
Improving Sparse Decomposition of Language Model Activations
with Gated Sparse Autoencoders

Senthooran Rajamanoharan 1 * Arthur Conmy 1 * Lewis Smith 1 Tom Lieberum 1 † Vikrant Varma 1 †

János Kramár 1 Rohin Shah 1 Neel Nanda 1

Abstract
Recent work has found that sparse autoencoders
(SAEs) are an effective technique for unsuper-
vised discovery of interpretable features in lan-
guage models’ (LMs) activations, by finding
sparse, linear reconstructions of those activa-
tions. We introduce the Gated Sparse Autoen-
coder (Gated SAE), which achieves a Pareto im-
provement over training with prevailing methods.
In SAEs, the L1 penalty used to encourage spar-
sity introduces many undesirable biases, such as
shrinkage – systematic underestimation of fea-
ture activations. The key insight of Gated SAEs
is to separate the functionality of (a) determin-
ing which directions to use and (b) estimating the
magnitudes of those directions: this enables us to
apply the L1 penalty only to the former, limiting
the scope of undesirable side effects. Through
training SAEs on LMs of up to 7B parameters
we find that, in typical hyper-parameter ranges,
Gated SAEs solve shrinkage, are similarly inter-
pretable, and require half as many firing features
to achieve comparable reconstruction fidelity.

1 Introduction
Mechanistic interpretability aims to explain how neural
networks produce outputs in terms of the learned algo-
rithms executed during a forward pass (Olah, 2022; Olah
et al., 2020). Much work makes use of the fact that many
concept representations appear to be linear (Elhage et al.,
2021; Gurnee et al., 2023; Olah et al., 2020; Park et al.,
2023), i.e. that they correspond to interpretable directions
in activation space. However, finding the set of all inter-
pretable directions is a highly non-trivial problem. Classic
approaches, like interpreting neurons (i.e. directions in the
standard basis) are insufficient, as many are polyseman-
tic and tend to activate for a range of different seemingly

1Google DeepMind. Correspondence to: Senthooran
Rajamanoharan <srajamanoharan@google.com>, Neel Nanda
<neelnanda@google.com>.

41 st International Conference on Machine Learning Mechanistic
Interpretability Workshop, Vienna, Austria.

unrelated concepts (Bolukbasi et al., 2021; Elhage et al.,
2022a;b). Within the field, there has recently been much
interest (Bricken et al., 2023; Cunningham et al., 2023;
Kissane et al., 2024a;b; Bloom, 2024) in using sparse au-
toencoders (SAEs; (Ng, 2011)) as an unsupervised method
for finding causally relevant, and ideally interpretable, di-
rections in a language model’s activations.

Although SAEs show promise in this regard (Marks et al.,
2024; Nanda et al., 2024), the L1 penalty used in the pre-
vailing training method to encourage sparsity also intro-
duces biases that harm the accuracy of SAE reconstruc-
tions, as the loss can be decreased by trading-off some re-
construction accuracy for lower L1. In this paper, we in-
troduce a modification to the baseline SAE architecture –
a Gated SAE – along with an accompanying loss function,
which partially overcomes these limitations. Our key in-
sight is to use separate affine transformations for (a) deter-
mining which dictionary elements to use in a reconstruc-
tion and (b) estimating the coefficients of active elements,
and to apply the sparsity penalty only to the former task.
We share a subset of weights between these transforma-
tions to avoid significantly increasing the parameter count
and inference-time compute requirements of a Gated SAE
compared to a baseline SAE of equivalent width.1

We evaluate Gated SAEs on multiple models: a one layer
GELU activation language model (Nanda, 2022), Pythia-
2.8B (Biderman et al., 2023) and Gemma-7B (Gemma
Team et al., 2024), and on multiple sites within models:
MLP layer outputs, attention layer outputs, and residual
stream activations. Across these models and sites, we find
Gated SAEs to be a Pareto improvement over baseline
SAEs holding training compute fixed (Fig. 1): they yield
sparser decompositions at any desired level of reconstruc-
tion fidelity. We also conduct further follow up ablations
and investigations on a subset of these models and sites to
better understand the differences between Gated SAEs and
baseline SAEs.

Overall, the key contributions of this work are that we:

1Although due to an auxiliary loss term, computing the Gated
SAE loss for training purposes does require 50% more compute
than computing the loss for a matched-width baseline SAE.
*: Equal contribution. †: Core infrastructure contributor.

1

1. Introduce the Gated SAE, a modification to the stan-
dard SAE architecture that decouples detection of
which features are present from estimating their mag-
nitudes (Section 3.2);

2. Show that Gated SAEs Pareto improve the sparsity
and reconstruction fidelity trade-off compared to base-
line SAEs (Section 4.1);

3. Confirm that Gated SAEs overcome shrinkage while
outperforming other methods that also address this
problem (Section 5.2);

4. Provide evidence from a small double-blind study that
Gated SAE features are comparably interpretable to
baseline SAE features (Section 4.2).

2 Preliminaries
In this section we summarise the concepts and notation nec-
essary to understand existing SAE architectures and train-
ing methods following Bricken et al. (2023), which we call
the baseline SAE. We define Gated SAEs in Section 3.2.

As motivated in Section 1, we wish to decompose a model’s
activation x ∈ Rn into a sparse, linear combination of fea-
ture directions:

x ≈ x0 +

M∑
i=1

fi(x)di, (1)

where di are dictionary of M ≫ n latent unit-norm fea-
ture directions, and the sparse coefficients fi(x) ≥ 0 are
the corresponding feature activations for x.2 The right-
hand side of Eq. (1) naturally has the structure of an au-
toencoder: an input activation x is encoded into a (sparse)
feature activations vector f(x) ∈ RM , which in turn is lin-
early decoded to reconstruct x.

Baseline architecture Using this correspondence,
Bricken et al. (2023) and subsequent works attempt to
learn a suitable sparse decomposition by parameterizing a
single-layer autoencoder (f , x̂) defined by:

f(x) := ReLU (Wenc (x− bdec) + benc) (2)
x̂(f) := Wdecf + bdec (3)

and training it using gradient descent to reconstruct sam-
ples x ∼ D from a large dataset D of activations collected
from a single site and layer of a trained language model,
constraining the hidden representation f to be sparse. Once
the sparse autoencoder has been trained, we obtain a de-
composition of the form of Eq. (1) by identifying the (suit-
ably normalised) columns of the decoder weight matrix

2In this work, we use the term feature to refer only to the
learned features of SAEs, i.e. the overcomplete basis directions
that are linearly combined to produce reconstructions. In partic-
ular, learned features are always linear and not necessarily inter-
pretable.

Wdec ∈ RM×n with the dictionary of feature directions
di, the decoder bias bdec ∈ Rn with the centering term x0,
and the (suitably normalised) entries of the latent represen-
tation f(x) ∈ RM with the feature activations fi(x).

Baseline training methodology To train sparse autoen-
coders, Bricken et al. (2023) use a loss function with two
terms that respectively encourage faithful reconstruction
and sparsity:3

L(x) := ∥x− x̂(f(x))∥22 + λ ∥f(x)∥1 . (4)

Since it is possible to arbitrarily reduce the L1 sparsity
loss term without affecting reconstructions or sparsity by
simply scaling down encoder outputs and scaling up the
norm of the decoder weights, it is important to constrain
the norms of the columns of Wdec during training. Follow-
ing Bricken et al. (2023), we constrain norms to one. See
Appendix F for further details on SAE training.

Evaluating SAEs Two metrics are primarily used to get
a sense of SAE quality (Bricken et al., 2023): L0, a mea-
sure of SAE sparsity, and loss recovered, a measure of SAE
reconstruction fidelity. L0 measures the average number
of features used by a SAE to reconstruct input activations.
Loss recovered is a normalised measure of the increase
induced in a LM’s cross entropy loss when we replace
its original activations with the corresponding SAE recon-
structions during the model’s forward pass. Both these met-
rics are formally defined in Appendix A. Since it is possible
for SAEs to score well on these metrics and still fail to be
useful for interpretability-related tasks (Templeton et al.,
2024), we perform manual analysis of SAE interpretability
in Section 4.2.

3 Gated SAEs

3.1 Motivation

The intention behind how SAEs are trained is to maximise
reconstruction fidelity at a given level of sparsity, as mea-
sured by L0, although in practice we optimize a mixture of
reconstruction fidelity and L1 regularization. This differ-
ence is a source of unwanted bias in the training of a sparse
autoencoder: for any fixed level of sparsity, a trained SAE
can achieve lower loss (as defined in Eq. (4)) by trading off
a little reconstruction fidelity to perform better on the L1
sparsity penalty.

The clearest consequence of this bias is shrinkage (Wright
and Sharkey, 2024). Holding the decoder x̂(•) fixed, the L1
penalty pushes feature activations f(x) towards zero, while

3Note that we cannot directly optimize the L0 norm (i.e. the
number of active features) since this is not a differentiable func-
tion. We do however use the L0 norm to evaluate SAE sparsity.

2

1002 5 10 2 5 2

0.8

0.7

0.9

1

2 5 10 2 5 100 2 2 5 10 2 5 100 2

SAE Type

Gated

Baseline

L0 (Lower is sparser)

L
o

s
s
 R

e
c
o

v
e
r
e
d

(
F
id

e
li
t
y
)

Residual stream post-MLP MLP Output Attention output pre-linear

Figure 1: Gated SAEs consistently offer improved reconstruction fidelity for a given level of sparsity compared to prevail-
ing (baseline) approaches. These plots compare Gated SAEs to baseline SAEs at Layer 20 in Gemma-7B. Gated SAEs’
dictionaries are of size 217 ≈ 131k whereas baseline dictionaries are 50% larger, so that both types are trained with equal
compute. This performance improvement holds in layers throughout GELU-1L, Pythia-2.8B and Gemma-7B (see Ap-
pendix D).

the reconstruction loss pushes f(x) high enough to produce
an accurate reconstruction. Thus, the optimal value falls
somewhere in between, and as a result the SAE systemat-
ically underestimates the magnitude of feature activations,
without necessarily providing any compensatory benefit for
sparsity.4

How can we reduce the bias introduced by the L1 penalty?
The output of the encoder f(x) of a baseline SAE (Sec-
tion 2) has two roles:

1. It detects which features are active (according to
whether the outputs are zero or strictly positive). For
this role, the L1 penalty is necessary to ensure the de-
composition is sparse.

2. It estimates the magnitudes of active features. For this
role, the L1 penalty is a source of unwanted bias.

If we could separate out these two functions of the SAE
encoder, we could design a training loss that narrows down
the scope of SAE parameters that are affected (and there-
fore to some extent biased) by the L1 sparsity penalty to
precisely those parameters that are involved in feature de-
tection, minimising its impact on parameters used in fea-
ture magnitude estimation.

3.2 Gated SAEs

Architecture How should we modify the baseline SAE
encoder to achieve this separation of concerns? Our solu-

4Conversely, rescaling the shrunk feature activations (Wright
and Sharkey, 2024) is not necessarily enough to overcome the
bias induced by by L1 penalty: a SAE trained with the L1 penalty
could have learnt sub-optimal encoder and decoder directions that
are not improved by such a fix. In Section 5.2 and Fig. 7 we
provide empirical evidence that this is true in practice.

tion is to replace the single-layer ReLU encoder of a base-
line SAE with a gated ReLU encoder. Taking inspiration
from Gated Linear Units (Shazeer, 2020; Dauphin et al.,
2017), we define the gated encoder as

f̃(x) := 1[

πgate(x)︷ ︸︸ ︷
(Wgate(x− bdec) + bgate) > 0]︸ ︷︷ ︸

fgate(x)

⊙ ReLU(Wmag(x− bdec) + bmag)︸ ︷︷ ︸
fmag(x)

, (5)

where 1[• > 0] is the (pointwise) Heaviside step function
and ⊙ denotes elementwise multiplication. Here, fgate de-
termines which features are deemed to be active, while fmag
estimates feature activation magnitudes (which only matter
for features that have been deemed to be active); πgate(x)
are the fgate sub-layer’s pre-activations, which are used in
the gated SAE loss, defined below.

Naively, we appear to have doubled the number of param-
eters in the encoder, increasing the total number of param-
eters by 50%. We mitigate this through weight sharing: we
parameterize these layers so that the two layers share the
same projection directions, but allow the norms of these di-
rections as well as the layer biases to differ. Concretely, we
define Wmag in terms of Wgate and an additional vector-
valued rescaling parameter rmag ∈ RM as follows:

(Wmag)ij := (exp(rmag))i · (Wgate)ij . (6)

See Fig. 2 for an illustration of the tied-weight Gated SAEs
architecture. With this weight tying scheme, the Gated
SAE has only 2×M more parameters than a baseline SAE.
In Section 5.1, we show that this weight tying scheme does
not harm performance.

3

Magnitude Path

Gating Path

scale & shift

shift binarize

Encoder DecoderReLU

Figure 2: The Gated SAE architecture with weight sharing
between the gating and magnitude paths, shown with an
example input.

With tied weights, the gated encoder can be reinterpreted
as a single-layer linear encoder with a non-standard and
discontinuous “Jump ReLU” activation function (Erichson
et al., 2019), σθ(z), illustrated in Fig. 12. To be precise,
using the weight tying scheme of Eq. (6), f̃(x) can be re-
expressed as f̃(x) = σθ(Wmag · x+ bmag), with the Jump
ReLU gap given by θ = bmag − ermag ⊙ bgate; see Ap-
pendix G for an explanation. We think this is a useful in-
tuition for reasoning about how Gated SAEs reconstruct
activations in practice.

Training A naive guess at a loss function for training
Gated SAEs would be to replace the sparsity penalty in
Eq. (4) with the L1 norm of fgate(x). Unfortunately, due
to the Heaviside step activation function in fgate, no gradi-
ents would propagate to Wgate and bgate. To mitigate this,
we instead apply the L1 norm to the positive parts of the
preactivation, ReLU (πgate(x)). To ensure fgate aids recon-
struction by detecting active features, we add an auxiliary
task requiring that these same rectified preactivations can
be used by the decoder to produce a good reconstruction:

Lgated(x) :=
∥∥∥x− x̂

(
f̃(x)

)∥∥∥2
2︸ ︷︷ ︸

Lreconstruct

+λ ∥ReLU(πgate(x))∥1︸ ︷︷ ︸
Lsparsity

+ ∥x− x̂frozen (ReLU (πgate(x)))∥22︸ ︷︷ ︸
Laux

(7)

where x̂frozen is a frozen copy of the decoder, x̂frozen(f) :=
Wcopy

dec f + bcopy
dec , to ensure that gradients from Laux do not

propagate back to Wdec or bdec . This can be implemented
by stop gradient operations rather than creating copies. See
Appendix I for pseudo-code for the forward pass and loss
function.

To calculate this loss (or its gradient), we have to run the
decoder twice: once to perform the main reconstruction for
Lreconstruct and once to perform the auxiliary reconstruction
for Laux. This leads to a 50% increase in the compute re-
quired to perform a training update step. However, the in-
crease in overall training time is typically much less, as in
our experience much of the training wall clock time goes
to generating language model activations (if these are be-

ing generated on the fly) or disk I/O (if training on saved
activations).

4 Evaluating Gated SAEs
In this section we benchmark Gated SAEs against base-
line SAEs across a large variety of models and at differ-
ent sites. We show that they produce more faithful recon-
structions at equal sparsity and that they resolve shrinkage.
Through a double-blind manual interpretability study, we
find that Gated SAEs produce features that are similarly
interpretable to baseline SAE features.

4.1 Benchmarking Gated SAEs

Methodology We trained a suite of Gated and baseline
SAEs, a family of each type to reconstruct each of the fol-
lowing activations:

1. The MLP neuron activations in GELU-1L, which is
the closest direct comparison to Bricken et al. (2023);

2. The MLP outputs, attention layer outputs (taken pre-
WO (Kissane et al., 2024a)) and residual stream
activations in 5 different layers throughout Pythia-
2.8B and four different layers in the Gemma-7B base
model.

For each model and reconstruction site, we trained multi-
ple SAEs using different values of λ (and therefore L0),
allowing us to compare the Pareto frontiers of L0 and loss
recovered between Gated and baseline SAEs. We also use
the relative reconstruction bias metric, γ, defined in Ap-
pendix B to measure shrinkage in our trained SAEs. This
metric measures the relative bias in the norm of an SAE’s
reconstructions; unbiased SAEs obtain γ = 1, whereas
SAEs affected by shrinkage (which causes reconstruction
norms to be systematically too small) have γ < 1.

Since Gated SAEs require at most 1.5× more compute to
train than regular SAEs (Section 3.2) of the same width,
we compare Gated SAEs to baseline SAEs that have a 50%
larger dictionary (hidden dimension M) to ensure fair com-
parison in our evaluations.5

Results We plot sparsity against reconstruction fidelity
for SAEs with different values of λ. Higher λ corresponds
to increased sparsity and worse reconstruction, so as in
Bricken et al. (2023) we observe a Pareto frontier of pos-
sible trade-offs. We plot Pareto curves for GELU-1L in
Fig. 3a and Pythia-2.8B and Gemma-7B in Appendix D. At

5Since wider SAEs provide better reconstructions (all else be-
ing equal), the gap between Gated SAEs’ and baseline SAEs’ per-
formance is even wider when we use baseline SAEs with equal
width in the comparison. This can be seen in the difference be-
tween the “1.5× width” and “equal width” baseline curves in
Fig. 5.

4

all sites tested, Gated SAEs are a Pareto improvement over
regular SAEs: they provide better reconstruction fidelity
at any fixed level of sparsity.6 For some sites in Pythia-
2.8B and Gemma-7B, loss recovered does not monotoni-
cally increase with L0; we attribute this to difficulties train-
ing SAEs (Appendix F.1.3).

As shown in Fig. 3b, Gated SAEs’ reconstructions are unbi-
ased, with γ ≈ 1, whereas baseline SAEs exhibit shrinkage
(γ < 1), with the impact of shrinkage getting worse as the
L1 coefficient λ increases (and L0 consequently decreases).
Fig. 10 shows that this result generalizes to Pythia-2.8B.

4.2 Interpretability

Although Gated SAEs provide more faithful reconstruc-
tions than baselines at equal sparsity, it does not necessarily
follow that these reconstructions are better suited to down-
stream interpretability-related tasks. Currently, there is no
consensus on how to systematically assess the degree to
which a SAE’s features are useful for downstream tasks,
but a plausible proxy is to assess the extent to which these
features are human interpretable (Bricken et al., 2023).
Therefore, to gain a more qualitative understanding of the
differences between their learned features, we conduct a
blinded human study in which we rate and compare the
interpretability of randomly sampled Gated and baseline
SAE features.

Methodology We study a variety of SAEs from different
layers and sites. For Pythia-2.8B we had 5 raters, who each
rated one feature from baseline and Gated SAEs trained on
each (site, layer) pair from Fig. 8, for a total of 150 features.
For Gemma-7B we had 7 raters; one rated 2 features each,
and the rest 1 feature each, from baseline or Gated SAEs
trained on each (site, layer) pair from Fig. 9, for a total of
192 features.

For each model, raters are shown the features in random or-
der, without revealing which SAE, site, or layer they came
from.7 To assess a feature, the rater decides whether there
is an explanation of the feature’s behavior, in particular for
its highest activating examples. The rater then enters that
explanation (if applicable) and selects whether the feature
is interpretable (‘Yes’), uninterpretable (‘No’) or maybe in-
terpretable (‘Maybe’). All raters are either authors of this
paper or colleagues, who have prior experience interpret-
ing SAE features. As an interface we use an open source
SAE visualizer library (McDougall, 2024); representative
screenshots of the interface may be found at the library’s
GitHub page.

6Although both Gated and baseline SAEs have loss recovered
tending to one for high enough L0.

7Although due to a debugging issue, Gemma-7B attention
SAEs were rated separately, so raters were not blind to that.

Results & analysis Fig. 4 shows interpretability rating
distributions by SAE type and LM, marginalising over lay-
ers, sites and raters.8 To test whether Gated SAEs may be
more interpretable and estimate the difference, we pair our
datapoints according to all covariates (model, layer, site,
rater); this lets us control for all of them without making
any parametric assumptions, and thus reduces variance in
the comparison. We use a one-sided paired Wilcoxon-Pratt
signed-rank test, and provide a 90% BCa bootstrap con-
fidence interval for the mean difference between Baseline
and Gated labels, where we count ‘No’ as 0, ‘Maybe’ as
1, and ‘Yes’ as 2. Overall the test of the null hypothesis
that Gated SAEs are at most as interpretable as Baseline
SAEs gets p = 0.060 (estimate 0.13, mean difference CI
[0, 0.26]). This breaks down into p = 0.15 on just the
Pythia-2.8B data (mean difference CI [−0.07, 0.33]), and
p = 0.13 on just the Gemma-7B data (mean difference CI
[−0.04, 0.29]).

A Mann-Whitney U rank test on the label differences, com-
paring results on the two models, fails to reject (p = 0.95)
the null hypothesis that they’re from the same distribution;
the same test directly on the labels similarly fails to reject
(p = .84) the null hypothesis that they’re similarly inter-
pretable overall.

The contingency tables used for these results are shown in
Fig. 13. The overall conclusion is that, while we can’t
definitively say the Gated SAE features are more inter-
pretable than those from the Baseline SAEs, they are at
least comparable. We provide more analysis of how these
break down by site and layer in Appendix H.

5 Why do Gated SAEs improve SAE
training?

5.1 Ablation study

In this section, we vary several parts of the Gated SAE
training methodology to gain insight into which aspects
of the training drive the observed improvement in perfor-
mance. Gated SAEs differ from baseline SAEs in many
respects, making it easy to incorrectly attribute the perfor-
mance gains to spurious details without a careful ablation
study. Fig. 5a shows Pareto frontiers for these variations;
below we describe each variation in turn and discuss our
interpretation of the results.

Unfreeze decoder: Here we unfreeze the decoder weights
in Laux – i.e. allow this auxiliary task to update the decoder
weights in addition to training fgate’s parameters. Although
this (slightly) simplifies the loss, there is a reduction in per-

895% error bars were obtained by modelling each frequency
shown as binomial, with p set to the sample frequency, and calcu-
lating the 2.5% and 97.5% quantiles.

5

0 50 100

0.88

0.9

0.92

0.94

0.96

0.98

1

SAE Type

Baseline (1.5× width)

Gated

L0 (Lower is sparser)

L
o

s
s
 R

e
c
o

v
e
r
e
d
 (

F
id

e
li
t
y
)

(a)

0 50 100

0.8

0.85

0.9

0.95

1

1.05

1.1

SAE Type

Baseline (1.5× width)

Gated

L0 (Lower is sparser)

R
e
la

t
iv

e
 r

e
c
o

n
s
t
r
u

c
t
io

n
 b

ia
s
 𝛾

(
𝛾<

1
 i
n
d
ic

a
t
e
s
 s

h
r
in

k
a
g
e
)

(b)

Figure 3: (a) Gated SAEs offer better reconstruction fidelity (as measured by loss recovered) at any given level of feature
sparsity (as measured by L0); (b) Gated SAEs address shrinkage. These plots compare Gated and baseline SAEs trained
on GELU-1L neuron activations; see Appendix D for comparisons on Pythia-2.8B and Gemma-7B.

formance, suggesting that it is beneficial to limit the impact
of the L1 sparsity penalty to just those parameters in the
SAE that need it – i.e. those used to detect which features
are active.

No rmag: Here we remove the rmag scaling parameter in
Eq. (6), effectively setting it to zero, further tying fgate’s
and fmag’s parameters together. With this change, the two
encoder sublayers’ preactivations can at most differ by an
elementwise shift.9 There is a slight drop in performance,
suggesting rmag contributes somewhat to the improved per-
formance of the Gated SAE.

Untied encoders: Here we check whether our choice
to share the majority of parameters between the two en-
coders has meaningfully hurt performance, by training
Gated SAEs with gating and ReLU encoder parameters
completely untied. Despite the greater expressive power
of an untied encoder, we see no improvement in perfor-
mance – in fact a slight deterioration. This suggests our ty-
ing scheme (Eq. (6)) – where encoder directions are shared,
but magnitudes and biases aren’t – is effective at capturing
the advantages of using a gated SAE while avoiding the
50% increase in parameter count and inference-time com-
pute of using an untied SAE.

5.2 Is it sufficient to just address shrinkage?

As explained in Section 3.1, SAEs trained with the base-
line architecture and L1 loss systematically underestimate

9Because the two biases bgate and bmag can still differ.

the magnitudes of latent features’ activations (i.e. shrink-
age). Gated SAEs, through modifications to their architec-
ture and loss function, overcome these limitations.

It is natural to ask to what extent the performance improve-
ment of Gated SAEs is solely attributable to addressing
shrinkage. Although addressing shrinkage would – all else
staying equal – improve reconstruction fidelity, it is not the
only way to improve SAEs’ performance: for example,
Gated SAEs could also improve upon baseline SAEs by
learning better encoder directions (for estimating when fea-
tures are active and their magnitudes) or by learning better
decoder directions (i.e. better dictionaries for reconstruct-
ing activations).

Here we try to answer this question by comparing Gated
SAEs trained as described in Section 3.2 with an alter-
native (architecturally equivalent) approach that also ad-
dresses shrinkage, but in a way that uses frozen encoder and
decoder directions from a baseline SAE of equal dictionary
size.10 Any performance improvement over baseline SAEs
obtained by this alternative approach (which we dub “base-
line + rescale & shift”) can only be due to better estimations
of active feature magnitudes, since by construction an SAE
parameterized by “baseline + rescale & shift” shares the
same encoder and decoder directions as a baseline SAE.

10Concretely, we do this by training baseline SAEs, freezing
their weights, and then learning additional rescale and shift pa-
rameters (similar to Wright and Sharkey (2024)) to be applied
to the (frozen) encoder pre-activations before estimating feature
magnitudes.

6

No Maybe Yes

0

0.2

0.4

0.6

0.8

1

No Maybe Yes

SAE Type

Baseline

Gated

Feature is interpretable Feature is interpretable

F
r
e
q
u
e
n
c
y

Model=Pythia-2.8B Model=Gemma-7B

Figure 4: Proportions of SAE features rated as interpretable / uninterpretable / maybe interpretable by SAE type (Gated
or baseline) and language model. Gated and baseline SAEs are similarly interpretable, with a mean difference (in favor of
Gated SAEs) of 0.13 (95% CI [0, 0.26]) after aggregating ratings for both models.

As shown in Fig. 5b, although resolving shrinkage only
(“baseline + rescale & shift”) does improvement baseline
SAEs’ performance a little, a significant gap remains with
respect to the performance of Gated SAEs. This suggests
that the benefit of the gated architecture and loss comes
from learning better encoder and decoder directions, not
just from overcoming shrinkage. In Appendix C we ex-
plore further how Gated and baseline SAEs’ decoders differ
by replacing their respective encoders with an optimization
algorithm at inference time.

6 Related work
Mechanistic interpretability Recent work in mechanis-
tic interpretability has found recurring components in small
and large LMs (Olsson et al., 2022), identified computa-
tional subgraphs that carry out specific tasks in small LMs
(circuits; (Wang et al., 2023)) and reverse-engineered how
toy tasks are carried out in small transformers (Nanda et al.,
2023). A central difficulty in this kind of work is choos-
ing the right units of analysis. Sparse linear features have
been identified as a promising candidate in prior work (Yun
et al., 2023; Tamkin et al., 2023). The superposition hy-
pothesis outlined by Elhage et al. (2022b) also provided a
theoretical basis for this theory, sparking a new interest in
using SAEs specifically to learn a feature basis (Sharkey
et al., 2022; Bricken et al., 2023; Cunningham et al., 2023;
Kissane et al., 2024a;b; Bloom, 2024), as well as using
SAEs directly for circuit analysis (Marks et al., 2024).
Other work has drawn awareness to issues or drawbacks
with SAE training for this purpose, some of which our pa-
per mitigates. Wright and Sharkey (2024) raised awareness
of shrinkage and proposed addressing this via fine-tuning.
Gated SAEs, as discussed, resolve shrinkage during train-
ing. (Olah et al., 2024a; Templeton et al., 2024; Batson
et al., 2024; Olah et al., 2024b) have also proposed gen-

eral SAE training methodology improvements, which are
mostly orthogonal to the architectural changes discussed
in this work. In parallel work, Taggart (2024) finds early
improvements using a Jump ReLU (Erichson et al., 2019),
but with a different loss function, and without addressing
the problems of the L1 penalty.

Classical dictionary learning Research into the general
problem of sparse dictionary learning precedes transform-
ers, and even deep learning. For example, sparse coding
(Elad, 2010) studies how discrete and continuous represen-
tations can involve more representations than basis vectors,
and sparse representations are also studied in neuroscience
(Thorpe, 1989; Olshausen and Field, 1997). One dictionary
learning algorithm, k-SVD (Aharon et al., 2006) also uses
two stages to learn a dictionary like Gated SAEs. Although
classical dictionary learning algorithms can be more pow-
erful than SAEs (Appendix C), they are less suited for
downstream uses like weights-based circuit analysis or at-
tribution patching (Syed et al., 2023; Kramár et al., 2024),
because they typically use an iterative algorithm to decom-
pose activations, whereas SAEs make feature extraction ex-
plicit via the encoder. Bricken et al. (2023) have also ar-
gued that classical algorithms may be ‘too strong’, in the
sense they may learn features the LM itself could not ac-
cess, whereas SAEs uses components similar to a LM’s
MLP layer to decompose activations.

7 Conclusion
In this work we introduced Gated SAEs which are a Pareto
improvement in terms of reconstruction quality and spar-
sity compared to baseline SAEs (Section 4.1), and are com-
parably interpretable (Section 4.2). We showed via an ab-
lation study that every key part of the Gated SAE method-
ology was necessary for strong performance (Section 5.1).

7

0 50 100

0.88

0.9

0.92

0.94

0.96

0.98

1

SAE Type

Baseline (1.5× width)

Gated

Ablation: unfreeze decoder

Ablation: untie encoder layers

Ablation: no r_mag

L0 (Lower is sparser)

L
o

s
s
 R

e
c
o

v
e
r
e
d
 (

F
id

e
li
t
y
)

(a)

0 50 100

0.88

0.9

0.92

0.94

0.96

0.98

1

SAE Type

Baseline (equal width)

Gated

Baseline + rescale & shift

L0 (Lower is sparser)

L
o

s
s
 R

e
c
o

v
e
r
e
d
 (

F
id

e
li
t
y
)

(b)

Figure 5: (a) Our ablation study on GELU-1L MLP neuron activations indicates: (i) the importance of freezing the de-
coder in the auxiliary task Laux used to train fgate’s parameters; (ii) tying encoder weights according to Eq. (6) is slightly
beneficial for performance (in addition to yielding a significant reduction in parameter count and inference compute); (iii)
further simplifying the encoder weight tying scheme in Eq. (6) by removing rmag is mildly harmful to performance. (b)
Evidence from GELU-1L that the performance improvement of gated SAEs does not solely arise from addressing shrink-
age (systematic underestimation of latent feature activations): taking a frozen baseline SAE’s parameters and learning rmag
and bmag parameters on top of them (green line) does successfully resolve shrinkage, by decoupling feature magnitude
estimation from active feature detection; however, it explains only a small part of the performance increase of gated SAEs
(red line) over baseline SAEs (blue line).

This represents significant progress on improving Dictio-
nary Learning on LMs – at many sites, Gated SAEs require
half the L0 to achieve the same loss recovered (Fig. 8). This
is likely to improve work that uses SAEs to steer language
models (Nanda et al., 2024), interpret circuits (Marks et al.,
2024), or understand LM components across the full distri-
bution (Bricken et al., 2023).

Limitations & future work. Our benchmarking study fo-
cused on GELU-1L and models in the Pythia and Gemma
families. It is therefore not certain that these results will
generalise to other model families. On the other hand,
the theoretical underpinnings of the Gated SAE architec-
ture (Section 3) make no assumptions about LM architec-
ture, suggesting Gated SAEs should be a Pareto improve-
ment more generally. While we have confirmed that Gated
SAE features are comparably interpretable to baseline SAE
features, it does not necessarily follow that Gated SAE
decompositions are equally useful for mechanistic inter-
pretability. It is certainly possible that human interpretabil-
ity of SAE features is only weakly correlated with either:
(i) identification of the causally meaningful directions in a
LM’s activations; or (ii) usefulness on downstream tasks
like circuit analysis or steering. A framework for scalably
and objectively evaluating the usefulness of SAE decom-
positions (gated or otherwise) is still in its early stages

(Makelov et al., 2024) and further progress in this area
would be highly valuable. It is plausible that some of the
performance gap between Gated and baseline SAEs could
be closed by inexpensive inference-time interventions that
prune the many low activating features that tend to ap-
pear in baseline SAEs, mimicking Gated SAEs’ thresh-
olding mechanism. Finally, we would be most excited to
see progress on using dictionary learning techniques to fur-
ther interpretability in general, such as to improve circuit
finding (Conmy et al., 2023; Marks et al., 2024) or steer-
ing (Turner et al., 2023) in language models, and hope that
Gated SAEs can serve to accelerate such work.

Impact Statement We see this work as foundational inter-
pretability research, without direct applications, and thus
without direct positive or negative ethical considerations,
except those that all machine learning research on language
models has.

References
M. Aharon, M. Elad, and A. Bruckstein. K-SVD: An algo-

rithm for designing overcomplete dictionaries for sparse
representation. IEEE Transactions on Signal Process-
ing, 54(11):4311–4322, 2006. doi: 10.1109/TSP.2006.
881199.

8

J. Batson, B. Chen, A. Jones, A. Templeton, T. Con-
erly, J. Marcus, T. Henighan, N. L. Turner,
and A. Pearce. Circuits Updates - March
2024. Transformer Circuits Thread, 2024. URL
https://transformer-circuits.pub/
2024/mar-update/index.html.

S. Biderman, H. Schoelkopf, Q. G. Anthony, H. Bradley,
K. O’Brien, E. Hallahan, M. A. Khan, S. Purohit, U. S.
Prashanth, E. Raff, et al. Pythia: A suite for analyzing
large language models across training and scaling. In
International Conference on Machine Learning, pages
2397–2430. PMLR, 2023. Apache License 2.0.

J. Bloom. Open Source Sparse Autoencoders for all
Residual Stream Layers of GPT-2 Small, 2024.
https://www.alignmentforum.org/posts/f9EgfLSurAiqRJySD.

T. Blumensath and M. E. Davies. Gradient pursuits. IEEE
Transactions on Signal Processing, 56(6):2370–2382,
2008.

T. Bolukbasi, A. Pearce, A. Yuan, A. Coenen, E. Reif,
F. Viégas, and M. Wattenberg. An interpretability illu-
sion for bert. arXiv preprint arXiv:2104.07143, 2021.

T. Bricken, A. Templeton, J. Batson, B. Chen, A. Jermyn,
T. Conerly, N. Turner, C. Anil, C. Denison, A. Askell,
R. Lasenby, Y. Wu, S. Kravec, N. Schiefer, T. Maxwell,
N. Joseph, Z. Hatfield-Dodds, A. Tamkin, K. Nguyen,
B. McLean, J. E. Burke, T. Hume, S. Carter,
T. Henighan, and C. Olah. Towards monosemanticity:
Decomposing language models with dictionary learning.
Transformer Circuits Thread, 2023. https://transformer-
circuits.pub/2023/monosemantic-features/index.html.

A. Conmy. My best guess at the impor-
tant tricks for training 1L SAEs, Dec 2023.
https://www.lesswrong.com/posts/yJsLNWtmzcgPJgvro/my-
best-guess-at-the-important-tricks-for-training-1l-saes.

A. Conmy, A. N. Mavor-Parker, A. Lynch, S. Heimer-
sheim, and A. Garriga-Alonso. Towards automated cir-
cuit discovery for mechanistic interpretability, 2023.

H. Cunningham, A. Ewart, L. Riggs, R. Huben, and
L. Sharkey. Sparse autoencoders find highly inter-
pretable features in language models, 2023.

Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier. Language
modeling with gated convolutional networks. In Pro-
ceedings of the 34th International Conference on Ma-
chine Learning - Volume 70, ICML’17, page 933–941.
JMLR.org, 2017.

M. Elad. Sparse and Redundant Representations: From
Theory to Applications in Signal and Image Processing.
Springer, New York, 2010. ISBN 978-1-4419-7010-7.
doi: 10.1007/978-1-4419-7011-4.

N. Elhage, N. Nanda, C. Olsson, T. Henighan, N. Joseph,
B. Mann, A. Askell, Y. Bai, A. Chen, T. Conerly, N. Das-
Sarma, D. Drain, D. Ganguli, Z. Hatfield-Dodds, D. Her-
nandez, A. Jones, J. Kernion, L. Lovitt, K. Ndousse,
D. Amodei, T. Brown, J. Clark, J. Kaplan, S. Mc-
Candlish, and C. Olah. A mathematical framework
for transformer circuits. Transformer Circuits Thread,
2021. URL https://transformer-circuits.
pub/2021/framework/index.html.

N. Elhage, T. Hume, C. Olsson, N. Nanda, T. Henighan,
S. Johnston, S. ElShowk, N. Joseph, N. DasSarma,
B. Mann, D. Hernandez, A. Askell, K. Ndousse,
A. Jones, D. Drain, A. Chen, Y. Bai, D. Ganguli,
L. Lovitt, Z. Hatfield-Dodds, J. Kernion, T. Conerly,
S. Kravec, S. Fort, S. Kadavath, J. Jacobson, E. Tran-
Johnson, J. Kaplan, J. Clark, T. Brown, S. McCandlish,
D. Amodei, and C. Olah. Softmax linear units. Trans-
former Circuits Thread, 2022a. https://transformer-
circuits.pub/2022/solu/index.html.

N. Elhage, T. Hume, C. Olsson, N. Schiefer, T. Henighan,
S. Kravec, Z. Hatfield-Dodds, R. Lasenby, D. Drain,
C. Chen, et al. Toy Models of Superposition. arXiv
preprint arXiv:2209.10652, 2022b.

N. B. Erichson, Z. Yao, and M. W. Mahoney. Jumprelu: A
retrofit defense strategy for adversarial attacks, 2019.

Gemma Team, T. Mesnard, C. Hardin, R. Dadashi, S. Bhu-
patiraju, L. Sifre, M. Rivière, M. S. Kale, J. Love,
P. Tafti, L. Hussenot, and et al. Gemma, 2024. URL
https://www.kaggle.com/m/3301. Apache Li-
cense 2.0.

W. Gurnee, N. Nanda, M. Pauly, K. Harvey, D. Troitskii,
and D. Bertsimas. Finding neurons in a haystack: Case
studies with sparse probing, 2023.

N. P. Jouppi, D. H. Yoon, G. Kurian, S. Li, N. Patil,
J. Laudon, C. Young, and D. Patterson. A domain-
specific supercomputer for training deep neural net-
works. Communications of the ACM, 63(7):67–78, 2020.

C. Kissane, R. Krzyzanowski, A. Conmy, and
N. Nanda. Sparse autoencoders work on at-
tention layer outputs. Alignment Forum, 2024a.
https://www.alignmentforum.org/posts/DtdzGwFh9dCfsekZZ.

C. Kissane, R. Krzyzanowski, A. Conmy,
and N. Nanda. Attention SAEs scale to
GPT-2 Small. Alignment Forum, 2024b.
https://www.alignmentforum.org/posts/FSTRedtjuHa4Gfdbr.

J. Kramár, T. Lieberum, R. Shah, and N. Nanda.
Atp*: An efficient and scalable method for local-
izing llm behaviour to components. arXiv preprint
arXiv:2403.00745, 2024.

9

https://transformer-circuits.pub/2024/mar-update/index.html
https://transformer-circuits.pub/2024/mar-update/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://www.kaggle.com/m/3301

A. Makelov, G. Lange, and N. Nanda. Towards prin-
cipled evaluations of sparse autoencoders for inter-
pretability and control. In ICLR 2024 Workshop
on Secure and Trustworthy Large Language Models,
2024. URL https://openreview.net/forum?
id=MHIX9H8aYF.

S. Marks, C. Rager, E. J. Michaud, Y. Belinkov, D. Bau,
and A. Mueller. Sparse feature circuits: Discovering and
editing interpretable causal graphs in language models,
2024.

C. McDougall. SAE Visualizer, 2024.
https://github.com/callummcdougall/sae vis.

N. Nanda. GELU-1L, 2022. URL https:
//huggingface.co/NeelNanda/GELU_
1L512W_C4_Code. MIT License.

N. Nanda. Open Source Replication & Commen-
tary on Anthropic’s Dictionary Learning Paper, Oct
2023. https://www.alignmentforum.org/
posts/aPTgTKC45dWvL9XBF.

N. Nanda, L. Chan, T. Lieberum, J. Smith, and J. Stein-
hardt. Progress measures for grokking via mechanistic
interpretability. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=9XFSbDPmdW.

N. Nanda, A. Conmy, L. Smith, S. Rajamanoha-
ran, T. Lieberum, J. Kramár, and V. Varma.
[Summary] Progress Update #1 from the GDM
Mech Interp Team. Alignment Forum, 2024.
https://www.alignmentforum.org/posts/
HpAr8k74mW4ivCvCu.

A. Ng. Sparse autoencoder, 2011. CS294A Lecture notes,
http://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf.

C. Olah. Mechanistic interpretability, variables,
and the importance of interpretable bases, 2022.
https://www.transformer-circuits.pub/2022/mech-
interp-essay.

C. Olah, N. Cammarata, L. Schubert, G. Goh, M. Petrov,
and S. Carter. Zoom in: An introduction to circuits. Dis-
till, 2020. doi: 10.23915/distill.00024.001.

C. Olah, S. Carter, A. Jermyn, J. Batson, T. Henighan,
T. Conerly, J. Marcus, A. Templeton, B. Chen,
and N. L. Turner. Circuits Updates - January
2024. Transformer Circuits Thread, 2024a. URL
https://transformer-circuits.pub/
2024/jan-update/index.html.

C. Olah, S. Carter, A. Jermyn, J. Batson, T. Henighan,
J. Lindsey, T. Conerly, A. Templeton, J. Mar-
cus, and T. Bricken. Circuits Updates - April
2024. Transformer Circuits Thread, 2024b. URL
https://transformer-circuits.pub/
2024/april-update/index.html.

B. A. Olshausen and D. J. Field. Sparse coding with
an overcomplete basis set: A strategy employed by
v1? Vision Research, 37(23):3311–3325, 1997. doi:
10.1016/S0042-6989(97)00169-7.

C. Olsson, N. Elhage, N. Nanda, N. Joseph, N. Das-
Sarma, T. Henighan, B. Mann, A. Askell, Y. Bai,
A. Chen, T. Conerly, D. Drain, D. Ganguli, Z. Hatfield-
Dodds, D. Hernandez, S. Johnston, A. Jones, J. Kernion,
L. Lovitt, K. Ndousse, D. Amodei, T. Brown, J. Clark,
J. Kaplan, S. McCandlish, and C. Olah. In-context learn-
ing and induction heads. Transformer Circuits Thread,
2022. https://transformer-circuits.pub/2022/in-context-
learning-and-induction-heads/index.html.

K. Park, Y. J. Choe, and V. Veitch. The linear representation
hypothesis and the geometry of large language models,
2023.

Y. Pati, R. Rezaiifar, and P. Krishnaprasad. Orthogo-
nal matching pursuit: recursive function approximation
with applications to wavelet decomposition. In Pro-
ceedings of 27th Asilomar Conference on Signals, Sys-
tems and Computers, pages 40–44 vol.1, 1993. doi:
10.1109/ACSSC.1993.342465.

L. Sharkey, D. Braun, and B. Millidge. [in-
terim research report] taking features out of
superposition with sparse autoencoders, 2022.
https://www.alignmentforum.org/posts/
z6QQJbtpkEAX3Aojj.

N. Shazeer. GLU variants improve transformer. CoRR,
abs/2002.05202, 2020. URL https://arxiv.org/
abs/2002.05202.

A. Syed, C. Rager, and A. Conmy. Attribution patching
outperforms automated circuit discovery. arXiv preprint
arXiv:2310.10348, 2023.

G. M. Taggart. Prolu: A nonlin-
earity for sparse autoencoders, 2024.
https://www.lesswrong.com/posts/HEpufTdakGTTKgoYF/prolu-
a-pareto-improvement-for-sparse-autoencoders.

A. Tamkin, M. Taufeeque, and N. D. Goodman. Codebook
features: Sparse and discrete interpretability for neural
networks, 2023.

10

https://openreview.net/forum?id=MHIX9H8aYF
https://openreview.net/forum?id=MHIX9H8aYF
https://huggingface.co/NeelNanda/GELU_1L512W_C4_Code
https://huggingface.co/NeelNanda/GELU_1L512W_C4_Code
https://huggingface.co/NeelNanda/GELU_1L512W_C4_Code
https://www.alignmentforum.org/posts/aPTgTKC45dWvL9XBF
https://www.alignmentforum.org/posts/aPTgTKC45dWvL9XBF
https://openreview.net/forum?id=9XFSbDPmdW
https://openreview.net/forum?id=9XFSbDPmdW
https://www.alignmentforum.org/posts/HpAr8k74mW4ivCvCu
https://www.alignmentforum.org/posts/HpAr8k74mW4ivCvCu
https://transformer-circuits.pub/2024/jan-update/index.html
https://transformer-circuits.pub/2024/jan-update/index.html
https://transformer-circuits.pub/2024/april-update/index.html
https://transformer-circuits.pub/2024/april-update/index.html
https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj
https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2002.05202

A. Templeton, J. Batson, T. Henighan, T. Conerly, J. Mar-
cus, A. Golubeva, T. Bricken, and A. Jermyn. Cir-
cuits Updates - February 2024. Transformer Circuits
Thread, 2024. https://transformer-circuits.pub/2024/feb-
update/index.html.

S. J. Thorpe. Local vs. distributed coding. Intellectica, 8:
3–40, 1989.

A. M. Turner, L. Thiergart, D. Udell, G. Leech, U. Mini,
and M. MacDiarmid. Activation addition: Steering lan-
guage models without optimization, 2023.

K. R. Wang, A. Variengien, A. Conmy, B. Shlegeris, and
J. Steinhardt. Interpretability in the wild: a circuit for
indirect object identification in GPT-2 small. In The
Eleventh International Conference on Learning Rep-
resentations, 2023. URL https://openreview.
net/forum?id=NpsVSN6o4ul.

B. Wright and L. Sharkey. Addressing
feature suppression in SAEs, Feb 2024.
https://www.alignmentforum.
org/posts/3JuSjTZyMzaSeTxKk/
addressing-feature-suppression-in-saes.

Z. Yun, Y. Chen, B. A. Olshausen, and Y. LeCun. Trans-
former visualization via dictionary learning: contextual-
ized embedding as a linear superposition of transformer
factors, 2023.

Appendix

A Metrics for evaluating SAEs
SAEs are expected to decompose input activations sparsely,
and yet in a manner that allows for faithful reconstruc-
tion. L0 and loss recovered are two metrics typically used
(Bricken et al., 2023) to measure sparsity and reconstruc-
tion fidelity respectively. These are defined as follows:

• The L0 of a SAE is defined by the average number of
active features on a given input, i.e Ex∼D ∥f(x)∥0.

• The loss recovered of a SAE is calculated from the
average cross-entropy loss of the language model on
an evaluation dataset, when the SAE’s reconstructions
are spliced into it. If we denote by CE(ϕ) the aver-
age loss of the language model when we splice in a
function ϕ : Rn → Rn at the SAE’s site during the
model’s forward pass, then loss recovered is

1− CE(x̂ ◦ f)− CE(Id)
CE(ζ)− CE(Id)

, (8)

where x̂ ◦ f is the autoencoder function, ζ : x 7→ 0
the zero-ablation function and Id : x 7→ x the iden-
tity function. According to this definition, a SAE that

always outputs the zero vector as its reconstruction
would get a loss recovered of 0%, whereas a SAE that
reconstructs its inputs perfectly would get a loss re-
covered of 100%.

B Measuring shrinkage
As described in Section 3.1, the L1 sparsity penalty used
to train baseline SAEs causes feature activations to be sys-
tematically underestimated, a phenomenon called shrink-
age. Since this in turn shrinks the reconstructions produced
by the SAE decoder, we can observe the extent to which a
trained SAE is affected by shrinkage by measuring the av-
erage norm of its reconstructions.

Concretely, the metric we use is the relative reconstruction
bias,

γ := argmin
γ′

Ex∼D

[
∥x̂SAE(x)/γ

′ − x∥22
]
, (9)

i.e. γ−1 is the optimum multiplicative factor by which an
SAE’s reconstructions should be rescaled in order to min-
imise the L2 reconstruction loss; γ = 1 for an unbiased
SAE and γ < 1 when there’s shrinkage.11 Explicitly solv-
ing the optimization problem in Eq. (9), the relative recon-
struction bias can be expressed analytically in terms of the
mean SAE reconstruction loss, the mean squared norm of
input activations and the mean squared norm of SAE re-
constructions, making γ easy to compute and track during
training:

γ =
Ex∼D

[
∥x̂SAE (x)∥22

]
Ex∼D

[
x̂SAE (x) · x

] (10)

=
2Ex∼D

[
∥x̂SAE (x)∥22

]
Ex∼D

[
∥x̂SAE (x)∥22

]
+ Ex∼D

[
∥x∥22

]
− Ex∼D

[
∥x̂SAE (x)− x∥22

] ,
(11)

where the second equality makes use of the identity 2a ·
b ≡ ∥a∥22 + ∥b∥22 − ∥a− b∥22. Notice from the second
expression for γ that an unbiased reconstruction (γ = 1)
therefore satisfies

Ex∼D

[
∥x̂SAE (x)∥22

]
= Ex∼D

[
∥x∥22

]
−Ex∼D

[
∥x̂SAE (x)− x∥22

]
.

In other words, an unbiased but imperfect SAE (i.e. one
that has non-zero reconstruction loss) must have mean
squared reconstruction norm that is strictly less than the
mean squared norm of its inputs even without shrinkage.
Shrinkage makes the mean squared reconstruction norm
even smaller.

11We have defined γ this way round so that γ < 1 intuitively
corresponds to shrinkage.

11

https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://www.alignmentforum.org/posts/3JuSjTZyMzaSeTxKk/addressing-feature-suppression-in-saes
https://www.alignmentforum.org/posts/3JuSjTZyMzaSeTxKk/addressing-feature-suppression-in-saes
https://www.alignmentforum.org/posts/3JuSjTZyMzaSeTxKk/addressing-feature-suppression-in-saes

C Inference-time optimization
The task SAEs perform can be split into two sub-tasks:
sparse coding, or learning a set of features from a dataset,
and sparse approximation, where a given datapoint is ap-
proximated as a sparse linear combination of these features.
The decoder weights are the set of learned features, and the
mapping represented by the encoder is a sparse approxi-
mation algorithm. Formally, sparse approximation is the
problem of finding a vector α that minimises;

α = argmin ∥x−Dα∥22 s.t. ∥α∥0 < γ (12)

i.e. that best reconstructs the signal x as a linear combina-
tion of vectors in a dictionary D, subject to a constraint
on the L0 pseudo-norm on α. Sparse approximation is
a well studied problem, and SAEs are a weak sparse ap-
proximation algorithm. SAEs, at least in the formulation
conventional in dictionary learning for language models, in
fact solve a slightly more restricted version of this problem
where the weights α on each feature are constrained to be
non-negative, leading to the related problem

α = argmin ∥x−Dα∥22 s.t. ∥α∥0 < γ,α > 0 (13)

In this paper, we do not explore using more powerful al-
gorithms for sparse coding. This is partly because we are
using SAEs not just to recover a sparse reconstruction of
activations of a LM; ideally we hope that the learned fea-
tures will coincide with the linear representations actually
used by the LM, under the superposition hypothesis. Prior
work (Bricken et al., 2023) has argued that SAEs are more
likely to recover these due to the correspondence between
the SAE encoder and the structure of the network itself;
the argument is that it is implausible that the network can
make use of features which can only be recovered from the
vector via an iterative optimisation algorithm, whereas the
structure of the SAE means that it can only find features
whose presence can be predicted well by a simple linear
mapping. Whether this is true remains, in our view, an im-
portant question for future work, but we do not address it
in this paper.

In this section we discuss some results obtained by using
the dictionaries learned via SAE training, but replacing the
encoder with a different sparse approximation algorithm at
inference time. This allows us to compare the dictionaries
learned by different SAE training regimes independently
of the quality of the encoder. It also allows us to exam-
ine the gap between the sparse reconstruction performed by
the encoder against the baseline of a more powerful sparse
approximation algorithm. As mentioned, for a fair com-
parison to the task the encoder is trained for, it is impor-
tant to solve the sparse approximation problem of Eq. (13),
rather than the more conventional formulation of Eq. (12),

but most sparse approximation algorithms can be modified
to solve this with relatively minor changes.

Solving Eq. (13) exactly is equivalent to integer linear pro-
gramming, and is NP hard. The integer linear programs
in question would be large, as our SAE decoders routinely
have hundreds of thousands of features, and solving them
to guaranteed optimality would likely be intractable. In-
stead, as is commonly done, we use iterative greedy al-
gorithms to find an approximate solution. While the so-
lution found by these sparse approximation algorithms is
not guaranteed to be the global optimum, these are signifi-
cantly more powerful than the SAE encoder, and we feel it
is acceptable in practice to treat them as an upper bound on
possible encoder performance.

For all results in this section, we use gradient pursuit, as
described in Blumensath and Davies (2008), as our infer-
ence time optimisation (ITO) algorithm. This algorithm is
a variant of orthogonal matching pursuit (Pati et al., 1993)
which solves the orgothonalisation of the residual to the
span of chosen dictionary elements approximately at ev-
ery step rather than exactly, but which only requires matrix
multiplies rather than matrix solves and is easier to imple-
ment on accelerators as a result. It is possibly not crucial
for performance that our optimisation algorithm be imple-
mentable on TPUs, but being able to avoid a host-device
transfer when splicing this into the forward pass allowed
us to re-use our existing evaluation pipeline with minimal
changes.

When we use a sparse approximation algorithm at test time,
we simply use the decoder of a trained SAE as a dictionary,
ignoring the encoder. This allows us to sweep the target
sparsity at test time without retraining the model, meaning
that we can plot an entire Pareto frontier of loss recovered
against sparsity for a single decoder, as in done in Fig. 7.

Fig. 6 compares the loss recovered when using ITO for a
suite of SAEs decoders trained with both methods at three
different test time L0 thresholds. This graph shows a some-
what surprising result; while Gated SAEs learn better de-
coders generally, and often achieve the best loss recovered
using ITO close to their training sparsity, SAE decoders are
often outperformed by decoders which achieved a higher
test time L0; it’s better to do ITO with a target L0 of 10
with an decoder with an achieved L0 of around 100 dur-
ing training than one which was actually trained with this
level of sparsity. For instance, the left hand panel in Fig. 6
shows that SAEs with a training L0 of 100 are better than
those with an L0 of around 10 at almost every sparsity
level in terms of ITO reconstruction. However, gated SAE
dictionaries have a small but real advantage over standard
SAEs in terms of loss recovered at most target sparsity lev-
els, suggesting that part of the advantage of gated SAEs
is that they learn better dictionaries as well as addressing

12

issues with shrinkage. However, there are some subtleties
here; for example, we find that baseline SAEs trained with
a lower sparsity penalty (higher training L0) often outper-
form more sparse baseline SAEs according to this measure,
and the best performing baseline SAE (L0 ≈ 99) is compa-
rable to the best performing Gated SAE (L0 ≈ 20).

Fig. 7 compares the Pareto frontiers of a baseline model
and a gated model to the Pareto frontier of an ITO sweep
of the best performing dictionary of each. Note that, while
the Pareto curve of the baseline dictionary is formed by
several models as each encoder is specialised to a given
sparsity level, as mentioned, ITO lets us plot a Pareto fron-
tier by sweeping the target sparsity with a single dictionary;
here we plot only the best performing dictionary from each
model type to avoid cluttering the figure. This figure sug-
gests that the performance gap between the encoder and
using ITO is smaller for the gated model. Interestingly, this
cannot solely be explained by addressing shrinkage, as we
demonstrate by experimenting with a baseline model which
learns a rescale and shift with a frozen encoder and decoder
directions.

D More loss recovered / L0 Pareto frontiers
In Fig. 8 we show that Gated SAEs outperform baseline
SAEs. In Fig. 9 we show that Gated SAEs ourperform
baseline SAEs at all but one MLP output or residual stream
site that we tested on.

In Fig. 9 at the attention output pre-linear site at layer 27,
loss recovered is bigger than 1.0. On investigation, we
found that the dataset used to train the SAE was not iden-
tical to Gemma’s pretraining dataset, and at this site it was
possible to mean ablate this quantity and decrease loss –
explaining why SAE reconstructions had lower loss than
the original model.

E Further shrinkage plots
In Fig. 10, we show that Gated SAEs resolve shrinkage, as
measured by relative reconstruction bias (Appendix B), in
Pythia-2.8B.

F Training and evaluation:
hyperparameters and other details

F.1 Training

F.1.1 GENERAL TRAINING DETAILS

Other details of SAE training are:

• SAE Widths. Our SAEs have width 217 for most
baseline SAEs, 3 × 216 for Gated SAEs, except for
the (Pythia-2.8B, Residual Stream) sites we used 215

for baseline and 3 × 214 for Gated since early runs at
these sites had lots of learned feature death.

• Training data. We use activations from hundreds of
millions to billions of activations from LM forward
passes as input data to the SAE. Following Nanda
(2023), we use a shuffled buffer of these activations,
so that optimization steps don’t use data from highly
correlated activations.12

• Resampling. We used resampling, a technique which
at a high-level reinitializes features that activate ex-
tremely rarely on SAE inputs periodically throughout
training. We mostly follow the approach described in
the ‘Neuron Resampling’ appendix of Bricken et al.
(2023), except we reapply learning rate warm-up af-
ter each resampling event, reducing learning rate to
0.1x the ordinary value, and, increasing it with a co-
sine schedule back to the ordinary value over the next
1000 training steps.

• Optimizer hyperparameters. We use the Adam op-
timizer with β2 = 0.999 and β1 = 0.0, following
Templeton et al. (2024), as we also find this to be a
slight improvement to training. We use a learning rate
warm-up. See Appendix F.1.2 for learning rates of
different experiment.

• Decoder weight norm constraints. Templeton et al.
(2024) suggest constraining columns to have at most
unit norm (instead of exactly unit norm), which can
help distinguish between productive and unproductive
feature directions (although it should have no system-
atic impact on performance). However, we follow the
original approach of constraining columns to have ex-
act unit norms in this work for the sake of simplicity.

• Compute resources. Individual SAEs were each
trained on TPU-v3 slices with a 2x2 topology (Jouppi
et al., 2020). The same chips were used to gener-
ate LM activations on-the-fly, train SAE parameters
and evaluate SAEs during training, using up to 8-way
model parallelism. With this setup, the time to train
a SAE varies by SAE width, LM residual stream di-
mension, sequence length, layer and site.13 We also
used a negligible amount of compute on resampling
(Appendix F), evaluation (e.g. Figure 1) and inter-
pretability experiments (Section 4.2). Training wall
clock time ranges from around 7 hours to train on
GELU-1L MLP activations to around 47 hours to train

12In contrast to earlier findings (Conmy, 2023), we found
that when using Pythia-2.8B’s activations from sequences of
length 2048, rather than GELU-1L’s activations from sequences
of length 128, it was important to shuffle the 106 length activation
buffer used to train our SAEs.

13The FLOPs required to compute LM activations increase
with layer; SAEs trained on MLP activations have a higher param-
eter count than those trained on MLP outputs, attention outputs or
the residual stream.

13

Figure 6: This figure compares the ITO performance of different decoders across a sweep for decoders trained using
a baseline SAE and the gated method, at three different test time target sparsities. Gated SAEs trained at lower target
sparsities consistently achieve better dictionaries by this measure. Interestingly, the best performing baseline dictionary by
this measure often has a much higher test time sparsity than the target; for instance, at a test time sparsity of 30, the best
baseline SAE was the one that had a test time sparsity of more like 100. This could be an artifact of the fact that the L0
measure is quite sensitive to noise, and standard SAE architectures tend to have a reasonable number of features with very
low activation.

Figure 7: Pareto frontiers of a baseline SAE, a baseline SAE with learned rescale and shift (to account for shrinkage)
and a gated SAE across different sparsity lambdas, compared to the ITO Pareto frontier of the best decoder of each type
with ITO, varying the target sparsity. The best gated encoder is better than the best standard encoder by this measure, but
the difference is marginal. As shown in the plot above, the best baseline encoder by the ITO measure had a much larger
test time sparsity (around 100) than the best gated model (around 30). This figure suggests that the gap between SAE
performance and ’optimal’ performance, if we assume that ITO is close to the maximum possible reconstruction using the
given encoder, is much smaller for the gated model.

14

0 50 100 150

0.6

0.8

1

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

0.6

0.8

1

0.6

0.8

1

0.6

0.8

1

0.6

0.8

1

SAE Type

Gated

Baseline

Residual stream post-MLP
MLP output

L0 (Lower is sparser)

Attention output pre-linear

L
a
y
e
r
 2

8
L
a
y
e
r
 2

0

L
o

s
s
 R

e
c
o

v
e
r
e
d

(
F
id

e
li
t
y
)

L
a
y
e
r
 1

6
L
a
y
e
r
 1

2
L
a
y
e
r
 4

Figure 8: Gated SAEs throughout Pythia-2.8B. At all sites we tested, Gated SAEs are a Pareto improvement. In every plot,
the SAE with maximal loss recovered was a Gated SAE.

15

0 50 100 150 200

0.4

0.6

0.8

1

1.2

0 50 100 150 200 0 50 100 150 200

0.4

0.6

0.8

1

1.2

0.4

0.6

0.8

1

1.2

0.4

0.6

0.8

1

1.2

SAE Type

Gated

Baseline

Residual stream post-MLP
MLP output

L0 (Lower is sparser)

Attention output pre-linear

L
a
y
e
r
 2

7

L
a
y
e
r
 2

0
L
o

s
s
 R

e
c
o

v
e
r
e
d

(
F
id

e
li
t
y
)

L
a
y
e
r
 1

3
L
a
y
e
r
 6

Figure 9: Gated and Normal Pareto-Optimal SAEs for Gemma-7B – see Appendix D for a discussion of the anomalies
(such as the Layer 27 attention output SAEs).

16

0 10050 150

1

0.8

1.2

0 10050 150 0 10050 150

1

0.8

1.2

1

0.8

1.2

1

0.8

1.2

SAE Type

Gated

Baseline

Residual stream post-MLP
MLP output

L0 (Lower is sparser)

Attention output pre-linear

L
a
y
e
r
 2

7

L
a
y
e
r
 2

0
R

e
la

t
iv

e
 r

e
c
o

n
s
t
r
u

c
t
io

n
 b

ia
s
 γ

L
a
y
e
r
 1

3
L
a
y
e
r
 6

Figure 10: Gated SAEs address the problem of shrinkage in Pythia-2.8B.

17

on Gemma-7B sites at layer 27. We estimate that we
used twice as much compute as used in the paper on
preliminary experiments.

F.1.2 EXPERIMENT-SPECIFIC TRAINING DETAILS

• We use learning rate 0.0003 for all Gated SAE ex-
periments, and the GELU-1L baseline experiment.
We swept for optimal baseline learning rates for the
GELU-1L baseline to generate this value. For the
Pythia-2.8B and Gemma-7B baseline SAE experi-
ments, we divided the L2 loss by E||x||2, motivated by
better hyperparameter transfer, and so changed learn-
ing rate to 0.001 and 0.00075. We didn’t see notice-
able difference in the Pareto frontier and so did not
sweep this hyperparameter further.

• We generate activations from sequences of length 128
for GELU-1L, 2048 for Pythia-2.8B and 1024 for
Gemma-7B.

• We use a batch size of 4096 for all runs. We use
300,000 training steps for GELU-1L and Gemma-7B
runs, and 400,000 steps for Pythia-2.8B runs.

F.1.3 LESSONS LEARNED SCALING SAES

• Learned feature death is unpredictable. In Fig. 11
there are few patterns that can be gleaned from star-
ing at which runs have high numbers of dead learned
features (called dead neurons in Bricken et al. (2023)).

• Resampling makes hyperparameter sweeps diffi-
cult. We found that resampling caused L0 and loss
recovered to increase, similar to Conmy (2023).

• Training appears to converge earlier than ex-
pected. We found that we did not need 20B tokens
as in Bricken et al. (2023), as generally resampling
had stopped causing gains and loss curves plateaued
after just over one billion tokens.

F.2 Evaluation

We evaluated the models on over a million held-out tokens.

G Equivalence between gated encoder with
tied weights and linear encoder with
non-standard activation function

In this section we show under the weight sharing scheme
defined in Eq. (6), a gated encoder as defined in Eq. (5) is
equivalent to a linear layer with a non-standard (and param-
eterized) activation function.

Without loss of generality, consider the case of a single la-
tent feature (M = 1) and set the pre-encoder bias to zero.
In this case, the gated encoder is defined as

f̃(x) := 1wgate·x+bgate>0 ReLU (wmag · x+ bmag) (14)

and the weight sharing scheme becomes

wmag := ρmagwgate (15)

with a non-negative parameter ρmag ≡ exp(rmag).

Substituting Eq. (15) into Eq. (14) and re-arranging, we can
re-express f̃(x) as a single linear layer

f̃(x) := σbmag−ρmagbgate (wmag · x+ bmag) (16)

with the parameterized activation function

σθ(z) := 1z>θ ReLU (z) . (17)

called JumpReLU in a different context (Erichson et al.,
2019). Fig. 12 illustrates the shape of this activation func-
tion.

H Further analysis of the human
interpretability study

We perform some further analysis on the data from Sec-
tion 4.2, to understand the impact of different sites, layers,
and raters.

H.1 Sites

We first pose the question of whether there’s evidence that
the sites had different interpretability outcomes. A Fried-
man test across sites shows significant differences (at p =
0.047) between the Gated-vs-Baseline differences, though
not (p = 0.92) between the raw labels.

Breaking down by site and repeating the Wilcoxon-Pratt
one-sided tests and computing confidence intervals, we find
the result on MLP outputs is strongest, with mean 0.40,
significance p = 0.003, and CI [0.18, 0.63]; this is as com-
pared with the attention outputs (p = 0.47, mean .05, CI
[-0.16, 0.26]) and final residual (p = 0.59, mean -0.07, CI
[-0.28, 0.12]) SAEs.

H.2 Layers

Next we test whether different layers had different out-
comes. We do this separately for the 2 models, since the
layers aren’t directly comparable. We run 2 tests in each
setting: Page’s trend test (which tests for a monotone trend
across layers) and the Friedman test (which tests for any
difference, without any expectation of a monotone trend).

Results are presented in Table 1; they suggest there are
some significant nonmonotone differences between lay-
ers. To elucidate this, we present 90% BCa bootstrap con-
fidence intervals of the mean raw label (where ‘No’=0,
‘Maybe’=1, ‘Yes’=2) and the Gated-vs-Baseline differ-
ence, per layer, in Fig. 14 and Fig. 15, respectively.

18

50 1000

0

0.5

1

50 1000 50 1000

0

0.5

1

0

0.5

1

0

0.5

1

SAE Type

Gated

Baseline

Residual stream post-MLP
MLP output

L0 (Lower is sparser)

Attention output pre-linear

L
a
y
e
r
 2

7

L
a
y
e
r
 2

0
P

r
o

p
o

r
t
io

n
 o

f
 f

e
a
t
u

r
e
s
 t

h
a
t
 a

r
e
 a

li
v
e

(
L
a
s
t
 1

e
6
 t

o
k
e
n
s
)

L
a
y
e
r
 1

3
L
a
y
e
r
 6

Figure 11: Feature death in Gemma-7B.

19

𝜎

Figure 12: After applying the weight sharing scheme of Eq. (6), a gated encoder becomes equivalent to a single layer linear
encoder with a Jump ReLU (Erichson et al., 2019) activation function σθ, illustrated above.

Figure 13: Contingency table showing Gated vs Baseline interpretability labels from our paired study results, for Pythia-
2.8B and Gemma-7B.

p-values Raw label Delta from Baseline to Gated

Pythia-2.8B (Page’s trend test) 0.50 0.13
Pythia-2.8B (Friedman test) 0.57 0.05
Gemma-7B (Page’s trend test) 0.037 0.31
Gemma-7B (Friedman test) 0.003 0.64

Table 1: Layer significance tests

H.3 Raters

In Table 2 we present test results weakly suggesting that
the raters differed in their judgments. This underscores that
there’s still a significant subjective component to this inter-
pretability labeling. (Notably, different raters saw different
proportions of Pythia vs Gemma features, so aggregating
across the models is partially confounded by that.)

p-values Raw label Delta from Baseline to Gated

Across models (Kruskal-Wallis H-test) 0.01 0.71
Pythia-2.8B (Friedman test) 0.13 0.05
Gemma-7B (Friedman test) 0.03 0.76

Table 2: Rater significance tests

I Pseudo-code for Gated SAEs and the
Gated SAE loss function

20

Figure 14: Per-layer 90% confidence intervals for the mean interpretability label

Figure 15: Per-layer 90% confidence intervals for the Gated-vs-Baseline label difference

21

Figure 16: Contingency tables for the paired (gated vs baseline) interpretability labels, for Pythia-2.8B

Figure 17: Contingency tables for the paired (gated vs baseline) interpretability labels, for Gemma-7B

22

	Introduction
	Preliminaries
	Gated SAEs
	Motivation
	Gated SAEs

	Evaluating Gated SAEs
	Benchmarking Gated SAEs
	Interpretability

	Why do Gated SAEs improve SAE training?
	Ablation study
	Is it sufficient to just address shrinkage?

	Related work
	Conclusion
	Metrics for evaluating SAEs
	Measuring shrinkage
	Inference-time optimization
	More loss recovered / L0 Pareto frontiers
	Further shrinkage plots
	Training and evaluation: hyperparameters and other details
	Training
	General training details
	Experiment-specific training details
	Lessons learned scaling SAEs

	Evaluation

	Equivalence between gated encoder with tied weights and linear encoder with non-standard activation function
	Further analysis of the human interpretability study
	Sites
	Layers
	Raters

	Pseudo-code for Gated SAEs and the Gated SAE loss function

