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ABSTRACT

In Distributed optimization and Learning, and even more in the modern framework
of federated learning, communication, which is slow and costly, is critical. We
introduce LoCoDL, a communication-efficient algorithm that leverages the two
popular and effective techniques of Local training, which reduces the communi-
cation frequency, and Compression, in which short bitstreams are sent instead of
full-dimensional vectors of floats. LoCoDL works with a large class of unbiased
compressors that includes widely-used sparsification and quantization methods.
LoCoDL provably benefits from local training and compression and enjoys a doubly-
accelerated communication complexity, with respect to the condition number of
the functions and the model dimension, in the general heterogenous regime with
strongly convex functions. This is confirmed in practice, with LoCoDL outperform-
ing existing algorithms.

1 INTRODUCTION

Performing distributed computations is now pervasive in all areas of science. Notably, Federated
Learning (FL) consists in training machine learning models in a distributed and collaborative way
(Konečný et al., 2016a;b; McMahan et al., 2017; Bonawitz et al., 2017). The key idea in this rapidly
growing field is to exploit the wealth of information stored on distant devices, such as mobile phones
or hospital workstations. The many challenges to face in FL include data privacy and robustness
to adversarial attacks, but communication-efficiency is likely to be the most critical (Kairouz et al.,
2021; Li et al., 2020a; Wang et al., 2021). Indeed, in contrast to the centralized setting in a datacenter,
in FL the clients perform parallel computations but also communicate back and forth with a distant
orchestrating server. Communication typically takes place over the internet or cell phone network,
and can be slow, costly, and unreliable. It is the main bottleneck that currently prevents large-scale
deployment of FL in mass-market applications.

Two strategies to reduce the communication burden have been popularized by the pressing needs
of FL: 1) Local Training (LT), which consists in reducing the communication frequency. That is,
instead of communicating the output of every computation step involving a (stochastic) gradient call,
several such steps are performed between successive communication rounds. 2) Communication
Compression (CC), in which compressed information is sent instead of full-dimensional vectors.
We review the literature of LT and CC in Section 1.2.

We propose a new randomized algorithm named LoCoDL, which features LT and unbiased CC
for communication-efficient FL and distributed optimization. It is variance-reduced (Hanzely &
Richtárik, 2019; Gorbunov et al., 2020a; Gower et al., 2020), so that it converges to an exact solution.
It provably benefits from the two mechanisms of LT and CC: the communication complexity is doubly
accelerated, with a better dependency on the condition number of the functions and on the dimension
of the model.
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1.1 PROBLEM AND MOTIVATION

We study distributed optimization problems of the form

min
x∈Rd

1

n

n∑
i=1

fi(x) + g(x), (1)

where d ≥ 1 is the model dimension and the functions fi : Rd → R and g : Rd → R are
smooth. We consider the server-client model in which n ≥ 1 clients do computations in parallel and
communicate back and forth with a server. The private function fi is owned by and stored on client
i ∈ [n] := {1, . . . , n}. Problem (1) models empirical risk minimization, of utmost importance in
machine learning (Sra et al., 2011; Shalev-Shwartz & Ben-David, 2014). More generally, minimizing
a sum of functions appears in virtually all areas of science and engineering. Our goal is to solve
Problem (1) in a communication-efficient way, in the general heterogeneous setting in which the
functions fi, as well as g, can be arbitrarily different: we do not make any assumption on their
similarity whatsoever.

We consider in this work the strongly convex setting. That is, the following holds:
Assumption 1.1 (strongly convex functions). The functions fi and g are all L-smooth and µ-strongly
convex, for some 0 < µ ≤ L.1 Then we denote by x⋆ the solution of the strongly convex problem
(1), which exists and is unique. We define the condition number κ := L

µ .

Problem (1) can be viewed as the minimization of the average of the n functions (fi + g), which can
be performed using calls to ∇(fi+g) = ∇fi+∇g. We do not use this straightforward interpretation.
Instead, let us illustrate the interest of having the additional function g in (1), using 4 different
viewpoints. We stress that we can handle the case g = 0, as discussed in Section 3.1.

• Viewpoint 1: regularization. The function g can be a regularizer. For instance, if the functions fi
are convex, adding g = µ

2 ∥ · ∥
2 for a small µ > 0 makes the problem µ-strongly convex.

• Viewpoint 2: shared dataset. The function g can model the cost of a common dataset, or a piece
thereof, that is known to all clients.

• Viewpoint 3: server-aided training. The function g can model the cost of a core dataset, known
only to the server, which makes calls to ∇g. This setting has been investigated in several works, with
the idea that using a small auxiliary dataset representative of the global data distribution, the server
can correct for the deviation induced by partial participation (Zhao et al., 2018; Yang et al., 2021;
2024). We do not focus on this setting, because we deal with the general heterogeneous setting in
which g and the fi are not meant to be similar in any sense, and in our work g is handled by the
clients, not by the server.

• Viewpoint 4: a new mathematical and algorithmic principle. This is the idea that led to the
construction of LoCoDL, and we detail it in Section 2.1.

In LoCoDL, the clients make all gradient calls; that is, Client i makes calls to ∇fi and ∇g.

1.2 STATE OF THE ART

We review the latest developments on communication-efficient algorithms for distributed learning,
making use of LT, CC, or both. Before that, we note that we should distinguish uplink, or clients-to-
server, from downlink, or server-to-clients, communication. Uplink is usually slower than downlink
communication, since the clients uploading different messages in parallel to the server is slower
than the clients downloading the same message in parallel from the server. This can be due to
cache memory and aggregation speed constraints of the server, as well as asymmetry of the service
provider’s systems or protocols used on the internet or cell phone network. In this work, we focus
on the uplink communication complexity, which is often the bottleneck in practice. Indeed,
the goal is to exploit parallelism to obtain better performance when n increases. Precisely, with
LoCoDL, the uplink communication complexity decreases from O

(
d
√
κ log ϵ−1

)
when n is small to

1A differentiable function f : Rd → R is said to be L-smooth if ∇f is L-Lipschitz continuous; that is, for
every x ∈ Rd and y ∈ Rd, ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ (the norm is the Euclidean norm throughout the
paper). f is said to be µ-strongly convex if f − µ

2
∥ · ∥2 is convex.
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O
(√

d
√
κ log ϵ−1

)
when n is large, where the condition number κ is defined in Assumption 1.1, see

Corollary 3.2. Many works have considered bidirectional compression, which consists in compressing
the messages sent both ways (Gorbunov et al., 2020b; Philippenko & Dieuleveut, 2020; Liu et al.,
2020; Philippenko & Dieuleveut, 2021; Condat & Richtárik, 2022; Gruntkowska et al., 2023; Tyurin
& Richtárik, 2023b) but to the best of our knowledge, this has no impact on the downlink complexity,
which cannot be reduced further than O

(
d
√
κ log ϵ−1

)
, just because there is no parallelism to exploit

in this direction. Thus, we focus our analysis on theoretical and algorithmic techniques to reduce the
uplink communication complexity, which we call communication complexity in short, and we ignore
downlink communication.

Communication Compression (CC) consists in applying some lossy scheme that compresses vectors
into messages of small bit size, which are communicated. For instance, the well-known rand-k
compressor selects k coordinates of the vector uniformly at random, for some k ∈ [d] := {1, . . . , d}.
k can be as small as 1, in which case the compression factor is d, which can be huge. Some
compressors, such as rand-k, are unbiased, whereas others are biased; we refer to Beznosikov et al.
(2020); Albasyoni et al. (2020); Horváth et al. (2022); Condat et al. (2022b) for several examples and
a discussion of their properties. The introduction of DIANA by Mishchenko et al. (2019) was a major
milestone, as this algorithm converges linearly with the large class of unbiased compressors defined
in Section 1.3 and also considered in LoCoDL. The communication complexity O

(
dκ log ϵ−1

)
of

the basic Gradient Descent (GD) algorithm is reduced with DIANA to O
(
(κ+ d) log ϵ−1

)
when n

is large, see Table 2. DIANA was later extended in several ways (Horváth et al., 2022; Gorbunov
et al., 2020a; Condat & Richtárik, 2022). An accelerated version of DIANA called ADIANA based
on Nesterov Accelerated GD has been proposed (Li et al., 2020b) and further analyzed in He et al.
(2023); it has the state-of-the-art theoretical complexity.

Algorithms converging linearly with biased compressors have also been proposed, such as EF21
(Richtárik et al., 2021; Fatkhullin et al., 2021; Condat et al., 2022b), but the acceleration potential is
less understood than with unbiased compressors. Algorithms with CC such as MARINA (Gorbunov
et al., 2021) and DASHA (Tyurin & Richtárik, 2023a) have been proposed for nonconvex optimization,
but their analysis requires a different approach and there is a gap in the achievable performance: their
complexity depends on ωκ√

n
instead of ωκ

n with DIANA, where ω characterizes the compression error
variance, see (2). Therefore, we focus on the convex setting and leave the nonconvex study for future
work.

Local Training (LT) is a simple but remarkably efficient idea: the clients perform multiple Gradient
Descent (GD) steps, instead of only one, between successive communication rounds. The intuition
behind is that this leads to the communication of richer information, so that the number of com-
munication rounds to reach a given accuracy is reduced. We refer to Mishchenko et al. (2022) for
a comprehensive review of LT-based algorithms, which include the popular FedAvg and Scaffold
algorithms of McMahan et al. (2017) and Karimireddy et al. (2020), respectively. Mishchenko et al.
(2022) made a breakthrough by proposing Scaffnew, the first LT-based variance-reduced algorithm
that not only converges linearly to the exact solution in the strongly convex setting, but does so with
accelerated communication complexity O(d

√
κ log ϵ−1). In Scaffnew, communication can occur

randomly after every iteration, but occurs only with a small probability p. Thus, there are in average
p−1 local steps between successive communication rounds. The optimal dependency on

√
κ (Scaman

et al., 2019) is obtained with p = 1/
√
κ. LoCoDL has the same probabilistic LT mechanism as

Scaffnew but does not revert to it when compression is disabled, because of the additional function g
and tracking variables y and v. A different approach to LT was developed by Sadiev et al. (2022a)
with the APDA-Inexact algorithm, and generalized to handle partial participation by Grudzień et al.
(2023) with the 5GCS algorithm: in both algorithms, the local GD steps form an inner loop in order
to compute a proximity operator inexactly.

Combining LT and CC while retaining their benefits is very challenging. In our strongly convex and
heterogeneous setting, the methods Qsparse-local-SGD (Basu et al., 2020) and FedPAQ (Reisizadeh
et al., 2020) do not converge linearly. FedCOMGATE features LT + CC and converges linearly
(Haddadpour et al., 2021), but its complexity O(dκ log ϵ−1) does not show any acceleration. We can
mention that random reshuffling, a technique that can be seen as a type of LT, has been combined with
CC in Sadiev et al. (2022b); Malinovsky & Richtárik (2022). Recently, Condat et al. (2022a) managed
to design a specific compression technique compatible with the LT mechanism of Scaffnew, leading
to CompressedScaffnew, the first LT + CC algorithm exhibiting a doubly-accelerated complexity,
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namely O
((√

d
√
κ+ d

√
κ√
n
+d
)
log ϵ−1

)
, as reported in Table 2. However, CompressedScaffnew uses

a specific linear compression scheme that requires shared randomness; that is, all clients have to agree
on a random permutation of the columns of the global compression pattern. No other compressor can
be used, which notably rules out any type of quantization.

1.3 A GENERAL CLASS OF UNBIASED RANDOM COMPRESSORS

For every ω ≥ 0, we define U(ω) as the set of random compression operators C : Rd → Rd that are
unbiased, i.e. E[C(x)] = x, and satisfy, for every x ∈ Rd,

E
[
∥C(x)− x∥2

]
≤ ω ∥x∥2 . (2)

In addition, given a collection (Ci)ni=1 of compression operators in U(ω) for some ω ≥ 0, in order
to characterize their joint variance, we introduce the constant ωav ≥ 0 such that, for every xi ∈ Rd,
i ∈ [n], we have

E

∥∥∥∥∥ 1n
n∑

i=1

(
Ci(xi)− xi

)∥∥∥∥∥
2
 ≤ ωav

n

n∑
i=1

∥xi∥2 . (3)

The inequality (3) is not an additional assumption: it is satisfied with ωav = ω by convexity of the
squared norm. But the convergence rate will depend on ωav, which is typically much smaller than ω.
In particular, if the compressors Ci are mutually independent, the variance of their sum is the sum of
their variances, and (3) is satisfied with ωav = ω

n .

1.4 CHALLENGE AND CONTRIBUTIONS

This work addresses the following question: Can we combine LT and CC with any compressors in
the generic class U(ω) defined in the previous section, and fully benefit from both techniques by
obtaining a doubly-accelerated communication complexity?

We answer this question in the affirmative. LoCoDL has the same probabilistic LT mechanism as
Scaffnew and features CC with compressors in U(ω) with arbitrarily large ω ≥ 0, with proved linear
convergence under Assumption 1.1, without further requirements. By choosing the communication
probability and the variance ω appropriately, double acceleration is obtained. Thus, LoCoDL achieves
the same theoretical complexity as CompressedScaffnew, but allows for a large class of compressors
instead of the cumbersome permutation-based compressor of the latter. In particular, with compressors
performing sparsification and quantization, LoCoDL outperforms existing algorithms, as we show by
experiments in Section 4. This is remarkable, since ADIANA, based on Nesterov acceleration and
not LT, has an even better theoretical complexity when n is larger than d, see Table 2, but this is not
reflected in practice: ADIANA is clearly behind LoCoDL in our experiments. Thus, our experiments
indicate that LoCoDL sets new standards in terms of communication efficiency.

2 PROPOSED ALGORITHM LoCoDL

2.1 PRINCIPLE: DOUBLE LIFTING OF THE PROBLEM TO A CONSENSUS PROBLEM

In LoCoDL, every client stores and updates two local model estimates. They will all converge to the
same solution x⋆ of (1). This construction comes from two ideas.

Local steps with local models. In algorithms making use of LT, such as FedAvg, Scaffold and
Scaffnew, the clients store and update local model estimates xi. When communication occurs, an
estimate of their average is formed by the server and broadcast to all clients. They all resume their
computations with this new model estimate.

Compressing the difference between two estimates. To implement CC, a powerful idea is to
compress not the vectors themselves, but difference vectors that converge to zero. This way, the
algorithm is variance-reduced; that is, the compression error vanishes at convergence. The technique
of compressing the difference between a gradient vector and a control variate is at the core of
algorithms such as DIANA and EF21. Here, we want to compress differences between model
estimates, not gradient estimates. That is, we want Client i to compress the difference between xi and
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Table 1: Communication complexity in number of communication rounds to reach ϵ-accuracy for
linearly-converging algorithms allowing for CC with independent compressors in U(ω) for any ω ≥ 0.
Since the compressors are independent, ωav = ω

n . We provide the leading asymptotic factor and
ignore log factors such as log ϵ−1. The state of the art is highlighted in green.

Algorithm Com. complexity in # rounds case ω = O(n) case ω = Θ(n)
DIANA (1 + ω

n )κ+ ω κ+ ω κ+ ω
EF21 (1 + ω)κ (1 + ω)κ (1 + ω)κ

5GCS-CC
(
1+

√
ω+ ω√

n

)√
κ+ ω (1+

√
ω)

√
κ+ ω (1+

√
ω)

√
κ+ ω

ADIANA1
(
1+ ω3/4

n1/4 +
ω√
n

)√
κ+ ω

(
1+ ω3/4

n1/4

)√
κ+ ω (1+

√
ω)

√
κ+ ω

ADIANA2
(
1 + ω√

n

)√
κ+ ω

(
1 + ω√

n

)√
κ+ ω (1+

√
ω)

√
κ+ ω

lower bound2
(
1 + ω√

n

)√
κ+ ω

(
1 + ω√

n

)√
κ+ ω (1+

√
ω)

√
κ+ ω

LoCoDL
(
1+

√
ω+ ω√

n

)√
κ+ ω(1+ ω

n ) (1+
√
ω)

√
κ+ ω (1+

√
ω)

√
κ+ ω

1This is the complexity derived in the original paper Li et al. (2020b).
2This is the complexity derived by a refined analysis in the preprint He et al. (2023), where a matching lower

bound is also derived.

Table 2: (Uplink) communication complexity in number of reals to reach ϵ-accuracy for linearly-
converging algorithms allowing for CC, with an optimal choice of unbiased compressors. We provide
the leading asymptotic factor and ignore log factors such as log ϵ−1. The state of the art is highlighted
in green.

Algorithm complexity in # reals case n=O(d)
DIANA (1 + d

n )κ+ d d
nκ+ d

EF21 dκ dκ

5GCS-CC
(√

d+ d√
n

)√
κ+ d d√

n

√
κ+ d

ADIANA
(
1 + d√

n

)√
κ+ d d√

n

√
κ+ d

CompressedScaffnew
(√

d+ d√
n

)√
κ+ d d√

n

√
κ+ d

FedCOMGATE dκ dκ

LoCoDL
(√

d+ d√
n

)√
κ+ d d√

n

√
κ+ d

another model estimate that converges to the solution x⋆ as well. We see the need of an additional
model estimate that plays the role of an anchor for compression. This is the variable y common to all
clients in LoCoDL, which compress xi − y and send these compressed differences to the server.

Combining the two ideas. Accordingly, an equivalent reformulation of (1) is the consensus problem
with n+ 1 variables

min
x1,...,xn,y

1

n

n∑
i=1

fi(xi) + g(y) s.t. x1 = · · · = xn = y.

The primal–dual optimality conditions are x1 = · · · = xn = y, 0 = ∇fi(xi) − ui ∀i ∈ [n],
0 = ∇g(y)− v, and 0 = u1 + · · ·+un +nv (dual feasibility), for some dual variables u1, . . . , un, v
introduced in LoCoDL, that always satisfy the dual feasibility condition.

2.2 DESCRIPTION OF LoCoDL

LoCoDL is a randomized primal–dual algorithm, shown as Algorithm 1. At every iteration, for every
i ∈ [n] in parallel, Client i first constructs a prediction x̂t

i of its updated local model estimate, using
a GD step with respect to fi corrected by the dual variable ut

i. It also constructs a prediction ŷt of
the updated model estimate, using a GD step with respect to g corrected by the dual variable vt.
Since g is known by all clients, they all maintain and update identical copies of the variables y and
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Algorithm 1 LoCoDL

1: input: stepsizes γ > 0, χ > 0, ρ > 0; probability p ∈ (0, 1]; variance factor ω ≥ 0; local initial
estimates x0

1, . . . , x
0
n ∈ Rd, initial estimate y0 ∈ Rd, initial control variates u0

1, . . . , u
0
n ∈ Rd

and v ∈ Rd such that 1
n

∑n
i=1 u

0
i + v0 = 0.

2: for t = 0, 1, . . . do
3: for i = 1, . . . , n, at clients in parallel, do
4: x̂t

i := xt
i − γ∇fi(x

t
i) + γut

i
5: ŷt := yt − γ∇g(yt) + γvt // the clients store and update identical copies of yt, vt, ŷt
6: flip a coin θt ∈ {0, 1} with Prob(θt = 1) = p
7: if θt = 1 then
8: dti := Ct

i

(
x̂t
i − ŷt

)
9: send dti to the server

10: at server: aggregate d̄t := 1
2n

∑n
j=1 d

t
j and broadcast d̄t to all clients

11: xt+1
i := (1− ρ)x̂t

i + ρ(ŷt + d̄t)

12: ut+1
i := ut

i +
pχ

γ(1+2ω)

(
d̄t − dti

)
13: yt+1 := ŷt + ρd̄t

14: vt+1 := vt + pχ
γ(1+2ω) d̄

t

15: else
16: xt+1

i := x̂t
i, y

t+1 = ŷt, ut+1
i := ut

i, v
t+1 := vt

17: end if
18: end for
19: end for

v. If there is no communication, which is the case with probability 1 − p, xi and y are updated
with these predicted estimates, and the dual variables ui and v are unchanged. If communication
occurs, which is the case with probability p, the clients compress the differences x̂t

i − ŷt and send
these compressed vectors to the server, which forms d̄t equal to one half of their average. Then the
variables xi are updated using a convex combination of the local predicted estimates x̂t

i and the global
but noisy estimate ŷt + d̄t. y is updated similarly. Finally, the dual variables are updated using the
compressed differences minus their weighted average, so that the dual feasibility condition remains
satisfied. The model estimates xt

i, x̂
t
i, y

t, ŷt all converge to x⋆, so that their differences, as well as
the compressed differences as a consequence of (2), converge to zero. This is the key property that
makes the algorithm variance-reduced. We consider the following assumption.

Assumption 2.1 (class of compressors). In LoCoDL the compressors Ct
i are all in U(ω) for some

ω ≥ 0. Moreover, for every i ∈ [n], i′ ∈ [n], t ≥ 0, t′ ≥ 0, Ct
i and Ct′

i′ are independent if t ̸= t′ (Ct
i

and Ct
i′ at the same iteration t need not be independent). We define ωav ≥ 0 such that for every t ≥ 0,

the collection (Ct
i )

n
i=1 satisfies (3).

Remark 2.2 (partial participation). LoCoDL allows for a form of partial participation if we set ρ = 1.
Indeed, in that case, at steps 11 and 13 of the algorithm, all local variables xi as well as the common
variable y are overwritten by the same up-to-date model ŷt + d̄t. So, it does not matter that for
a non-participating client i with dti = 0, the x̂t′

i were not computed for the t′ ≤ t since its last
participation, as they are not used in the process. However, a non-participating client should still
update its local copy of y at every iteration. This can be done when ∇g is much cheaper to compute
that ∇fi, as is the case with g = µ

2 ∥ · ∥
2. A non-participating client can be completely idle for a

certain period of time, but when it resumes participating, it should receive the last estimates of x, y
and v from the server as it lost synchronization.

3 CONVERGENCE AND COMPLEXITY OF LoCoDL

Theorem 3.1 (linear convergence of LoCoDL). Suppose that Assumptions 1.1 and 2.1 hold. In
LoCoDL, suppose that 0 < γ < 2

L , 2ρ− ρ2(1 + ωav)− χ ≥ 0. For every t ≥ 0, define the Lyapunov
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function

Ψt :=
1

γ

(
n∑

i=1

∥∥xt
i − x⋆

∥∥2 + n
∥∥yt − x⋆

∥∥2)+
γ(1 + 2ω)

p2χ

(
n∑

i=1

∥∥ut
i − u⋆

i

∥∥2 + n
∥∥vt − v⋆

∥∥2) ,

(4)
where v⋆ := ∇g(x⋆) and u⋆

i := ∇fi(x
⋆). Then LoCoDL converges linearly: for every t ≥ 0,

E
[
Ψt
]
≤ τ tΨ0, where τ := max

(
(1− γµ)2, (1− γL)2, 1− p2χ

1 + 2ω

)
< 1. (5)

In addition, for every i ∈ [n], (xt
i)t∈N and (yt)t∈N converge to x⋆, (ut

i)t∈N converges to u⋆
i , and

(vt)t∈N converges to v⋆, almost surely.

We place ourselves in the conditions of Theorem 3.1. We observe that in (5), the larger χ, the better,
so given ρ we should set χ = 2ρ− ρ2(1 + ωav). Then, choosing ρ to maximize χ yields

χ = ρ =
1

1 + ωav
. (6)

We now study the complexity of LoCoDL with χ and ρ chosen as in (6) and γ = Θ( 1
L ). We remark

that LoCoDL has the same rate τ ♯ := max(1− γµ, γL− 1)2 as mere distributed gradient descent, as
long as p−1, ω and ωav are small enough to have 1− p2χ

1+2ω ≤ τ ♯. This is remarkable: communicating
with a low frequency and compressed vectors does not harm convergence at all, until some threshold.

The iteration complexity of LoCoDL to reach ϵ-accuracy, i.e. E[Ψt] ≤ ϵΨ0, is

O
((

κ+
(1 + ωav)(1 + ω)

p2

)
log ϵ−1

)
. (7)

By choosing

p = min

(√
(1 + ωav)(1 + ω)

κ
, 1

)
, (8)

the iteration complexity becomes O
((

κ+ ω(1 + ωav)
)
log ϵ−1

)
and the communication complexity

in number of communication rounds is p times the iteration complexity, that is

O
((√

κ(1 + ωav)(1 + ω) + ω(1 + ωav)
)
log ϵ−1

)
.

If the compressors are mutually independent, ωav = ω
n and the communication complexity can be

equivalently written as

O
(((

1 +
√
ω +

ω√
n

)√
κ+ ω

(
1 +

ω

n

))
log ϵ−1

)
,

as shown in Table 1.

Let us consider the example of independent rand-k compressors, for some k ∈ [d]. We have
ω = d

k − 1. Therefore, the communication complexity in numbers of reals is k times the complexity

in number of rounds; that is, O
(((√

kd+ d√
n

)√
κ+ d

(
1 + d

kn

))
log ϵ−1

)
. We can now choose

k to minimize this complexity: with k = ⌈ d
n⌉, it becomes O

(((√
d+ d√

n

)√
κ+ d

)
log ϵ−1

)
, as

shown in Table 2. Let us state this result:
Corollary 3.2. In the conditions of Theorem 3.1, suppose in addition that the compressors Ct

i are
independent rand-k compressors with k = ⌈ d

n⌉. Suppose that γ = Θ( 1
L ), χ = ρ = n

n−1+d/k , and

p = min

(√
dk(n− 1) + d2

nk2κ
, 1

)
. (9)

Then the uplink communication complexity in number of reals of LoCoDL is

O
((√

d
√
κ+

d
√
κ√
n

+ d

)
log ϵ−1

)
. (10)
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Figure 1: Comparison of several algorithms with several compressors on logistic regression with the
‘a5a’ dataset from the LibSVM, which has d = 122 and 6,414 data points. We chose different values
of n to illustrate the two regimes n < d and n > d, as discussed at the end of Section 3.

This is the same complexity as CompressedScaffnew (Condat et al., 2022a). However, it is obtained
with simple independent compressors, which is much more practical than the permutation-based
compressors with shared randomness of CompressedScaffnew. Moreover, this complexity can be
obtained with other types of compressors, and further reduced, when reasoning in number of bits and
not only reals, by making use of quantization (Albasyoni et al., 2020), as we illustrate by experiments
in the next section.

We can distinguish 2 regimes:

1. In the “large d small n” regime, i.e. n = O(d), the communication complexity of LoCoDL in (10)
becomes O

((
d
√
κ√
n

+ d
)
log ϵ−1

)
. This is the state of the art, as reported in Table 2.

2. In the “large n small d” regime, i.e. n = Ω(d), the communication complexity of LoCoDL in (10)
becomes O

((√
d
√
κ+ d

)
log ϵ−1

)
. If n is even larger with n = Ω(d2), ADIANA achieves the even

better complexity O
(
(
√
κ+ d) log ϵ−1

)
.

Yet, in the experiments we ran with different datasets and values of d, n, κ, LoCoDL outperforms the
other algorithms, including ADIANA, in all cases.

3.1 THE CASE g = 0

We have assumed the presence of a function g in Problem (1), whose gradient is called by all clients.
In this section, we show that we can handle the case where such a function is not available. So, let
us assume that we want to minimize 1

n

∑n
i=1 fi, with the functions fi satisfying Assumption 1.1.

We now define the functions f̃i := fi − µ
4 ∥·∥2 and g̃ := µ

4 ∥·∥2. They are all L̃-smooth and µ̃-
strongly convex, with L̃ := L− µ

2 and µ̃ := µ
2 . Moreover, it is equivalent to minimize 1

n

∑n
i=1 fi

or 1
n

∑n
i=1 f̃i + g̃. We can then apply LoCoDL to the latter problem. At Step 5, we simply have

yt − γ∇g̃(yt) = (1− γµ
2 )yt. The rate in (5) applies with L and µ replaced by L̃ and µ̃, respectively.

Since κ ≤ κ̃ := L̃
µ̃ ≤ 2κ, the asymptotic complexities derived above also apply to this setting. Thus,

the presence of g in Problem (1) is not restrictive at all, as the only property of g that matters is that it
has the same amount of strong convexity as the fis.

4 EXPERIMENTS

We evaluate the performance of our proposed method LoCoDL and compare it with several other
methods that also allow for CC and converge linearly to x⋆. We also include GradSkip (Maranjyan
et al., 2022) and Scaffold (McMahan et al., 2017) in our comparisons. We focus on a regularized
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logistic regression problem, which has the form (1) with

fi(x) =
1

m

m∑
s=1

log
(
1+exp

(
−bi,sa

⊤
i,sx
))

+
µ

2
∥x∥2 (11)

and g = µ
2 ∥x∥

2, where n is the number of clients, m is the number of data points per client, ai,s ∈ Rd

and bi,s ∈ {−1,+1} are the data samples, and µ is the regularization parameter, set so that κ = 104.
For all algorithms other than LoCoDL, for which there is no function g, the functions fi in (11) have
a twice higher µ, so that the problem remains the same.

We considered several datasets from the LibSVM library (Chang & Lin, 2011) (3-clause BSD license).
We show the results with the ‘a5a’ , ‘diabetes’, ‘w1a’ datasets in Figures 1, 2, 3, respectively. Other
datasets are shown in the Appendix. We prepared each dataset by first shuffling it, then distributing it
equally among the n clients (since m in (11) is an integer, the remaining datapoints were discarded).
We used four different compression operators in the class U(ω), for some ω ≥ 0:

• rand-k for some k ∈ [d], which communicates 32k + k⌈log2(d)⌉ bits. Indeed, the k randomly
chosen values are sent in the standard 32-bits IEEE floating-point format, and their locations are
encoded with k⌈log2(d)⌉ additional bits. We have ω = d

k − 1.

• Natural Compression (Horváth et al., 2022), a form of quantization in which floats are encoded
into 9 bits instead of 32 bits. We have ω = 1

8 .

• A combination of rand-k and Natural Compression, in which the k chosen values are encoded
into 9 bits, which yields a total of 9k + k⌈log2(d)⌉ bits. We have ω = 9d

8k − 1.

• The l1-selection compressor, defined as C(x) = sign(xj)∥x∥1ej , where j is chosen randomly in
[d], with the probability of choosing j′ ∈ [d] equal to |xj′ |/∥x∥1, and ej is the j-th standard unit basis
vector in Rd. sign(xj)∥x∥1 is sent as a 32-bits float and the location of j is indicated with ⌈log2(d)⌉,
so that this compressor communicates 32 + ⌈log2(d)⌉ bits. Like with rand-1, we have ω = d− 1.

The compressors at different clients are independent, so that ωav = ω
n in (3).

We can see that LoCoDL, when combined with rand-k and Natural Compression, converges faster
than all other algorithms, with respect to the total number of communicated bits per client. We
chose two different numbers n of clients, one with n < d and another one with n > 2d, since
the compressor of CompressedScaffnew is different in the two cases n < 2d and n > 2d (Condat
et al., 2022a). LoCoDL outperforms CompressedScaffnew in both cases. As expected, all methods
exhibit faster convergence with larger n. Remarkably, ADIANA, which has the best theoretical
complexity for large n, improves upon DIANA but is not competitive with the LT-based methods
CompressedScaffnew, 5GCS-CC, and LoCoDL. This illustrates the power of doubly-accelerated
methods based on a successful combination of LT and CC. In this class, our new proposed LoCoDL
algorithm shines. For all algorithms, we used the theoretical parameter values given in their available
convergence results (Corollary 3.2 for LoCoDL). We tried to tune the parameter values, such as k in
rand-k and the (average) number of local steps per round, but this only gave minor improvements.
For instance, ADIANA in Figure 1 was a bit faster with the best value of k = 20 than with k = 30.
Increasing the learning rate γ led to inconsistent results, with sometimes divergence.

5 CONCLUSION

We have proposed LoCoDL, which combines a probabilistic Local Training mechanism similar to the
one of Scaffnew and Communication Compression with a large class of unbiased compressors. This
successful combination makes LoCoDL highly communication-efficient, with a doubly accelerated
complexity with respect to the model dimension d and the condition number of the functions.
In practice, LoCoDL outperforms other algorithms, including ADIANA, which has an even better
complexity in theory obtained from Nesterov acceleration and not Local Training. This again
shows the relevance of the popular mechanism of Local Training, which has been widely adopted in
Federated Learning. A venue for future work is to implement bidirectional compression (Liu et al.,
2020; Philippenko & Dieuleveut, 2021; Dorfman et al., 2023). We will also investigate extensions of
our method with calls to stochastic gradient estimates, with or without variance reduction, as well as
partial participation. These two features have been proposed for Scaffnew in Malinovsky et al. (2022)
and Condat et al. (2023), but they are challenging to combine with generic compression.
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(c) n = 73

Figure 2: Comparison of several algorithms with several compressors on logistic regression with the
‘diabetes’ dataset from the LibSVM, which has d = 8 and 768 data points. We chose different values
of n to illustrate the three regimes n < d, n > d, n > d2, as discussed at the end of Section 3.
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Figure 3: Comparison of several algorithms with various compressors on logistic regression with the
‘w1a’ dataset from the LibSVM, which has d = 300 and 2,477 data points. We chose different values
of n to illustrate the two regimes, n < d and n > d, as discussed at the end of Section 3.

We have studied the strongly convex setting, because analyzing how the linear convergence rate
depends on d, κ, n provides valuable insights on the algorithmic mechanisms. It should be possible
to derive sublinear convergence results in the general convex case, by studying the objective gap
instead of the squared distance to the solution, as was done for CompressedScaffnew (Condat et al.,
2022a) and TAMUNA (Condat et al., 2023). An analysis with nonconvex functions, however, would
certainly require different proof techniques. In nonconvex settings, compression works well (Huang
et al., 2022; Chen et al., 2024), but the properties of local training with variance reduction are less
clear (Yi et al., 2024; Meinhardt et al., 2024).
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J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon. Federated learning:
Strategies for improving communication efficiency. In NIPS Private Multi-Party Machine Learning
Workshop, 2016b. arXiv:1610.05492.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

T. Li, A. K. Sahu, A. Talwalkar, and V. Smith. Federated learning: Challenges, methods, and future
directions. IEEE Signal Processing Magazine, 3(37):50–60, 2020a.

Z. Li, D. Kovalev, X. Qian, and P. Richtárik. Acceleration for compressed gradient descent in
distributed and federated optimization. In Proc. of 37th Int. Conf. Machine Learning (ICML),
volume PMLR 119, 2020b.

12



Published as a conference paper at ICLR 2025

Xiaorui Liu, Yao Li, Jiliang Tang, and Ming Yan. A double residual compression algorithm for
efficient distributed learning. In Proc. of Int. Conf. Artificial Intelligence and Statistics (AISTATS),
PMLR 108, pp. 133–143, 2020.

G. Malinovsky and P. Richtárik. Federated random reshuffling with compression and variance
reduction. preprint arXiv:arXiv:2205.03914, 2022.

G. Malinovsky, K. Yi, and P. Richtárik. Variance reduced ProxSkip: Algorithm, theory and application
to federated learning. In Proc. of Conf. Neural Information Processing Systems (NeurIPS), 2022.

A. Maranjyan, M. Safaryan, and P. Richtárik. GradSkip: Communication-accelerated local gradient
methods with better computational complexity. preprint arXiv:2210.16402, 2022.

H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. Agüera y Arcas. Communication-
efficient learning of deep networks from decentralized data. In Proc. of Int. Conf. Artificial
Intelligence and Statistics (AISTATS), PMLR 54, 2017.

G. Meinhardt, K. Yi, L. Condat, and P. Richtárik. Prune at the clients, not the server: Accelerated
sparse training in federated learning. preprint arXiv:2405.20623, 2024.
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A PROOF OF THEOREM 3.1

We define the Euclidean space X := Rd and the product space X := Xn+1 endowed with the
weighted inner product

⟨x,x′⟩X :=

n∑
i=1

⟨xi, x
′
i⟩+ n⟨y, y′⟩, ∀x = (x1, . . . , xn, y),x

′ = (x′
1, . . . , x

′
n, y

′). (12)

We define the copy operator 1 : x ∈ X 7→ (x, . . . , x, x) ∈ X and the linear operator

S : x ∈ X 7→ 1x̄, with x̄ =
1

2n

(
n∑

i=1

xi + ny

)
. (13)

S is the orthogonal projector in X onto the consensus line {x ∈ X : x1 = · · · = xn = y}. We also
define the linear operator

W := Id−S : x = (x1, . . . , xn, y) ∈ X 7→ (x1−x̄, . . . , xn−x̄, y−x̄), with x̄ =
1

2n

(
n∑

i=1

xi + ny

)
,

(14)
where Id denotes the identity. W is the orthogonal projector in X onto the hyperplane {x ∈ X :
x1 + · · · + xn + ny = 0}, which is orthogonal to the consensus line. As such, it is self-adjoint,
positive semidefinite, its eigenvalues are (1, . . . , 1, 0), its kernel is the consensus line, and its spectral
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norm is 1. Also, W 2 = W . Note that we can write W in terms of the differences di = xi − y and
d̄ = 1

2n

∑n
i=1 di:

W : x = (x1, . . . , xn, y) 7→
(
d1 − d̄, . . . , dn − d̄,−d̄

)
. (15)

Since for every x = (x1, . . . , xn, y), Wx = 0 := (0, . . . , 0, 0) if and only if x1 = · · · = xn = y,
we can reformulate the problem (1) as

min
x=(x1,...,xn,y)∈X

f(x) s.t. Wx = 0, (16)

where f(x) :=
∑n

i=1 fi(xi) + ng(y). Note that in X , f is L-smooth and µ-strongly convex, and
∇f(x) =

(
∇f1(x1), . . .∇fn(xn),∇g(y)

)
.

Let t ≥ 0. We also introduce vector notations for the variables of the algorithm: xt :=
(xt

1, . . . , x
t
n, y

t), x̂t := (x̂t
1, . . . , x̂

t
n, ŷ

t), ut := (ut
1, . . . , u

t
n, v

t), u⋆ := (u⋆
1, . . . , u

⋆
n, v

⋆), wt :=
xt − γ∇f(xt), w⋆ := x⋆ − γ∇f(x⋆), where x⋆ := 1x⋆ is the unique solution to (16). We also
define x̄t := 1

2n (
∑n

i=1 x̂
t
i + nŷt) and λ := pχ

γ(1+2ω) .

Then we can write the iteration of LoCoDL as

x̂t := xt − γ∇f(xt) + γut = wt + γut

flip a coin θt ∈ {0, 1} with Prob(θt = 1) = p
if θt = 1
dt :=

(
Ct
1(x̂

t
1 − ŷt), . . . , Ct

n(x̂
t
n − ŷt), 0

)
d̄t := 1

2n

∑n
j=1 d

t
j

xt+1 := (1− ρ)x̂t + ρ1(ŷt + d̄t)
ut+1 := ut + λ

(
1d̄t − dt

)
= ut − λWdt

else
xt+1 := x̂t

ut+1 := ut

end if

(17)

We denote by F t the σ-algebra generated by the collection of X -valued random variables
x0,u0, . . . ,xt,ut.

Since we suppose that Su0 = 0 and we have SWdt′ = 0 in the update of u, we have Sut′ = 0 for
every t′ ≥ 0.

If θt = 1, we have∥∥ut+1 − u⋆
∥∥2
X =

∥∥ut − u⋆
∥∥2
X + λ2

∥∥Wdt
∥∥2
X − 2λ⟨ut − u⋆,Wdt⟩X

=
∥∥ut − u⋆

∥∥2
X + λ2

∥∥dt
∥∥2
X − λ2

∥∥Sdt
∥∥2
X − 2λ⟨ut − u⋆,dt⟩X ,

because Sut = Su⋆ = 0, so that ⟨ut − u⋆, Sdt⟩X = 0.

The variance inequality (2) satisfied by the compressors Ct
i is equivalent to E

[
∥Ct

i (x)∥
2
]
≤ (1 +

ω) ∥x∥2, so that
E
[∥∥dt

∥∥2
X | F t, θt = 1

]
≤ (1 + ω)

∥∥x̂t − 1ŷt
∥∥2
X .

Also,
E
[
dt | F t, θt = 1

]
= x̂t − 1ŷt.

Thus,

E
[∥∥ut+1 − u⋆

∥∥2
X | F t

]
= (1− p)

∥∥ut − u⋆
∥∥2
X + pE

[∥∥ut+1 − u⋆
∥∥2
X | F t, θt = 1

]
≤
∥∥ut − u⋆

∥∥2
X + pλ2(1 + ω)

∥∥x̂t − 1ŷt
∥∥2
X − pλ2E

[∥∥Sdt
∥∥2
X | F t, θt = 1

]
− 2pλ⟨ut − u⋆, x̂t − 1ŷt⟩X

=
∥∥ut − u⋆

∥∥2
X + pλ2(1 + ω)

∥∥x̂t − 1ŷt
∥∥2
X − pλ2E

[∥∥Sdt
∥∥2
X | F t, θt = 1

]
− 2pλ⟨ut − u⋆, x̂t⟩X .
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Moreover, E
[
∥Sdt∥2X | F t, θt = 1

]
≥ ∥E[Sdt | F t, θt = 1]∥2X = ∥Sx̂t − 1ŷt∥2X and

∥x̂t − 1ŷt∥2X = ∥Sx̂t − 1ŷt∥2X + ∥W x̂t∥2X , so that

E
[∥∥ut+1 − u⋆

∥∥2
X | F t

]
≤
∥∥ut − u⋆

∥∥2
X + pλ2(1 + ω)

∥∥x̂t − 1ŷt
∥∥2
X − pλ2

∥∥Sx̂t − 1ŷt
∥∥2

− 2pλ⟨ut − u⋆, x̂t⟩X
=
∥∥ut − u⋆

∥∥2
X + pλ2ω

∥∥x̂t − 1ŷt
∥∥2
X + pλ2

∥∥W x̂t
∥∥2 − 2pλ⟨ut − u⋆, x̂t⟩X .

From the Peter–Paul inequality ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2 for any a and b, we have

∥∥x̂t − 1ŷt
∥∥2
X =

n∑
i=1

∥∥x̂t
i − ŷt

∥∥2 =

n∑
i=1

∥∥(x̂t
i − x̄t)− (ŷt − x̄t)

∥∥2
≤

n∑
i=1

(
2
∥∥x̂t

i − x̄t)
∥∥2 + 2

∥∥ŷt − x̄t
∥∥2)

= 2

(
n∑

i=1

∥∥x̂t
i − x̄t)

∥∥2 + n
∥∥ŷt − x̄t

∥∥2)
= 2

∥∥x̂t − 1x̄t
∥∥2
X = 2

∥∥W x̂t
∥∥2
X . (18)

Hence,

E
[∥∥ut+1 − u⋆

∥∥2
X | F t

]
≤
∥∥ut − u⋆

∥∥2
X + pλ2(1 + 2ω)

∥∥W x̂t
∥∥2
X − 2pλ⟨ut − u⋆, x̂t⟩X .

On the other hand,

E
[∥∥xt+1 − x⋆

∥∥2
X | F t, θ = 1

]
= (1− ρ)2

∥∥x̂t − x⋆
∥∥2
X + ρ2E

[∥∥1(ŷt + d̄t)− x⋆
∥∥2
X | F t, θ = 1

]
+ 2ρ(1− ρ)

〈
x̂t − x⋆,1

(
ŷt + E

[
d̄t | F t, θ = 1

] )
− x⋆

〉
X .

We have E
[
d̄t | F t, θ = 1

]
= 1

2n

∑n
i=1 x̂

t
i − 1

2 ŷ
t = x̄t − ŷt, so that

1
(
ŷt + E

[
d̄t | F t, θ = 1

])
= 1x̄t = Sx̂t.

In addition, 〈
x̂t − x⋆, Sx̂t − x⋆

〉
X =

〈
x̂t − x⋆, S(x̂t − x⋆)

〉
X =

∥∥S(x̂t − x⋆)
∥∥2
X .

Moreover,

E
[∥∥1(ŷt + d̄t)− x⋆

∥∥2
X | F t, θ = 1

]
=
∥∥1(ŷt + E

[
d̄t | F t, θ = 1

])
− x⋆

∥∥2
X

+ E
[∥∥1(d̄t − E

[
d̄t | F t, θ = 1

])∥∥2
X | F t, θ = 1

]
=
∥∥Sx̂t − x⋆

∥∥2
X

+ 2nE
[∥∥d̄t − E

[
d̄t | F t, θ = 1

]∥∥2 | F t, θ = 1
]

and, using (3),

E
[∥∥d̄t − E

[
d̄t | F t, θ = 1

]∥∥2 | F t, θ = 1
]
≤ ωav

4n

n∑
i=1

∥∥x̂t
i − ŷt

∥∥2
≤ ωav

2n

∥∥W x̂t
∥∥2
X ,

17
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where the second inequality follows from (18). Hence,

E
[∥∥xt+1 − x⋆

∥∥2
X | F t, θ = 1

]
≤ (1− ρ)2

∥∥x̂t − x⋆
∥∥2
X + ρ2

∥∥Sx̂t − x⋆
∥∥2
X + ρ2ωav

∥∥W x̂t
∥∥2
X

+ 2ρ(1− ρ)
∥∥S(x̂t − x⋆)

∥∥2
X

= (1− ρ)2
∥∥x̂t − x⋆

∥∥2
X + ρ2ωav

∥∥W x̂t
∥∥2
X

+ (2ρ− ρ2)
∥∥S(x̂t − x⋆)

∥∥2
X

= (1− ρ)2
∥∥x̂t − x⋆

∥∥2
X + ρ2ωav

∥∥W x̂t
∥∥2
X

+ (2ρ− ρ2)
(∥∥x̂t − x⋆

∥∥2
X −

∥∥W x̂t
∥∥2
X

)
=
∥∥x̂t − x⋆

∥∥2
X −

(
2ρ− ρ2 − ρ2ωav

) ∥∥W x̂t
∥∥2
X

and

E
[∥∥xt+1 − x⋆

∥∥2
X | F t

]
= (1− p)

∥∥x̂t − x⋆
∥∥2
X + pE

[∥∥xt+1 − x⋆
∥∥2
X | F t, θt = 1

]
≤
∥∥x̂t − x⋆

∥∥2
X − p

(
2ρ− ρ2(1 + ωav)

) ∥∥W x̂t
∥∥2
X .

Furthermore,∥∥x̂t − x⋆
∥∥2
X =

∥∥wt −w⋆
∥∥2
X + γ2

∥∥ut − u⋆
∥∥2
X + 2γ⟨wt −w⋆,ut − u⋆⟩X

=
∥∥wt −w⋆

∥∥2
X − γ2

∥∥ut − u⋆
∥∥2
X + 2γ⟨x̂t − x⋆,ut − u⋆⟩X

=
∥∥wt −w⋆

∥∥2
X − γ2

∥∥ut − u⋆
∥∥2
X + 2γ⟨x̂t,ut − u⋆⟩X ,

which yields

E
[∥∥xt+1 − x⋆

∥∥2
X | F t

]
≤
∥∥wt −w⋆

∥∥2
X − γ2

∥∥ut − u⋆
∥∥2
X + 2γ⟨x̂t,ut − u⋆⟩X

− p
(
2ρ− ρ2(1 + ωav)

) ∥∥W x̂t
∥∥2
X .

Hence, with λ = pχ
γ(1+2ω) ,

1

γ
E
[∥∥xt+1 − x⋆

∥∥2
X | F t

]
+

γ(1 + 2ω)

p2χ
E
[∥∥ut+1 − u⋆

∥∥2
X | F t

]
≤ 1

γ

∥∥wt −w⋆
∥∥2
X − γ

∥∥ut − u⋆
∥∥2
X + 2⟨x̂t,ut − u⋆⟩X − p

γ

(
2ρ− ρ2(1 + ωav)

) ∥∥W x̂t
∥∥2
X

+
γ(1 + 2ω)

p2χ

∥∥ut − u⋆
∥∥2
X +

pχ

γ

∥∥W x̂t
∥∥2
X − 2⟨ut − u⋆, x̂t⟩X

=
1

γ

∥∥wt −w⋆
∥∥2
X +

γ(1 + 2ω)

p2χ

(
1− p2χ

1 + 2ω

)∥∥ut − u⋆
∥∥2
X

− p

γ

(
2ρ− ρ2(1 + ωav)− χ

) ∥∥W x̂t
∥∥2
X .

Therefore, assuming that 2ρ− ρ2(1 + ωav)− χ ≥ 0,

E
[
Ψt+1 | F t

]
≤ 1

γ

∥∥wt −w⋆
∥∥2
X +

(
1− p2χ

1 + 2ω

)
γ(1 + 2ω)

p2χ

∥∥ut − u⋆
∥∥2
X .

According to Condat & Richtárik (2023, Lemma 1),∥∥wt −w⋆
∥∥2
X =

∥∥(Id− γ∇f)xt − (Id− γ∇f)x⋆
∥∥2
X

≤ max(1− γµ, γL− 1)2
∥∥xt − x⋆

∥∥2
X .

Hence,

E
[
Ψt+1 | F t

]
≤ max

(
(1− γµ)2, (1− γL)2, 1− p2χ

1 + 2ω

)
Ψt. (19)

Using the tower rule, we can unroll the recursion in (19) to obtain the unconditional expectation of
Ψt+1.

Using classical results on supermartingale convergence (Bertsekas, 2015, Proposition A.4.5), it
follows from (19) that Ψt → 0 almost surely. Almost sure convergence of xt and ut follows.
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Figure 4: Comparison of several algorithms with various compressors on logistic regression with the
‘australian’ dataset from the LibSVM, which has d = 14 and 690 data points. We chose different
values of n to illustrate the three regimes: n < d, n > d, n > d2, as discussed at the end of Section 3.

B ADDITIONAL EXPERIMENTS

The results with the ‘australian’ and ‘covtype.binary’ datasets from the LibSVM library, for the same
logistic regression problem as in Section 4 with κ = 104, are shown in Figures 4 and 5. Finally,
we also run experiments on MNIST dataset (LeCun et al., 1998) in Figure 6. LoCoDL consistently
outperforms the other algorithms in terms of communication efficiency.

In an additional experiment, we investigate how heterogeneity of the functions influences the conver-
gence. We consider logistic regression as above, but with synthetic data sampled from the Dirichlet
distribution of parameter α. If α is small, the Dirichlet distribution becomes similar to the uniform
distribution over the simplex, which corresponds to the heterogeneous case where there is no similar-
ity between the data. If α is large, the samples of the Dirichlet distribution tend to be similar to each
other and concentrated around the middle point (1/d, . . . , 1/d) of the simplex. We set n = 100 and
d = 10, and a single random sample is assigned to each client. The results are shown in Figure 7,
for α = 1 and α = 10. With these values of n and d, ADIANA has a better theoretical complexity
than LoCoDL. However, in practice, we observe that LoCoDL again outperforms ADIANA. For both
methods, joint sparsification and quantization with rand-1 and natural compression performs best.
There is no significant difference depending on the value of α.
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Figure 5: comparison of LoCoDL and ADIANA using several compressors for logistic regression with
the ‘covtype.binary’ dataset from the LibSVM, which has d = 54 and 581,010 data points. We chose
different values of n to illustrate the three regimes n < d, n > d, n > d2, as discussed at the end of
Section 3.
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Figure 6: Comparison of LoCoDL and ADIANA using several compressors for logistic regression.
The task was classifying 7s and 8s from the MNIST (LeCun et al., 1998) dataset, which consists of
d = 28× 28 = 784 dimensions and 14,118 data points. We chose n = 6 (100× smaller than d).
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Figure 7: Comparison of LoCoDL and ADIANA with various compressors on logistic regression
(n = 100, d = 10), with samples from the Dirichlet distribution of parameter α, with α = 1 on the
left and α = 10 on the right.
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