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Abstract: Most existing intelligent fault diagnosis schemes rely on the assumption that the training and test samples are inde-
pendent and identically distributed, ignoring the domain distribution shift caused by diverse operating conditions, which may
limit their flexible applications in practical diagnostic tasks. To address this problem, we propose a novel unsupervised transfer
learning method, namely, sparse filtering with joint distribution adaptation (SFJDA) for mechanical fault diagnosis. Specifically,
two sparse filters (SFs) are used to jointly extract features from each domain, and the final feature space is formed by stacking
the subspaces obtained from double SFs. Then, the maximum mean difference (MMD) is introduced to measure the distribution
discrepancy between different domains. By extending the marginal distribution adaptation (MDA) to joint distribution adapta-
tion (JDA), the constructed framework can capture domain-invariant and class-separable features. Finally, the effectiveness of
the proposed scheme is verified by a motor bearing dataset.
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1 Introduction

Intelligent fault diagnosis, with the ability to automati-

cally extract features from raw data and identify fault pat-

terns, has been seen as the key to improving the security and

stability of industrial equipment [1, 2]. Over the past decade,

many machine learning algorithms have been widely applied

in the field of fault diagnosis, and have achieved superior di-

agnostic performance, such as convolutional neural network

(CNN) [3, 4], autoencoder (AE) [5, 6] and sparse filtering

(SF) [7–9]. Especially for SF, it can achieve the same perfor-

mance as the deep network with a relatively simple structure

and fewer data by constraining the mapped features.

However, most existing methods are mainly based on the

strong assumption that the training and test data are inde-

pendently and identically distributed [10]. In reality, the

distributions between training and test data are different in

practical situations due to the complex load conditions and

working environment [11, 12]. Moreover, to ensure the gen-

eralization performance of diagnostic model, a large amount

of labeled data is often needed to obtain distinguishing fea-

tures. Note that, in real industrial sites, the data collected by

the sensors is unlabeled raw data, so it is difficult to obtain

data with labels for each load condition. These problems

greatly restrict the extensive application of intelligent diag-

nosis schemes in industrial scenarios.

Domain adaptation [13–15], as a representative branch

of transfer learning, aims to establish knowledge transfer

from the source domain to the target domain by reducing

the distribution discrepancy and exploring domain-invariant

features. Generally, the basic strategies of domain adapta-

tion can be divided into three types: 1) instance-based trans-

fer aims to reweight labeled data to assist model training
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[13, 16]. 2) feature-based transfer reduces distribution dif-

ferences through feature transformations [17, 18]. 3) model-

based transfer identifies the fault patterns of target domain by

sharing network parameters [14, 19]. Among them, feature-

based transfer and model-based transfer are mainly applied

in the learning problems with limited labeled samples. For

example, Lu et al. [10] proposed a deep neural network

for fault diagnosis, where the maximum mean discrepancy

(MMD) was used to align the feature distribution. Han et al.
[12] extended the marginal distribution adaptation to joint

distribution adaptation with deep transfer networks and ob-

tained a more accurate distribution matching. Jiao et al. [14]

designed an adversarial adaptation network based on classi-

fier discrepancy to learn domain-invariant features.

Deep transfer networks, by stacking multi-layer networks

and transforming features, have achieved superior transfer

performance in fault diagnosis [15]. However, deep net-

works often have numerous parameters to be optimized,

which require long training times and large computing

power. Faced with these challenges, how to use fewer layers

to transfer knowledge and enhance the flexibility of diagnos-

tic frameworks for diverse domain tasks is still a topic worth

exploring, which is also the motivation of this paper.

To summarize the discussions made so far, this paper pro-

poses a novel unsupervised method named sparse filtering

with joint distribution adaptation (SFJDA) for intelligent di-

agnosis at the scenario of domain distribution shift. The

main contributions are as follows:

1) Considering the distribution discrepancies between dif-

ferent domains, two sparse filters are constructed to

jointly extract features, and the final feature space is

formed by stacking the subspaces obtained from dou-

ble SFs. Therefore, the proposed framework can mine

rich information with a simple structure.

2) A strategy called sparse filtering with marginal dis-
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tribution adaptation (SFMDA) is designed to achieve

marginal distribution adaptation, where MMD is intro-

duced to measure differences between domains. The

proposed SFMDA can limit the distance between clus-

tering centroids of different domains and thus capture

class-separable features.

3) Based on SFMDA, the problem of joint distribution

adaptation (JDA) is analyzed, and the final SFJDA net-

work is established. It can extract domain-invariant

features and effectively address the problem of perfor-

mance degradation when using SF to directly diagnose

unlabeled target samples.

The validity of these conclusions is finally verified by a

motor bearing dataset.

2 Fault Diagnosis Scheme Construction

2.1 Sparse Filtering with Marginal Distribution Adap-
tation

Sparse filtering has been proved to be able to extract dis-

criminative features from raw data with a simple structure

[9]. However, since the data generated under each load con-

dition contains both fault and operational information, and

is subject to distribution differences, diagnostic performance

will be degraded when using models trained from source do-

main to directly predict target domain. Therefore, how to

make full use of the information in each domain to obtain

domain-invariant features is a key issue.

In this work, the problem of marginal distribution adapta-

tion is analysed first, where two SFs are employed to extract

features from the source and target domains respectively.

The architecture of the proposed double sparse filtering with

marginal distribution adaptation (SFMDA) is depicted in

Fig. 1, in which Xs = {(xs
i , y

s
i )}ns

i=1 and Xt = {xt
i}nt

i=1

denote the source domain dataset and target domain dataset.

They are drawn from distributions Ps(X) and Pt(X) respec-

tively, and Ps(X) �= Pt(X) due to the distribution discrep-

ancy. But, the label space in different domains is same, i.e.,

Ys = Yt.

Sparse filtering maps the samples onto their features fs
i

and f t
i using weight matrix Ws and Wt respectively. The

features fs
i and f t

i are calculated by

fs
i = σ(Wsx

s
i ), f

t
i = σ(Wtx

t
i) (1)

where Ws and Wt are parameters to be optimized. σ(·) is

the activation function, and the soft-absolute function σ(t) =√
t2 + ε with ε = 10−8 is commonly recommended [7].

For each fi, including fs
i and f t

i , it is composed of f j
i

(j = 1, 2, ... , Nout, and Nout is the output dimension of the

feature matrix). All feature values f j
i form the feature matrix

F = (f j
i )Nout×M (M is the number of samples in datasets,

i.e., ns, nt), whose i-th column and j-th row are separately

denoted as fi ∈ �1×M and f j ∈ �Nout×1. We first nor-

malize each row of F by its l2-norm across all samples, i.e.,

f̃ j = f j/
∥∥f j

∥∥
2
. Then, each column is normalized by its

l2-norm across all features

f̂i = f̃i/
∥∥∥f̃i

∥∥∥
2

(2)

Sequentially, the weight parameters can be solved by opti-

mizing the cost function constraining l1-norm for each sam-
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X tX
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Fig. 1: Framework of the proposed SFMDA.

ple, which is shown as follows

JSF =

ns∑

i=1

∥∥∥f̂s
i

∥∥∥
1
+

nt∑

i=1

∥∥∥f̂ t
i

∥∥∥
1

(3)

MMD is a criterion to measure the discrepancy of two dis-

tributions based on RKHS [20]. In contrast to many paramet-

ric criteria, e.g. Kullback–Leibler divergence, MMD allows

the estimation of non-parametric distances between various

distributions and avoids the calculation of intermediate den-

sities, which is always a nontrivial task [10]. The definition

of MMD is given by

LMMD(X
s, Xt) =

∥∥∥∥∥
1

ns

ns∑

i=1

φ(xs
i )−

1

nt
φ(xt

i)

∥∥∥∥∥

2

H
(4)

From (4), one can see that the empirical estimation of the

discrepancy between distributions is considered as a distance

of two domains in RKHS. A value of MMD close to zero im-

plies that the two domains are marginal distribution match-

ing. Rather than mapping them to a single space, dual SFs

are used to map the samples between different domains to

two different but similar spaces, and then apply the MMD

term to estimate the distance between the source and target

domains, which is expressed as

JMDA =

∥∥∥∥∥
1

ns

ns∑

i=1

φs(x
s
i )−

1

nt

nt∑

i=1

φt(x
t
i)

∥∥∥∥∥

2

H
(5)

where φs and φt are feature transformations through SFs,

ns and nt are the number of samples in source domain and

target domain respectively, and H is the feature space after

SFs.

By integrating (3) and (5) together, the final cost function

of SFMDA is given by

JSFMDA = JSF + λJMDA (6)

where JSF is used to extract sparse features, and JMDA is

employed to constrain the distance between the centroids of

different domain clusters. λ ≥ 0 controls the tradeoff be-

tween two terms. By jointly optimising these terms, the de-

signed scheme is able to achieve domain-invariant features.
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Fig. 2: Overall architecture of the proposed SFJDA for fault

classification.

2.2 Sparse Filtering with Joint Distribution Adaptation
To further match the structure of the source and target

domain differentiation and improve transfer performance,

we introduced conditional distribution adaptation based on

SFMDA. The whole architecture of SFJDA is shown in Fig.

2. After obtaining the initial parameters Ws and Wt, the

source samples are propagated forward through the dou-

ble SFs to train the classifier, which is used to predict the

pseudo labels for target domain with shared weight param-

eters. Then, the labeled source samples and target samples

with pseudo labels are exploited to adjust the network pa-

rameters, aiming to reduce the distance between the same

class samples in both domains and obtain class-separable

features.

The discrepancy between the conditional probability dis-

tributions of two domains is defined as

D(P (Y s |F(Xs) ), P (Y t
∣∣F(Xt) )) (7)

Based on Bayes’ theorem, we rewrite it as

D(
Q(F(Xs) |Y s ) · P (Y s)

P (F(Xs))
,
Q(F(Xt) |Y t ) · P (Y t)

P (F(Xt))
)

(8)

where F is the nonlinear transformation and stacked by two

SFs. In this paper, we consider that the source domain

and target domain have the same label space and assume

P (Y s) = P (Y t). When the marginal distribution is fixed, in

order to reduce the difference of condition distribution, the

optimization problem can be expressed as

minD(Q(F(Xs) |Y s ), Q(F(Xt)
∣∣Y t )) (9)

Although the target domain samples do not contain label

information, we can use the pseudo-labels of target domain

to handle the optimization problem (9), which have proved

by previous studies that the pseudo labels can achieve a bet-

ter prediction performance through continuous iterating and

updating [12]. As before, the MMD is employed to measure

the mismatch of conditional distributions. Then, we have

JCDA =
C∑

c=1

∥∥∥∥∥∥
1

nc
s

∑

xs
i
∈Xc

s

F(xs
i )−

1

nc
t

∑

xt
i
∈Xc

t

F(xt
i)

∥∥∥∥∥∥

2

H

(10)

Algorithm 1 Learning Algorithm of SFJDA

Input: Datasets Xs = {(xs
i , y

s
i )}ns

i=1 and Xt =
{

xt
i

}nt

i=1
, two

regular parameters λ and β
Output: Transferred network for target domain

1: Train a basic SFMDA network on the datasets Xs and Xt ac-

cording to (6)

2: Train a classifier with the source dataset Xs and predict the

pseudo labels Ŷ0

{
yt
i

}nt

i=1
for target samples

3: repeat
4: j = j + 1
5: Network optimization with respect to (11)

6: Update the classifier and pseudo labels Ŷj with optimized net-

work

7: until convergence or Ŷj = Ŷj−1

where C is the output category. Xc
s and Xc

t are the class c
samples in source domain and target domain. nc

s and nc
t in-

dicate the corresponding number of samples in each domain,

and nc
t is obtained by the pseudo labels ŷc(x

t
i). By optimiz-

ing (10), the discrepancy between samples of the same class

in source and target domains can be reduced, so as to achieve

conditional distribution adaptation.

By integrating (5) and (10) , the regularization term of

JDA can be written as

JJDA = λJMDA + βJCDA (11)

where λ and β are positive constants to make a trade-off be-

tween different terms, and (11) is used to further fine tune

Ws and Wt to capture class-separable features.

2.3 Training Strategy
The detailed training process is shown in Algorithm 1. In

the first step, a SFMDA network is trained with the sam-

ples of each domian, hoping to reduce the discrepancy of

marginal distribution between two domains. Secondly, the

source samples are propagated forward through the double

SFs to obtain the feature matrix, which is used to train the

classifier. Then, the trained network and classifier are used

to predict pseudo labels for target samples with the shared

weight parameters. Finally, the labeled source samples and

target samples with pseudo labels are exploited to adjust the

network parameters, aiming to match the joint distribution

of two domains.

By iterating step 2 and step 3 repeatedly, the network pa-

rameters will be updated until convergence. Meanwhile, the

final transferred network, including the optimal parameters

Ws, Wt and softmax regression, can be obtained to diagno-

sis target samples.

3 Experiments and Results

3.1 Datesets preparation
The vibration signals of the motor bearing are provided

by Case Western Reserve University (CWRU) [21], which

were collected with 12 kHz sampling frequency under four

loads (0, 1, 2 and 3 hp) from the drive-end bearing of the mo-

tor. Three different bearing conditions (roller, inner race, and

outer race) with three severity levels (0.18, 0.36, and 0.53

mm) and a normal condition, are considered in this dataset,

where the same condition at different loads is treated as one

class. There are 100 samples for each condition under one
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Fig. 3: Transfer accuracy under different tasks.
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Fig. 4: Feature visualization under T1−2.

load, and each sample contains 1200 data points. Therefore,

the dataset totally contains 10 health conditions and 4000

(100 × 4 × 10) samples.

3.2 Experimental Setup
For model training, all weights are randomly initialized,

then the network parameters are optimized by minimiz-

ing the objective functions (6) and (11). In this paper, L-

BFGS algorithm [7] is applied to optimize the network pa-

rameters. For the designed SFJDA, the optimal parame-

ters λ and β of (11) are set to 100 and 10 respectively,

which are selected by empirically searching from the set

of {0.01, 0.1, 10, 50, 100, 1000}. The output dimension of

each SF is Nout = Nin/4 with Nin = 100, and the softmax

regression is empirically fixed to 10−5. In all experiments,

65% of target samples are randomly chosen for training and

the remaining samples are used for testing, where each sam-

ple is preprocessed by segmenting with the overlap rate of

85% and whitening. To avoid the effects of randomness, all

experiments are independently conducted for 10 times. The

average classification accuracies and standard deviations on

the test dataset are reported.
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Fig. 5: Transfer accuracy under different methods.

Table 1: Performance comparision between the proposed

SFJDA and other methods

Methods Transfer tasks
No. of training

samples (%)
Testing accuracy (%)

[11] 8 70 91.92±1.30

[23] 9 75 81.20±3.81

[17] 9 75 83.10±3.12

DDC [24] 8 70 88.78±1.48

DAN 8 70 95.11±1.17

DANN [25] 8 70 95.78±1.59

SF [8] 12 65 76.14±3.26

SFMDA 12 65 90.14±2.12

SFJDA 12 65 96.82±0.84

3.3 Results and Analysis
1) Classification accuracy analysis: In this section, twelve

different transfer tasks are constructed to evaluate the pro-

posed method on motor bearing dataset. Fig. 3 shows the ac-

curacies and standard deviation under different tasks, where

Ti−j represents the transfer task from load i (source domain)

to load j (target domain). As shown in Fig. 3, the transfer ac-

curacy of the proposed method is over 92% in all tasks, and

the average test accuracy is above 96%, which reveals that

the designed scheme can learn domain-invariant features. In

addition, feature visualization is performed to further evalu-

ate the superiority of the extracted features. Specifically, the

t-distributed stochastic neighbor embedding (t-SNE) tech-

nology [22] is employed to reduce dimensionality of feature

representations for visualization. We randomly choose the

transfer task from load 1 to load 2, and the clustering results

of target domain are displayed in Fig. 4. One can see that

the designed SFJDA can better cluster the same categories

and separate different categories in the target domain. These

results demonstrate the proposed strategy is able to capture

domain-invariant and class-separate features.

2) Comparison with other mainstream methods: To fur-

ther demonstrate the effectiveness of the proposed SFJDA,

eight popular approaches are selected to handle same

datasets for comparison, including full featur layers align-

ment based on MMD (FMMD) [11], transfer component

analysis (TCA) [23], basic convolutional network without
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domain adaptation (CNN) [17], deep domain confusion

(DDC) [24], deep adaptation network (DAN), domain adver-

sarial neural network (DANN) [25], etc. The experimental

settings of these methods are determined according to the

related literature. The comparison results are summarized

in Table 1. One can see that compared with other schemes,

the proposed SFJDA can achieve a better average diagno-

sis accuracy of 96.82±0.84% with fewer unlabeled training

samples under twelve different transfer tasks, which also in-

dicates that the designed method can obtain similar perfor-

mance with deep transfer network. In addition, although SF

has been proved to achieve remarkable diagnostic perfor-

mance [7], the transfer accuracy of SF will decrease when

there are no labeled samples available in the target domain

and domain adaptation is not considered. By introducing

joint distribution adaptation, the transfer accuracy is signif-

icantly improved compared to SF and SFMDA. Moreover,

the test accuracy of SFJDA and other methods under nine

transfer tasks is shown in Fig. 5, which can be seen that the

proposed scheme has better stability and adaptability for var-

ious transfer tasks and is expected to meet more complicated

diagnostic requirements.

4 Conclusions

In this paper, a novel SFJDA model is designed for intel-

ligent fault diagnosis, which is formed by stacking the sub-

spaces obtained by double SFs. Compared with some ex-

isting representation learning methods, the proposed SFJDA

can capture domain-invariant features with simpler networks

and fewer parameters. Moreover, it can solve the problem of

performance degradation when using SF to diagnose unla-

beled target samples directly. To optimize the network pa-

rameters, an easy-to-implement learning strategy is devel-

oped by continuously iterating and updating the pseudo la-

bels. Experimental results have verified the effectiveness of

the proposed method in fault diagnosis.
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