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Abstract
Sparse variational Gaussian processes (GPs) con-
struct tractable posterior approximations to GP
models. At the core of these methods is the as-
sumption that the true posterior distribution over
training function values f and inducing variables u
is approximated by a variational distribution that
incorporates the conditional GP prior p(f|u) in its
factorization. While this assumption is considered
as fundamental, we show that for model training
we can relax it through the use of a more general
variational distribution q(f|u) that depends on N
extra parameters, where N is the number of train-
ing examples. In GP regression, we can analyti-
cally optimize the evidence lower bound over the
extra parameters and express a tractable collapsed
bound that is tighter than the previous bound. The
new bound is also amenable to stochastic opti-
mization and its implementation requires minor
modifications to existing sparse GP code. Further,
we also describe extensions to non-Gaussian like-
lihoods. On several datasets we demonstrate that
our method can reduce bias when learning the
hyperparameters and can lead to better predictive
performance.

1. Introduction
Gaussian processes (GPs) are nonparametric models for
learning functions using Bayesian learning. Thanks to their
flexibility and ability to quantify uncertainty, GPs have
found many applications in machine learning (Rasmussen &
Williams, 2006), spatial modeling (Cressie, 1993), computer
experiments (O’Hagan, 1978; Gramacy, 2020), Bayesian
optimization (Jones et al., 1998; Garnett, 2023), robotics
and control (Deisenroth & Rasmussen, 2011), unsupervised
learning (Lawrence, 2005) and others.

Despite the numerous applications, GPs suffer from O(N3)
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time cost and O(N2) storage where N is the number of
training examples. This has originated a large body of
research on scalable or sparse GP methods expanded in sev-
eral decades; see e.g., Chapter 8 in Rasmussen & Williams
(2006) for an early review and Heaton et al. (2018); Liu
et al. (2020); Leibfried et al. (2022) for recent treatments.
An important class of methods bases an approximation on
a small set of M ≪ N inducing points (Csato & Opper,
2002; Lawrence et al., 2002; Seeger et al., 2003; Snelson
& Ghahramani, 2006; Quiñonero-Candela & Rasmussen,
2005; Banerjee et al., 2008; Finley et al., 2009; Titsias, 2009;
Hensman et al., 2013; Bui et al., 2017; Burt et al., 2020) that
reduce the time complexity to O(NM2) and the storage to
O(NM).

Among inducing point methods, the sparse variational Gaus-
sian process (SVGP), introduced for standard regression
(Titsias, 2009), applies variational inference to obtain a pos-
terior approximation and selects hyperparameters and induc-
ing points by maximizing an evidence lower bound. Unlike
the prior approximation framework (Quiñonero-Candela &
Rasmussen, 2005), SVGP leaves the GP prior unchanged
and instead it reduces the cost to O(NM2) by imposing a
special structure on the variational distribution. This frame-
work has been extended to stochastic gradient optimization
(Hensman et al., 2013) and non-Gaussian likelihoods (Chai,
2012; Hensman et al., 2015; Lloyd et al., 2015; Dezfouli
& Bonilla, 2015; Sheth et al., 2015). Also, it has been ex-
plained as KL minimization between stochastic processes
(de G. Matthews et al., 2016).

An important aspect of the SVGP method is that it uses a
special form for the variational distribution. It approximates
the exact posterior distribution p(f,u|y) over the training
function values f and the inducing variables u (see Section 2
for precise definitions) by a variational distribution of the
form q(f,u) = p(f|u)q(u), where q(u) is some optimiz-
able distribution over the inducing variables, while p(f|u)
is the conditional GP prior. This special form of the varia-
tional approximation seems to be fundamental, and it has
been applied also to more complex GP models, such as
those with multiple outputs (Álvarez et al., 2010; Nguyen &
Bonilla, 2014; Yousefi et al., 2019), uncertain inputs (Titsias
& Lawrence, 2010; Damianou et al., 2016) and multiple
layers (Damianou & Lawrence, 2013; Salimbeni & Deisen-
roth, 2017). However, an open question regarding the SVGP
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framework is whether this particular form of variational dis-
tribution is really necessary to obtain scalable computations.
The answer we give in this paper is that “it is not”, since at
least for training a GP model it can be relaxed.

To this end, we derive new variational bounds for train-
ing sparse GP regression models by replacing p(f|u) in
the variational distribution with a more general conditional
distribution q(f|u). This q(f|u) depends on N additional pa-
rameters (on top of the parameters of p(f|u)), i.e., as many
as the training examples, and it is constructed to enable bet-
ter covariance approximation of the underlying true factor
p(f|u, y). We show how to analytically optimize over the
N parameters and obtain a better posterior approximation
together with a tighter collapsed evidence lower bound. The
new bound is also amenable to stochastic gradient optimiza-
tion, and its simple form suggests that it can be implemented
with minor modifications to existing sparse GP code. We
also describe extensions of the method to non-Gaussian like-
lihoods. Furthermore, we point out the concurrent work of
Bui et al. (2025) who derived similar sparse GP approxima-
tions and variational training objectives by using the same
form for the q(f|u) distribution.

The remainder of the paper is as follows. Section 2 pro-
vides an overview of GPs and the variational approach to
sparse GPs using inducing points. Section 3 derives the new
evidence lower bounds for training. Section 4 discusses
connections with previous works. Section 5 presents experi-
ments using several datasets showing that the new bounds
can reduce underfitting bias and can lead to better predictive
performance. Section 6 concludes with a discussion and
suggestions for future work.

2. Background
A GP is a distribution over functions specified by a mean
function m(x) and a covariance or kernel function k(x,x′),
where the kernel function is parametrized by θ. By assuming
that m(x) = 0 we denote a GP draw as

f(x) ∼ GP(0, k(x,x′)).

For a finite set of inputs X = {xn}Nn=1 the distribution over
the function values f = {fn}Nn=1 (stored as N × 1 vector
with fn := f(xn)) is the multivariate Gaussian p(f) =
N (f|0,Kff) where the N × N covariance matrix Kff has
entries [Kff]ij = k(xi,xj).

We consider standard GP regression where we are given a
set of training inputs X and corresponding noisy outputs y =
{yn}Nn=1 where yn ∈ R. Conditionally on the latent values
f, these outputs follow a factorized Gaussian likelihood,
p(y|f) =

∏N
n=1 N (yn|fn, σ2) = N (y|f, σ2I). The joint

distribution over outputs y and latent values f is

p(y|f)p(f) = N (y|f, σ2I)N (f|0,Kff). (1)

To learn the hyperparameters (θ, σ2) we can maximize the
log marginal likelihood which is analytically available,

log p(y) =
∫

p(y|f)p(f)df = logN (y|0,Kff + σ2I). (2)

After training we can perform predictions at test inputs X∗
by first computing the posterior over the corresponding test
function values f∗:

p(f∗|y) =
∫

p(f∗|f)p(f|y)df = (3)

N (f∗|Kf∗f(Kff+σ2I)−1f,Kf∗f∗−Kf∗f(Kff+σ2I)−1Kff∗)

and then writing the predictive density as p(y∗|y) =∫
N (y∗|f∗, σ2I)p(f∗|y)df∗, which is the same as the above

Gaussian but with σ2I added to the covariance.

While the log marginal likelihood and predictive density
have closed-form expressions, they require the inversion of
Kff + σ2I which costs O(N3) and it is prohibitive for large
datasets. Next we review methods using inducing points
and particularly the variational approach (Titsias, 2009) that
our method in Section 3 improves upon.

2.1. Sparse Variational Gaussian Process (SVGP)

The idea of inducing points is to base a GP approximation on
a smaller set of M ≪ N function values; see e.g., Csato &
Opper (2002); Seeger et al. (2003); Snelson & Ghahramani
(2006); Quiñonero-Candela & Rasmussen (2005). Snelson
& Ghahramani (2006) introduced pseudo inputs by instanti-
ating extra GP function values u = {f(zm)}Mm=1 evaluated
at locations Z = {zm}Mm=1 that can be optimized freely
with gradient-based methods. However, the GP prior modifi-
cation procedure (Quiñonero-Candela & Rasmussen, 2005;
Snelson & Ghahramani, 2006) does not result in a rigorous
approximation to the GP model. An alternative variational
inference method (Titsias, 2009), next referred to as SVGP1,
does not modify the GP prior but instead it augments the
model with extra function values u:

p(y, f,u)=p(y|f)p(f|u)p(u) augmented joint (4)

p(f|u)=N (f|KffK−1
uu u,Kff−KfuK−1

uu Kuf) cond. GP
(5)

p(u)=N (u|0,Kuu) inducing GP prior (6)

where Kuu is the M ×M covariance matrix on the induc-
ing inputs Z, Kfu is the N ×M cross covariance between
points in X and Z, while Kuf = K⊤

fu. SVGP approximates
the exact posterior p(f,u|y) by a variational distribution
q(f,u) through the minimization of KL[q(f,u)||p(f,u|y)].

1Another common name for this method is Variational Free
Energy (VFE); see Bui et al. (2017); Bauer et al. (2016); Liu et al.
(2020).
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A critical assumption is the following choice for q:

q(f,u) = p(f|u)q(u), (7)

where q(u) is an optimizable M -dimensional variational
distribution, while p(f|u) is the same conditional GP prior
from Equation (5) that appears in the joint in (4). The KL
minimization is expressed as the maximization of an evi-
dence lower bound (ELBO) on the log marginal likelihood,

log p(y) ≥
∫

p(f|u)q(u) log p(y|f)���p(f|u)p(u)

���p(f|u)q(u)
dfdu

=

∫
q(u) log

exp{
∫
p(f|u) log p(y|f)df}p(u)

q(u)
du.

If we optimize over q(u) and obtain the optimal choice
q∗(u) ∝ exp

{∫
p(f|u) log p(y|f)df

}
p(u), then we can sub-

stitute this q∗(u) in the last line above and express the so
called collapsed bound, having the general form

log p(y)≥F=log

∫
exp

{∫
p(f|u) log p(y|f)df

}
p(u)du

which for the standard GP regression model takes the form

F = logN (y|0,Qff + σ2I)︸ ︷︷ ︸
DTC log lik

− 1

2σ2
tr (Kff − Qff)︸ ︷︷ ︸

trace term

, (8)

where Qff = KfuK−1
uu Kuf is the M-rank Nystróm matrix.

The first term in the bound is the deterministic training condi-
tional (DTC) log likelihood (Seeger et al., 2003; Quiñonero-
Candela & Rasmussen, 2005) while the second is a regular-
ization term which, since tr(Kff − Qff) ≥ 0, promotes Qff
to stay close to Kff. The inducing points Z can be learned
as variational parameters by maximizing the bound jointly
with the hyperparameters (θ, σ2), which requires O(NM2)
operations per optimization step. Hensman et al. (2013) fur-
ther reduced the operations to O(M3) per optimization step
by applying stochastic minibatch training for maximizing
the uncollapsed version of the bound; see Section 3.2.

To obtain the form of the GP posterior over any test function
values f∗ we can first write the exact form

p(f∗|y) =
∫

p(f∗|f,u)p(f,u|y)dfdu, (9)

where p(f∗|f,u) is the conditional GP of f∗ given training
function values f and inducing values u while p(f,u|y) is
the posterior over (f,u) written also as

p(f,u|y) = p(f|u, y)p(u|y). (10)

The SVGP method approximates p(f,u|y) by q(f,u) and
therefore by plugging in this q into (9) we obtain

q(f∗|y)=
∫

p(f∗|f,u)p(f|u)q(u)dfdu=
∫

p(f∗|u)q(u)du,

(11)

where p(f∗|u) =
∫
p(f∗|f,u)p(f|u)df comes from the GP

consistency. For completeness, in Appendix A we include
further details about SVGP such as a derivation of the col-
lapsed bound and the Gaussian form of the optimal q∗(u).

We conclude this review of SVGP for regression with a
couple of remarks that will be useful next.
Remark 2.1. The approximation becomes exact when Kff =
Qff and the collapsed bound matches the log marginal like-
lihood in (2). However, to obtain good approximations we
may need sufficiently large number of inducing points (Burt
et al., 2020). Otherwise the bound will cause underfitting.
For instance, as studied by Bauer et al. (2016) and Titsias
(2009) the SVGP bound tends to overestimate the noise
variance σ2.
Remark 2.2. SVGP approximates p(f|u, y) in the exact
posterior in (10) by the conditional GP p(f|u), in the
variational posterior in (7), while q(u) is treated opti-
mally by KL minimization. If p(f|u, y) = p(f|u) then
KL[q(f,u)||p(f,u|y)] = 0 and the approximation becomes
exact, meaning q(f∗|y)=p(f∗|y) for any f∗ = f∗(X∗).

3. Proposed Method: Tighter Bounds
Remark 2.1 suggests that it would be useful to tighten the
collapsed bound in order to reduce underfitting bias and
match better exact GP training. Remark 2.2 suggests that
one way to tighten the bound is to replace p(f|u), in the
variational approximation in (7), with another distribution
that can better approximate p(f|u, y). Next we develop a
method that does this while keeping the cost unchanged.

Let us write the exact form of p(f|u, y). By noting that this
quantity is the exact posterior over f in a GP regression
model with joint p(y|f)p(f|u) we conclude that this is

p(f|u, y) = N
(

f|m(y,u), (K̃
−1

ff +
1

σ2
I)−1

)
,

where m(y,u) = E[f|u]+K̃ff(K̃ff+σ2I)−1(y−E[f|u]) with
E[f|u] = KfuK−1

uu u and K̃ff = Kff − Qff. Note that under
this notation, p(f|u) = N (f|E[f|u], K̃ff). We will construct
a new q(f|u) that keeps the same mean E[f|u] as p(f|u) but
it replaces K̃ff with a closer approximation to the covariance
(K̃

−1

ff + 1
σ2 I)−1 of p(f|u, y). We first write this matrix as

(K̃
−1

ff +
1

σ2
I)−1 = K̃

1
2

ff (I +
1

σ2
K̃ff)

−1K̃
1
2

ff . (12)

Then we approximate the inverse (I + 1
σ2 K̃ff)

−1 by a di-
agonal matrix V = diag(v1, . . . , vN ) of N variational pa-
rameters vi > 0. In other words, in the initial q(f,u) =
p(f|u)q(u) we will replace p(f|u) by

q(f|u) = N (f|KfuK−1
uu u, (Kff − Qff)

1
2 V(Kff − Qff)

1
2 ).
(13)
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The ELBO now is written as∫
q(f|u)q(u) log p(y|f)p(f|u)p(u)

q(f|u)q(u)
dfdu =∫

q(u)
{
log

eEq(f|u)[log p(y|f)]p(u)
q(u)

−KL[q(f|u)||p(f|u)]
}
du

and the challenge is to see whether KL[q(f|u)||p(f|u)] and
Eq(f|u)[log p(y|f)] are computable in O(NM2) time. We
have the following results (proofs are in Appendix B).

Lemma 3.1. KL[q(f|u)||p(f|u)] = 1
2

∑N
i=1(vi−log vi−1).

Lemma 3.2. Let us denote the diagonal elements of Kff −
Qff as kii − qii for i = 1, . . . , N . Then

Eq(f|u)[log p(y|f)]

=logN (y|KfuK−1
uu u, σ2I)− 1

2σ2

N∑
i=1

vi(kii − qii). (14)

By combining the two lemmas the full bound is written as∫
q(u) log

N (y|KfuK−1
uu u, σ2I)p(u)
q(u)

du

− 1

2

N∑
i=1

{
vi

(
1 +

kii − qii
σ2

)
− log vi − 1

}
. (15)

Proposition 3.3. Maximizing the bound in (15) with respect
to q(u) and each vi results in the optimal settings q∗(u) ∝
N (y|KfuK−1

uu u, σ2I)p(u) and v∗i =
(
1 + kii−qii

σ2

)−1

. By
substituting these values back to (15) we obtain

Fnew=logN (y|0,Qff+σ2I)−1

2

N∑
i=1

log

(
1 +

kii − qii
σ2

)
.

(16)

The first term is the DTC log likelihood as in the original
bound in (8), but the regularization term makes the bound
tighter, i.e., log p(y) ≥ Fnew ≥ F , due to the inequality
log(a + 1) ≤ a. Also since log(a + 1) < a for all a >
0, if Kff ̸= Qff (so there is at least one kii − qii > 0),
then Fnew > F . This means that Fnew is strictly better
than F unless both bounds match exactly the log marginal
likelihood.

Clearly, Fnew has O(NM2) cost and its implementation
requires a minor modification to the initial bound. The opti-
mal q∗(u) is the same as in the initial SVGP method, while
an interpretation of the optimal v∗i values is the following.
Remark 3.4. The diagonal matrix V∗ (with the optimal v∗i
values in its diagonal) is the inverse obtained after zeroing
out the off-diagonal elements of I + 1

σ2 (Kff − Qff), i.e.,
V∗ = diag[I + 1

σ2 (Kff − Qff)]
−1 which approximates (I +

1
σ2 (Kff − Qff))

−1 in Equation (12). Also note that in the
ordering of positive definite matrices it holds V∗ ≤ I, from
which it follows that q(f|u) has smaller covariance than
p(f|u) and more accurately approximates the covariance of
p(f|u, y). The latter as implied by Equation (12), has also
smaller covariance than p(f|u).

3.1. Predictions

To perform predictions we will be using the same pre-
dictive posterior from Equation (11), i.e., q(f∗|y) =∫
p(f∗|u)q(u)du, where the optimal q∗(u) (see Ap-

pendix A) is exactly the same as in the standard SVGP
method. The alternative expression (and strictly speaking
more appropriate since our variational approximation is
q(f|u)q(u)) is given by

qhigh cost(f∗|y)=
∫

p(f∗|f,u)q(f|u)q(u)dfdu. (17)

But this is expensive since it has cost O(N3). The reason
is that

∫
p(f∗|f,u)q(f|u)df does not simplify anymore since

q(f|u) is not the conditional GP, which means that p(f∗|f,u)
and q(f|u) are not consistent under the GP prior. Never-
theless, q(f∗|y) and qhigh cost(f∗|y) have exactly the same
mean, since q(f|u) and p(f|u) have the same mean, but the
tractable q will give higher variances than qhigh cost.

3.2. Stochastic Minibatch Training

The initial SVGP method (Titsias, 2009) does the training
in a batch mode where all data are used in each optimiza-
tion step. Stochastic optimization using minibatches was
proposed by Hensman et al. (2013). Here, we apply our new
approximation to this stochastic method.

We start from Equation (15), and substitute only the optimal
values for each vi without using the optimal setting for q(u).
This results in the uncollapsed bound

N∑
i=1

{
Eq(u)[logN (yi|kfiuK−1

uu u, σ2)]

− 1

2
log

(
1 +

kii − qii
σ2

)}
− KL[q(u)||p(u)], (18)

where kfiu is the 1×M vector of all kernel values between
the training input xi and the inducing inputs Z, while the
expectation under q(u) in the first line is analytic; see Hens-
man et al. (2013). The above bound is strictly better than
the previous uncollapsed bound in Hensman et al. (2013),
since − 1

2σ2 (kii − qii) ≤ − 1
2 log

(
1 + kii−qii

σ2

)
. Based on

the above we can apply stochastic gradient methods to op-
timize q(u) and the hyperparameters by subsampling data
minibatches to deal with the sum over the N training points,
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i.e., at each iteration we use the stochastic ELBO:

N

|B|
∑
i∈B

{
Eq(u)[logN (yi|kfiuK−1

uu u, σ2)]

− 1

2
log

(
1 +

kii − qii
σ2

)}
− KL[q(u)||p(u)], (19)

where B denotes a minibatch.

The most common parametrization of q(u) is q(u) =
N (u|m,S) where the mean vector m and covariance
matrix S are variational parameters. Another popular
parametrization, for instance used as the default in GPflow
(de G. Matthews et al., 2017), is the whitened parametriza-
tion that we consider in our experiments. For any choice of
q(u), the new bound is always tighter than its correspond-
ing previous uncollapsed bound and requires minor mod-
ifications to existing implementations, i.e., to replace the
previous term − 1

2σ2 (kii − qii) with − 1
2 log

(
1 + kii−qii

σ2

)
.

3.3. Non-Gaussian Likelihoods

Consider a factorized likelihood p(y|f) =
∏N

i=1 p(yi|fi)
where p(yi|fi) is non-Gaussian, e.g., Bernoulli for binary
outputs or Poisson for counts. In this non-conjugate set-
ting the sparse variational GP approximation imposes the
same form for the variational distribution, i.e., q(f,u) =
p(f|u)q(u) where p(f|u) is the conditional GP prior. As
shown in several works (Chai, 2012; Hensman et al., 2015;
Lloyd et al., 2015; Dezfouli & Bonilla, 2015; Sheth et al.,
2015), this leads to the bound

N∑
i=1

Eq(fi)[log p(yi|fi)]− KL[q(u)||p(u)], (20)

where q(fi) =
∫
p(f|u)q(u)df−idu is the marginal over

fi := f(xi) with respect to the approximate posterior
q(f,u). Given that q(u) is Gaussian with mean m and co-
variance S, q(fi) can be computed fast in O(M2) time (after
precomputing the Cholesky factorization of Kuu) as follows

q(fi) = N (fi|kfiuK−1
uu m, kii − qii + kfiuK−1

uu SK−1
uu kufi).

(21)
For the discussion next it is useful to observe that the effi-
ciency when computing q(fi) comes from p(f|u) being a
conditional GP prior, so expressing p(fi|u) is trivial.

Suppose now that we wish to impose the more struc-
tured variational approximation q(f,u) = q(f|u)q(u) where
q(u) = N (u|m,S) and q(f|u) is given by Equation (13).
The bound can be written as

N∑
i=1

Eq(fi)[log p(yi|fi)]−
1

2

N∑
i=1

(vi − log vi − 1)

− KL[q(u)||p(u)], (22)

where we used the fact that KL[q(f|u)||p(f|u)] is obtained
from Lemma 3.1. The above bound is not computationally
efficient since the marginal q(fi) =

∫
q(f|u)q(u)df−idu

has O(N3) cost. This is because the marginalization
q(fi|u) =

∫
q(f|u)df−i cannot be trivially expressed, due to

the complex structure of the covariance (Kff−Qff)
1
2 V(Kff−

Qff)
1
2 in q(f|u). To overcome this, we will use a simplified

version of q(f|u), in which we choose a spherical V = vI
with v > 0. Then, things become tractable.

Proposition 3.5. Let q(f|u) = N (f|KfuK−1
uu u, v(Kff−Qff))

for v > 0. Then (22) is computed in O(NM2) time as

N∑
i=1

Eq(fi)[log p(yi|fi)]−
N

2
(v − log v − 1)

− KL[q(u)||p(u)], (23)

where the marginal is q(fi) = N (fi|kfiuK−1
uu m, v(kii −

qii) + kfiuK−1
uu SK−1

uu kufi).

The parameter v multiplies the term kii − qii inside the
variance of q(fi), and it also appears in the regularization
term −N

2 (v − log v − 1). If v = 1 the bound in (23) re-
duces to (20), while by optimizing over v it can become a
tighter bound. The optimization of v is done jointly with the
remaining parameters m,S,Z, θ using gradient-based meth-
ods. Stochastic gradients can also be used by subsampling
minibatches to deal with the sum

∑N
i=1 Eq(fi)[log p(yi|fi)]

and reduce the complexity to O(M3).

The above framework can be extended to non-conjugate
models having multiple functions, such as multi-class GP
classification, by introducing a separate v parameter per
GP function. In our experiments, we consider only single-
function non-conjugate GP models and we leave the experi-
mentation with more complex models for future work.

4. Related Work
Several recent works on sparse GPs focus on constructing
efficient inducing points, such as works that place inducing
points on a grid (Wilson & Nickisch, 2015; Evans & Nair,
2018; Gardner et al., 2018), construct inter-domain Fourier
features (Lázaro-Gredilla & Figueiras-Vidal, 2009; Hens-
man et al., 2018), provide Bayesian treatments to inducing
inputs (Rossi et al., 2021) or use nearest neighbor sparsity
structures (Tran et al., 2021; Wu et al., 2022). There exist
also algorithms that allow to increase the number of induc-
ing points using the decoupled method (Cheng & Boots,
2017; Havasi et al., 2018) and the related orthogonally de-
coupled approaches (Salimbeni et al., 2018; Shi et al., 2020;
Sun et al., 2021; Tiao et al., 2023). Our contribution is
orthogonal to these previous methods since we relax the
conditional GP prior assumption in the posterior variational
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approximation. This means that our method could be used
to improve previous variational sparse GP approaches, as
the ones mentioned above as well as earlier schemes that
select inducing points from the training inputs (Cao et al.,
2013; Chai, 2012; Schreiter et al., 2016).

Zhu et al. (2023) proposed inducing points GP approxima-
tions that change the conditional GP p(f|u) in the variational
approximation to a modified conditional GP that uses differ-
ent kernel hyperparameters in its mean vector. Note that our
method differs since our q(f|u) directly tries to construct a
better approximation to the exact posterior p(f|u, y), using
the extra V variational parameters, without changing the
kernel hyperparameters; see Section 3. More importantly,
our method has O(NM2) cost, while the ELBO in Zhu et al.
(2023) (see Section 3.1 and Appendix A.1 in their paper)
has cubic cost O(N3) since it depends on the inverse of
Kff − Qff (denoted as K̃nn in their paper).

Artemev et al. (2021) derived an upper bound on the log
determinant log |Kff + σ2I| in the exact GP log marginal
likelihood and obtained the following tighter upper bound
to the initial trace regularization term − 1

2σ2 tr (Kff − Qff):

− N

2
log

(
1 +

tr(Kff − Qff)

Nσ2

)
. (24)

Our bound is tighter since from Jensen’s inequality it holds
−N

2 log
(
1 + tr(Kff−Qff)

Nσ2

)
≤ − 1

2

∑N
i=1 log

(
1 + kii−qii

σ2

)
.

Further, the above regularization term can be interpreted
as a restricted special case of our method, obtained through
a q(f|u) from Equation (13) where the diagonal matrix V
is constrained to be spherical V = vI; see Appendix B.4.
Finally note, that unlike (24) (where the sum is inside the
logarithm) our bound allows to apply stochastic optimiza-
tion as described in Section 3.2.

Finally, Bui et al. (2017) used power expectation propaga-
tion that minimizes α-divergence and derived an approxi-
mation to the log marginal likelihood that interpolates be-
tween the FITC (α = 1) log marginal likelihood (Snelson
& Ghahramani, 2006; Quiñonero-Candela & Rasmussen,
2005) and the standard collapsed variational bound in (8)
(α → 0). This approximation uses the regularization term

− 1− α

2α

N∑
i=1

log

(
1 + α

kii − qii
σ2

)
. (25)

This is different from ours since there is no value of α such
that the two regularization terms will become equal. For
example, note that for α → 0, Equation (25) reduces to
− 1

2σ2 tr (Kff − Qff) as discussed in Bui et al. (2017).

5. Experiments
5.1. Illustration in 1-D Regression

In the first regression experiment we consider the 1-D Snel-
son dataset (Snelson & Ghahramani, 2006). We took a
subset of 40 examples of this dataset and we fitted the
exact GP with the squared exponential kernel k(x, x′) =

σ2
f exp(−

(x−x′)2

2ℓ2 ). We also fitted sparse variational GPs
with either the standard collapsed bound (Titsias, 2009)
from Equation (8) (SGPR) or the new collapsed bound from
Equation (16) (SGPR-new). Both sparse GP methods use
seven inducing points initialized at the same values as shown
in Figure 1. All methods are initialized to the same hyper-
parameter values; see Appendix D.

Figure 1 shows the results. Note that both SGPR and SGPR-
new find similar inducing point locations. But SGPR-new,
as a tighter bound (see panel (e)), is able to reduce some bias
when estimating the hyperparameters since it finds a noise
variance σ2 closer to the one by exact GP (see panel (f)).
This results in better predictions that match better the exact
GP, as shown by the comparative visualization in panel (d).
From panel (d), observe that both the mean and variances
of SGPR-new are closer to the exact GP than SGPR.

5.2. Medium Size Regression Datasets

To further investigate the findings from the previous section,
we consider three medium size real-world UCI regression
datasets (Pol, Bike, and Elevators) with roughly 10k train-
ing data points each, and for which we can still run the
exact GP. We choose the ARD squared exponential kernel
k(x,x′) = σ2

f exp(−
∑d

i=1
(xi−x′

i)
2

2ℓ2i
). We run all three

previous methods (Exact GP, SGPR, SGPR-new) five times
with different random train-test splits; see Appendix D for
experimental details. We also include in the comparison
a fourth method (discussed in Related Work) which is the
Artemev et al. (2021)’s bound (SGPR-artemev) that does
training using the collapsed bound from Equation (36) in
Appendix B.4. All sparse GP methods use M = 1024 or
M = 2048 inducing points initialized by k-means. Figure
2 (in the first two lines) shows the objective function and
the noise variance σ2 across 10k optimization steps using
Adam with base learning rate 0.01 and for M = 1024. For
SGPR-new, the third line in Figure 2 shows histograms
of the estimated final values of the optimal vi variational
parameters. Figure 4 in Appendix D.1 shows the correspond-
ing plots for M = 2048. We observe that for Pol and Bike,
SGPR-new matches closer the exact GP training than SGPR
and SGPR-artemev. Specifically, SGPR-new gives higher
ELBO and estimates the noise variance with reduced under-
fitting bias. For the Elevators dataset, M = 1024 inducing
points were enough for sparse GP methods to closely match
exact GP training. This happens because in this case Qff
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(a) (b) (c)

(d) (e) (f)

Figure 1. First row shows posterior predictions (means with 2-standard deviations) after fitting the exact GP (a), and the sparse GPs with
either the standard collapsed SGPR bound (b) or the proposed SGPR-new collapsed bound (c). In panels (b),(c) the seven inducing points
are initialized to the same random locations (shown on top with crosses) while the optimized values are shown at the bottom. Panel
(d) superimposes all predictions in order to provide a more comparative visualization. Finally, panel (e) shows the ELBO (or exact log
marginal likelihood for the exact GP) values across optimization steps while (f) shows the corresponding values for the noise variance σ2.

Table 1. Average test log-likelihoods for the medium size regres-
sion datasets. The numbers in parentheses are standard errors.

Pol Bike Elevators

Exact GP 1.089(0.011) 3.105(0.022) −0.386(0.001)

M = 1024
SGPR 0.821(0.008) 2.176(0.020) −0.387(0.001)
SGPR-artemev 0.859(0.007) 2.199(0.024) −0.387(0.001)
SGPR-new 0.920(0.006) 2.326(0.026) −0.387(0.001)

M = 2048
SGPR 0.958(0.008) 2.337(0.030) −0.387(0.001)
SGPR-artemev 0.976(0.008) 2.356(0.029) −0.387(0.001)
SGPR-new 0.998(0.008) 2.511(0.021) −0.387(0.001)

accurately approximates Kff, i.e., the elements kii − qii get
close to zero. For this latter dataset, observe that since the
kii−qii values are close to zero the corresponding vi values
are concentrated around one as shown by the corresponding
(right-most) histogram in Figure 2.

Table 1 reports test log-likelihood predictions which show
that SGPR-new outperforms SGPR and SGPR-artemev.

5.3. Large Scale Regression Datasets

We consider 8 regression datasets, with training data sizes
ranging from tens of thousands to millions. We implemented
the stochastic optimization versions of the two scalable
sparse GP methods: (i) the one that trains using the previous
uncollapsed bound from Hensman et al. (2013) (SVGP) and
(ii) our new bound from Equation (18) (SVGP-new). We
denote these stochastic optimization versions by SVGP to
distinguish them from the corresponding SGPR methods
that use the more expensive collapsed bounds. We run the
SVGP methods with M = 1024 and 2048 inducing points,
Matern3/2 kernel with common lengthscale, minibatch size
1024, Adam with base learning rate 0.01 and 100 epochs.
These experimental settings match the ones in Wang et al.
(2019) and Shi et al. (2020) as further described in Ap-
pendix D.2. Table 2 reports the test log likelihood scores for
all datasets. In the comparison we also included two strong
baselines from Table 2 in Shi et al. (2020), i.e., SOLVE-GP
and ODVGP (Salimbeni et al., 2018).

From the predictive log likelihood scores in Table 2 and
also the corresponding Root Mean Squared Error (RMSE)
scores reported in Table 4 in Appendix D.2, we can conclude
that training with the new SVGP-new variational bound
provides a clear improvement compared to training with the
previous SVGP bound. Note that this improvement requires
no change in the computational cost, and in fact there is

7
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Figure 2. The three plots in each column correspond to the same dataset: first row shows the ELBO (or log-likelihood) for all four
methods (Exact GP, SGPR, SGPR-new and SGPR-artemev) with the number of iterations, and the plot in the second row shows the
corresponding values for σ2. SGPR methods use M = 1024 inducing points initialized by k-means. For these two first lines we plot
the mean and standard error after repeating the experiment five times with different train-test dataset splits; see Appendix D for further
experimental details. For one of the runs of SGPR-new, the third line shows histograms for the estimated values of the variational

parameters vi =
(
1 + kii−qii

σ2

)−1

.

only a minor modification needed to be done in an existing
SVGP implementation in order to run SVGP-new.

5.4. Poisson Regression

We consider a non-Gaussian likelihood example where the
output data are counts modeled by a Poisson likelihood
p(y|f) =

∏N
i=1

efi

yi!
e−efi where the log intensities values

follow a GP prior. For such case the new variational approx-
imation includes a single additional variational parameter
denoted by v, which is optimized together with the remain-
ing parameters; see Section 3.3. We will compare training
with the new ELBO from Equation (23) (we denote this
method by SVGP-new) with the standard ELBO that is
obtained by restricting v = 1 (SVGP).

Firstly, we consider an artificial example of 50 observations
with 1-D inputs placed in the grid [−10, 10] where counts

are generated using Poisson intensities given by λ(x) =
3.5 + 3 sin(x). We train the GP model with the SVGP
bound and the proposed SVGP-new bound using 6 inducing
points initialized to the same values for both methods; see
Appendix D.3. Figure 3(left) shows the observed counts
together with the predictions obtained by SVGP, SVGP-new
and non-sparse variational GP (Full GP). From this figure
and from the ELBO values, we observe that SVGP-new
remains closer to Full GP.

Secondly, we consider a real dataset (NYBikes) about bicy-
cles crossings going over bridges in New York City2. This
dataset is a daily record of the number of bicycles crossing
into or out of Manhattan via one of the East River bridges
over a period 9 months. The data contains 210 points and

2This dataset is freely available from https:
//www.kaggle.com/datasets/new-york-city/
nyc-east-river-bicycle-crossings.
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Table 2. Test log-likelihoods for the large scale regression datasets with standard errors in parentheses. Best mean values are highlighted.
Kin40k Protein KeggDirected KEGGU 3dRoad Song Buzz HouseElectric

N 25,600 29,267 31,248 40,708 278,319 329,820 373,280 1,311,539
d 8 9 20 27 3 90 77 9

From Shi et al. (2020)
ODVGP 1024 + 1024 0.137(0.003) -0.956(0.005) -0.199(0.067) 0.105(0.033) -0.664(0.003) -1.193(0.001) -0.078(0.001) 1.317(0.002)

1024 + 8096 0.144(0.002) -0.946(0.005) -0.136(0.063) 0.109(0.033) -0.657(0.003) -1.193(0.001) -0.079(0.001) 1.319(0.004)
SOLVE-GP 1024 + 1024 0.187(0.002) -0.943(0.005) 0.973(0.003) 0.680(0.003) -0.659(0.002) -1.192(0.001) -0.071(0.001) 1.333(0.003)

SVGP 1024 0.108(0.002) −0.969(0.006) 1.042(0.009) 0.699(0.005) −0.704(0.003) −1.192(0.001) −0.069(0.002) 1.383(0.002)
2048 0.237(0.002) −0.944(0.006) 1.050(0.009) 0.703(0.005) −0.650(0.003) −1.190(0.001) −0.063(0.001) 1.419(0.002)

SVGP-new 1024 0.152(0.003) −0.965(0.006) 1.044(0.009) 0.699(0.005) −0.701(0.003) −1.192(0.001) −0.065(0.002) 1.387(0.003)
2048 0.286(0.002) −0.938(0.006) 1.051(0.009) 0.703(0.005) −0.651(0.004) −1.190(0.001) −0.060(0.001) 1.421(0.002)

Figure 3. (left) shows the predictions (means with 2-standard deviations) over counts (black dots) in the artificial data example after fitting
the Full GP, and the two SVGPs. This plot superimposes all predictions in order to provide a comparative visualization. (middle) shows
the ELBO across optimization steps for the artificial data example. (right) shows the ELBO for the NYBikes dataset and M = 16.

we randomly choose 90% for training and 10% for test. We
apply GP Poisson regression for the Brooklyn bridge counts
where the input vector x is taken to be two-dimensional con-
sisted of maximum and minimum daily temperatures. We
train the sparse GPs with either SVGP or SVGP-new and
with M = 8, 16, 32 inducing points initialized by k-means.
Since the dataset is small we also run the non-sparse Full
GP. The ELBO across iterations in Figure 3 (right) and the
test log likelihood scores (Table 5 in Appendix D.3) indicate
that SVGP-new provides a better approximation than SVGP.

6. Conclusions
We have presented a method that relaxes the conditional GP
assumption in the approximate distribution in sparse varia-
tional GPs. This leads to tighter collapsed and uncollapsed
bounds, that maintain the computational cost with the previ-
ous bounds and can reduce training underfitting. For future
work an interesting topic is to apply our method to more
complex GP models, such as those with multiple outputs,
with uncertain inputs and deep GPs. For the Bayesian GP-
LVM, where the collapsed closed form bound has strong
similarities with the previous GP regression collapsed bound
in Equation (8), deriving a new collapsed bound is tractable
as described in Appendix B.5. Finally, it might be useful
to investigate whether theoretical convergence results on
sparse GPs (Burt et al., 2020; Wild et al., 2023), can be
improved given the new collapsed lower bound.
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A. Further details about the SVGP method
We give a brief overview of the derivation of the standard collapsed bound in Equation (8). Some steps of the derivation will
also be instructive for proving the main results of this paper in Appendix B.

Given the variational distribution q(f,u) = p(f|u)q(u) the lower bound is

log p(y) ≥
∫

p(f|u)q(u) log p(y|f)���p(f|u)p(u)

���p(f|u)q(u)
dfdu

=

∫
p(f|u)q(u) log p(y|f)p(u)

q(u)
dfdu

=

∫
q(u)

{∫
p(f|u) log p(y|f)df + log

p(u)
q(u)

}
du

=

∫
q(u) log

exp{
∫
p(f|u) log p(y|f)df}p(u)

q(u)
du. (26)

The expectation
∫
p(f|u) log p(y|f)df can be computed as∫

p(f|u) log p(y|f)df =
∫

p(f|u) log p(y|f)df

=

∫
p(f|u)

{
−N

2
log(2πσ2)− 1

2σ2
tr
[
yyT − 2yfT + ffT

]}
df

= −N

2
log(2πσ2)− 1

2σ2
tr
[
yyT − 2y(KfuK−1

uu u)⊤ + (KfuK−1
uu u)(KfuK−1

uu u)⊤ + Kff − Qff
]

= log
[
N (y|KfuK−1

uu u, σ2I)
]
− 1

2σ2
tr(Kff − Qff). (27)

where we highlighted with blue a term in the third line to contrast it with a similar term when proving Lemma 3.2 in
Appendix B.4. The ELBO in Equation (26) is written as

log p(y) ≥
∫

q(u) log
N (y|KfuK−1

uu u, σ2I)p(u)
q(u)

df − 1

2σ2
tr(Kff − Qff). (28)

By maximizing this bound wrt the distribution q(u) we obtain the optimal q∗:

q∗(u) =
N (y|KfuK−1

uu u, σ2I)p(u)∫
N (y|KfuK−1

uu u, σ2I)p(u)du
=

N (y|KfuK−1
uu u, σ2I)p(u)

N (y|0,Qff + σ2I)
(29)

= N (u|σ−2Kuu(Kuu + σ−2KufKfu)
−1Kufy,Kuu(Kuu + σ−2KufKfu)

−1Kuu), (30)

where the expression in the second line (obtained after some standard completion of a square procedure) shows that q∗(u)
can be computed in O(NM2) time. In fact, this optimal q∗(u) is the same as the one obtained by the DTC (also known
as projected process) approximation (Seeger et al., 2003; Quiñonero-Candela & Rasmussen, 2005). By substituting the
expression in (29) into the bound in (28) we obtain the well-known formula of the collapsed bound:

log p(y) ≥ logN (y|0,Qff + σ2I)− 1

2σ2
tr(Kff − Qff). (31)

Given the Gaussian form of q(u) = N (u|µ,A) the posterior GP is given by q(f∗) =
∫
p(f∗|u)q(u)du:

q(f∗) = N (f∗|Kf∗fK−1
uu µ,Kf∗f∗ − Kf∗uK−1

uu Kuf∗ + Kf∗uK−1
uu AK−1

uu Kuf∗) (32)

which further simplifies if we substitute the optimal mean and covariance of q∗(u):

q(f∗) = N (f∗|Kf∗fΛ
−1Kuf

y
σ2

,Kf∗f∗ − Kf∗uK−1
uu Kuf∗ + Kf∗uΛ

−1Kuf∗) (33)

where Λ = Kuu + σ−2KufKfu.
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B. Further details about the proposed bounds
Here, we provide several proofs regarding the proposed bounds.

B.1. Proof of Lemma 3.1

q(f|u) and p(f|u) are Gaussian distributions having the same mean but different covariance matrices. Thus, the KL divergence
reduces to

KL[q(f|u)||p(f|u)] = 1

2

{
log

|Kff − Qff|
|(Kff − Qff)

1
2 V(Kff − Qff)

1
2 |

−N + tr{(Kff − Qff)
−1(Kff − Qff)

1
2 V(Kff − Qff)

1
2 }
}

=
1

2
{− log |V| −N + tr{V}} , (34)

where all the terms involving Kff−Qff cancel out by using standard properties of the matrix determinant and trace. Now since
V is a diagonal matrix (with diagonal elements vi > 0) we conclude that KL[q(f|u)||p(f|u)] = 1

2

∑N
i=1(vi − log vi − 1).

B.2. Proof of Lemma 3.2

The derivation of
∫
q(f|u) log p(y|f)df is similar to the derivation in Equation (27) with a small difference highlighted in

blue:∫
p(f|u) log p(y|f)df

= −N

2
log(2πσ2)− 1

2σ2
tr
[
yyT − 2y(KfuK−1

uu u)⊤ + (KfuK−1
uu u)(KfuK−1

uu u)⊤ + (Kff − Qff)
1
2 V(Kff − Qff)

1
2

]
= log

[
N (y|KfuK−1

uu u, σ2I)
]
− 1

2σ2
tr(V(Kff − Qff)), (35)

where we used that tr((Kff − Qff)
1
2 V(Kff − Qff)

1
2 ) = tr(V(Kff − Qff)). Now since V is a diagonal matrix we have

tr(V(Kff − Qff)) =
∑N

i=1 vi(kii − qii) which completes the proof.

B.3. Proof of Proposition 3.3

The ELBO is written as

log p(y) ≥
∫

q(f|u)q(u) log p(y|f)p(f|u)p(u)
q(f|u)q(u)

=

∫
q(u)

{
log

exp{Eq(f|u)[log p(y|f)]}p(u)
q(u)

−KL[q(f|u)||p(f|u)]
}
du

and by using the results from the two lemmas this becomes

log p(y) ≥
∫

q(u) log
N (y|KfuK−1

uu u, σ2I)p(u)
q(u)

du − 1

2

N∑
i=1

{
vi

(
1 +

kii − qii
σ2

)
− log vi − 1

}
.

Clearly, maximizing over q(u) gives the same optimal distribution as in Equation (29), and the first term in the bound is
the DTC log likelihood. The second term that depends on the vis is a concave function over these parameters. Thus, by

differentiating and setting to zero we obtain the optimal values v∗i =
(
1 + kii−qii

σ2

)−1

. If we plug these values back into the
bound we obtain the new tighter collapsed bound in Proposition 3.3.

B.4. Reinterpretation of Artemev et al. (2021)’s bound

We consider the following form of q(f|u):

q(f|u) = N (f|KfuK−1
uu u, v(Kff − Qff)).

Then, KL[q(f|u)||p(f|u)] = N
2 (v − log v − 1) and Eq(f|u)[log p(y|f)]

= logN (y|KfuK−1
uu u, σ2I)− v

2σ2 tr(Kff − Qff) and the bound is written as

log p(y) ≥
∫
q(u) log

N (y|KfuK−1
uu u, σ2I)p(u)
q(u)

du − 1

2

{ v

σ2
tr(Kff − Qff) +N(v − log v − 1)

}
.
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By maximizing wrt v we obtain v∗ =
(
1 + tr(Kff−Qff)

Nσ2

)−1

, and by substituting this back into the bound we obtain Artemev
et al. (2021)’s tighter bound on the initial trace regularization term. Overall this collapsed bound has the form

log p(y) ≥ logN (y|0,Qff + σ2I)− N

2
log

(
1 +

tr(Kff − Qff)

Nσ2

)
. (36)

This collapsed bound is what the method SGPR-artemev is using in Section 5.2. Note that Artemev et al. (2021) propose
also additional but more expensive bounds for the first DTC log likelihood term that require running conjugate gradients.
We do not consider those in our comparisons (such bounds could be used in all SGPR bounds since all share the same DTC
log likelihood term) as they have higher cost.

B.5. Bound for the Bayesian GP-LVM

Due to the strong similarity of the standard collapsed SVGP bound in Equation (8) with the collapsed bound in the Bayesian
GP-LVM (Titsias & Lawrence, 2010), applying the new approximation to Bayesian GP-LVM seems to be simple and we
discuss it next.

Given observed data Y ∈ RN×D and latent variables X ∈ RN×Q we have the latent variable model

p(Y |X)p(X) =

(
D∏

d=1

p(yd|X)

)
p(X),

where p(X) is a Gaussian prior over the latent variables and p(yd|X) = N (yd|Kff(X)+σ2I). Given a Gaussian variational
distribution q(X) over the latent variables, the initial form of the bound is

F =

∫
q(X) log p(Y |X)dX − KL[q(X)||p(X)]

=

D∑
d=1

∫
q(X) log p(yd|X)dX − KL[q(X)||p(X)]

=

D∑
d=1

Fd − KL[q(X)||p(X)], (37)

where Fd =
∫
q(X) log p(yd|X)dX . The KL part will be a tractable KL between two Gaussians, and thus the difficulty is

to approximate Fd. Given that log p(yd|X) has the same form with the log marginal likelihood in GP regression, we can
lower bound it using inducing variables and exactly the same form of q(f|u) as we did in the main paper. This gives

log p(yd|X) ≥
∫

q(u) log
N (yd|Kfu(X)K−1

uu u, σ2I)p(u)
q(u)

du − 1

2

N∑
i=1

{
vi

(
1 +

k(xi,xi)− q(xi,xi)

σ2

)
− log vi − 1

}
,

where xi is the latent variable for the i-th data point and q(xi,xi) = k(xi)
⊤K−1

uu k(xi) = tr{K−1
uu k(xi)k(xi)

⊤}. Note
that we write the cross kernel matrix as Kfu(X) to emphasize its dependence on the latent variables X , while Kuu does
not depend on X . Note also that we assume that each vi parameter does not depend on xi and this is crucial to obtain a
closed form collapsed bound. Now we follow the derivation in the initial Bayesian GP-LVM where we use the above bound
to replace log p(yd|X) in

∫
q(X) log p(yd|X)dX and do first the expectation over X , and then solve for the optimal q(u).

This eliminates q(u) and it gives the bound

log

∫
e⟨N (yd|Kfu(X)K−1

uu u,σ2I)⟩q(X)p(u)du − 1

2

N∑
i=1

{
vi

(
1 +

⟨k(xi,xi)⟩q(xi) − ⟨q(xi,xi)⟩q(xi)

σ2

)
− log vi − 1

}
.

where we have used physics notation for expectation, i.e., ⟨·⟩. For vi = 1 this is the previous collapsed bound used by
Bayesian GP-LVM. By maximizing over each vi we obtain the new collapsed bound

Fd ≥ log

∫
e⟨N (yd|Kfu(X)K−1

uu u,σ2I)⟩q(X)p(u)du − 1

2

N∑
i=1

log

(
1 +

⟨k(xi,xi)⟩q(xi) − ⟨q(xi,xi)⟩q(xi)

σ2

)
,

which can be substituted in the overall Bayesian GP-LVM bound above. Again the implementation of the new bound
requires a minor modification to existing Bayesian GP-LVM code.
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C. Learned hyperparameters in 1-D Snelson dataset
Table 3 provides the learned hyperparameters for the 1-D Snelson dataset.

Table 3. Hyperparameter values in 1-D Snelson example.

σ2 σ2
f ℓ2

Exact GP 0.0715 0.712 0.597
SVGP-new 0.087 0.485 0.615
SVGP 0.108 0.331 0.617

D. Further experimental details and results
For all regression experiments (apart from the toy Snelson 1-D dataset) we repeat the runs for five times using different
random training and test splits. By following Wang et al. (2019) and Shi et al. (2020) we consider 80% / 20% training / test
splits. A 20% subset of the training set is used for validation.

The training inputs and regression outputs are normalized to have zero mean. For the hyperparameters σ2, σ2
f , ℓ

2 (or ℓ2i
for ARD kernels) we use the softplus activation to parametrize the square roots of these parameters, i.e., to parametrize
σ, σf , ℓi. For all experiments we use the initializations σ = 0.51, σf = 0.69, ℓi = 1.0. The inducing inputs Z are initialized
by running at maximum 30 iterations of k-means clustering with the centers initialized at a random training data subset.

D.1. Medium size regression datasets

For all three datasets in this section we can run Exact GP given the medium training size. For the Pol dataset the training
size is N = 9600 and input dimensionality d = 26. For Elevators is N = 10623 and d = 18. For the Bike dataset the initial
train size (see e.g., Table 7 in Shi et al. (2020)) is N = 11122 (with d = 17) but since Exact GP training gave out-of-memory
error when running in a V100 GPU, we had to slightly reduce the training size to N = 10600.

An mentioned in the main paper the standard squared exponential ARD kernel was used in all experiments in this section.
For training, we perform 10000 optimization iterations using the Adam optimizer with base learning 0.01.

Figure 4 shows the objective function values and noise variance parameter σ2 across iterations when the SGPR methods use
M = 2048 inducing points. Figure 2 in the main paper shows the result for M = 1024.

D.2. Large scale regression datasets

The experimental settings are chosen to match the ones from Wang et al. (2019) and Shi et al. (2020), where we used GPs
with a Matérn32 kernel (with common lengthscale). Following these settings, for all datasets we train for 100 epochs using
Adam with learning rate 0.01 and minibatch size 1024.

Table 4 reports RMSE scores, while test log likelihood scores are given in Table 2 of the main paper.

D.3. Poisson regression

Figure 5 shows the ELBOs across iterations for the NYBikes dataset for M = 8 and M = 32 inducing points, while the
plot for M = 16 is shown in the main paper. Table 5 presents test log-likelihood scores for the NYBikes dataset. Average
values and standard errors are computed by repeating the experiment five times where at each repeat we randomly split the
initial data into 90% for training and 10% for test.

Regarding the scalar value of v for the toy Poisson regression the learned value was around v = 0.675, while or the real
Poisson example in NYBikes, the value gets very small below 0.01.
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Figure 4. The two plots in each column correspond to the same dataset: first row shows the ELBO (or log-likelihood) for all four methods
(Exact GP, SGPR, SGPR-new and SGPR-artemev) with the number of iterations and the plot in the second row shows the corresponding
values for σ2. SGPR methods use M = 2048 inducing points initialized by k-means. For these two first lines we plot the mean and
standard error after repeating the experiment five times with different train-test dataset splits. For one of the runs of SGPR-new, the third
line shows histograms for the estimated values of the variational parameters vi.

Table 4. Test RMSE values of large scale regression datasets with standard errors in parentheses. Best mean values are highlighted.
Kin40k Protein KeggDirected KEGGU 3dRoad Song Buzz HouseElectric

N 25,600 29,267 31,248 40,708 278,319 329,820 373,280 1,311,539
d 8 9 20 27 3 90 77 9

From Shi et al. (2020)
ODVGP 1024 + 1024 0.183(0.001) 0.625(0.004) 0.176(0.012) 0.156(0.004) 0.467(0.001) 0.797(0.001) 0.263(0.001) 0.062(0.000)

1024 + 8096 0.180(0.001) 0.618(0.004) 0.157(0.009) 0.157(0.004) 0.462(0.002) 0.797(0.001) 0.263(0.001) 0.062(0.000)
SOLVE-GP 1024 + 1024 0.172(0.001) 0.618(0.004) 0.095(0.002) 0.123(0.001) 0.464(0.001) 0.796(0.001) 0.261(0.001) 0.061(0.000)

SVGP 1024 0.195(0.001) 0.635(0.004) 0.086(0.001) 0.122(0.001) 0.486(0.002) 0.797(0.001) 0.261(0.001) 0.059(0.000)
2048 0.171(0.000) 0.619(0.004) 0.086(0.001) 0.121(0.001) 0.460(0.002) 0.795(0.001) 0.260(0.001) 0.057(0.000)

SVGP-new 1024 0.182(0.001) 0.631(0.004) 0.086(0.001) 0.122(0.001) 0.484(0.001) 0.796(0.001) 0.259(0.001) 0.058(0.000)
2048 0.158(0.000) 0.615(0.004) 0.086(0.001) 0.121(0.001) 0.461(0.002) 0.795(0.001) 0.258(0.000) 0.057(0.000)
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Figure 5. The left panel shows the lower bounds across iterations when the sparse GP methods run with M = 8 inducing points, while the
right panel shows the corresponding plot with M = 32 inducing points.

Table 5. Test log likelihoods on the NYBikes Poisson regression dataset with standard errors in parentheses. For the sparse methods we
consider varying numbers of inducing points, i.e., M = 8, 16, 32.

Full GP −5.061(0.010)

SVGP 8 −36.397(6.017)
SVGP 16 −16.557(4.307)
SVGP 32 −8.556(0.728)

SVGP-new 8 −9.713(0.345)
SVGP-new 16 −9.301(0.296)
SVGP-new 32 −8.203(0.190)
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