algorithms. SIAM J. Comput., 39(3):1088–1106, 2009.

Adam Tauman Kalai and Santosh S. Vempala. Efficient algorithms for online decision problems. J.
Comput. Syst. Sci., 71(3):291–307, 2005.

Robert D. Kleinberg and Frank Thomson Leighton. The value of knowing a demand curve: Bounds
on regret for online posted-price auctions. In FOCS, pages 594–605. IEEE Computer Society,
2003.

Tor Lattimore and Csaba Szepesvári. Cleaning up the neighborhood: A full classification for ad-
versarial partial monitoring. In ALT, volume 98 of Proceedings of Machine Learning Research,
pages 529–556. PMLR, 2019.

Thodoris Lykouris, Vasilis Syrgkanis, and Éva Tardos. Learning and efficiency in games with dy-
namic population. In SODA, pages 120–129. SIAM, 2016.

Jamie Morgenstern and Tim Roughgarden. On the pseudo-dimension of nearly optimal auctions. In
NIPS, pages 136–144, 2015.

Roger B Myerson and Mark A Satterthwaite. Efficient mechanisms for bilateral trading. Journal of
economic theory, 29(2):265–281, 1983.

Rad Niazadeh, Negin Golrezaei, Joshua R. Wang, Fransisca Susan, and Ashwinkumar Badanidiyuru.
Online learning via offline greedy algorithms: Applications in market design and optimization. In
EC, pages 737–738. ACM, 2021.

Noam Nisan, Tim Roughgarden, Éva Tardos, and Vijay V. Vazirani, editors. Algorithmic Game
Theory. Cambridge University Press, 2007.

José Luis Palacios. On the simple symmetric random walk and its maximal function. The American
Statistician, 62(2):138–140, 2008.

Tim Roughgarden and Joshua R. Wang. An optimal learning algorithm for online unconstrained
submodular maximization. In COLT, volume 75 of Proceedings of Machine Learning Research,
pages 1307–1325. PMLR, 2018.

Tim Roughgarden and Joshua R. Wang. Minimizing regret with multiple reserves. ACM Trans.
Economics and Comput., 7(3):17:1–17:18, 2019.

Aleksandrs Slivkins. Introduction to multi-armed bandits. Found. Trends Mach. Learn., 12(1-2):
1–286, 2019.

Dirk van der Hoeven, Federico Fusco, and Nicolò Cesa-Bianchi. Beyond bandit feedback in online
multiclass classification. In NeurIPS, pages 13280–13291, 2021.

William Vickrey. Counterspeculation, auctions, and competitive sealed tenders. The Journal of
finance, 16(1):8–37, 1961.

Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complexity (ex-
tended abstract). In FOCS, pages 222–227. IEEE Computer Society, 1977.

12



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] All the claims are supported by formal statements and
proofs either in the main body or appendix

(b) Did you describe the limitations of your work? [Yes] For each result we state the
conditions under which it holds.

(c) Did you discuss any potential negative societal impacts of your work? [No] Our work
is primarily theoretical and we do not foresee any potential negative societal impacts
of our work.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] All the results are

supported by formal proofs, either in the main body or in the appendix
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [N/A]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13


