
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

MAKE IT SING: ANALYZING SEMANTIC INVARIANTS
IN CLASSIFIERS

Anonymous authors
Paper under double-blind review

Figure 1: Visualization of benign and problematic invariants. The four images at the center
correspond to certain features taken from a pretrained ResNet50. On the left and right columns
their equivalent images are shown, following null-space removal. Each pair yields the same logits
after passing through the linear head. The left side (green) demonstrates robustness, with little
semantic change. The right side (red) incurs large semantic deviations. Our framework quantifies
these changes statistically, diagnosing semantic invariants at the class and network level.

ABSTRACT

All classifiers, including state-of-the-art vision models, possess invariants, par-
tially rooted in the geometry of their linear mappings. These invariants, which
reside in the null-space of the classifier, induce equivalent sets of inputs that map
to identical outputs. The semantic content of these invariants remains vague, as ex-
isting approaches struggle to provide human-interpretable information. To address
this gap, we present Semantic Interpretation of the Null-space Geometry (SING),
a method that constructs equivalent images, with respect to the network, and as-
signs semantic interpretations to the available variations. We use a mapping from
network features to multi-modal vision language models. This allows us to obtain
natural language descriptions and visual examples of the induced semantic shifts.
SING can be applied to a single image, uncovering local invariants, or to sets of
images, allowing a breadth of statistical analysis at the class and model levels. For
example, our method reveals that ResNet50 leaks relevant semantic attributes to
the null space, whereas DINO-ViT, a ViT pretrained with self-supervised DINO,
is superior in maintaining class semantics across the invariant space.

1 INTRODUCTION

State of the art networks, especially vision classifiers, learn internal representations with complex
geometry; while this correlates with strong performance on recognition benchmarks, it makes mech-
anistic interpretability difficult (Doshi-Velez & Kim, 2017; Ansuini et al., 2019). For example, in-
variants, derived from the null space of the model’s linear layers, lead to sets of inputs with identical

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

outputs. We refer to these sets as equivalent sets. Whereas nonsemantic invariants such as back-
ground or illumination are generally beneficial, invariants that carry semantic information may harm
the classifier. However, although users can often introduce image augmentations to increase invari-
ants of certain attributes, they cannot easily determine what the model has actually learned, only via
rigorous testing.

This motivates approaches that interpret neural networks while focusing on their geometry. A natural
starting point would be the geometry of the classification head, where the last decision is made.
A related line of research applies singular value decomposition (SVD) to the latent space based
on representative data in the latent feature space (Aubry & Russell, 2015; Härkönen et al., 2020;
Haas et al., 2024); however, these methods are prone to the data covariances rather than network
mechanism. Other methods operate directly in the weight-induced null space (Cook et al., 2020;
Rezaei & Sabokrou, 2023; Li & Short, 2024). For example, the classifier head can be decomposed
into two space components:(i) principal directions, associated with dominant singular values that
influence the logits; (ii) null directions, the complementary space that keeps the inputs unchanged
(Praggastis et al., 2022; Anthes et al., 2023). While they are able to identify the existence of invariant
directions, they fail to explain semantically what they represent, and often rely on task-specific data
to demonstrate these directions (Li & Short, 2024).

Recent advances in mechanistic interpretability (Moayeri et al., 2023; Kim et al., 2023; Huang et al.,
2024; Dreyer et al., 2025) enable the translation of latent features from a given model into a multi-
modal vision language space, most notably CLIP (Radford et al., 2021). The use of CLIP to compute
semantic correlations between text and images facilitates new sets of techniques that focus on pro-
ducing human-readable concepts and counterfactual examples to aid interpretation. However, to the
best of our knowledge, we are the first to map a classifier’s invariant directions into a multi modal
network for systematic analysis, providing textual descriptions and visual examples.

In this work, we propose the Semantic Interpretation of the Null-space Geometry (SING) method.
Its purpose is to identify and explain representation of equivalent pairs in the latent feature space of
a target classifier. We leverage SVD of the feature layer to capture hidden information in the null
space. Interpretability is obtained by training linear translators to CLIP’s space, allowing quantifi-
able statistical semantic analysis. Our method provides a general framework to measure human-
readable explanations. This allows to probe, debug and compare data invariants from the image and
class levels up to entire model assessments. It can be used to detect vulnerable classes and spurious
information, such as background cues. We demonstrate the effectiveness of SING through cross-
architecture measurements, per-class analysis, and individual image breakdown. In the last section
of our experiments we present a promising direction for null space manipulation, creating features
with hidden semantics that the model ignores. Our main contributions are:

• A semantic tool for interpreting invariants. SING links classifier geometry, specifically the
null space and the invariants it induces, to meaningful human-readable explanations using
equivalent pairs analysis.

• Model comparison. We introduce a protocol to compare different architectures by measur-
ing the leakage of their semantic information into their null space. Our analysis found that
DINO-ViT, among the examined networks, had the least class-relevant leakage into its null
space while allowing broad permissible invariants, such as background or color.

• Open vocabulary class analysis. Our framework allows for systematic investigations of the
sensitivity of classes to certain concepts. It can discover spurious correlations and assess
their contribution. For example, our experiments show that for some spurious attributes in
the DINO-ViT model the classifier head considers them as invariants.

2 RELATED WORK

2.1 EXPLAINABILITY THROUGH DECOMPOSITION

Decomposing latent spaces using SVD is a foundational approach for studying their invariances
(Golub & Reinsch, 1970). Aubry & Russell (2015) used this technique to probe dominant modes
of variation in CNN embeddings, for example illumination and viewpoint, under controlled syn-
thetically rendered scenes. Härkönen et al. (2020) applied it to GAN latent spaces for interpretable

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

SVD

rank

VClassifier
Weights

Translator

CLIP

Feature
Extractor

𝓛𝒎𝒔𝒆

a. Null and Principal projectors extraction

Principal projector

b. Train a translator

c. Create equivalent set

Examined Network

Translator

+

UnCLIP

Vocab.
projection

cat
jellyfish

car

bird

⋅
⋅
⋅

Null projector

d. Translate , measure , visualize

Translator

UnCLIP

Vocab.
projection

⋅
⋅
⋅

cat
jellyfish

car

bird

Semantic
direction

-> ‘car’

Equivalent
Feature

Figure 2: Method Overview. The approach consists of: (a) decomposing the final linear weights
to obtain principal and null projectors; (b) training a translator that maps features from the network
embedding space to the CLIP image space; (c) creating an equivalent pair to the feature we want
to examine. (d) translate the set into CLIP image embedding space, and apply our metrics and
visualizations.

controls, and more recently Haas et al. (2024) used it to present consistent editing directions in dif-
fusion model latent spaces. However, feature-space decomposition is inherently data-dependent: its
axes reflect the covariance of the measured dataset rather than the classifier’s decision geometry;
crucially, it may miss invariances residing in the classifier’s null space itself.

A complementary study involves decomposing the model weights directly. This line of work in-
cludes early low-rank decompositions of convolutional weights for acceleration (Jaderberg et al.,
2014), SVD analyzes of convolutional filters for interpretability (Praggastis et al., 2022), and de-
composition of the final linear layer to identify the direction relevant to the task and the direction
invariant to the task (Anthes et al., 2023). Ravfogel et al. (2020) iteratively projected representations
onto the null space of a linear attribute classifier to remove protected information while preserving
task predictions; Cook et al. (2020) performed null space analysis inside networks and use projec-
tions to derive an OOD detection score; Idnani et al. (2023) explained OOD failures via null-space
occupancy, showing that features drifting into the readout’s null space lead to misclassification;
Rezaei & Sabokrou (2023) analyzed the last layer null space to quantify overfitting through changes
in null space structure; and Li & Short (2024) exploited null space properties to perform image
steganography, masking images that leave logits unchanged. Collectively, these methods treat the
null space as an operational invariance set for control, detection, and manipulation. However, as
far as we know, no current research managed to assign semantic meaning to null directions, as our
approach does.

2.2 PROJECTING FEATURES TO A VISION-LANGUAGE SPACE

Contrastive Language–Image Pretraining (CLIP) (Radford et al., 2021) learns a rich joint embed-
ding space for images and text, enabling a wide range of vision-language applications. However, its
internal latent geometry remains poorly understood and exhibits a modality gap (Liang et al., 2022).
This latent space has been analyzed both geometrically (Levi & Gilboa, 2025) and probabilistically
(Betser et al., 2025). Several methods have leveraged CLIP representations for interpretability. For
example, Text2Concept (Moayeri et al., 2023) learns a linear map from any vision model’s latent
space to CLIP’s space so that text embeddings act as concept activation vectors, supporting zero
shot concept queries without curated concept labels. CounTEX (Kim et al., 2023) similarly derives

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

concept directions from text in CLIP and introduces a projection and it’s inverse, to project back
and forth between the classifier and CLIP, generating counterfactual examples. Complementing
these projection based approaches, LG CAV (Huang et al., 2024) uses CLIP as language guided
supervision on unlabeled probe images to train concept vectors directly in the target model’s feature
space. In parallel, CLIP Dissect (Oikarinen & Weng, 2022) assigns open vocabulary concept labels
to neurons in arbitrary vision networks by matching activation visualizations with CLIP embed-
dings, enabling label free network dissection without curated concepts. This vast research explicitly
presents the benefits of probing a model. However, unlike our approach, these methods focus on
manipulating the classifier’s features and overlook the null space of these networks.

3 METHOD

Our method contains several components as can be seen in Figure 2. We begin by decomposing
the target layer into principal and null subspaces and building projection operators that isolate each
space. On the second component, we learn a linear mapping that translates the layer’s features into
the shared multi-modal space, specifically the image space. We then select a feature and perturb it
along a specified semantic direction projected to a chosen subspace, creating the equivalent feature
pair. After perturbing, we translate the feature using our translator to observe how its representation
changed semantically with visualization and textual measurements. In this section we develop each
component in detail, with particular attention to the null space and to the classifier head.

3.1 SETUP

In our work, we focus on the last fully connected layer W ∈ Rc×m, which maps the penultimate
features f ∈ Rm to a logit vector in the dimension of the number of classes c. We decompose it with
SVD and specifically extract the null space projection matrix Πn, which contains all the invariants
of the layer. In the translation step we denote TΘ(f) as the Translator, and we use CLIP as our
multi-modal model space. We denote zimg and ztext as the image and text latent features in CLIP
space. We define f̃ as the equivalent pair of f after perturbation in the null space.

3.2 SVD ON THE CLASSIFIER HEAD

W can be decomposed into its principal and null spaces via SVD:

W = U ΣV ⊤, V =
[
Vp Vn

]
, (1)

where Σ ∈ Rc×m is a rectangle diagonal matrix containing the singular values in descending order,
and U ∈ Rc×c and V ∈ Rm×m contain the left and right singular vectors, respectively. We take
rank(W), and use it to break the right singular vectors V into the two subspace components, prin-
cipal space, denoted Vp (associated with non-zero singular values), and the remaining columns Vn

that span the null space. Any perturbation ν ∈ span(Vn) leaves the logits unchanged:

W (f + ν) = Wf +Wν = Wf, (2)

since Wν = 0 for all ν in the null space. Consequently, our projector matrices are:

Πp = VpV
⊤
p , Πn = VnV

⊤
n . (3)

3.3 TRAINING A TRANSLATOR

Following Moayeri et al. (2023) and justified by Lähner & Moeller (2024), we define a linear map-
ping operator T : Rm → Rn. Recall that f ∈ Rm is the classifier feature and zimg ∈ Rn the
corresponding image feature in CLIP. We fit TΘ for a certain pretrained model by minimizing a loss
combining mean squared error, and weight decay:

L = ∥TΘ(f)− zimg∥22 + λ ∥Θ∥22, (4)

where Θ is the parameters of the translator and λ is a balancing coefficient. Detailed explanations on
the training procedure can be found in Appendix B. Note that since the translator is linear, it admits

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

TΘ(f + v) = TΘ(f) + TΘ(v) for any f, v, hence naturally fits additive feature decompositions, as
our framework suggests.

3.4 METRICS

Attribute score. An angle between two nonzero vectors x, y of the same dimension is defined by:

∠(x, y) := arccos
(x · y
∥x∥∥y∥

)
. (5)

CLIP Score, as described in Hessel et al. (2021), is the cosine similarity of the angle between a CLIP
feature in image space zimg , and a feature in the text space, ztext. We write this angle as follows:

∠(zimg, ztext) (6)

Recall that f and f̃ are the original and its equivalent pair. We define Attribute Score (AS) for text
target ztext as the difference between two angles:

AS(f, f̃ |ztext, TΘ) := ∠(TΘ(f), z
text)− ∠(TΘ(f̃), z

text). (7)

A positive AS indicates that the equivalent image is semantically closer to the text and vice versa.
In our framework, the text prompts are chosen as “an image of a <class>” to analyze how
null removal affects classification. However, this metric is general and can be applied with any
prompt selection.

Image score. While AS quantifies how the image deviates from its current semantics, the image
may be altered in appearance without affecting AS. Such differences in overall appearance can be
measured directly by the angular distance related to the original and its equivalent pair. we define it
as Image Score (IS):

IS(f, f̃ |TΘ) := ∠(TΘ(f), TΘ(f̃)). (8)

Intuitively, AS captures the effects of null spaces on the alignment of text-image, whereas IS reflects
general semantic changes in the image. When the text is in the correct image class we would
like low AS, and hence null-space changes should not affect class distinction. However, a good
classifier should allow high IS, and hence large semantic changes that do not affect class distinction,
such as background change and other allowed semantic invariants. Details on image synthesis for
visualization are provided in Appendix D.

3.5 APPLICATIONS

Our main focus is on removing the null component from an image feature f . This way, the equivalent
pair is

f̃ = f −Πnf. (9)
Both f and f̃ produce the same logit vector under the examined network, yet the semantic content
can be changed as a result of the null-removal process. In the following, we describe how to quantify
semantic information leakage at different levels: model, attribute, and image, using the proposed
metrics (AS and IS).

Model-level comparison. A desirable property of well-performing classifiers is to maintain a rich
invariant space, while ensuring that this richness does not compromise class preservation. For in-
stance, there exists a wide variety of dogs differing in breed, pose, size, color, background and
more, all of which should be classified consistently with high confidence. Hence, the invariant space
should support such diversity. However, if perturbations along invariant directions lead to changes in
classification confidence or even alter the predicted class, this indicates that class-specific informa-
tion has leaked into the invariant space - a highly undesirable property that also exposes the model
to adversarial vulnerabilities. To evaluate this, we collect a representative set of images (16 Ima-
geNet classes, serving as a proof of concept), compute the AS and IS metrics (with respect to the
real class prompt; “an image of a <ground-truth class>”) on all null-removed pairs,
and perform a statistical analysis across models. An effective model should exhibit a broad range of
IS values, reflecting rich invariance, while maintaining a narrow distribution of AS values, ensuring
semantic consistency.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Class and Attribute analysis. The same methodology can be applied to analyze inter-class behav-
ior by selecting representative sets from different classes. We conducted two complementary vari-
ants. First, we collected images from each class independently and computed the absolute Attribute
Score (AS) after null-removal, relative to the true label prompt. Higher AS values indicate that the
classifier contains more semantic information within the invariant space for that class. This provides
a practical diagnostic tool for practitioners when choosing networks suited to specific classes or do-
mains. Second, we expanded the vocabulary to an open set of concepts. We quantified the distance
(angles) between the original and the null-removed features, over a broad set of phrases, revealing
how semantic correlations emerge between the null space and diverse concepts.

Single image analysis. Following the same logic, leakage can also be examined at the image level.
This provides a fine-grained diagnostic tool for identifying and debugging failure cases.

Null perturbations. While null removal is useful for fair comparisons across classes, attributes,
or images, feature manipulation need not be restricted to a single invariant direction. We propose a
more principled selection of perturbation directions. We formalize perturbations that target a specific
concept while remaining confined to the model’s invariant (null) subspace. Let f ∈ Rd be an image
feature, TΘ : Rd → Rn the translator into the CLIP image-embedding space, and ztext ∈ Rn the
CLIP text embedding of a prompt (e.g., “an image of a jellyfish”). Define the cosine-
similarity score

s(f ; ztext) :=
⟨z, ztext⟩
∥z∥ ∥ztext∥

, z := TΘ(f). (10)

The semantic direction toward the prompt is the gradient through the translator,

gtext(f) := ∇f s(f ; ztext). (11)

Let Πn denote the orthogonal projector onto the null space (equation 3). Projecting this direction
onto the null space isolates the component that lives in the invariant subspace:

dnull(f) := PN gtext(f), d̂null(f) :=
dnull(f)

∥dnull(f)∥
. (12)

One can control the extent of semantic change via a scalar step size ε applied to the normalized null
direction d̂null:

fε = f + ε d̂null(f). (13)

By choosing the prompt to correspond to another class or attribute, this construction probes a class’s
sensitivity within the invariant subspace to concepts associated with other classes, thereby revealing
“confusing” inter-class relationships.

4 EXPERIMENTS

4.1 DATASET AND MODELS

We base our analysis on five models pretrained on ImageNet-1k (Deng et al., 2009) spanning diverse
architectures and training paradigms: DINO-ViT (Caron et al., 2021), ResNet50 (He et al., 2016),
ResNeXt101 with weakly supervised pretraining (Mahajan et al., 2018), EfficientNetB4 trained with
Noisy Student (Xie et al., 2020), and BiTResNetv2 (Kolesnikov et al., 2020). For statistical analyses,
we collect 10k feature vectors per model from a restricted subset of 16 classes. For each model, we
then train a dedicated translator; to keep the study focused on a proof of concept, translator training
is limited to the same representative subset of 16 classes. Additional details appear in Appendix B.

4.2 MODEL COMPARISON

We compare models globally across all tested classes, measuring AS and IS after null removal. Fig-
ure 3 displays the joint distributions of AS and IS across five models. DINO-ViT attains the best
IS/AS trade-off, consistent with its foundation-scale pretraining on a large, diverse corpus beyond
ImageNet prior to fine-tuning. This trade-off is evident both in the IS/AS ratio bar plot (panel b)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

(a) (b)

Figure 3: Model-level comparison. (a) Attribute Score (AS) quantifies class-dependent semantic
leakage into the null space; Image Score (IS) quantifies tolerance to class-independent (non–class-
dependent) semantic variation within the invariant subspace. Desirably, AS is low and IS is high
(relative to AS). In our results, DINO-ViT performs best in this regard, having the most vertically
elongated confidence ellipse. (b) We summarize the trade-off with the IS/AS ratio (higher is better),
DINO-ViT has the highest ratio and ResNeXt101 the lowest.

and in the orientation of the confidence ellipses in panel (a): only DINO-ViT shows vertical elonga-
tion, i.e., Var(IS) > Var(AS), whereas all other models exhibit the opposite pattern. By contrast,
ResNeXt101 shows high AS with substantial variance, which we interpret as class-dependent se-
mantic leakage into its null space. As discussed in Section 3, such leakage suggests a geometric
vulnerability in the model.

4.3 CLASS ANALYSIS

We present per class statistics of AS for two of our models, ResNet50 and DINO-ViT , and report
them class by class; see Figure 4. For each class, AS is measured after null removal. A complete
analysis of the other models can be found in Appendix F DINO-ViT exhibits stable behavior with
very small AS magnitudes (typically |AS| < 1), consistent with minimal class-dependent leak-
age into the null space. By contrast, ResNet50 shows larger and more variable AS across classes.
This contrast suggests that DINO-ViT tends to retain class-relevant semantics within its invariant
subspace, whereas ResNet50 appears to possibly rely also on spurious cues, leaving some class-
relevant information in the null space. Finally, we observe no significant correlation between the
per-class AS rank orderings of the two models, indicating that the effect is model-dependent rather
than driven by dataset class structure.

In fig. 5, We extend the class analysis to an open vocabulary of concepts. Focusing on DINO-ViT,
we examine two classes, “Arabian Camel” and “Jellyfish”. We measure two quantities: 1) The
angle between the translated feature and the CLIP concept embedding; 2) the Attribute Score (AS),
quantifies how much content related to a concept resides in the null space; A small AS for loosely
related concept can indicate a spurious correlation. Both classes are analyzed through a set contains
of 30 concepts, the extreme weakest and strongest are presented. “Arabian Camel” features exhibit
little to no AS (short green lines), while Desert attains the smallest CLIP angle among the tested
concepts. By contrast, “Jellyfish” features have substantially larger AS, indicating that concepts are
tightly coupled to invariances related to this class in the classifier head. The results on the full set of
open-vocabulary concepts are in Appendix G, and intuition for the scale of AS values is provided in
Appendix C.

4.4 GRADIENT DIRECTION ANALYSIS

In the previous experiments, we restricted our analysis to equivalent pairs obtained by removing the
null component. However, our method supports any null-space direction, including text-conditioned

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

(a) ResNet50 (b) DINO-ViT

Figure 4: Class Comparison. DINO-ViT consistently preserves low semantic leakage across
classes, whereas ResNet50 exhibits a pronounced imbalance, with certain classes, such as Porcu-
pine and Sports-Car, leaking substantially more semantic information into the null space.

(a) ‘Arabian Camel‘ class (b) ‘Jellyfish‘ class

Figure 5: Open-vocabulary concept analysis. For DINO-ViT, we sample ∼1300 images per class
and compute the CLIP angle (degrees; lower is more similar) to a set of concepts for (a) “Arabian
Camel” class and (b) “Jellyfish” class. Blue dots denote original features; red dots denote null-
removed (equivalent) features. Green arrows connect each pair and represent the Attribute Score
after null removal. Longer arrows indicate larger |AS| (greater class-dependent semantic leakage);
shorter arrows indicate minimal leakage.

perturbations. In Figure 6, we illustrate concept-directed perturbations confined to the null space of
the ResNet50 classifier head. For each original image (left), we follow the CLIP similarity gradient
toward a target prompt, project it onto the null space, and take a step in this direction to obtain an
equivalent feature. By construction, the perturbed feature leaves the head logits unchanged. The
synthesized renderings, generated with UnCLIP (Ramesh et al., 2022) for visualization, reveal pro-
nounced semantic shifts toward Arabian Camel, Starfish, Pirate, Jellyfish, and Jeep. This demon-
strates the diagnostic value of null-space steering and highlights a security risk: semantics can be
manipulated at a single layer while the classifier’s decision remains unaffected.

Table 1 summarizes null-space steps (calibrated to IS = 40◦) from Sports Car toward the prompt
“an image of a jellyfish”. In this setting, DINO-ViT exhibits low AS, indicating re-
silience to directed null manipulation. By contrast, EfficientNet and ResNet50 show large AS,
suggesting that their null components are easier to steer and that directed invariant perturbations can
alter semantics while leaving the logits unchanged.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Figure 6: Null-space semantic steering (ResNet50). From each original image (left), we add
a small perturbation aligned with the indicated prompt (column headers) but constrained to the
classifier head’s null space (projected-gradient direction). Although only the invariant component
is modified, the feature’s semantics shift toward the target concepts, illustrating how null-space
directions can alter meaning without changing the discriminative subspace.

Table 1: Text-gradient null perturbations. For a fair comparison, each model is perturbed by a
fixed null-space step calibrated to IS = 40◦. We report |AS| toward the target prompt (mean ±
standard deviation; lower is better). DINO-ViT attains the lowest value (marked in bold), indicating
the greatest resistance to directed null-space manipulation, whereas ResNeXt101 remains compara-
tively susceptible.

ResNet50 EfficientNet BiTresnet DINO-ViT ResNeXt101

|AS| towards target 12.04±0.25 12.38±0.52 9.19±0.31 5.0±0.59 11.15±0.53

5 DISCUSSION AND CONCLUSION

We introduced SING, a novel approach for analyzing invariances in classification networks. Our
method systematically generates equivalent images whose logits are, by construction, identical to
those of the original image. We demonstrated a wide range of possible analyses: at the model
level, SING facilitates fair sensitivity comparisons across architectures; at the class level, it high-
lights classes that are less robust to semantic shifts; and at the image level, it aids in debugging
failure cases. SING transforms the null space into measurable and human-readable evidence by
constructing equivalent pairs, projecting features into a joint vision-language space, and perturbing
only the invariant component. In doing so, it reveals how semantics can drift while logits remain
fixed, providing a compact diagnostic that complements accuracy at the levels of models, classes,
and individual images. Looking ahead, two research directions may help control the null space more
directly: (i) Directed augmentation during fine-tuning, encouraging small AS for essential concepts;
(ii) Linear-algebraic control, using projector regularization, rank adjustment, or constrained updates
to move useful semantics from the null space to the principal space while preserving logits. SING
exposes invariant geometry in a simple, interpretable form, clarifying how semantics can shift while
logits remain fixed.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REPRODUCIBILITY

We instantiate each model with official pre trained weights and the evaluation transforms pro-
vided by the corresponding weight objects. ResNet50 uses ImageNet1K V1 weights from the
torchvision package. DINO-ViT uses ViT-L/16 with ImageNet1K SWAG E2E V1 with their of-
ficial torchvision weights. EfficientNet B4 uses the timm with B4 Noisy Student JFT weights,
ResNeXt101 32x8d uses the timm FB WSL IG1B weights fine tuned on ImageNet1K, and BiT
ResNetV2 50x1 uses the timm BiT weights pre trained on ImageNet21K and fine tuned on Ima-
geNet1K. All models and transforms are from PyTorch and timm (Paszke et al., 2019; Wightman,
2019). In all cases f denotes the penultimate feature just before the final linear head that produces
logits, and W denotes that head weight matrix; these define the SVD and the principal and null
projectors. Details of the DINO-ViT wrapper appear in Appendix E.

ETHICS STATEMENT

We affirm that all authors have read and will adhere to the ICLR Code of Ethics. Our study uses
publicly available ImageNet data and pretrained models; no new data collection was conducted, no
human subjects research was performed, and no personally identifiable information was processed.
Because CLIP and ImageNet can encode social and geographic biases, we report concept-based
analyses with care, avoid protected attributes in our concept lists, and interpret results in light of
known dataset biases. All data and model use complies with source licenses for PyTorch and timm;
we do not redistribute restricted assets. Compute was kept modest by relying on existing checkpoints
and small translators. There are no conflicts of interest or external sponsorship beyond what is
acknowledged in the paper.

REFERENCES

Alessio Ansuini, Alessandro Laio, Jakob H. Macke, and Davide Zoccolan. Intrinsic dimension
of data representations in deep neural networks, 2019. URL https://arxiv.org/abs/
1905.12784.

Daniel Anthes, Sushrut Thorat, Peter König, and Tim C Kietzmann. Keep moving: identify-
ing task-relevant subspaces to maximise plasticity for newly learned tasks. arXiv preprint
arXiv:2310.04741, 2023.

Mathieu Aubry and Bryan C Russell. Understanding deep features with computer-generated im-
agery. In Proceedings of the IEEE international conference on computer vision, pp. 2875–2883,
2015.

Roy Betser, Meir Yossef Levi, and Guy Gilboa. Whitened clip as a likelihood surrogate of images
and captions. In Proceedings of the 42nd International Conference on Machine Learning, volume
267 of Proceedings of Machine Learning Research, Vancouver, Canada, 2025. PMLR.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 9650–9660, 2021.

Matthew Cook, Alina Zare, and Paul Gader. Outlier detection through null space analysis of neural
networks. arXiv preprint arXiv:2007.01263, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Lee Donghoon, Kim Jiseob, Choi Jisu, Kim Jongmin, Byeon Minwoo, Baek Woonhyuk, and
Kim Saehoon. Karlo-v1.0.alpha on coyo-100m and cc15m. https://github.com/
kakaobrain/karlo, 2022.

Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable machine learning,
2017. URL https://arxiv.org/abs/1702.08608.

10

https://arxiv.org/abs/1905.12784
https://arxiv.org/abs/1905.12784
https://github.com/kakaobrain/karlo
https://github.com/kakaobrain/karlo
https://arxiv.org/abs/1702.08608

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Maximilian Dreyer, Jim Berend, Tobias Labarta, Johanna Vielhaben, Thomas Wiegand, Sebastian
Lapuschkin, and Wojciech Samek. Mechanistic understanding and validation of large ai models
with semanticlens. Nature Machine Intelligence, pp. 1–14, 2025.

Gene H. Golub and Christian Reinsch. Singular value decomposition and least squares solutions.
Numerische Mathematik, 14:403–420, 1970.

René Haas, Inbar Huberman-Spiegelglas, Rotem Mulayoff, Stella Graßhof, Sami S Brandt, and
Tomer Michaeli. Discovering interpretable directions in the semantic latent space of diffusion
models. In 2024 IEEE 18th International Conference on Automatic Face and Gesture Recognition
(FG), pp. 1–9. IEEE, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
reference-free evaluation metric for image captioning. arXiv preprint arXiv:2104.08718, 2021.

Qihan Huang, Jie Song, Mengqi Xue, Haofei Zhang, Bingde Hu, Huiqiong Wang, Hao Jiang, Xingen
Wang, and Mingli Song. Lg-cav: Train any concept activation vector with language guidance.
Advances in Neural Information Processing Systems, 37:39522–39551, 2024.

Erik Härkönen, Aaron Hertzmann, Jaakko Lehtinen, Sylvain Paris, and Michaël Gharbi. Ganspace:
Discovering interpretable gan controls. In Advances in Neural Information Processing Systems,
2020.

Daksh Idnani, Vivek Madan, Naman Goyal, David J Schwab, and Shanmukha Ramakrishna Vedan-
tam. Don’t forget the nullspace! nullspace occupancy as a mechanism for out of distribution
failure. In The Eleventh International Conference on Learning Representations, 2023.

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional neural networks
with low rank expansions. In British Machine Vision Conference (BMVC), pp. 3.1–3.12, 2014.
URL https://www.bmvc2024.org/contents/2014/0442.pdf.

Siwon Kim, Jinoh Oh, Sungjin Lee, Seunghak Yu, Jaeyoung Do, and Tara Taghavi. Grounding
counterfactual explanation of image classifiers to textual concept space. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10942–10950, 2023.

Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly,
and Neil Houlsby. Big transfer (bit): General visual representation learning. In European confer-
ence on computer vision, pp. 491–507. Springer, 2020.

Zorah Lähner and Michael Moeller. On the direct alignment of latent spaces. In Proceedings
of UniReps: the First Workshop on Unifying Representations in Neural Models, pp. 158–169.
PMLR, 2024.

Meir Yossef Levi and Guy Gilboa. The double ellipsoid geometry of clip. In Proceedings of the
42nd International Conference on Machine Learning, volume 267 of Proceedings of Machine
Learning Research, Vancouver, Canada, 2025. PMLR.

Xiaolong Li and Katherine Short. Null space properties of neural networks with applications to
image steganography. arXiv preprint arXiv:2401.12345, 2024. URL https://arxiv.org/
abs/2401.12345.

Victor Weixin Liang, Yuhui Zhang, Yongchan Kwon, Serena Yeung, and James Y Zou. Mind the
gap: Understanding the modality gap in multi-modal contrastive representation learning. Ad-
vances in Neural Information Processing Systems, 35:17612–17625, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

11

https://www.bmvc2024.org/contents/2014/0442.pdf
https://arxiv.org/abs/2401.12345
https://arxiv.org/abs/2401.12345

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar Paluri, Yixuan Li,
Ashwin Bharambe, and Laurens Van Der Maaten. Exploring the limits of weakly supervised
pretraining. In Proceedings of the European conference on computer vision (ECCV), pp. 181–
196, 2018.

Mazda Moayeri, Keivan Rezaei, Maziar Sanjabi, and Soheil Feizi. Text2concept: Concept activation
vectors directly from text. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 3744–3749, 2023.

Tuomas Oikarinen and Tsui-Wei Weng. Clip-dissect: Automatic description of neuron representa-
tions in deep vision networks. arXiv preprint arXiv:2204.10965, 2022.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, Adam Lerer, James Massa, Tete Liskovich, Woj-
ciech Chmiel, Roman Serdyuk, Mengjia Yang, Marcin Kopacz, Piotr Sal Pietrek, Franz Zesch,
Jonas Schick, Jeff Dearing, Alban Bhargava, Kai Wu, Wojciech Zaremba, David Killeen, Jie Sun,
Yang Liu, Ye Wang, Peizhao Ma, Rong Huang, Vaibhav Pratap, Ying Zhang, Abhishek Kumar,
Ching-Yi Yu, Cong Zhu, Chang Liu, Jeremy Kahn, Mirco Ravanelli, Peng Sun, Shinji Watanabe,
Yang Shi, Tao Tao, Raphael Scheibler, Stephen Cornell, Sanghyun Kim, and Stavros Petridis.
Pytorch: An imperative style, high-performance deep learning library. Advances in Neural Infor-
mation Processing Systems, 32:8024–8035, 2019.

Marek Praggastis, Daniel Hampson, and Kevin Lee. The svd of convolutional weights:
A cnn interpretability framework. Tech. Report, ResearchGate, 2022. URL
https://www.researchgate.net/publication/362706518_The_SVD_of_
Convolutional_Weights_A_CNN_Interpretability_Framework.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, and Jack Clark. Learning transferable vi-
sual models from natural language supervision. arXiv preprint arXiv:2103.00020, 2021. URL
https://arxiv.org/abs/2103.00020.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.

Shauli Ravfogel, Yair Elazar, and Jacob Goldberger. Null it out: Guarding protected attributes by
iterative nullspace projection. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pp. 1688–1703, 2020. URL https://aclanthology.org/
2020.acl-main.647.

Hossein Rezaei and Mohammad Sabokrou. Quantifying overfitting: Evaluating neural network
performance through analysis of null space. arXiv preprint arXiv:2305.19424, 2023. URL
https://arxiv.org/abs/2305.19424.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V Le. Self-training with noisy student
improves imagenet classification. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 10687–10698, 2020.

A USAGE OF LLM

We used large language models to improve the writing and to assist the literature search. Research
LLM used to surface candidate papers, but we independently verified their relevance, and retained
only sources we judged necessary. Furthermore, we did not limit the paper search to LLM and used
other tools as well. For writing, we used LLM based rephrasing to raise the level of English while
ensuring that the technical meaning remained unchanged.

12

https://www.researchgate.net/publication/362706518_The_SVD_of_Convolutional_Weights_A_CNN_Interpretability_Framework
https://www.researchgate.net/publication/362706518_The_SVD_of_Convolutional_Weights_A_CNN_Interpretability_Framework
https://arxiv.org/abs/2103.00020
https://aclanthology.org/2020.acl-main.647
https://aclanthology.org/2020.acl-main.647
https://arxiv.org/abs/2305.19424
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

B TRANSLATOR TRAINING PROCEDURE.

We trained the translators using PyTorch Paszke et al. (2019). We combined 2 losses testing MSE
and cosine similarity. MSE alone proved enough to satisfy cosine similarity as well, while the
opposite did not. To complete the ablation we added a joint loss with similar weights for the MSE
and the cosine similarity as can be seen in Figure 7. This phenomenon is expected since cosine
similarity defines the angle between two vectors and do not take in account the magnitude of the
vectors. The translator model consists of 2 fully connected layers with no bias to retain stability.
Using AdamW optimizer with strong weight decay coefficient (λ = 0.1) and learning rate of 1e− 4
proved to make the training faster and more stable for all translators (Loshchilov & Hutter, 2017).
The final results of each translator can be viewed in Figure 8.

(a) Cosine similarity loss (b) MSE loss (c) Combined loss

Figure 7: Loss plots. It can be seen that while MSE manages to improve both scores, the cosine
similarity by itself did not improve the MSE score as expected.

Figure 8: Evaluation of cosine similarity for 10K features from different classes on all translators.
could not split the val outside so it’s a mishmash of train and val together. but the concept of the
graph stands. i have also loss figures if needed

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

C INTERPRETAION OF ANGLES TO VISULIZATION

Figure 9 provide a mapping of the different scores to grasp intuition of how much angle is considered
semantic or differentiable. One can note that a semantic change occurs around 3◦ in attribute score
and around 10◦ in image score.

Image AS (◦) IS (◦)

I0 0 0
I1 1.58 4
I2 3.8 10.8
I3 4.7 23
I4 9.48 29
I5 11.29 36.2

Figure 9: Different attribute score and image score levels, enhancing the intuition between the size
of the angle and its matching visualization.

D VISUALIZATION WITH UNCLIP

UnCLIP is a two-stage generator: a prior maps text to a CLIP image embedding, then a diffusion-
based decoder with super-resolution modules synthesizes the corresponding image (Ramesh et al.,
2022). To our knowledge, we are the first to use classifier features, mapped in the CLIP image
embedding space via a trained translator T , as a basis for target subspace traversal and visualization
in model interpretability. By traversing f along a chosen semantic direction d (e.g. a null-space
direction) and using shared initial noise, we obtain reproducible deterministic visualizations of the
induced semantic changes. Empirically, we find that preserving the ℓ2-norm of the CLIP image
embedding yields higher-quality generations for analysis and debugging. Given a feature and its
equivalent feature set translated to CLIP: TΘ(f), TΘ(f̃), we rescale the equivalent feature as follows:

T̂Θ(f̃) = TΘ(f̃)
∥TΘ(f)∥2
∥TΘ(f̃)∥2

. (14)

Since CLIP normalizes the embeddings of images and text to unit length and compares them through
cosine similarity, semantic information is primarily encoded in the angular component off the unit
hypersphere (Radford et al., 2021). Restoring the original norm retains the radial component without
altering angular relationships, preventing distortions in the visualizations due to radial drift.

To ensure that observed visual differences are solely attributable to changes in the classifier feature
f , we eliminate the stochasticity of the diffusion process sampling by reusing identical Gaussian
noise in both the decoder and superresolution stages. Specifically, a single noise tensor is generated
using randn tensor, scaled by the scheduler’s init noise sigma, and replicated across the
batch for each stage. This procedure yields deterministic output for a fixed CLIP image embedding.

Our implementation employs the Karlo-v1.0.alpha UnCLIP model (Donghoon et al., 2022), based
on the original OpenAI framework (Ramesh et al., 2022). It includes standard components: frozen
CLIP text and image encoders, a projection layer, a UNet2DConditionModel decoder, two
UNet2DModel super-resolution networks, and UnCLIPScheduler instances for both stages.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

E DINO-VIT FEATURE WRAPPER

We expose the token sequence before the head, take the class token as the penultimate feature f , and
use the head weights as W .

class SelectClassToken(nn.Module):
def __init__(self, f):

super().__init__()
self.f, self.B = f, 1

def forward(self, x):
return x.reshape(self.B, -1, self.f)[:, 0, :]

def set_B(self, B=1):
self.B = B

class DinoHookable(nn.Module):
def __init__(self, base: nn.Module, extractor, feature_dim=1024):

super().__init__()
self.extractor = extractor
self.fc = base.heads.head
self.penultimate = SelectClassToken(f=feature_dim)

def forward(self, x: torch.Tensor) -> torch.Tensor:
self.penultimate.set_B(x.size(0))
x = self.extractor.extract(x, "encoder.ln")
x = self.penultimate(x) # penultimate feature f (class token)
return self.fc(x) # logits, head weight matrix is W

F COMPLETE VIOLIN ANALYSIS

We provide the violin analysis figures for all models that participated in our experiments in Fig-
ures 10 to 12

Figure 10: BiTresnet class analysis

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Figure 11: ResNeXt101 class analysis

Figure 12: EfficientNet class analysis

G COMPLETE CLASS ANALYSIS

Figures 13 and 14 provide a larger list of open vocabulary concepts that were used in the class
analysis of the ”Jellyfish” and ”Arabian Camel” in DINO-ViT.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Figure 13: Open vocabulary analysis on ”Arabian Camel” class in DINO-ViT

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Figure 14: Open vocabulary analysis on ”Jellyfish” class in DINO-ViT

18

	Introduction
	Related Work
	Explainability through decomposition
	Projecting features to a vision-language space

	Method
	Setup
	SVD on the classifier head
	Training a translator
	Metrics
	Applications

	Experiments
	Dataset and models
	Model comparison
	Class analysis
	Gradient direction analysis

	Discussion and Conclusion
	Usage of LLM
	Translator training procedure.
	Interpretaion of angles to visulization
	Visualization with UnCLIP
	DINO-ViT feature wrapper
	Complete violin analysis
	Complete class analysis

