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Abstract

Large language models (LLMs) are trained on data crawled over many years from
the web. We investigate how quickly LLMs become outdated over time and how
to best update them with newer data. Specifically, we simulate a world in which
the latest dump of Common Crawl (CC), the most prominent public source of pre-
training data, is used every month to continually train an LLM. We design various
dynamic evaluations from the CC data, Wikipedia, and StackExchange to measure
continual learning metrics such as forgetting and forward transfer. We discover
that recent DataComp-LM [28] models trained on data before 2023 have already
become outdated, incurring up to 45% larger noun-perplexity on 2024 Wikipedia
articles compared to pre-2023 articles (Fig. 1, left). Further, we use our setup to
evaluate the effectiveness of several large-scale continual learning methods and find
that replaying older data is most effective for combating forgetting: for previously
seen CC dumps, it can reduce the regret on held-out loss by 60% compared to
other optimizer and loss-based interventions. However, some domains evolve more
quickly than others, favoring different trade-offs between mixing old and new data.

1 Introduction

Large language models (LLMs) rely on massive amounts of data, a major portion of which comes
from large-scale web-crawls that have been running over the past 10–20 years. Common Crawl
(CC), the most well-known source of such data, has been active since 2007 and continues to release
monthly dumps of data. While typically many (or all) previous dumps are combined together to train
LLMs from scratch [28, 44], the vast costs and inherent knowledge cutoffs of LLMs raise natural
questions about how they can be most effectively updated as future dumps are released. In this
work, we introduce a benchmark for Time-Continual Learning of Language Models (TiC-LM) and
investigate how to continually train LLMs over many months and years. Taking inspiration from the
recent TiC-CLIP [13] work, our goal is to find efficient alternatives to training LLMs from scratch by
reusing and updating prior pre-trained models. Overall, we seek to answer the following:

• How quickly do pretrained language models become outdated on new data?
• Can continual pretraining match training from scratch for the same number of tokens?
• Do forgetting and forward transfer vary across domains such as Wikipedia, News, etc?

TiC-LM centers around TiC-CommonCrawl (TIC-CC), a massive time-stratified set of training
and evaluation data created using 114 CC dumps spanning 2013–2024. We also create domain-
specific evaluations sourced from outside Common Crawl including TiC-Wikipedia (TIC-WIKI),

∗Equal contribution. ◦ Project lead. † Work done during an internship at Apple.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



2014 2016 2018 2020 2022 2024
Eval Timestamp

2.0

2.1

2.2

2.3

2.4

Lo
ss

 (L
og

-P
pl

)

DCLM-Baseline 7B-2x on TiC-CC Holdout Sets
TiC-CC
TiC-CC-Wiki
TiC-CC-News

2014 2016 2018 2020 2022 2024
TiC-CC Dump Timestamp

10

20

30

40

50

To
ke

ns
 (B

)

TiC-CC Monthly Token Counts

2014 2016 2018 2020 2022 2024
TiC-CC Dump Timestamp

0.000

0.005

0.010

0.015

0.020

Ra
tio

 o
f T

iC
-C

C 
To

ks
. Presence of English Wikipedia and News in TiC-CC

TiC-CC-Wiki
TiC-CC-News

Figure 1: (Left) Performance of a model trained on DCLM-Baseline [28], which contains data up to
2022. Notably, the loss gap to our Oracle increases significantly on the Wiki and News subsets after
the 2022 data cutoff (dotted line). (Right) Total number of tokens per month in TIC-CC.

and TiC-StackExchange (TIC-STACKE) spanning 2008–2024. Using our benchmark, we evaluate
several continual learning baselines and find that cyclic learning rate schedules and data replay can
be effective for balancing learning on new data and preventing forgetting. However, we also find that
different domains evolve at different rates, benefiting from more or less replay.

Related Work. Learning from multiple, sequentially observed, distributions has long been an active
area of ML research [54]. More recently, several works have studied continual learning for LLMs [55],
targeting improvements on: (1) general capabilities [14, 19, 43]; (2) specific domains [7, 16, 23]; (3)
newer data as the world evolves [21, 20, 23, 27, 31, 33, 42, 46]. Works in this third category have
shown that in several domains, the performance of LLMs decays as training and test sets grow farther
apart in time, motivating the need to efficiently and non-distruptively adapt to temporal distribution
shifts. Our work scales up these efforts to more closely match current LLM training practices. While
older works often focus on continual training runs involving individual sources (e.g., news, Wikipedia,
and social media) and <10 timesteps (see Tab. 3), we consider training on a generic web-crawl (i.e.,
Common Crawl) spanning 114 different months. In turn, the generality of TiC-CC allows us to go
beyond single-domain evaluations. We provide an extended discussion of related works in Appx. E.

2 TiC-CommonCrawl: More than a Decade of Web Data

We create a large time-stratified dataset of 2.9T tokens based upon Common Crawl (CC), a free and
open corpus of web-crawled data that releases new snapshots roughly every month. We collect all
dumps between May-2013–July-2024, resulting in 114 corresponding splits that we refer to by the
month of their release date. For each split, we then apply a pre-processing pipeline based on that of
DataComp-LM [28]. Notably, we do not perform any operations on a particular month that depend
on future months to retain causality and temporal order (see Appx. A for further details).

Data Processing. We use assets from DataComp-LM [28], starting with DCLM-Pool, which contains
all CC dumps between May-2013 and Dec-2022, pre-extracted with resiliparse [5]. We split
this data by month and reuse the same download and extraction scripts to extend DCLM-Pool to July-
2024. Next, we follow DCLM-Baseline’s pipeline by applying heuristic filters from RefinedWeb [44]
and a fuzzy-deduplication step which we modify to run only within each month rather than globally.
Also, we skip the final classifier-based filter in DCLM-Baseline, as this classifier was trained on data
from all months. Finally, we leverage the fact that DCLM-Pool was randomly partitioned into ten
equally-sized chunks to construct hold-out sets for evaluation. In Fig. 1, we show the number of
tokens yielded for each month of TIC-CC. In total, the dataset spans 2.9T tokens, with individual
months ranging between 10B to 50B tokens.

3 Evaluations

In this section, we will discuss our time-continual evaluations that are designed both with and indepen-
dent of CC data. As our focus is on continual pretraining, we focus on perplexity evaluations without
instruction-tuning (see Appx. C for exact metrics). We introduce three sets of novel evaluations:
TIC-CC (which includes TIC-CC-WIKI and TIC-CC-NEWS), TIC-WIKI, TIC-STACKE.

TIC-CC evaluations. We compute the loss on three monthly subsets of our CC data:
• TIC-CC: Held-out documents coming from the full distribution for each month of TIC-CC.
• TIC-CC-WIKI: Filtered TIC-CC for English Wikipedia pages whose URLs contain either the

domain en.wikipedia.org or simple.wikipedia.org.
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• TIC-CC-NEWS: Pages in TIC-CC from a set of news sites based on WMT competitions [3].

TiC-Wikipedia (TIC-WIKI). We build upon TemporalWiki [20], which generates fact-based
evaluations (based on perplexity of proper nouns) from four consecutive monthly snapshots of
English Wikipedia/Wikidata and split between changed/unchanged knowledge. TIC-WIKI aims
to capture a broader spectrum of knowledge evolution, extending the evaluation timespan to a full
decade (2014–2024) and improving upon the matching of Wikipedia/Wikidata (see Appx. C.4).

TiC-StackExchange (TIC-STACKE). StackExchange has 182 communities that share knowledge by
posting questions and answers. We measure perplexity on high-quality answers from selected sites by
collecting answers that have been accepted by the question author (using the time an accepted answer
appears to bin examples by month). The resulting evaluation contains examples from 2008–2024.
We provide details of TIC-STACKE data processing in Appx. C.5.

4 Continual Learning Methods

The goal for TiC-LM methods is to match the performance of the Oracle which trains on all data (114
months) starting from random initialization for the full token budget. We consider methods from three
categories: optimization-based, data replay, and regularization. Aside from average metrics across all
timesteps, methods should balance forgetting and forward transfer metrics (defined in Sec. 5).

Optimization-based. In non-continual settings, LLMs are often trained with a cosine-decayed
learning rate schedule which requires knowledge of total training steps ahead of time. In a continual
setup, however, the number of total tokens grows over time. We consider the following approaches:
• Cyclic Cosine decay applies a cosine decay schedule within each training period with the same initial

maximum value at the beginning of each round, as in TiC-CLIP and concurrent works [13, 19, 14].
• Cosine decay + AR (autoregressive) is similar to cyclic cosine decay except the maximum learning

rate in each period is regressed from a single-cycle cosine decay [49].
Data replay. Data replay is a classical continual learning strategy to prevent forgetting, whereby in
each training round, the model is fed a mixture of data from both older and the current timesteps. We
consider the following replay strategies based on the best-performing strategies in TiC-CLIP [13]:
• For the current month t, we allocate a ratio αt of the monthly token budget to the current month.
• For previous months, we redistribute the remaining tokens equally, i.e., each seeing 1−αt

t−1 .

In particular, when αt = 1/t, we see an equal number of tokens from all observed months. We also
consider setting αt = 1/2 which always allocates half the token budget to the current month.

Regularization-based. These methods alter the training objective, generally by penalizing larger
deviations from the previous month’s model. Following TiC-CLIP, we try LwF [30] and EWC [26].

5 Experiments

Training details. We train 3B parameter language models using OpenLM. Each method observes a
fixed number of 220B tokens, equivalent to 4x the Chinchilla optimal [17] amount. We assume that
current practitioners are (a) likely to have access to more than enough data to train initial models; (b)
unlikely to wait to obtain non-trivial performance. Hence, we front-load the total token budgets such
that half is allocated to training on the first month, May-2013. Then, the remaining budget is split
equally among the other 113 continual timesteps. Hyperparameter details are in Appx. B.

Evaluation metrics. Each continual run produces a Tt×Te matrix of evaluations E where Tt, Te are
the total number of training/evaluation timesteps, Eij is the performance of the model trained after
training on data up to month i and evaluated on the month j. To control for inherent difficulty gaps
across evaluation months, we measure the regret Rij = Ei,j −E∗

j where E∗
j is the performance of

the Oracle trained on all months on month j. We subtract E∗
j instead of Ejj to avoid the misleadingly

good forward/backward metrics if Ej,j is bad. Following Garg et al. [13], we focus on the following
summary metrics defined below assuming Tt = Te = T (deferring the Tt ̸= Te case to Appx. C):
• In-distribution performance: averages along the matrix diagonal, i.e.,

∑T
i=1 = Rii/T .

• Backward transfer: averages the lower triangular of R, i.e.,
∑T

i=1

∑
j<i

Rij

T (T−1)/2 .
• Forward transfer: averages the upper triangular of R analogously to backward transfer.
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Figure 2: Eval matrices for “Cyclic Cosine” on TIC-CC and TIC-WIKI. For the latter, purple traces
the ID entries. While we train on all 114 months, we subsample evaluations to be roughly annual.

Table 1: Loss-based evaluations. We report results relative to the Oracle. Bold values are within one
standard deviation of the best method, estimated from three runs of Cyclic Cosine.

Method TIC-CC ↓ TIC-CC-WIKI ↓ TIC-CC-NEWS ↓
Backward ID Forward Backward ID Forward Backward ID Forward

Cyclic Cosine (std)
0.072 0.027 0.161 0.038 0.032 0.074 0.058 0.015 0.109
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Cyclic Cosine + AR 0.058 0.040 0.166 0.032 0.031 0.074 0.041 0.017 0.110
Replay (αt = 1/t) 0.023 0.074 0.178 0.020 0.036 0.078 0.005 0.035 0.117
Replay (αt = 1/2) 0.024 0.042 0.167 0.024 0.031 0.074 0.013 0.019 0.111

Replay (αt = 1/t) + AR 0.026 0.083 0.181 0.019 0.037 0.079 0.004 0.039 0.119
Replay (αt = 1/2) + AR 0.025 0.055 0.171 0.022 0.032 0.076 0.009 0.022 0.112

LwF 0.072 0.027 0.161 0.038 0.032 0.074 0.058 0.015 0.109
EWC 0.061 0.032 0.162 0.031 0.029 0.071 0.046 0.014 0.108

Table 2: Selected downstream evaluations. For all dynamic evaluations, we report perplexity values
relative to the Oracle with log-scaling. Bold values are within one standard deviation of the best.

Method TIC-WIKI-Diff ↓ TIC-STACKOVERFLOW ↓ TIC-STACKE-MATH↓
Backward ID Forward Backward ID Forward Backward ID Forward

Cyclic Cosine (std)
0.033 0.052 0.085 0.041 0.078 0.156 0.036 0.023 0.014
(0.000) (0.000) (0.000) (0.002) (0.002) (0.003) (0.001) (0.001) (0.001)

Cyclic Cosine + AR 0.033 0.054 0.087 0.032 0.077 0.159 0.011 0.006 0.003
Replay (αt = 1/t) 0.038 0.063 0.091 0.075 0.121 0.191 -0.009 -0.010 -0.006
Replay (αt = 1/2) 0.032 0.055 0.086 0.055 0.094 0.170 0.010 0.003 0.001

Replay (αt = 1/t) + AR 0.039 0.063 0.092 0.066 0.119 0.193 -0.019 -0.015 -0.008
Replay (αt = 1/2) + AR 0.033 0.057 0.088 0.047 0.096 0.176 -0.006 -0.006 -0.002

LwF 0.033 0.053 0.085 0.037 0.075 0.155 0.034 0.021 0.013
EWC 0.030 0.051 0.083 0.033 0.077 0.162 0.016 0.009 0.006

TIC-CC evaluations. Overall, as seen in Fig. 2 and Tab. 1, a standard cyclic cosine schedule results
in significant forgetting even one year later, more prominently for TIC-CC and TIC-CC-NEWS.
Algorithmic interventions incur various trade-offs between backward transfer and ID performance.
Specifically, AR meta-schedules and EWC somewhat reduce forgetting. However, as shown in the
corresponding heatmaps (Appx. D), these approaches still result in significant forgetting at later
checkpoints. To further reduce forgetting, using replay is required, with αt = 1/2 offering similar
improvements to backward transfer compared to αt = 1/t but with much better ID performance.
Downstream evaluations. Table 2 presents results for TIC-WIKI and TIC-STACKE. On TIC-WIKI,
Cyclic Cosine is best, suggesting that the impact of forgetting older CC dumps is minimal. In contrast,
for TIC-STACKE-MATH, earlier CC dumps (before Feb-2016) appear to be most useful (Appx. D),
leading to improvements from both replay and AR schedules. For TIC-STACKOVERFLOW, there not
only exists a larger distribution shift over time, but seeing less old data improves all summary metrics.

6 Conclusion
We introduce a benchmark for LLM pretraining data spanning more than a decade. TIC-CC consists
of training and evaluation data spanning more than 100 months over 11 years. We also introduce
new TiC evaluations, TIC-WIKI, and TIC-STACKE. Using these assets, we clearly observe models
need to be continually trained to stay up to date but that the ideal update frequency varies per domain,
motivating the need for forgetting prevention. To this end, we compared baseline strategies for
continual pretraining, finding that simple cyclic learning rate schedules and data-replay shrink the
gap to an Oracle that trains on all data. However, completely closing the gap remains an open and
challenging problem to be studied by future work on our benchmark.
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A Constructing TIC-CC

We build upon the existing pipeline and assets from DataComp-LM [28] to build our dataset, only
altering steps that rely on global operations across months. In total, using our processing pipeline can
yield up to 29T tokens. In our experiments, we produce a smaller subset of 2.9T with our training
runs each using 220B. Future work can expand to training at larger scales such as using the full 2.9T
or 29T tokens.

Initial pool and temporal splitting. We start with DCLM-Pool [28] which contains all CC dumps
between May-2013 and December-2022. The only pre-processing that has been done on this pool is to
parse the HTML (contained in WARC files of CC) into plaintext for each webpage via the open-source
resiliparse library [5, 6]. In DCLM-Pool, documents are naturally grouped together into files
based upon the CC dump, which is indicated by the file prefix 2. To split the data by month, we
simply group files that share the same prefix. Since DCLM-Pool contains data up to December-2022,
we also follow their exact download and extraction scripts to obtain more recent data until July-2024.

Data preprocessing and tokenization. Next, we follow DCLM-Baseline’s filtering procedure
which starts with their implementation of heuristic filters from RefinedWeb. We apply these filters
independently on each page with no change. However, we have to modify their deduplication
that removes nearly identical paragraphs/pages given similarity thresholds. Instead of applying
deduplication globally as in DCLM-Baseline, we apply the same deduplication method only within
each month. Finally, we also skip the final classifier-based filtering in DCLM-Baseline, as their
classifier was trained on data that comes from all months, including examples generated by recent
LLMs such as GPT-4.

Data sampling and held-out sets. DCLM-Pool was partitioned randomly into 10 equally sized
“global shards”. For our training scales, using just one of these global shards within each month
is sufficient. Notably though, when we construct evaluation sets such as for our holdout TIC-CC
evaluations, we make sure to sample from a different global shard than the one used for training.
This ensures the evaluation data is a sampled from the same distribution as the training data while
also mostly held out. Notably, because we do not deduplicate across globals shards or months, there
could be overlap between training and eval sets across months. For each validation set, we cap the
maximum number of tokens to 16.7M which corresponds to 8192 sequences for our context length
of 2048. For some months of TIC-CC-WIKI and TIC-CC-NEWS, we end up with less than this
amount, but the smallest are 5M and 12M respectively. Additionally, we plot in Fig. 3 (right) the
percentage of TIC-CC tokens that come from TIC-CC-WIKI and TIC-CC-NEWS (before the 16.7M
token cap is applied). Interestingly, both English Wikipedia and news sites make up a much smaller
fraction of later dumps.
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Figure 3: We plot the total number of tokens per month in TIC-CC (left) as well as the proportion of
those tokens coming from our TIC-CC-WIKI and TIC-CC-NEWS subsets (right).

2In DCLM-Pool, each file always starts with CC-MAIN-YYYYMMwhere YYYYMM indicates the dump month.
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B Hyperparameter tuning

In general we follow the configurations used in DataComp-LM [28] unless further specified. For our
Oracle and initialization trained on May-2013, we exactly follow their hyperparameters given that
these were also standard pre-training runs from scratch.

For our various continual methods, we do perform additional hyperparameter tuning using the first
10 TiC-CC training and held-out validation set. We limit the tuning to an early set of months given
that it would be impossible for a practitioner to be able to tune based upon data they have not seen far
in the future. We discuss the tuning for specific methods in more detail below.

Cyclic Cosine. We mainly tuned the maximum learning rate in each cycle, trying values between
1e-3 and 5e-5. Overall we find that 1e-4 worked best, which held up even when we ran all of these
configurations to completion. For the runs involving AR meta-schedules, we find that the initial
maximum learning rate mattered less given that it gets decayed in later rounds.

LwF. Following the original paper [30], we used a temperature parameter of T = 2. We mainly tuned
the regularization weight λ trying values between 0.1 and 1.0 and settling upon 0.3.

EWC. We fixed the number of iterations used to estimate the Fisher matrix to 100 and similar to
LwF, we focused on tuning the weight given to the EWC regularization term. Overall, we found
that fairly high values were needed to overcome the small values in the approximate Fisher matrix
(coming from small second order moment terms). We found that λ = 107 performed best when
tuning between 101 and 109.

C Details of Evaluations

C.1 Comparison with existing benchmarks

Table 3 below summarizes our proposed datasets compared with the most related time-continual
benchmarks. With 2.9T tokens and evaluations across several domains, TIC-CC is the largest and
most diverse continual learning benchmark for language model pretraining.

Table 3: Comparison with continual learning benchmarks for LLMs. CLS: classification, SUM:
Summarization KB: Knowledge Base, QA: Question-Answering, LM: Language Modeling. Acc.:
Accuracy, Ppl.: Perplexity, Tok.: Tokens, Art.: Articles.

Benchmark Domain Task Metric CL Train Time-CL Years Timesteps # CL Train # Eval Samples

Gururangan et al. [16] Science,News,Reviews CLS micro/macro-F1 ✓ ✗-Task CL — — 0.3M 140k
Luu et al. [35] Tweet,Science,News,Reviews CLS/SUM F1/Rouge-L ✓ ✓ 2013–2022 4–7 695k 695k
Chrono. Tweet[2022] Science,Tweet CLS micro/macro-F1 ✓ ✓ 2014–2020 4 25M 4M
TempEL [2022] Wikipedia KB EL Acc. ✓ ✓ 2013–2022 10 — 92k
TemporalWiki [2022] Wikipedia KB Noun Ppl. ✗ ✓ 2021 4 23B Tok. 36k
StreamingQA [2022] News QA Acc. ✓ ✓ 2007–2020 12 99k Art. 46k
EvolvingQA [2024] Wikipedia QA EM/F1 ✓ ✓ 2007–2020 6 — 46k
TIQ [2024] Wikipedia QA Precision/Rank ✓ ✓ 1801–2025 — 6k QA 4k
TAQA [2024] Wikipedia QA F1 ✓ ✓ 2000–2023 — 9k QA 11k

TIC-CC (All/Wiki/News) Generic Web LM Ppl. ✓ ✓ 2013–2024 114 2.9T Tok. 2.7M
TIC-WIKI Wikipedia KB Noun Ppl. ✗ ✓ 2014–2024 62 — 10M
TIC-STACKE Code,Math,English,. . . KB / QA Ppl. ✗ ✓ 2008–2024 187 — 3.65M

C.2 Perplexity based metrics

We employ three distinct perplexity metrics for different evaluations:

ppltoken = exp

(∑
d∈D

∑
t∈Td
− logP (t|c<t)∑

d∈D |Td|

)
, (1)

where D is a set of documents, Td is the set of tokens in document d, and c<t is the context prior to
token t.

pplanswer =
1

|Q|
∑
q∈Q

exp (− logP (aq|cq)) , (2)

where Q is a set of question-answer pairs, aq is the gold answer for question q, and cq is the context.

pplnoun = exp

(∑
d∈D

∑
n∈Nd

− logP (n|c<n)∑
d∈D |Nd|

)
, (3)
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where D is the set of documents in a snapshot, Nd is the set of proper noun tokens (tagged as NNP or
NNPS by a POS tagger) in document d, and c<n is the context prior to noun n.

Our proposed evaluations then map to these metrics as follows:

• TIC-CC uses ppltoken

• TIC-WIKI uses pplnoun

• TIC-STACKE uses pplanswer

where we report results after further log-scaling (unless otherwise indicated).

C.3 Summary metrics for misaligned training and and evaluation periods

As discussed in Sec. 5, when there are an equal number of training and evaluation timesteps (Tt = Te)
that are also aligned (as in the case of TIC-CC), our three summary metrics are simple to define.

• In-distribution (ID) performance: averages along the matrix diagonal, i.e.,
∑T

i=1 = Ri,i/T .

• Backward transfer: averages the lower triangular of R, i.e.,
∑T

i=1

∑
j<i

Ri,j

T (T−1)/2 .
• Forward transfer: averages the upper triangular of R analogously to backward transfer.

For some downstream evaluations, the train/evaluation periods do not exactly align (Tt ̸= Te), making
the definition of ID more nuanced. For such evaluations, we define ai as the index of the nearest
evaluation timestep that comes before the training timestep i. We then count Ri,ai

towards the ID
average only if no other training timestep is closer to ai (i.e., ai ̸= ai−1). Otherwise, we count Ri,j

towards backward and forward transfer when j < ai and j ≥ ai respectively.

C.4 TIC-WIKI

We construct TIC-WIKI from Wikipedia and Wikidata which are sister projects from the non-profit
Wikimedia Foundation. Wikidata is a structured knowledge graph that stores the structured data of
Wikipedia and other sister projects. Data on Wikidata is represented in the form of statements in
the form of property-value about an item in the simplest form. For example, “Mount Everest is the
highest mountain in the world” is represented as Earth (Q2) (item)→ highest point (P610) (property)
→ Mount Everest (Q513) (value) 3. The triplet (item, property, value) can also be referred to as
(subject, relation, object).

TemporalWiki dataset generation. TemporalWiki constructs evaluations from monthly snapshots
of English Wikipedia and Wikidata through the following steps:

1. Generate TWiki-Diffsets by identifying changes and additions between consecutive snap-
shots of Wikipedia. For new articles, the entire article is added to the Diffset while for
existing articles, only the changed or new paragraphs are added.

2. Construct TWiki-Probes by processing two consecutive snapshots of Wikidata. Statements
are categorized into changed if the property/value has changed or categorized into unchanged
otherwise.

3. Align TWiki-Diffsets with Wikidata by ensuring changed statements exist in TWiki-Diffsets
and unchanged statements exist in Wikipedia.

4. Heuristic filtering by removing statements where the subject or object is a substring of the
other or the object is more than 5 words. Moreover, a single subject is limited to maximum
1% and relation/object is limited to maximum 5% of the total statements.

TIC-WIKI extends TemporalWiki in various ways:

1. Expanding the timespan from four months to a decade (2014-2024), thus capturing a broader
spectrum of knowledge evolution.

2. We improve the matching process of Wikipedia and Wikidata dumps, and enhance the
robustness of data parser to format changes over time.

3https://www.wikidata.org/wiki/Help:About_data
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C.4.1 Data preprocessing

Wikidata and Wikipedia dumps. Wikimedia releases regular dumps 4,5, but only retains data for
the most recent 4 months. To access historical data, we utilized the Internet Archive 6. The earliest
available dump dates back to November 2014. It is important to note that the archived dumps do not
cover every month, with several months missing from the record. In our study, we made use of all
available monthly dumps. The filenames of the dumps include the specific date of month that has
been collected on, which is typically the 1st or 20th of the month, though this can vary. We include
only one dump per month if multiple dumps are available. We check for the first date if not available
look for 20th and if neither we start from begining the monthh and check for the first availble date in
that month.

Data cleanup. We utilize WikiExtractor 7 to clean up the Wikipedia data. This step extracts the main
content and removes extraneous and non-essential characters.

Wikipedia diffsets. To construct consecutive diffs of Wikipedia, we developed a method comparing
snapshots of articles from consecutive dumps. For comparing two snapshots of an article, we first
remove extraneous whitespace and standardize formatting by preprocessing the text. This involves
removing empty lines, stripping newline characters, and creating a normalized version of each line
where punctuation is removed and text is converted to lowercase.

Afterward, we use a two-level comparison: first at the paragraph level, then at the sentence level for
changed paragraphs. We utilize Python’s difflib.SequenceMatcher to compare the normal-
ized versions of paragraphs and sentences. This hierarchical method, coupled with normalization,
captures substantial edits while filtering out minor or stylistic changes.

We extract and store both changed and unchanged content separately. Changed content includes
replaced paragraphs with modified sentences and newly inserted paragraphs. Unchanged content
preserves paragraphs and sentences that remain identical between versions. New articles are treated
as entirely changed content. This approach allows us to focus on meaningful content changes while
maintaining the context of unchanged information, providing a comprehensive view of how Wikipedia
articles evolve over time. Algorithms 1 and 2 describe the process of constructing Wikipedia diffs
and changed/unchanged content.

Wikidata diffsets. Next, we extract changed and unchanged Wikidata statements of the form
(subject, relation, object) from each consecutive dump. Identical triplets in both dumps are marked
as unchanged. Triplets in the new dump not present in the old are categorized as new, with the
exception that if a subject entity has more than 10 triplets, the algorithm randomly samples 10 to
represent it. When a triplet has the same subject and relation as one in the old dump but a different
object and the old and new objects differ only in case (upper/lowercase), the triplet is classified as
unchanged; otherwise, it is categorized as new. Triplets from the old dump not found in the new
one are implicitly considered removed, but importantly, these are not included in the output sets of
changed or unchanged triplets. Throughout this process, the algorithm filters out triplets with overly
long object values (more than 5 words) and ensures no duplicates are added. This approach efficiently
tracks Wikidata evolution, capturing nuanced changes while managing the volume of data for new
entities. Algorithm 3 describes the process of triplet extraction.

Wikipedia historical dumps. It is possible to reconstruct each version of Wikiepdia using the large
history files Wikipeida provide 8. There are more than 200 historical dumps of English Wikipedia,
each sized more than 2GB. Combined together, these files include all revisions and all pages of
Wikipeida.

For Wikidata, Wikimedia does not provide historical diff files as Wikipedia ex-
cept for the last four months 9. Wikidata file names are formatted similar to

4https://dumps.wikimedia.org/wikidatawiki/
5https://dumps.wikimedia.org/enwiki/
6https://archive.org
7https://github.com/attardi/wikiextractor
8https://dumps.wikimedia.org/enwiki/latest/ file names containing

pages-meta-history.
9https://dumps.wikimedia.org/wikidatawiki/
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wikidatawiki-20190101-pages-articles.xml.bz2 and available at URLs simi-
lar to https://dumps.wikimedia.org/wikidatawiki/20240401/.

Each Wikidata dump is approximately 140GB whereas each Wikipeida dump is less than 22GB.
Therefore, it is possible to make a version of Wikipedia that keeps track of all changes which results
in 200 files of 2GB. But as far as we know there are no such files for Wikidata.

Using the dumps from archive.org has several advantages:

• We are sure that we do not leak information from previous timesteps.
• There exists a Wikidata dump close to each Wikipedia dump to be aligned.
• We can use Wiki-Extractor for filtering and remove Wikipeida editorial discussions.

To illustrate the characteristics of our generated dataset, we present key statistics in the following
figures. Figure 4 shows the number of Wikipedia pages with significant changes between consecutive
database dumps over time. This graph provides insight into the volume and temporal distribution of
our data generation process, highlighting periods of higher and lower content modification as well as
distribution of our dumps.

Algorithm 1 Construct Wikipedia Consecutive Diffs

1: Input: oldSnapshot, newSnapshot
2: Output: changedContent, unchangedContent
3: oldArticles← ReadArticles(oldSnapshot)
4: newArticles← ReadArticles(newSnapshot)
5: changedContent← ∅, unchangedContent← ∅
6: for each articleId in newArticles.keys do
7: if articleId in oldArticles then
8: oldText← NormalizeText(oldArticles[articleId].text)
9: newText← NormalizeText(newArticles[articleId].text)

10: changed← ExtractChangedContent(oldText, newText)
11: unchanged← ExtractUnchangedContent(oldText, newText)
12: Add (articleId, changed) to changedContent
13: Add (articleId, unchanged) to unchangedContent
14: else
15: Add (articleId, newArticles[articleId].text) to changedContent
16: return changedContent, unchangedContent

Algorithm 2 Extract Changed Content

1: Input: oldText, newText
2: Output: changedContent
3: oldParagraphs← SplitIntoParagraphs(oldText)
4: newParagraphs← SplitIntoParagraphs(newText)
5: changedContent← ∅
6: for each (oldPara, newPara) in Zip(oldParagraphs, newParagraphs) do
7: if IsDifferent(oldPara, newPara) then
8: oldSentences← SplitIntoSentences(oldPara)
9: newSentences← SplitIntoSentences(newPara)

10: for each (oldSent, newSent) in Zip(oldSentences, newSentences) do
11: if IsDifferent(oldSent, newSent) then
12: Add newSent to changedContent
13: return changedContent

C.5 TIC-STACKE

C.5.1 Data preprocessing

TIC-STACKE spans data from July 2008 through April 2024. The data was sourced from archive.
org using the April 2024 dump of StackExchangeEach category in the dump comes with two key
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Algorithm 3 Wikidata Triplet Extraction and Categorization

Require: oldDump, newDump
Ensure: unchanged, new

unchanged← {}
new← {}
newEntities← {}
for all triplet ∈ newDump do

if triplet ∈ oldDump then
Add triplet to unchanged

else if hasSameSubjectPredicate(triplet, oldDump) then
oldObject← getObject(triplet.subject, triplet.predicate, oldDump)
if equalsIgnoreCase(triplet.object, oldObject) then

Add triplet to unchanged
else

Add triplet to new
else

if triplet.subject /∈ oldDump then
Add triplet to newEntities[triplet.subject]

else
Add triplet to new

sampleNewEntityTriplets(newEntities, new)
filterLongObjects(unchanged, new)
removeDuplicates(unchanged, new)
return unchanged, new
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Figure 4: Number of Wikipedia pages with significant Changes between consecutive archive.org
dumps.
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files: Post.xml and PostHistory.xml. Post.xml contains information on how answers and
questions relate to each other and includes the latest text for each post entry. PostHistory.xml
records the changes to each post, whether it is a question or an answer.

To construct our dataset, we first build the graph of question-answer relationships based on the
Post.xml. We then use PostHistory.xml to reconstruct exact snapshots of posts at specific
timestamps. This allowed us to capture the state of each post at the end of each month, ensuring our
data reflected the actual content available at those points in time.

We construct binary classification tasks from StackExchange content. For each question, we extract
two responses: the solution accepted by the original author and an alternative option. Our goal is to
create clear distinctions in answer quality, so we implement rigorous selection criteria. Specifically,
we requir the accepted solution to have received at least four times the number of upvotes as the
alternative. For the alternative, we choose the response with the lowest upvote count that was posted
before the accepted answer. This strict filtering, while effective in creating distinct quality differentials,
significantly reduced our sample size across most categories. To maintain robust evaluation metrics
while preserving data volume, we introduce an additional metric: the average perplexity of accepted
answers, calculated without applying the strict upvote ratio filter. This approach allows us to include
more samples in our analysis while still capturing meaningful performance trends

We applied this process consistently across all categories of StackExchange, allowing for comprehen-
sive evaluation. In total, we processed 174 out of 182 categories in stackexchange data, of which we
focus on stackoverflow in this work as well as a group of seven categories: apple, codereview,
electronics, english, gaming, math, and worldbuilding. Some categories had insufficient questions
in a single month to provide statistically significant results. In such cases, we combined data from
consecutive months, ensuring that each time frame contains at least 500 questions.

The full set of sites includes:

3dprinting, academia, ai, android, anime, apple, arduino, astronomy, aviation, avp, beer, bicycles,
bioacoustics, bioinformatics, biology, bitcoin, blender, boardgames, bricks, buddhism, cardano,
chemistry, chess, chinese, christianity, civicrm, codegolf, codereview, coffee, cogsci, computer-
graphics, conlang, cooking, craftcms, crafts, crypto, cs, cseducators, cstheory, datascience, dba,
devops, diy, drones, drupal, dsp, earthscience, ebooks, economics, electronics, elementaryos, ell,
emacs, engineering, english, eosio, esperanto, ethereum, expatriates, expressionengine, fitness, free-
lancing, french, gamedev, gaming, gardening, genai, genealogy, german, gis, graphicdesign, ham,
hardwarerecs, health, hermeneutics, hinduism, history, homebrew, hsm, interpersonal, iot, iota, islam,
italian, japanese, joomla, judaism, korean, langdev, languagelearning, latin, law, lifehacks, linguistics,
literature, magento, martialarts, materials, math, matheducators, mathematica, mechanics, meta,
moderators, monero, money, movies, music, musicfans, mythology, networkengineering, opendata,
opensource, or, outdoors, parenting, patents, pets, philosophy, photo, physics, pm, poker, politics,
portuguese, proofassistants, puzzling, quant, quantumcomputing, raspberrypi, retrocomputing, re-
verseengineering, robotics, rpg, rus, russian, salesforce, scicomp, scifi, security, sharepoint, sitecore,
skeptics, softwareengineering, softwarerecs, solana, sound, space, spanish, sports, sqa, stackoverflow,
stats, stellar, substrate, sustainability, tex, tezos, tor, travel, tridion, ukrainian, unix, ux, vegetarianism,
vi, webapps, webmasters, windowsphone, woodworking, wordpress, workplace, worldbuilding, and
writers.

C.5.2 Analysis of StackExchange Data

This section presents an analysis of question-answer patterns across the top 20 categories of StackEx-
change, with a focus on StackOverflow, Mathematics, and English Language & Usage.

Overall category distribution. Figure 5 shows the distribution of questions across the top 20
StackExchange categories.

Temporal trends in question volume. Figure 6 show the number of questions asked per month for
Stack Overflow, Mathematics, and English Language & Usage.

Question characteristics. Figure 7 illustrates the distribution of question lengths for StackOverflow,
Mathematics, and English Language & Usage.

Answer patterns. Figure 8 presents the distribution of answer counts per question for StackOverflow,
Mathematics, and English Language & Usage.
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Figure 6: Number of questions per month in StackOverflow, Mathematics and English Language &
Usage.
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Figure 7: Character Count Distribution in StackOverflow, Mathematics and English Language &
Usage Questions.
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D Extended Results

D.1 TiC-CommonCrawl (TIC-CC) Validation sets
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Figure 9: Evaluation matrix heatmaps for selected methods on our TIC-CC evaluations.
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D.2 TiC-Wikipedia (TIC-WIKI)
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Figure 10: Evaluation matrix heatmaps for various methods on TIC-WIKI.
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D.3 TiC-Stackexchange (TIC-STACKE)
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Figure 11: Evaluation matrix heatmaps for various methods on the Math site of TIC-STACKE.
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Figure 12: Heatmaps for various methods on the StackOverflow site of TIC-STACKE.
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Table 4: Average over an extended set of TIC-STACKE evaluations that we refer to as TIC-STACKE-
CAT7. This includes the following sites: apple, codereview, electronics, english, gaming, math, and
worldbuilding. Overall, we find that a combination of replay and AR meta-schedules does the most
to reduce forgetting while EWC performs best on ID and Forward evaluations.

Method TIC-STACKE-CAT7↓
Backward ID Forward

Cyclic Cosine (std)
0.045 0.050 0.071
(0.001) (0.001) (0.000)

Cyclic Cosine + AR 0.035 0.044 0.068
Replay (αt = 1/t) 0.036 0.052 0.072
Replay (αt = 1/2) 0.038 0.049 0.070

Replay (αt = 1/t) + AR 0.031 0.050 0.072
Replay (αt = 1/2) + AR 0.032 0.046 0.071

LwF 0.044 0.048 0.070
EWC 0.035 0.043 0.067

E Extended Related Work

Temporal knowledge evaluations. Language models are expected to have an understanding of time
to answer questions about specific time periods and generally reason about time. Various benchmarks
have been proposed to evaluate temporal knowledge of LLMs. TemporalWiki [20] evaluates the
capability of models to update factual knowledge. TemporalWiki is constructed from the difference
between four consecutive snapshots of Wikipedia and Wikidata. Our TIC-WIKI evaluation expands
and improves on TemporalWiki in various ways (see Appx. C.4). StreamingQA [31] consists of
human written and generated questions from 14 years of news articles. The evaluation is either open-
book where a model receives a collection of news articles that contain the answer, or closed-book
where the model is first fine-tuned on the training set containing the documents and then tested.
We evaluate our TiC checkpoints on StreamingQA both in open/closed-book setups and find that
there is high ambiguity in the questions that evaluates reasoning more than temporal knowledge
understanding. TempEL [56] evaluates entity linking performance across 10 yearly snapshots of
Wikipedia. Entity linking is the task of mapping anchor mentions to target entities that describe
them in a knowledge base. In comparison, our TIC-WIKI evaluates general language and knowledge
understanding. TempLAMA [9] constructs an evaluation for factual queries from Wikidata. They
focus on temporally sensitive knowledge with known start and end dates in a specific Wikidata
snapshot. Notably, they propose TempoT5 to jointly model text and timestamp which allows a
language model to answer temporal questions that change over time such “Who is the president”.
EvolvingQA [25] is also a benchmark for training and evaluating on Wikipedia over time where a
LLM automatically generates question-answers from 6 months of articles in 2023. We avoid using
any LLMs for generating our evaluations to prevent transfer of bias. TIQ [22] benchmark consists of
10k questions-answers based on significant events for the years 1801–2025.

Temporal generalization. Beyond understanding the past, LLMs need to be prepared for the future.
Li et al. [29] observes performance deterioration of public LLMs on Wikipedia, news, code, and
arXiv papers after their training data cutoff date. They particularly use compression rate achieved
by treating an LLM as a general input compressor using arithmetic coding [8]. Our comprehensive
evaluations on CommonCrawl, Wikipedia, news articles, StackExchange, and code evaluations
verifies their results and more comprehensively shows that the rate of deterioration is domain-specific.
DyKnow [41] evaluations also reaffirm that LLMs private and open-source LLMs have outdated
knowledge by asking them questions constructed using Wikidata. They also observe LLMs output
inconsistent answers in response to prompt variations and current knowledge editing methods do not
reduce outdatedness. TAQA [57] further demonstrate that pretrained LLMs mostly answer questions
using knowledge from years before their pretraining cutoff. They construct question/answers from
Wikipedia for years 2000–2023 and propose three methods to improve the temporal alignment of
models. Similar observations have been made in RealTimeQA [24] and TempUN [4]. These works
further solidify the need for continuously updating models with continual pretraining.

Temporal understanding. General temporal understanding involves reasoning based on the relation
between existing knowledge. Test of Time [12] benchmark evaluates temporal reasoning, logic,
and arithmetics by constructing a synthetic dataset. Their goal is to reduce the chance of factual
inconsistency in the evaluation using synthetic data. Our benchmark is designed to be fully realistic
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based on real data and timestamps to understand the challenges of large-scale continual pretraining
in practice. Gurnee and Tegmark [15] find that LLMs learn a representation of space and time
with individual neurons that encode spatial and temporal coordinates. They construct datasets of
named entities and find that linear probing LLMs performs well on predicting spatial and temporal
coordinates. Nylund et al. [42] proposed time vectors that specify a direction in the model’s weight
space that improve performance on text from a specific time period.

Temporal domain-specific evaluations. We can further analyze the temporal understanding of
a model based on the performance on specific domains with varying rates of change. Luu et al.
[35] studied temporal misalignment such as quantifying temporal degradation of domain-specific
finetuning in four domains: social media, science, news, and food reviews. They observed significant
temporal degradation in domains such as news, social media, and science but less in food reviews.
Gururangan et al. [16] studied domain-adaptive pretraining and task-adaptive pretraining on unlabeled
data for four domains in science, news, and reviews. They observe domain/task-adaptive pretraining
improves performance on the new domain but do not evaluate forgetting on previous domains.
Agarwal and Nenkova [1] studies the temporal model deterioration on future evaluations. They find
that the deterioration is task-dependent and domain-adaptive pretraining does not help hypothesizing
that limited pretraining data is detrimental in continual pretraining. Jin et al. [23] domain-incremental
pretraining for four scientific domains as well as temporal pretraining on social media over 6 years.
They focus on the impact on downstream performance after fine-tuning. They observe distillation-
based approaches are the most effective in retaining dowstream performance for tasks related to
earlier domains. Overall, the gap between different continual learning methods remained small that
can be due to the small scale of pretraining. In comparison, our TIC-CC training is simulating
large-scale pretraining.

Domain/task-continual learning for LLMs. In domain/task continual learning, the model is
presented with a sequence of tasks with predefined labels [18, 52, 59]. Each task comes with
its training and test sets. In contrast with continual pretraining, the model needs to support a
growing set of labels while compared with temporal continual learning, the order of tasks are often
arbitrary (e.g., Split-CIFAR, Perm-MNIST). Prominent methods in this domain are regularization-
based methods [26, 37, 38, 11], replay-based methods that often perform superior [32, 2, 45], and
architecture-based methods that adapt the model over time [51, 50]. Continual learning for language
models has also been dominated by domain/task continual works. Jin et al. [23] proposed benchmarks
for continually training models on a sequence of research paper domains as well as chronologically-
ordered tweet streams. Razdaibiedina et al. [47] proposed learning a new soft prompt for each task
and pass soft prompts for all seen tasks to the model which provides adaptability while preventing
catastrophic forgetting. Luo et al. [34] studied continual learning for instruction tuning and observed
catastrophic forgetting, especially for larger models. Mehta et al. [36] showed that generic pretraining
implicitly reduces catastrophic forgetting during task incremental finetuning.

Continual pretraining of LLMs. Recent work have studied continual pretraining of foundation
models at large-scale. TiC-CLIP [13] proposed a benchmark of training and evaluation of image-text
foundation models and demonstrated the deterioration of existing foundation models on new data.
Lazaridou et al. [27] studied time-stratified language pretraining on WMT, news, and arXiv up to 2019
and observed the models become outdated quickly on news data that holds even for models of various
sizes. They study dynamic evaluation as a continual pretraining method that trains on a stream of
chronologically ordered documents and observed that models can be updated. However, they did not
explore the impact on forgetting and scalability of the method to more generic pretraining data over
years. Jang et al. [21] proposed continual knowledge learning as a new problem and suggested that
parameter expansion is necessary to retain and learn knowledge. They focus on one-step continual
pretraining where models are pretrained on C4/Wikipedia data up to 2020 and then trained once more
on recent news articles. They find adapter methods perform better than regularization and replay
methods. Adapter methods are not directly applicable in our multi-year continual pretraining setup
where we train in more than 100 steps on large-scale data. Gupta et al. [14] proposed simple recipes
for continual pretraining of LLMs such as utilizing cyclical learning rate schedules with warmup and
ablated on hyperparameters such as warmup duration when continuing the pretraining on a fixed pair
of pretraining datasets.

Time-aware training. Orthogonal to continual pretraining, one can modify the training or fine-tuning
of a model to include explicit information about time. TempLAMA [9] proposed prepending a
time prefix to each example during training which gives the model the flexibility to respond to
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time-sensitive questions. They train models on news articles where the time can be reliably extracted.
Drinkall et al. [10] proposed training a series of models with sequential data cutoffs dates to avoid
data contamination with benchmark and private data. The observe no difference across time on static
downstream evaluations when training models on news and Wikipedia

Factual editing and retrieval augmented generation (RAG). Another set of works aims to address
the staleness of pretrained LLMs without further standard pretraining. One approach is to surgically
edit the facts a model “knows” by identifying and updating the relevant weights within a model [39].
Another is to store edits in an explicit memory and learn to reason over them [40]. Retrieval
augmented generation (RAG) pairs an LLM with new data sources to retrieve the most relevant
document for a query. Generally, continual pretraining and RAG are orthogonal approaches to
generate up to date responses. RAG methods increase the cost at inference time without changing the
model while continual pretraining is the opposite. FreshLLMs [53] proposes a QA benchmark and
argues that fast-changing knowledge requires a retrieval-based solution compared with slow-changing
knowledge. Continual pretraining can be crucial in reducing the cost of RAG by utilizing retrieval
only on knowledge that changes faster than the rate of continual pretraining.

F Future Work

Tokenizer. As the data changes over the years, new words appear in the language that would benefit
from temporal adaptation of the tokenizer [58]. In this work, we fixed the tokenizer and did not
change it across models. One important challenge that changing the tokenizer introduces is that the
perplexity of models with different vocabularies will not be directly comparable. Future work would
need to either focus on non-perplexity evaluations [8] or normalize perplexity by a mapping between
vocabularies of a checkpoint to the reference oracle model.

Joint training of text and timestamp. TIC-CC training data has monthly timestamp corresponding
to the crawl time that could be passed as context to the LLM during training and evaluation. Tem-
poT5 [9] and TempoBERT [48] explored temporal language modeling for example by prefixing the
input with “Year: ” which helps resolve ambiguity in knowledge that has time-dependent answers
such as “Who is the president”.
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