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ABSTRACT

Monocular depth estimation has been extensively studied over the past few
decades, yet achieving robust depth estimation in real-world scenes remains a
challenge, particularly in the presence of reflections, shadow occlusions, and low-
texture regions. Existing methods typically rely on extracting front-view 2D
features for depth estimation, which often fail to capture those complex physi-
cal factors present in real-world scenes, leading to discontinuous, incomplete, or
inconsistent depth maps. To address these issues, we turn to learning a more
powerful 3D representation for robust monocular depth estimation, and propose a
novel self-supervised monocular depth estimation framework based on the Three-
dimensional Scene Field representation, or TSF-Depth for short. Specifically, we
build our TSF-Depth framework upon an encoder-decoder architecture. The en-
coder extracts scene features from the input 2D image, and subsequently reshapes
it as a tri-plane feature field by incorporating scene prior encoding. This tri-plane
feature field is designed to implicitly model the structure and appearance of the
continuous 3D scene. We then estimate a high-quality depth map from the tri-
plane feature field by simulating the camera imaging process. To do this, we
construct a 2D feature map with 3D geometry by sampling from the tri-plane fea-
ture field using the coordinates of points where the line of sight intersects with the
scene. The aggregated multi-view geometric features are subsequently fed into
the decoder for depth estimation. Extensive experiments on KITTI and NYUv2
datasets show that TSF-Depth achieves state-of-the-art performance. We also val-
idate the generalization capability of our model on Make3D and ScanNet datasets.

1 INTRODUCTION

Monocular depth estimation is an essential computer vision task and has wide applications in au-
tonomous driving (Geiger et al., 2013; Menze & Geiger, 2015), robot navigation (Dudek & Jenkin,
2024), and 3D reconstruction (Lyu et al., 2023; Yu et al., 2022), etc. This task aims to infer the
depth of each pixel in a single image, thereby recovering the 3D scene structure. Yet, estimating
depth from a single image is indeed ill-posed and inherently ambiguous, since a 3D scene can be
back-projected from an infinite number of 2D images (Shao et al., 2023). Thus, the lack of sufficient
3D geometric cues in a 2D image poses a substantial challenge for monocular depth estimation.

Early monocular depth estimation (Yuan et al., 2022; Liu et al., 2023; Shao et al., 2024) worked in
a supervised manner and yielded relatively accurate depth. However, depth labels are expensive to
obtain. Moreover, existing physical devices can only capture sparse scene depth (Moon et al., 2023).
Consequently, the sparse supervision and data scale hinder their application in practical scenarios.

Recently, self-supervised monocular depth estimation (Zhang et al., 2023a; Han et al., 2023) has
attracted widespread attention. The core of such approaches is to synthesize a 2D image using the
estimated depth map and minimize the photometric loss between the synthesized image and the tar-
get image (Zhao et al., 2023a). Previous efforts focused on mining effective 2D features for depth
estimation by designing advanced network architectures (Lyu et al., 2021; Zhang et al., 2023a),
developing more suitable loss functions (Godard et al., 2019; Liu et al., 2024), using semantic in-
formation (Casser et al., 2019), or leveraging geometric priors (Zhao et al., 2024; Sun et al., 2024).
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Figure 1: An illustration of our motivation. Real-world 3D scenes usually contain numerous
challenges, including reflections, shadow occlusions, low textures and so on, which causes existing
methods (e.g., Lite-Mono-8M (Zhang et al., 2023a)) that typically rely on front-view 2D features to
obtain discontinuous, incomplete, or inconsistent depth maps. To this end, we propose to model a
multi-view 3D scene filed, thereby capturing 3D geometric features for robust depth estimation.

Although these methods have shown satisfactory performance in conventional scenes, yet achieving
robust depth estimation in real-world scenes remains a challenge, particularly in the presence of re-
flections, shadow occlusions, and low-texture regions (see Fig. 1 (c)). The main challenge posed by
such scenarios is that these local regions often lack sufficient discriminative depth cues. In response,
humans simulate a roughly 3D scene corresponding to the 2D image and then combine geometry
cues from horizontal, vertical, and depth direction to infer the depth of a particular pixel. Even if
information is lacking in one direction, geometric clues from other directions can supplement it.
However, almost all existing methods typically rely on extracting front-view 2D features for depth
estimation, which often fail to capture those complex physical factors present in real-world scenes.
Thus, as shown in Fig. 1 (a) and (d), existing methods are limited by the paradigm of the front-
view 2D representation, which often do not contain sufficient 3D geometric cues (Han et al., 2023),
resulting in discontinuous, incomplete, or inconsistent depth maps.

In this paper, we propose a novel self-supervised monocular depth estimation framework based
on the Three-dimensional Scene Field representation, or TSF-Depth for short. Unlike previous
methods that employ only the front-view 2D features, we design a 3D scene field to recover the
multi-view representation and then capture sufficient structure- and orientation-aware 3D geometric
features from it for robust depth estimation (see Fig. 1 (b) and (e)). Specifically, we build our TSF-
Depth upon an encoder-decoder architecture. The encoder extracts scene features from the input 2D
image, and then are reshaped as a tri-plane feature field with three axis-aligned orthogonal feature
planes by incorporating scene prior encoding. This tri-plane feature field is designed to implicitly
model the structure and appearance of the continuous 3D scene. We then estimate a high-quality
depth map from the tri-plane feature field by simulating the camera imaging process. To achieve this,
we construct a 2D feature map with 3D geometry by sampling from the tri-plane feature field using
the coordinates of the points where the line of sight intersects with the scene. The aggregated multi-
view geometric feature map is then fed into the decoder for depth estimation. Extensive experiments
on four datasets validate the state-of-the-art and generalization capabilities of TSF-Depth.

To summarize, the main contributions of our work are as follows:

* We propose a novel self-supervised monocular depth estimation framework based on the
Three-dimensional Scene Field representation (TSF-Depth). To the best of our knowledge,
our TSF-Depth is the first work to model 3D scene filed for monocular depth estimation.

* We design a tri-plane feature field that is reshaped from hybrid features of scene content and
scene prior encoding to model the multi-view representation of the continuous 3D scene.

* We attentively design a 3D-to-2D mapping strategy to sample 2D features with 3D geome-
try from tri-plane feature field by simulating camera image, i.e., projecting the coordinates
of the points where the line of sight intersects with the scene onto three orthogonal planes.

» Extensive experiments on widely used outdoor datasets (KITTI and Make3D) and indoor
datasets (NYUv2 and ScanNet) show the robustness and generalization capabilities.
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2 RELATED WORK

Supervised Monocular Depth Estimation. Eigen et al. (2014) first used a coarse-to-fine network
for monocular depth estimation. Subsequently, numerous supervised works have been proposed.
These works can be functionally classified into regression-based methods (Ranftl et al., 2021; Zhao
et al., 2021; Shao et al., 2023) and classification-based methods (Bhat et al., 2021; Hu et al., 2022;
Shao et al., 2024). Regression-based works use convolutional neural networks to directly learn the
depth value of each pixel by minimizing the error between the prediction and ground-truth depths.
However, these methods usually suffer from slow convergence and local solutions (He et al., 2022).
Classification-based methods divide the depth range into different bins, and predict the probability
of falling in each bin to obtain the final depth by weighted summation, which is easier to optimize.
However, the high cost of data collection for training limits the wide application of these methods.

Self-Supervised Monocular Depth Estimation. Self-supervised depth estimation approaches that
avoid the need for ground-truth depth during training phase have gained attention. Zhou et al.
(2017) proposed a pioneering work that utilized depth network and pose network to jointly estimate
depth map and camera pose, and only adopted monocular video as training data. Following this
classical joint training pipeline, subsequent works improve the performance by designing robust
losses (Gordon et al., 2019; Shu et al., 2020; Zhan et al., 2018), using auxiliary information during
training (Watson et al., 2019; Klodt & Vedaldi, 2018), dealing with moving objects (Godard et al.,
2019; Klingner et al., 2020), and adding extra geometric constraints (Yang et al., 2018; Li et al.,
2021). Yet, these methods also have limitations as they infer depth from the fron-view 2D feature
space, which often do not contain sufficient 3D geometric cues (Han et al., 2023), and ignore the
value of additional scene geometry priors in depth estimation. Instead, our TSF-Depth models 3D
scene field using scene feature and scene priors to recover the multi-view representation and then
capture sufficient 3D geometric features from it for robust depth estimation.

3D Scene Representation. Depth estimation using only 2D representation is a well-known ill-
posed problem. To this end, learning-based multi-view stereo (MVS) methods (Yao et al., 2018;
2019; Yang et al., 2022) use the cost volume as spatial representation of the scene and then utilize
3D CNNss to continuously learn full-space 3D features. Considering the point cloud structure makes
3D feature learning more flexible compared to the cost volume, some point cloud-based MVS (Chen
et al., 2019; 2020; Zhao et al., 2023b) propose to replace the cost volume with the point cloud as the
spatial representation of the scene. Although these methods establish the spatial structure feature of
the scene or learn the global feature of the scene, the structural attributes are not further perceived
and learned. Additionally, 3D CNNs require memory cubic to the model resolution, which can be
a hindrance to achieving optimal performance. Unlike existing MVS methods require complex cost
volume, multi-view images and 3D CNNs, TSF-Depth models a single-view image into a tri-plane
feature field as a 3D scene representation using only a 2D encoder-decoder architecture.

3 METHOD

3.1 OVERVIEW

Previous studies relied on extracting front-view 2D features for depth estimation. Although these
methods are effective in conventional scenes, as discussed in Section 1, they often fail to represent
those complex physical factors present in real-world scenes due to the limitations of front-view
2D representations. To this end, we propose TSF-Depth, a novel self-supervised depth estimation
framework based on the 3D scene representation. The TSF-Depth is designed to model a multi-view
representation of the continuous 3D scene with a tri-plane feature field. Then, we can achieve robust
depth estimation using 2D features with 3D geometry sampled from the 3D scene field.

The proposed pipeline, illustrated in Fig. 2, consists of two essential steps: modeling 3D scene with
tri-plane feature field and depth estimation with 3D scene field. Give a target image I; € RH>*W >3,
and image coordinates {C* € R/2"xW/2" *315 | at multiple scales, an encoder is used to extract
multi-scale scene features {F* € R/2"xW/2"xC1S  from the former, and positional encoding is
performed to obtain multi-scale scene priors {E® € RH/2"xW/2"xC1S | from the latter. The H and
W denote the height and width of image, while S and C' denotes the feature scale and channel. The
scene priors not only initialize 3D scene structure, but also provide spatial cues. Then, the scene
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Figure 2: Overview of the proposed TSF-Depth. Given a target image and image coordinates
at multiple scales, the scene features and scene prior features are first extracted and summed to
generate multi-scale hybrid features. The hybrid features are reshaped into multi-scale tri-plane
feature fields to implicitly model the multi-view representation of the 3D scene. We then recover the
coordinates of the points where the line of sight intersects with the scene, and project all points onto
three orthogonal planes to retrieve the 2D feature with 3D geometric for robust depth estimation.

features are split into three %-channel feature maps in the channel dimension, and incorporated into
scene priors to generate multi-scale hybrid features {F ° e RE/2 xW/2° *C1S | with scene struc-
ture awareness. Subsequently, the hybrid features are reshaped as axis-aligned orthogonal tri-plane
feature field {Fiy c RH/QSXW/QSXC/S’IN;:CZ c RH/2SXW/2SXC/3,Fzy e RH/25><W/25><C/3}§:1’
thereby implicitly modeling the multi-view representation of the continuous 3D scene. Meanwhile,
we again use intermediate semantic features to recover the coordinates of the points where the line
of sight from each pixel intersects with the scene. Finally, we project all 3D points P onto three
orthogonal feature planes, retrieving the corresponding feature {F,, € R7/2"xW/2"xC/3 F? ¢
RA/ZXW/2XC/S F7 e RE/ZXW/2XC/31S | via bilinear interpolation, and aggregating these
multi-view geometric feature map via concatenation to predict the depth map. During training phase,
we follow classic self-supervised depth estimation approaches to simultaneously learning a PoseNet
to predict relative pose, which will be combined with depth to construct the optimized object.

3.2 TRI-PLANE FEATURE FIELD OF 3D SCENE

Inspired by humans combine depth cues from horizontal, vertical, and depth directions to infer the
depth of a particular pixel, we thus implicitly model a three-plane feature field to recover the multi-
view representation. In addition, due to the ill-posed depth estimation task, relying solely on image
content to infer depth is limited. Observing that the pixel depth in an image is closely related to its
relative spatial position, we thus explore this regularity and incorporate it into our 3D scene Field.

Scene Feature Extracting. Given target image I; € R *W>3 we employ a 2D encoder to capture
multi-scale secene features:

F° = 0p(l), (1
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where F* € RT/2"xW/2°XC Benefiting from the powerful learning and representation capabilities
of neural networks, it is feasible to learn features of 3D scenes in different directions from the input

image. To this end, we split the semantic feature maps in the channel dimension and form three %-

channel feature maps {F;, G.RH/QS XW/2'x g Fs e R?/QS xW/2°x§ F,. € RH/2°xW/2"x 518
as the preliminary representation of the three orthogonal views of the 3D scene.

Scene Prior Encoding. In order to reasonably incorporate the scene prior, i.e., relative spatial
position, instead of directly passing the image coordinate into network, we introduce a positional
encoding to map the image coordinate to a high-dimensional feature vector. More details about
scene prior are discussed in Appendix B. Formally, the position encoding function is defined as:
v(c) = (sin(2°¢), cos(2%7c), - - - , sin(2L "), cos(2L 1 re)), (2)
where ¢ is the stored value of coordinate, L is the number of encoding frequencies, and 7(c) de-
notes the mapping of ¢ from R into a higher dimensional space R?Z. Thus, given the homoge-
neous coordinates {C}, € RHE/2XW/2°x3 €5 ¢ RH/2*XW/2%3 C, € RH/2XW/27X31 of three
orthogonal views at multiple scales, the multi-scale and multi-view scene prior can be obtained by:

E;,(u,v) = E(y(uw), y(v), 7 (1)),
E: . (u,v) = Z(y(u), v(1),y(v")), 3)
E, (u,v) = Z(y(1),y(v"),v(u)).

2u 2v _ =111 : / /
W2 =1 Wiz—t — Land = [-] is the concatenation operator. Here, v’ and v

are normalized to [—1, 1], which ensure scale consistency of scene prior and numerical stability.

where v/ = — 1,7 =

Since the channel dimension of the generated scene prior features is controlled by L, it may not
match the scene feature. We further introduce two 1 x 1 convolutions to adjust the channel dimension
of as {E;y c RH/2S><W/25 XC/B,E;y c RH/2S xXW/2° XC/s,E;y c RH/QS xXW/2° ><C/3};9:1'

Multi-scale Tri-plane Feature Field. After the above two steps, we obtain the scene features that
represent the semantic details of 3D scene, and the scene prior features that initialize 3D scene
structure, but also provide spatial cues. Subsequently, we incorporate the scene semantic features
into scene prior features to obtain multi-scale hybrid features with scene structure awareness:

F,, =F:, +E:

Ty’
F,.=F, +E;., S

F. =F, +E,
The three hybrid feature planes are axis-aligned orthogonal planes, which are defined as our tri-plane
feature fields. The F ;Scy perceives the continuous change of depth in z-direction, the F iz perceives

the consistency of depth in the vertical direction and the F Z perceives the similarity of depth in
the horizontal direction. Therefore, this tri-plane feature field is designed to implicitly model the
structure, orientation, appearance of the continuous 3D scene. Moreover, benefiting from the design
of our multi-scale and multi-view tri-plane feature fields, our method can effectively perceive the
3D scene scale, thereby alleviating the ambiguity of monocular depth estimation.

3.3 DEPTH ESTIMATION WITH 3D SCENE FIELD

After model the 3D scene filed with tri-plane feature field, we aim to capture the 2D feature with 3D
geometric from it for depth estimation. However, for each pixel in the image space, we do not know
its corresponding position in the 3D scene field. To address this issue, we simulating the inverse
process of camera imaging, i.e., we need to recover the coordinates of the points where the line of
sight intersects the scene. In other words, we need to estimate the point clouds of the input image.

Point clouds are often used as structural representations of 3D scenes. Many works use 3D CNNs to
directly estimate 3D point clouds, but they are costly in terms of efficiency and storage. In this work,
we employ the depth map as intermediate representation to efficiently reconstruct the point clouds.
To this end, we use a decoder 6 to predict the initial depth map D} , = 0;(Z [F;,, F;., F3,]).

After the above step, we can obtain multi-scales depth maps D7, € R2* %2 Since the scale and
shift coefficients of the predicted depth maps are unknown, the reconstructed 3D structure from
them is likely to be distorted from inappropriate affine changes. We thus use all scales of depth map
to reconstruct multi-scale point clouds from coarse to fine. Given the estimated initial depth map
D7, with scale s and camera intrinsics, we can reconstruct the point cloud from the pixel coordinate
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based on the pinhole camera model. Specifically, for a 2D point p; = [u, v]T in the pixel coordinate
system, it can be reprojected back to a 3D point P; = [X,Y, Z ]T in the camera system by:
(X,Y,2]" =Dj (u,v)K [u,v,1]", (5)
where K € R3*3 denotes the camera intrinsic. Therefore, using Eq. 5, we can explicitly reconstruct
multi-scale point clouds {P° € Rz+* 2 *3}5 It should be noted that for different scale depths, the

coordinate range will also change accordingly, i.e., u € [O — 1} ,UE [0, 2% - 1].

50
After the implicitly and explicitly modeling 3D scene phase, we obtain the dense tri-plane feature
field and sparse point clouds, respectively. Although the former learns from the 2D image, they have
the ability to perceive the 3D scene structure and provide direction-aware multi-view features. The
later learn from 2D feature space and lacks of 3D scene awareness, but they can provide approximate
spatial structure. To obtain the final precise and robust depth prediction, we design a 3D-to-2D

mapping strategy to sample 2D features with 3D geometry by combining the advantage of both.

Since there are different spatial scales between each 3D point in the point cloud and each orthogonal
planes of tri-plane feature fields, they need to be aligned in the same space. Compare to back-
projecting the each orthogonal planes of tri-plane feature field from the 2D space to 3D space,
projecting point cloud from 3D space to 2D space is more efficient. With the multi-scale point cloud
and tri-plane feature field, we perform an orthographic projection onto the three axis-aligned planes:
[z,y,2]" =K[X,Y,Z]". (6)
Generally, the value ranges of point [z, y, z] in three axis are different, i.e., x € [0,/W — 1],y €
[0, H — 1] and z € [0, M], where M is the maximum depth. To ensure that the projected 2D points
are aligned with each planes without going out of bounds, they need to be normalized to [—1, 1]:
= (z/(W-1)—-0.5) x 2,
{ y= (x/(H-1) — 0.5) x 2, ™)
z=(z/M —0.5) x 2.
Ultimately, we obtain the 2D points of the point cloud projected onto each orthogonal plane, i.e.,
the p;, = [Z, 9] is the projected 2D point located at F iy, the pS, = [z, Z] is the projected 2D point
located at F ;Z and the p;, = [Z,7] is the projected 2D point located at Fzy Then, we sample
2D feature map with 3D geometric from each orthogonal plane of tri-planes feature fields using
differentiable bilinear sampling operator:
{zgy :Ijgy <p;y>,
rz = F?Z <p;322> ’ (8)
Fzy =F <p2y> :
where (-) is the sampling operator (Jaderberg et al., 2015). Finally, the multi-view geometric features
aggregated through concatenation, and a depth decoder is used to predict the high-quality depth map:

DF,t = QF(E[Fwy»szapzy]) (9)

o]

3.4 SELF-SUPERVISED LEARNING

Following monodepth2 (Godard et al., 2019), we use a target frame I; and two adjacent frames I,
(a € {t —1,¢t+ 1}) to jointly train a DepthNet (0, 05, ) and a PoseNet 6,,. During training, I,
is fed into the DepthNet to get the depth D, and (I;,1,,) are put into PoseNet to get the relative
camera pose T;_,,. Then, we can synthesize a target frame I ,—,, by warping the source frame
I:Ip g =1, (proj(Dpy, Ti—a,K)), where proj(-) is the coordinate projection operation (Zhou
etal., 2017). The photometric etror between I i, and I, consisting of L; and SSTM weighted by o,
is calculated as: pe(Iy,Ir o) = §(1 — SSIM (I, Ipq—t)) + (1 — )|l — IF,q—¢||,- Following
Monodepth2, we adopt the per-pixel minimum photometric loss as our reprojection loss:

LonTi,Ipq—st) = mainpe(ltalF,a—nf)- (10)
We also use the edge-aware smoothness loss to encourage locally smooth depth maps:
Lom(Dps, ;) = ’awD*F,t| e~ 10adu] | |3y1)}7t‘ s (11)

where 0, and J, are the gradients in the horizontal and vertical direction respectively. Besides,
D}, = Dt /DF, is the mean-normalized inverse depth from Monodepth2 to discourage shrinking
of the estimated depth. Therefore, the total loss for final depth map is defined as:

Ly =BLpnIt,Ira—st) +VLom Dy, It). (12)
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Table 1: Depth estimation results on KITTI (Geiger et al., 2013). We divide compared methods
into three categories. S: stereo training. M: monocular training. MS: stereo and monocular training.

Error Metric ({) Accuracy Metric (1)
Sq Rel Abs Rel RMSE RMSE log §<1.25 §<1.25% §<1.25°

1.344 0.148 5.927  0.247 0.803 0922  0.964
1.201 0.119 5.888  0.208 0.844  0.941 0.978
0.873 0.109 4.960 0.208 0.864 0.948 0.975
DepthHints (Watson et al., 2019) 0.780 0.106 4.695 0.193 0.875 0.958 0.980
BRNet (Han et al., 2022) 0.792 0.103 4716  0.197 0.876 0954 0978

Monodepth2 (Godard et al., 2019)  MS 0.818 0.106 4.750  0.196 0.874  0.957 0.979
DepthHints (Watson et al., 2019) MS 0.769 0.105 4.627  0.189 0.875 0959  0.982
HR-Depth (Lyu et al., 2021) MS 0.785 0.107 4.612  0.185 0.887 0962  0.982
R-MSFMB6 (Zhou et al., 2021b) MS 0.787 0.111 4.625 0.189 0.882  0.961 0.981

GeoNet (Yin & Shi, 2018) 1.060 0.149 5.567  0.226 0.796  0.935 0.975
Monodepth2 (Godard et al., 2019) 0.903 0.115 4.863 0.193 0.877  0.959 0.971
DepthHints (Watson et al., 2019) 0.845 0.109 4.800 0.196 0.870  0.956 0.980
S3Net (Cheng et al., 2020) 0.826 0.124 4.981 0.200 0.846  0.955 0.982
HR-Depth (Lyu et al., 2021) 0.792 0.109 4.632 0.185 0.884  0.962 0.983
CADepth-Net (Yan et al., 2021) 0.769 0.105 4.535  0.181 0.892 0.964 0.983
DIFFENet (Zhou et al., 2021a) 0.764 0.102 4.483  0.180 0.896  0.965 0.983
DynaDepth (Zhang et al., 2022a) 0.761 0.108 4.608 0.187 0.8883 0.962 0.982
MonoFormer (Bae et al., 2023) 0.846 0.104 4.580 0.183 0.891  0.962 0.982
SC-DepthV3 (Sun et al., 2023) 0.756 0.118 4.709  0.188 0.864  0.960 0.984
Zhang et al. (Zhang et al., 2023b) 0.786 0.105 4.572  0.182 0.890 0.964 0.983
Lite-Mono (Zhang et al., 2023a) 0.765 0.107 4.561 0.183 0.886  0.963 0.983
Lite-Mono-8M (Zhang et al., 2023a) 0.729 0.101 4.454  0.178 0.897  0.965 0.983
Zhao et al. Zhao et al. (2024) 0.809 0.110 4.616 0.185 - - -

Xiong et al. (Xiong et al., 2024) 0.868 0.122 4986  0.200 0.857 0.953 0.980
ShuffleMono (Feng et al., 2024) 0.850 0.114 4.821 0.193 0.872  0.957 0.980
Liu et al. (Liu et al., 2024) 0.747 0.114 4724  0.187 0.863  0.960 0.984
Dynamo-Depth (Sun et al., 2024) 0.758 0.112 4.505 0.183 0.873  0.959 0.984
TSF-Depth 0.692 0.096 4.335 0.173 0.903  0.967 0.984

Method Train

Monodepth (Godard et al., 2017)
3Net (Poggi et al., 2018)
Monodepth2 (Godard et al., 2019)

»nnwnwnwn

EEEEEEEEEEEEEEEREEER

To reconstruct accuracy point cloud, we apply a photometric loss to the initial depth:

s
1 S
Lr= ; @Lpn (D, UDS ). (13)
where U is the upsampling operation. Our overall loss function can be formulated as:
L=Lr+LF. (14)

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION METRICS

QOutdoor Datasets. KITTI (Geiger et al., 2013) is an outdoor benchmark with a resolution of
1242 x 375. Following Zhou et al. (2017), we use 39810, 4424, and 697 images for training,
validation, and testing, respectively. Make3D (Saxena et al., 2008) contains 134 outdoor image-
depth pairs with a resolution of 1704 x 2272, which is used in this work as a generalization test.

Indoor Datasets. NYUv2 (Silberman et al., 2012) is an indoor benchmark with a resolution of
640 x 480. Following StructDepth (Li et al., 2021), we use the official training and validation splits
which include 302 and 33 sequences, and use officially provided 654 images for testing. ScanNet
(Dai et al., 2017) contains 1513 indoor scenes with a resolution of 1296 x 968. We use official data
split and use this dataset as a generalization test for indoor scenes.

Evaluation Metrics. We follow Monodepth2 (Godard et al., 2019) using relative squared error
(Sq Rel), absolute relative error (Abs Rel), root mean squared error (RMSE), root mean squared
logarithmic error (RMSE log) and threshold accuracy (0<1.25, 0<1.25% and 0<1.25%).
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(a) Image (b) Monodepth2 (c) Lite-Mono-8M (d) Ours
Figure 3: Qualitative comparison on KITTI (Geiger et al., 2013). We highlight challenging areas.
Table 2: Generalization on Make3D (Saxena et al., 2008). All methods are trained on KITTI.

Error Metric ({.)

Method Sq Rel Abs Rel RMSE RMSE log
Monodepth2 (Godard et al., 2019) 3.589 0.322 7.418 0.163
HR-Depth (Lyu et al., 2021) 3.208 0.315 7.024 0.159
DIFFNet (Zhou et al., 2021a) 3.313 0.309 7.008 0.155
DynaDepth (Zhang et al., 2022a) 3.311 0.334 7.463 0.169
Chen et al. (Chen et al., 2023) 3.610 0.370 7.133 -
Zhang et al. (Zhang et al., 2023b) 3.485 0.314 7.188 -
Lite-Mono (Zhang et al., 2023a) 3.060 0.305 6.981 0.158
Zhao et al. (Zhao et al., 2024) 3.200 0.316 7.095 0.158
Xiong et al. (Xiong et al., 2024) 3.102 0.319 7.005 0.161
TSF-Depth 2.925 0.292 6.744 0.150

4.2 IMPLEMENTATION DETAILS

We implement TSF-Depth in PyTorch (Paszke et al., 2017), traning it for 20 epochs on the outdoor
dataset and 40 epochs on the indoor dataset by using AdamW (Loshchilov & Hutter, 2017) optimizer
on a single RTX 3090 GPU. The batch size is set to 12 for the outdoor dataset and 16 for the indoor
dataset. The initial learning rate for PoseNet and depth decoder is 1 x 10~%, while the depth encoder
is trained with an initial learning rate of 5 x 10~5. For the PoseNet, we use the same architecture
as Monodepth2 (Godard et al., 2019). For the encoder 0, initial depth decoder ; and final depth
decoder 0 of DepthNet, we choose mpvit, the decoder of Monodepth2 (Godard et al., 2019) and
HRDecoder (He et al., 2022), respectively. The hyper-parameters S, L, «, 3, v, and  are set to 5,
10, 0.85, 1.0, 0.001, and 0.5 respectively. More implementation details are reported in Appendix C.

4.3 COMPARISON ON OUTDOOR SCENE

KITTI. Table 1 presents the quantitative comparison at resolution of 640 192 on the outdoor bench-
mark, i.e., KITTI dataset (Geiger et al., 2013) . Compared to existing methods trained on monocular
videos, our method outperforms all these works by significant margins, and also outperforms coun-
terparts trained with additional stereo pairs. In particular, our method relatively outperforms the
SOTA method Lite-Mono-8M by 5.1% and by 5.0% in terms of Sq Rel and Abs Rel, respectively.
We also compare the qualitative performance with the classic work Monodepth2 (Godard et al.,
2019) and the SOTA work Lite-Mono-8M (Zhang et al., 2023a). Fig. 3 presents three visual sam-
ples and highlights challenging areas. We observed that for the first two examples, the traditional
CNN-based MonoDepth2 and the attention-based Lite-Mono-8M, which extract only front-view 2D
feature for depth estimation, both obtain inconsistent depth map. For the third challenging example
with low texture, the compared methods obtained discontinuous results. In contrast, our method
generates superior visual results due to our multi-view representation to capture the 3D geometric
cues for robust depth estimation. More visualization results are shown in Appendix D. In addition,
the quantitative results at 1280 x 384 and 1024 x 320 resolutions are reported in Appendix E.

Make3D. To show the generalization capability, we further test our proposed method on the Make3D
dataset (Saxena et al., 2008). Following the evaluation strategy in (Zhou et al., 2017), our model is
training on the KITTI dataset (Geiger et al., 2013) without any fine-tuning on the Make3D dataset.
As shown in Table 2, our method outperforms all other self-supervised monocular depth estimation
approaches, which demonstrates our models can be well generalized to unseen outdoor scenes.
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Table 3: Depth estimation results on NYUv2 (Silberman et al., 2012).

Error Metric ({) Accuracy Metric (1)

Method 5 3

Abs Rel RMSE 6<1.25 0<1.25 6<1.25
MovinglIndoor (Zhou et al., 2019) 0.208 0.712 0.674 0.900 0.968
Monodepth2 (Godard et al., 2019) 0.160 0.601 0.767 0.949 0.988
TrainFlow (Zhao et al., 2020) 0.189 0.686 0.701 0.912 0.978
P2Net (Yu et al., 2020) 0.159 0.599 0.772 0.942 0.984
Bian et al. (Bian et al., 2020) 0.147 0.536 0.804 0.950 0.986
SC-DepthV1 (Bian et al., 2021) 0.159 0.639 0.734 0.937 0.983
PLNet (Jiang et al., 2021) 0.151 0.562 0.790 0.953 0.989
StructDepth (Li et al., 2021) 0.142 0.540 0.813 0.954 0.988
Zhang et al. (Zhang et al., 2022b) 0.177 0.634 0.733 0.936 -
ADPDepth (Song et al., 2023) 0.165 0.592 0.753 0.934 0.981
F?Depth (Guo et al., 2024a) 0.153 0.569 0.787 0.950 0.987
Guo et al. (Guo et al., 2024b) 0.152 0.567 0.792 0.950 0.988
TSF-Depth 0.129 0.527 0.846 0.966 0.991

Table 4: Generalization resutls on ScanNet (Dai et al., 2017). All methods are trained on NYUv2.

Method Error Metric ({) Accuracy Metric (1)
Abs Rel RMSE §<1.25 §<1.252 §<1.25%

MovingIndoor (Zhou et al., 2019) 0.212 0.483 0.650 0.905 0.976
Monodepth2 (Godard et al., 2019) 0.200 0.458 0.672 0.922 0.981
TrainFlow (Zhao et al., 2020) 0.179 0.415 0.726 0.927 0.980
P2Net (Yu et al., 2020) 0.175 0.420 0.740 0.932 0.982
PLNet (Jiang et al., 2021) 0.176 0.414 0.735 0.939 0.985
IFMNet (Wei et al., 2021) 0.170 0.402 0.758 0.940 0.989
SC-Depthv1 (Bian et al., 2021) 0.169 0.392 0.749 0.938 0.983
StructDepth (Li et al., 2021) 0.165 0.400 0.754 0.939 0.985
TSF-Depth 0.157 0.390 0.775 0.954 0.988

4.4 COMPARISON ON INDOOR SCENE

NYUv2. Table 3 presents a performance comparison between our approach and state-of-the-art
methods on the NYUv2 dataset (Silberman et al., 2012). For smaller indoor scenes, TSF-Depth
significantly outperforms all previous self-supervised methods compared to larger outdoor scenes.
This shows that building 3D scene fields is effective and can be easily done in small scenes.

ScanNet. We further validate the generalization ability in indoor scenes. All methods are trained
on NYUvV2 (Silberman et al., 2012) and tested on ScanNet (Dai et al., 2017). The results in Table 4
demonstrates that TSF-Depth has excellent generalization ability for unseen indoor scene.

4.5 ABLATION STUDY

To investigate the main contributions and key designs of TSF-Depth, a series of ablation experiments
on the KITTT (Geiger et al., 2013) dataset are conducted. The pipeline of the baseline is reported in
Fig. 1 (a). In addition, the ablation studies for indoor scene are presented in Appendix F.

Effects of Multi-scale Scene Priors. We first analyze the impact of incorporating multi-scale scene
prior into model by positional encoding. See Table 5 (a), (b), (d) and (e), training either with
single-scale or full-scale scene prior encoding, all significantly improves the depth accuracy over
the baseline without it, and the combination it with tri-plane feature scenes at different scales yields
an additional improvement. Based on the above analysis, the scene prior we introduce is effective.

Effects of Multi-scale Tri-plane Feature Fields. We further analyze the impact of modeling 3D
scene field using multi-scale tri-plane feature fields. The results are shown in Table 5 (c) and (e).
When building a single-scale tri-plane feature field, the depth accuracy is improved. Better perfor-
mance is achieved by using multi-scale tri-plane feature field or incorporating scene priors, suggest-
ing that modeling multi-view representation is effective for robust depth estimation.

Effects of 3D Scene Field on 3D Geometric Representation. We finally evaluate the effectiveness
of 3D scene fields for 3D geometric representation. The results is reported in Table 6. We remove
the decoder € branch and positional encoding branch of TSF-Depth as a baseline and then train it.
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Table 5: Ablation results for each component of our method on KITTI (Geiger et al., 2013). SP:
L« W TP Model the 3D scene using tri-plane

Incorporate scene prior encoding with resolution 57 X 57
feature field with resolution £ x Y- §PAl/T pAl: Use all resolution SP/TP.

Exp Setting Sp TP Error Metric (]) Accuracy Metric (1)
Sq Rel Abs Rel RMSE RMSE log §<1.25 §<1.25% §<1.25°

(a) Baseline 0.746 0.102 4.464 0.176 0.897 0965  0.983
sp! v 0.733 0.098 4388 0.174 0900 0967 0.984
SP? v 0.729 0.098 4.385 0.174 0902 0.967 0.984
by SP? v 0.722 0.098 4.386 0.175 0901 0.967 0.984
sp? v 0.745 0.098 4419 0.174 0899 0.967 0.984

5 v 0.737 0.100 4384 0.175 0901 0967 0.984
SpAl v 0.736  0.099 4.385 0.175 0901 0.967 0.984
Tp! v 0734 0.098 4385 0.174 0.899 0.967 0.984
TP? v 0738 0.098 4387 0.174 0901 0967 0984
© TP v 0719 0.098 4395 0.174 0901 0967 0984
Tp* v 0743 0.099 4393  0.175 0900 0.967 0.984

5 v 0760 0.099 4425 0175 0898 0967 0.984
TpAY v 0742 0.099 4384 0.175 0901 0.967 0.984
SspAt 4 7 pl v v 0722 0.099 4387 0.174 0901 0967 0.984
spAt 4 7p? v v 0719 0.098 4385 0.174 0902 0967 0.984
d sSpA% 4 Tp3 v v 0750 0.099 4427 0175 0902 0967 0.984
spAt 4 Tpt v v 0734 0.099 4385 0.175 0902 0966 0.984
SspAt L Tpd v v 0748 0.100 4.406 0.175 0902 0967 0.984
TpA 4 5pt v v 0734 0.099 4385 0.174 0902 0967 0.984
TPAN 4 5p? v v 0752 0099 4397 0.175 0902 0967 0.984
(e) TPAM 4 gp3 v v 0740 0.099 4435 0175 0901 0966  0.984
TPAN 4 gpt v v 0720 0.098 4383 0.174 0902 0967 0.984
TpPAN 4 §p5 v v 0733 0.099 4425 0175 0902 0967 0.984
(f) TSF-Depth (SPAY + TPAYy v v 0.692 0.096 4335 0.173  0.903 0967 0.984

Table 6: Ablation results of the ability of 3D scene fields to represent 3D geometry on KITTI (Geiger
etal., 2013). OLT is an encoder that is frozen after being pre-trained in the baseline.

0o 0P 00 0 Error Metric ({) Accuracy Metric (1)
Setti

cHimne # 05" 01 08 g Rel Abs Rel RMSE RMSE log 0<1.25 3<1.25% §<1.25°
Baseline (2D geometry) v v 0746 0.102 4.464 0.176 0.897 0965 0.983
TSF-Depth (2D geometry) v v v 0755 0.103 4475 0.181 0.892  0.963 0.982
TSF-Depth (3D geometry) v’ v v 0.692 0.096 4335 0.173 0.903 0.967 0.984

Thus, the baseline relies on 2D features for depth estimation. Note that we denote the encoder of
baseline as 0£7'. Then, we replace the 0 of TSF-Depth with the trained encoder #£7, and then train
other modules. In this setup, the Tri-plane feature field is constructed using 2D representation. As for
the last row, it uses our complete training. Compared to the baseline and the complete TSF-Depth,
we observe that the results of TSF-Depth based on 2D geometry features are worse than both them,
due to the 3D-to-2D mapping requiring 3D geometric representation rather than 2D representation.
Thus, our TSF-Depth can learn 3D geometric representations for robust depth estimation.

5 CONCLUSION

In this paper, we propose a novel self-supervised monocular depth estimation framework based on
the Three-dimensional Scene Field representation (TSF-Depth). Unlike previous methods typically
rely on extracting front-view 2D features, we turn to learning a more powerful 3D representation for
robust depth estimation. We design a tri-plane feature field that is reshaped from hybrid features of
scene content and scene prior to implicitly model the multi-view representation of the continuous
3D scene. Then, we attentively design a 3D-to-2D mapping strategy to sample 2D features with 3D
geometry for depth estimation. Extensive experiments on widely-used outdoor datasets (KITTI and
Make3D) and indoor datasets (NYUv2 and ScanNet) show the robustness and generalization ability.
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A  OVERVIEW

The appendix document supplements the method details and additional experimental results. In Sec-
tion B, we discuss the scene priors in detail. In Section C, we supplement the implementation details.
In Section D, we present more visualization results on the KITTI (Geiger et al., 2013), Make3D Sax-
ena et al. (2008), NYUv2 Silberman et al. (2012), and ScanNet Dai et al. (2017) datasets. In Section
E, we provide more quantitative comparisons with previous state-of-the-art methods at other image
resolutions. In Section F, we report the additional ablation study on the indoor scene. In Section
G, we present the complexity of the model and the speed of inference. In Section H, we present
a challenging sample. In Section I, we present the qualitative results on challenging samples. In
Section J, we present the visualization of depth maps and reconstructed point clouds. In Section K,
we present the qualitative results of cropped image.

B DETAILS ABOUT SCENE PRIOR

When humans understand the real-world or infer the depth from the 3D scene including indoor or
outdoor scene, they will employ specific prior knowledge about the physical world. For the indoor
scene, the floor and celling are located in the lower and the upper parts respectively, and the room
is surrounded by flat walls perpendicular to the floor and ceiling. As for the outdoor scene such as
driving scene, the road and sky appear in the lower and upper parts respectively, and other objects
such as people, vehicles, houses, etc. are connected and located above the road. Besides, objects
in the middle area of the image often have greater depth than objects in other areas. Inspired by
these observations, we intuitively argue that the rough depth range can be inferred when the scene
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(a) Image (b) Monodepth2 (c) Lite-Mono-8M (d) Ours

Figure 4: More qualitative comparison results with a resolution of 640 x 192 on the KITTI
(Geiger et al., 2013) dataset . We highlight challenging areas with white dashed boxes. Compared
with the classical method Monodepth2 (Godard et al., 2019) and the latest state-of-the-art method
Lite-Mono-8M (Zhang et al., 2023a), our proposed method generates superior visual results.

nature are known and the relative positions of objects in the image are give. To this end, we mine
an additional scene prior, i.e., relative spatial position, for depth estimation model to enhance its
perception of spatial structure.

C MORE IMPLEMENTATION DETAILS

Following Zhou et al. (2021a); He et al. (2022), we use the weights pre-trained on ImageNet (Rus-
sakovsky et al., 2015) to initialize the encoders of depth network and pose network. In order to fully
verify the effectiveness of the proposed framework, we train and validate outdoor scenes at three
resolutions, including 640 x 192, 1024 x 320 and 1280 x 384. And for indoor scenes, we train and
validate only at 320 x 256 resolution. To improve the training speed, we only output a single-scale
depth for the final depth decoder and compute the loss on single-scale depth map. Following existing
evaluation rules (Godard et al., 2019; Zhang et al., 2023a), we adopt the same median scaling on the
depth results for all methods.

D MORE QUALITATIVE RESULTS

For a clear comparison between TSF-Depth and related works, Fig. 4 and Fig. 5 present more
qualitative comparison results on the KITTI and Make3D datasets. In addition, Fig. 6 and Fig.
7 present more qualitative comparison results on the NYUv2 and ScanNet datasets. We highlight
challenging areas with white dashed boxes. As we can see from this figure, our proposed TSF-Depth
generates more accurate depth maps, particularly in these region with low texture, slender structure,
shadow occlusion and reflections.

E MORE QUANTITATIVE RESULTS

In order to make more comparisons with previous state-of-the-art methods, we also report the per-
formance comparisons at other resolutions on the KITTI (Geiger et al., 2013) dataset, as shown in
Table 7. Note that all methods were trained on both 1280 x 384 and 1024 x 320 resolutions and then
evaluated at the corresponding resolutions. As can be seen, our proposed TSF-Depth significantly
outperforms previous self-supervised monocular depth estimation approaches in both resolutions.
At a resolution of 1280 x 384, almost all errors are reduced by about 3%. Specifically, the Sq Rel,
Abs Rel, RMSE and RMSE log erros are decreased by 8.8%, 5.0%, 2.9%, 3.4%. For the resolution
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Figure 5: Qualitative comparison results with a resolution of 640 x 192 on the Make3D dataset.
We highlight challenging areas. Compared with the classical method Monodepth2 (Godard et al.,
2019) and the latest state-of-the-art method Lite-Mono-8M (Zhang et al., 2023a), our proposed
method generates superior visual results.
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(a) Image (b) PLNet (c) StructDepth (d) Ours

Figure 6: Qualitative comparison results with a resolution of 640 x 192 on the NYUv2 dataset.
We highlight challenging areas. Compared with the classical method PLNet (Jiang et al., 2021)

and the latest state-of-the-art method StructDepth (Li et al., 2021), our proposed method generates
superior visual results.
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Figure 7: Qualitative comparison results with a resolution of 640 x 192 on the ScanNet dataset.
We highlight challenging areas. We highlight challenging areas. Compared with PLNet (Jiang et al.,
2021) and the latest state-of-the-art method StructDepth (Li et al., 2021), our proposed method
generates superior visual results.
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Table 7: Depth estimation results at other resolutions on the Eigen split of KITTI (Geiger et al.,
2013) dataset. The best results are marked in bold.

Error Metric ({) Accuracy Metric (1)
Sq Rel Abs Rel RMSE RMSE log §<1.25 §<1.25% §<1.25°

PackNet (Guizilini et al., 2020)  1280x384 0.758 0.104 4.384 0.182  0.895 0964 0.982
SGDepth Klingner et al. (2020)  1280x384 0.768 0.107 4.468 0.186  0.891 0963  0.982

Method Resolution

HR-Depth (Lyu et al., 2021) 1280%x384 0.727 0.104 4.410 0.179 0.894 0966 0.984
CADepth (Zhou et al., 2021a) 1280x384 0.715 0.102 4312 0.176 0900 0.968  0.984
TSF-Depth 1280%384 0.679 0.093 4.188 0.170 0912 0970 0.985
Monodepth2 (Godard et al., 2019) 1024x320 0.882 0.115 4.701 0.190  0.879 0961  0.982
HR-Depth (Lyu et al., 2021) 1024320 0.755 0.106 4.472  0.181 0.892 0966  0.984

Lite-Mono (Zhang et al., 2023a) 1024x320 0.746 0.102 4.444 0.179 0.896 0965 0.983
Zhao et al. (Zhao et al., 2024) 1024x320 0.731 0.105 4.412  0.181 0.891 0.965  0.983
TSF-Depth 1024320 0.672 0.093 4.179 0.169 0911 0.969 0.984

of 1024 x 320, almost all errors have a more obvious drop and are reduced by about 5%. The Sq
Rel, Abs Rel, RMSE and RMSE log erros are decreased by 8.0%, 11.4%, 5.3%, 6.6%. Therefore,
the quantitative results demonstrate that our designed multi-scale multi-view 3D scene field is more
robust to depth estimation at different image resolutions.

F ADDITIONAL ABLATION STUDY RESULTS

To fully investigate the main contributions and key designs of TSF-Depth, a series of ablation exper-
iments on the NYUV2 (Silberman et al., 2012) dataset are conducted. Compared to outdoor scenes,
the challenges in indoor scenes lies in addressing highly diverse environments and near-field clutter
with arbitrarily arranged objects. The pipeline for the baseline is reported in Fig. 1 (a), which fol-
lows existing self-supervised monocular depth estimation frameworks and employ only front-view
2D geometric feature for depth estimation.

Effects of Multi-scale Scene Priors. We first analyze the impact of incorporating multi-scale scene
prior into model by positional encoding. As shown in Table 8 (a) and (b), training with either single-
scale or full-scale scene prior encoding significantly improves the depth prediction accuracy over
the baseline without it. In addition, see Table 8 (d), while combining the multi-scale scene priors
with tri-plane feature scenes at different scales does not yield significant improvements, the best
depth quality was achieved when combining with multi-scale tri-plane feature fields, as shown in 8
(f). Based on the above analysis, the scene prior we introduce is effective for depth estimation even
for monocular challenging indoor scenes.

Effects of Multi-scale Tri-plane Feature Fields. We further analyze the impact of modeling 3D
scene field using multi-scale tri-plane feature fields. The results are shown in Table 8 (c) and (e).
Compared to the baseline, when a single-scale tri-plane feature field is constructed, the depth accu-
racy is improved. Better performance is achieved by using multi-scale tri-plane or combining scene
priors. These ablation results illustrate that our proposed TSF-Depth modeling multi-view 3D scene
field representation is effective for robust depth estimation.

G MODEL COMPLEXITY AND SPEED EVALUATION

Table 9 reports the parameter complexity (#Params), computation complexity (GLOPs), and in-
ference speed on the KITTI (Geiger et al., 2013) dataset. We perform inference at a resolution of
640 x 1920, and set the batch size to 16. The models for all comparison methods were inferred on
the same platform with NVIDIA RTX 3090 GPU. As can be seen from this table, our model has a
similar number of parameters as most existing depth estimation methods, such as Monodepth2-R50
(Godard et al., 2019), DynaDepth (Zhang et al., 2022a) and Zhang et al. (2023b), which allows it to
be used on edge devices. Moreover, our model achieve similar computation complexity and infer-
ence speed as the existing state-of-the-art model Lite-Mono-8M (Zhang et al., 2023a). Compared
to the baseline model, our method scales up to state-of-the-art depth performance with only a few
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Table 8: Ablation results for each component of our method on NYUv2 (Silberman et al., 2012).

S P?: Incorporate scene prior encoding with resolution % X % T P*: Model the 3D scene using

tri-plane feature field with resolution £ x Y. SPA!/TPAI: Use all resolution SP/T'P.

Error Metric | Accuracy Metric 1
Exp Setting SP TP, b5 Rel SqRel RMSE RMSE log 0<1.25 6<1.25% d<1.25°
(a) Baseline 0.147 0.123 0.574 0.189  0.795 0.956  0.990
sp! v 0.136 0.112 0.544 0.178 0.830 0.968  0.991
Sp? v 0.138 0.109 0.541 0.177 0.822 0964  0.992
sSp? v 0.138 0.116 0.559 0.177 0.823 0965 0.991
sp* v 0.135 0.110 0.543 0.174 0.830 0965 0.992
(b gps v 0.136 0.106 0.536 0.176  0.830 0966  0.992
SpAt v 0.137 0.109 0.539 0.175 0.830 0.966  0.992
TpP! v 0139 0.120 0558 0.178 0.826 0964  0.991
TP? v 0.143 0.113 0.551 0.183  0.812 0959  0.991
TP3 v 0.142 0.120 0559 0.180 0818 0963  0.991
TP* v 0136 0.107 0536 0.174 0830 0965 0.992
(© 7ps v 0.138 0.115 0.548 0.177 0.829 0963  0.991
TpAl v 0136 0.112 0.549 0.182 0812 0961  0.991
SspAl 4 Tpl v v 0139 0.113 0550 0.178 0.822 0963  0.991
SspAl T p? v v 0137 0.112 0549 0.176  0.826 0.965 0.991
spAl L Tp3 v v 0139 0.118 0556 0.178 0.825 0963  0.991
@ SpP*+T1p* v v 0135 0111 0546 0.175 0.830 0966 0991
SpAl 4 Tp° v v 0135 0.109 0536 0.176 0.829 0964  0.991
TpAt 4 gpt v v 0140 0.111 0548 0.179 0.816 0.963  0.992
TPAN 4 5p? v v 0139 0.112 0548 0.178 0.823 0.962  0.991
TpAY 4 5p3 v v 0141 0.115 0554 0.180 0.816 0961 0.991
e TP +spP* v v 0141 0.115 0558 0181 0817 0962 0991
TpPAN 4 5p5 v v 0135 0.108 0.537 0173 0.830 0967  0.992
(f) TSF-Depth (SPA" +TPAYy v v 0134 0103 0.530 0172  0.831 0967 0.992

Table 9: Model complexity and speed evaluation. We compare parameters (#Params), giga
floating-point operations per second (GFLOPS), and inference speed on the KITTI (Geiger et al.,
2013) dataset. The input size is 640 x 192, and the batch size is 16. All models are inferred on the
same platform with NVIDIA RTX 3090 GPU. “-” indicates that the method is not open source code
and we cannot make inferences.

Error Metric ({)
Sq Rel Abs Rel RMSE RMSE log

GeoNet (Yin & Shi, 2018) 31.6M - - 1.060 0.149 5.567  0.226
Monodepth2-R18 (Godard et al., 2019) 143M  8.04G 1.8ms 0903 0.115 4863  0.193
Monodepth2-R50 (Godard et al., 2019) 32.5M 167G 2.0ms 0.831 0.110 4.642  0.187

Method #Params GFLOPs Speed

DynaDepth (Zhang et al., 2022a) 32.5M 16.7G 3.4ms 0.761 0.108 4.608  0.187
Zhang et al. (Zhang et al., 2023b) 32.6M - - 0786 0.105 4572  0.182
Lite-Mono-8M (Zhang et al., 2023a) 8.70M 11.2G 63ms 0.729 0.101 4.454  0.178
Dynamo-Depth (MD2) (Sun et al., 2024) 143M  8.04G 1.4ms 0.864 0.120 4.850  0.195
Dynamo-Depth (Sun et al., 2024) 8.77TM 112G 4.7ms 0.758 0.112 4.505 0.183
Baseline 272M 399G 7.7ms 0.746 0.102 4.464  0.176
TSF-Depth 29.8M 442G 9.8ms 0.692 0.096 4335 0.173

additional parameters. The additional parameters are brought by the initial depth network, however
it does not produce any features information to be incorporated into the final depth estimation, only
providing sampling points. Therefore, our proposed TSF-Depth is able to be practically applied.
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(a) Challenging scenario (b) Gradient amplitude (c) V channel of HSV

Figure 8: A challenging sample. (a) A scenario with extensive low-texture areas (e.g., roads, build-
ings, bushes, etc.) and reflective areas (e.g., cars, buildings). (b) The gradient amplitude computed
using the Sobel operator to assess the texture distribution. (c) The V channel in HSV color space
used to analyze brightness levels.

PREHEction
(a) Image (b) Monodepth2 (c) Lite-Mono-8M

Figure 9: Qualitative comparison of challenging test subsets in the KTIT dataset. We highlight
challenging areas with low-texture areas, shadow occlusion, and reflective surfaces. Our method
generates robust depth maps in these challenging conditions.

H CHALLENGING SAMPLE

In general, low-texture regions exhibit smooth variations with gradient values typically close to zero,
while reflective regions often display extremely high luminance values near saturation. We present a
challenging sample containing extensive low-texture areas (e.g., roads, buildings, bushes, etc.) and
reflective areas (e.g., cars, buildings) in Fig. 8. To analyze these characteristics, we illustrate its
gradient magnitude (Fig. 8 (b)) to evaluate the texture level and the V channel in HSV space (Fig. 8
(c)) to examine brightness. The observations align well with common perceptions.

I QUALITATIVE RESULTS ON CHALLENGING SAMPLES

We showcase depth estimation results on subsets with low-texture areas, shadow occlusion, and
reflective surfaces, as shown in Fig. 9. The highlighted regions (dotted boxes) emphasize the dif-
ferences among Monodepth2, Lite-Mono-8M, and our method. Our approach demonstrates more
accurate and robust depth predictions in these challenging conditions.

J  VISUALIZATION OF DEPTH MAPS AND RECONSTRUCTED POINT CLOUDS

As shown in Fig. 10 (b), we present the visualization results of the depth map at six scales (2st col-
umn) and the corresponding point clouds without (3nd column) and with (4rd column) color values
of the target image. In addition, we also present the reconstructed results (6th and 7th columns) after
the predicted depth map is upsampled to the real image resolution, as shown in Fig. 10 (c). As can
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Figure 10: Visualization of the intermediate depth maps, point clouds without and with color
values of the target image. (a) The target image with a resolution of 375 x 1242. (b) Qualitative
results at different scales when target image are input at training resolution 192 x 640, including
predicted depth maps (D} , € R192/27x640/2" and D, , € R192640) (2nd column), projected point
clouds (P7; € R192/23X640/28X3 and Dy, € R192X640X3) using the depth maps (3rd column),

and back-projected scenes (R7 ; € R92/ 27X640/2°x3 4pq RS, € R192x640x3) (4rd column). (c)
Qualitative results after the predlcted depth is upsampled to the real image resolution.

be seen in Fig. 10 (c), the reconstructed point clouds at different scales are almost identical, which
suggests that our generated depth maps at different scales are geometrically consistent.

K QUALITATIVE RESULTS OF CROPPED IMAGE

As shown in Fig. 11, we present the visualization results of the depth maps corresponding to dif-
ferent cropping ratios. We observe that the Baseline produces discontinuous and inaccurate depth
results when the spatial layout of the image changes. In contrast, our method generates consistent
results across all three cropping ratios, demonstrating its applicability to challenging cases such as
cropped images.
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(a) Input (b) Baseline (c) Ours

Figure 11: Qualitative comparison of cropped images on the KITTI dataset. We present depth
estimation results on images with different crop ratios (1/3, 1/6, and 0). Highlighted regions (dot-
ted boxes) demonstrate that our method achieves more accurate depth predictions compared to the
Baseline under varying crop conditions.
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