
ar
X

iv
:2

50
6.

08
07

4v
1

 [
cs

.I
R

]
 9

 J
un

 2
02

5

Hierarchical Lexical Graph for Enhanced Multi-Hop Retrieval
Abdellah Ghassel

∗†

Queen’s University

Kingston, Canada

abdellah.ghassel@queensu.ca

Ian Robinson
∗

Amazon

London, England

ianrob@amazon.co.uk

Gabriel Tanase

Amazon

Seattle, USA

igtanase@amazon.com

Hal Cooper

Amazon

Seattle, USA

halcoope@amazon.com

Bryan Thompson

Amazon

Seattle, USA

bryant@amazon.com

Zhen Han

Amazon

Santa Clara, USA

zhenhz@amazon.com

Vassilis N. Ioannidis

Amazon

Santa Clara, USA

ivasilei@amazon.com

Soji Adeshina

Amazon

Santa Clara, USA

adesojia@amazon.com

Huzefa Rangwala

Amazon

Santa Clara, USA

rhuzefa@amazon.com

Abstract
Retrieval-Augmented Generation (RAG) grounds large language

models in external evidence, yet it still falters when answers must

be pieced together across semantically distant documents. We close

this gap with the Hierarchical Lexical Graph (HLG), a three-tier in-

dex that (i) traces every atomic proposition to its source, (ii) clusters

propositions into latent topics, and (iii) links entities and relations

to expose cross-document paths. On top of HLG we build two

complementary, plug-and-play retrievers: StatementGraphRAG,

which performs fine-grained entity-aware beam search over propo-

sitions for high-precision factoid questions, and TopicGraphRAG,

which selects coarse topics before expanding along entity links

to supply broad yet relevant context for exploratory queries. Ad-

ditionally, existing benchmarks lack the complexity required to

rigorously evaluate multi-hop summarization systems, often focus-

ing on single-document queries or limited datasets. To address this,

we introduce a synthetic dataset generation pipeline that curates

realistic, multi-document question-answer pairs, enabling robust

evaluation of multi-hop retrieval systems. Extensive experiments

across five datasets demonstrate that our methods outperform naive

chunk-based RAG, achieving an average relative improvement of

23.1% in retrieval recall and correctness.
1

∗
Equal contribution.

†
Work done during internship at Amazon.

1
Open-source Python library is available at github.com/awslabs/graphrag-toolkit

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’25, Toronto, ON, Canada
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1454-2/2025/08

https://doi.org/10.1145/3711896.3737233

CCS Concepts
• Information systems→ Novelty in information retrieval;
• Computing methodologies→ Lexical semantics; Information
extraction.

Keywords
question answering; graph structures; data generation

ACM Reference Format:
Abdellah Ghassel, Ian Robinson, Gabriel Tanase, Hal Cooper, Bryan Thomp-

son, Zhen Han, Vassilis N. Ioannidis, Soji Adeshina, and Huzefa Rangwala.

2025. Hierarchical Lexical Graph for Enhanced Multi-Hop Retrieval. In Pro-
ceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and
Data Mining V.2 (KDD ’25), August 3–7, 2025, Toronto, ON, Canada. ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3711896.3737233

1 Introduction
Retrieval-Augmented Generation (RAG) systems have gained at-

tention for enhancing large language models (LLMs) with external

knowledge, enablingmore grounded and accurate responses to com-

plex questions [13, 17]. Despite these advances, current RAG sys-

tems face significant challenges with multi-hop reasoning, where

answers may be synthesized from multiple, semantically diverse

text segments or documents [21]. For example, consider the query:

‘How did the FTC lawsuit affect the stock of one of the leading e-
commerce companies?’ This requires retrieving facts about the law-

suit, Amazon’s financial performance, and market reactions, likely

dispersed across multiple, unconnected documents.

Most RAG systems struggle in such scenarios because they rely

primarily on vector similarity search (VSS). While VSS excels at

finding texts that closely match the query’s surface-level semantics,

it often fails to bridge related but contextually distant pieces of

information [5]. In the previous example, connecting ‘company

lawsuit details’ from one document with ‘stock performance data’

in another may require structured links or graph-based expansions,

as they lack obvious semantic ties. Graph-based retrieval strate-

gies provide a promising solution as they model explicit edges,

such as shared entities or discourse links, thereby overcoming the

narrowness of vector-based methods [10, 12, 14].

https://orcid.org/0009-0007-3042-9747
https://orcid.org/0009-0000-4247-8588
https://orcid.org/0009-0002-6906-6983
https://orcid.org/0009-0007-3168-175X
https://orcid.org/0009-0008-5782-236X
https://orcid.org/0009-0003-8845-0507
https://orcid.org/0000-0002-8367-0733
https://orcid.org/0000-0003-3945-3640
https://orcid.org/0000-0003-0435-0035
https://doi.org/10.1145/3711896.3737233
https://doi.org/10.1145/3711896.3737233
https://arxiv.org/abs/2506.08074v1

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Abdellah Ghassel et al.

In addition, we emphasize the importance of retrieval-unit gran-

ularity. Conventional systems often utilize large text chunks, con-

sisting of various sentences, leading to the retrieval of extraneous

information. To address this, Chen et al. [7] advocate for smaller

retrieval units, such as atomic propositions, to enhance precision

in information retrieval.

Building on these insights, we propose a Hierarchical Lexical

Graph (HLG) framework to address the gap between surface-level

similarity and structured multi-hop evidence. While prior work

emphasizes the benefits of finer retrieval units [7], HLG extends

these ideas by integrating three interconnected tiers: Lineage, Sum-

marization, and Entity-Relationship. Specifically, HLG (1) preserves

the lineage of each statement for accurate provenance, (2) clusters

statements around topics for flexible retrieval, and (3) links enti-

ties and relationships to enable bottom-up graph traversal. This

multi-tier design enables more precise retrieval of diverse facts,

even when they share minimal semantic overlap.

Using this framework, we propose two complementary RAG

methods tailored to different retrieval needs:

• StatementGraphRAG focuses on individual propositions

in the Summarization Tier. It links them across documents

using the Entity-Relationship Tier and preserves provenance

via the Lineage Tier. This is ideal for detailed queries needing

high-precision evidence (e.g., factoid questions).

• TopicGraphRAG retrieves clusters of statements (i.e., topi-

cal groups) from the Summarization Tier, using entity rela-

tionships to connect thematically related clusters and relying

on the Lineage Tier for source traceability. This is efficient

for broader, open-ended or higher-level queries.

The choice depends on query type: StatementGraphRAG for spe-

cific, single-answer queries, and TopicGraphRAG for exploratory

or multi-faceted questions.

Despite the promise of these approaches, a major obstacle re-

mains: most existing QA datasets fail to demand true multi-hop

retrieval, either restricting questions to single documents or offer-

ing a small set of queries. WikiHowQA [6], for example, focuses on

single-document responses, while the SEC10Q [15] dataset contains

only 195 queries. To address this gap, we present a synthetic multi-

hop summarization pipeline using HLG as a backbone. We generate

674 question-answer pairs from the MultiHop-RAG corpus [21],

then apply a second-pass LLM critique and automated retrieval

checks [19] to ensure each question genuinely requires multi-hop

inference and has sufficient supporting evidence.

Our paper makes the following contributions:

(1) We introduce StatementGraphRAG and TopicGraphRAG,

advancing multi-hop QA with fine-grained and structured

retrieval capabilities.

(2) We develop a pipeline synthesizing high-quality multi-hop

summarization queries, closing gaps in existing benchmarks.

(3) Through extensive experiments across diverse datasets, we

show significant performance gains over chunk-based RAG

baselines.

2 Related Work
2.1 Multi-hop Reasoning with Graphs
Graph-based approaches have been actively used in modelling rela-

tionships required for effective multi-hop reasoning. Fang et al. [12]

introduced the Hierarchical Graph Network (HGN) for multi-hop

question answering, which integrates nodes of varying granularity

including questions, paragraphs, sentences, and entities using graph

neural networks. This facilitates joint prediction of answers and

supporting facts by enabling multi-hop information propagation

across different levels of the graph. However, HGN faces significant

limitations that hinder its scalability and generalizability. First, the

storage of embeddings across multiple granularities incurs substan-

tial memory and computational overhead, particularly for large

datasets. Second, its reliance on explicit relational structures, such

asWikipedia hyperlinks, restricts its applicability to domains where

such curated connections are sparse. Our HLG extends HGN’s foun-

dational concepts by embedding both fine-grained propositions and

higher-level topics within a unified graph structure.

Edge et al. [11] proposed GraphRAG, a graph-indexing method

designed for global summarization tasks. By constructing an entity-

relation knowledge graph and hierarchically detecting commu-

nities on the graph, GraphRAG enables summarization at index-

ing time. However, its reliance on pre-defined entities and static

Leiden-generated communities [22] poses limitations for dynam-

ically expanding domains. Incorporating additional data requires

recalculating the community structure for the entire graph, which

can be computationally expensive. In contrast, HLG is designed

for continuous data ingestion and supports multiple granularity

tiers, facilitating more efficient updates and robust retrieval. Rather

than relying on pre-computed communities, HLG dynamically re-

trieves relevant topics at query time, enabling greater scalability

and resource efficiency.

2.2 Dense Retrieval Granularity
Chen et al. [7] analyze how the granularity of retrieval units affects

dense retrieval. Their findings indicate that fine-grained proposi-

tions outperform larger units (e.g., sentences or passages) in both

retrieval precision and downstream task performance. While Chen

et al. [7] focus on dense retrieval for standard datasets, we extend

this principle by integrating hierarchical graph structures to ensure

relevance and connectivity across diverse sources. To enhance the

adaptability of statement extraction for structured and tabular data

(such as SEC filings), an LLM-modified version of the proposition-

izer (propositionizer-wiki-flan-t5-large) was incorporated.

3 Hierarchical Lexical Graph
The design of our RAG solution is driven by a systematic "working

backward" approach that, given a workload’s question-answering

needs, identifies optimal retrieval and generation strategies and

appropriate indexing and storage systems in support of those needs.

In this design, consideration is given to the types of end-user or

application-specific data needs the workflow is intended to support,

the data required to meet these needs, and the indexing struc-

tures best suited for efficient retrieval. HLG is constructed once

per dataset during initial indexing to optimize relevance for the

Hierarchical Lexical Graph for Enhanced Multi-Hop Retrieval KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Figure 1: Hierarchical Lexical Graph Model. Statements are
atomic propositions (e.g., "Company X acquired Company Y").
Topics, thematic groups (e.g., "Q3 Financial Results"). Facts,
structured S-P-O triplets (e.g., <Company X, acquired, Com-
pany Y>). Entities, named concepts (e.g., "Company X"). Key-
words (not shown but used in retrieval) are salient terms
extracted from queries (e.g., "acquisition", "Company X").

target domain. However, HLG supports incremental ingestion of

new documents and entity propagation without full reindexing,

due to modular updates in its tiers (Section 3.1).

3.1 Statement Retrieval and Graph Structures
Determining the optimal size and structure of retrieval units is

critical in search-based workflows. Traditional RAG systems often

rely on text "chunks" (segments larger than sentences, smaller than

documents). However, such coarse-grained units frequently amal-

gamate unrelated sentences, reducing precision. In contrast, our

system centers on "propositions" (standalone assertions extracted

from text) as the primary retrieval unit. This granularity allows for

precise, contextually relevant inputs for LLMs.

The retrieval system is built upon a lexical graph model, illus-

trated in Figure 1, comprising three interconnected tiers that enable

fine-grained connectivity across documents.

3.1.1 Lineage Tier. Establishes the foundation of the graph, ensur-

ing traceability and contextual integrity.

• Source Nodes: Metadata such as document origin, date, and

author information, for provenance.

• Chunk Nodes: Sequentially linked text segments, preserv-

ing context for further analysis and maintaining lineage.

This tier is useful in compliance-driven scenarios, where main-

taining the original context and source of retrieved information is

critical for interpretability.

3.1.2 Entity-Relationship Tier. Captures relationships between en-

tities, serves as an entry point for structured, keyword-based searches.

• Entity Nodes: Key entities (e.g., "Amazon") classified by

category (e.g., "Company").

• Relationship Edges: Inter-entity relationships (e.g., "FILED
LAWSUIT AGAINST"), for structured retrieval tasks.

This tier supports complex aggregation queries, such as "Which
companies filed lawsuits in Q3 2023?", while dynamically incorpo-

rating new classifications to enhance adaptability.

3.1.3 Summarization Tier. Links granular facts and statements to

broader topics, forming hierarchical semantic units.

• Facts: Discrete semantic units (subject-predicate-object triplets)

that connect granular and global insights.

• Statements: Propositions extracted from source documents,

forming the backbone of the retrieval process.

• Topics: Thematic summaries grouping related statements,

enhancing intra-document connectivity.

By connecting statements to overarching topics, this tier facili-

tates both local and global reasoning, ensuring efficient retrieval

strategies for multi-hop QA tasks.

3.2 Graph Connectivity
HLG optimizes retrieval through a hybrid approach that combines

semantic similarity and graph traversal, ensuring flexible and effi-

cient navigation across the graph:

(1) Local/Global Connectivity: Topics provide intra-document

connectivity by linking statements within a source. In con-

trast, facts enable inter-document connections, ensuring

comprehensive retrieval for complex queries.

(2) Vector-Based Entry Points: Both topics and/or statements

are embedded for vector-based searches, enabling precise

semantic similarity matching. Topic embeddings incorporate

associated statements to enhance query alignment.

(3) Keyword-Based Entry Points: Query keywords can be

matched with entities in the Entity-Relationship Tier, essen-

tial for bottom-up lookups.

4 Proposed Retrieval Models
Two methods leverage HLG: StatementGraphRAG (Section 4.1) and

TopicGraphRAG (Section 4.2). The choice between them depends

on the query’s nature. StatementGraphRAG excels at precise, fact-

based queries seeking specific information, often with a single

expected answer. Its fine-grained statement retrieval and entity

linking ensure high precision. TopicGraphRAG is better for broader,

exploratory queries or those requiring synthesis across multiple

themes. Its topic-level retrieval provides wider context, suitable for

open-ended questions or summarization tasks.

4.1 StatementGraphRAG
Overview. The StatementGraphRAG pipeline has four components,

designed to progressively refine search results:

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Abdellah Ghassel et al.

(1) Keyword-Based Retrieval: Extracts query terms and retrieves

statements with those terms via explicit entity matching.

(2) Vector Similarity Search: Retrieves statements semantically

similar to the query.

(3) Graph Beam Search: Explores multi-hop neighbours in HLG

by traversing shared entities, and scoring resulting paths.

(4) Reranking: Rescores all candidates to finalize top-𝑘 results.

Notation. Let 𝑄 ∈ D be the user query and

e𝑄 := Embed(𝑄) ∈ R𝑑

its 𝑑-dimensional embedding. Let G = (𝑉 , 𝐸) be the lexical graph
and SG ⊆ 𝑉 the set of statement nodes. Define the set of extracted

keywords (and synonyms):

𝐾 = { 𝑘𝑖 | 𝑘𝑖 extracted from 𝑄}, 𝑖 = 1, . . . , 𝑁𝑘 . (1)

Step 1: Keyword Retrieval. For 𝑠 ∈ SG , let 𝐾𝑠 ⊆ 𝐾 be the keywords

whose entities appear in 𝑠 . We rank statements by:

Score
kw
(𝑠) = |𝐾𝑠 |, (2)

breaking ties with cosine similarity sim(e𝑄 , e𝑠). The 𝑘 highest-

scoring statements form:

S
kw

= Top𝑘

(
SG, Scorekw

)
. (3)

Step 2: Vector Similarity Search. In parallel to Step 1, we retrieve:

Svss = Top𝑘

{
𝑠 ∈ SG | sim(e𝑄 , e𝑠)

}
. (4)

The initial candidate set is the union, Sinit = Skw ∪ Svss .

Step 3: Graph Beam Search. For a statement 𝑠 , define its neighbours

by shared entities:

Nbr(𝑠) =
{
𝑠′ ∈ SG | Ent(𝑠) ∩ Ent(𝑠′) ≠ ∅

}
. (5)

Given a path 𝑃 = ⟨𝑠1, . . . , 𝑠𝑛⟩, we compute an attention-weighted

path embedding [4]:

e
path
(𝑃) =

𝑛∑︁
𝑖=1

𝛼𝑖 e𝑠𝑖 , 𝛼𝑖 =
exp

(
sim(e𝑄 , e𝑠𝑖)

)∑𝑛
𝑗=1 exp

(
sim(e𝑄 , e𝑠 𝑗)

) . (6)

Path relevance is:

Score
beam
(𝑃) = sim

(
e𝑄 , epath (𝑃)

)
. (7)

Starting from each initial state 𝑠 ∈ Sinit, beam search expands

the frontier until either (i) no child improves the score or (ii) the

maximum depth 𝐷max is reached. At every depth, it keeps only the

𝐵 highest-scoring paths, ranked by Eq. (7). This procedure yields:

S
beam

=
⋃

𝑠∈Sinit
BeamSearch(𝑠,G, 𝐵, 𝐷max) . (8)

The candidate pool after graph exploration is:S
final

= Sinit∪Sbeam .

Step 4: Reranking. Each 𝑠 ∈ S
final

is rescored by a cross-encoder

reranker:

Score
rank
(𝑠) = sim

(
Rerank(𝑄), Rerank(𝑠)

)
. (9)

We return the top-𝑘 results:

Stop = Top𝑘

(
S
final

, Score
rank

)
. (10)

Algorithm 1 StatementGraphRAG

Require: Query𝑄 , lexical graphG, embedding function Embed(·),
reranker Rerank, top-𝑘

Ensure: Stop: top-𝑘 statements relevant to 𝑄

1: Extract keywords & synonyms −→ 𝐾 (Eq. 1)

2: Keyword Retrieval: obtain S
kw

(Eq. 2)

3: Vector Similarity Search: obtain Svss
4: Sinit ← S

kw
∪ Svss

5: Graph Beam Search:
6: for each 𝑠 ∈ Sinit do
7: Expand 𝑠 via Nbr(𝑠) (Eq. 5)

8: Compute attention-weighted path embedding (Eq. 6)

9: Update path score (Eq. 7)

10: end for
11: S

beam
← all statements visited during beam search

12: S
final

← Sinit ∪ Sbeam
13: Rerank: compute Score

rank
(𝑠) for each 𝑠 ∈ S

final

14: Stop ← Top𝑘

(
S
final

, Score
rank

)
15: return Stop

4.2 TopicGraphRAG
Overview. TopicGraphRAG integrates both top-down (topic-driven)

and bottom-up (entity-driven) retrieval to identify and expand the-

matically relevant information throughmulti-hop reasoning. Topics

typically map to a small number of chunks (1:n, where n is small),

often from the same document. This makes the approach more

storage-efficient than retrieving isolated statements, which tend to

have a 10:1 chunk-to-statement ratio. The pipeline consists of four

stages, balancing broad thematic coverage with precise detail:

(1) Top-Down: Topic Discovery. Embed the query to identify

high-level topics aligned with user intent, then retrieve the

relevant statements linked to those topics.

(2) Bottom-Up: Entity Exploration. Extract query-related
keywords and match them with associated entities in the

lexical graph. Then, retrieve their associated statements.

(3) Graph Beam Search. Topic- and entity-related statements

are merged. A beam search explores additional context in

multiple hops, guided by a reranker at each step.

(4) Final Rerank & Truncation. Rescore all candidate state-
ments using a reranker, and select the top-𝑘 relevant ones.

Rationale. Using topics (top-down) and entities (bottom-up), Top-

icGraphRAG broadens coverage while preserving precision. Multi-

hop traversal explores cross-document links, and the final reranking

yields a set of statements well-aligned with the user query.

4.3 Post-Retrieval Processing
After performing retrieval using StatementGraphRAG or Topic-

GraphRAG, post-processing can enhance diversity and clarity.

4.3.1 Statement Diversity: Reducing Redundancy. In many real-

world scenarios, multiple sources may report overlapping informa-

tion, which can constrain the context window. To address this, a

diversity filtering procedure identifies similar statements and pre-

serves the highest-scoring representative. Empirical evaluations

Hierarchical Lexical Graph for Enhanced Multi-Hop Retrieval KDD ’25, August 3–7, 2025, Toronto, ON, Canada

(Table 2) show a diversity threshold (𝜏) as low as 0.5% can yield

modest gains with negligible overhead.

(1) Preprocessing:Numeric tokens are standardized, stopwords

are removed, and text is lemmatized. This ensures consistent

representation of numeric and textual data.

(2) Similarity Detection: Vectorize statements via TF-IDF [20],

and compute cosine similarity to detect redundancies.

Sim(𝑆𝑖 , 𝑆 𝑗) =
∑𝑛
𝑘=1

TF-IDF𝑆𝑖 ,𝑘 · TF-IDF𝑆 𝑗 ,𝑘√︃∑𝑛
𝑘=1
(TF-IDF𝑆𝑖 ,𝑘)2 ·

√︃∑𝑛
𝑘=1
(TF-IDF𝑆 𝑗 ,𝑘)2

,

where TF-IDF𝑆𝑖 ,𝑘 represents the 𝑘-th term in statement 𝑆𝑖 ,

and 𝑛 is the total number of terms.

(3) Filtering: Define a diversity threshold 𝜏 , which corresponds

to 1− (similarity threshold). Discard the lower-scoring state-

ment and retain the more informative version:

Retain 𝑆𝑖 ⇔ ∀𝑆 𝑗 : Sim(𝑆𝑖 , 𝑆 𝑗) > (1−𝜏) ⇒ Score(𝑆𝑖) > Score(𝑆 𝑗)

4.3.2 Statement Enhancement: Tabular Data Processing. For finan-
cial reports or documents with tabular data, this step enriches

statements by incorporating context from their text chunks. This is

important for sources like SEC-10Q filings, where numeric propo-

sitions may lack clarity without additional details. Relevant con-

textual information, such as column headers and row labels, are

appended to clarify the meaning of the data, improving the read-

ability and interpretability of numeric propositions. This reduces

ambiguity (e.g., clarifying units or time periods), ensures complete-

ness, and makes statements more accurate.

5 Synthetic Multi-Hop Summarization
Motivation. Existing multi-hop summarization datasets, such as

SEC-10Q or WikiHow, lack the complexity or diversity required to

evaluate RAG systems. SEC-10Q has a limited set of 195 comprehen-

sive queries, whereas WikiHow is not multi-hop since the answer

is derived from one text segment. To address these shortcomings,

we introduce a synthetic dataset generation pipeline that assembles

multi-hop queries spanning multiple documents, thereby testing

robust retrieval and summarization capabilities.

5.1 Dataset Characteristics
• Complexity. Each question needs information from two to

four documents (“hops”).

• Realism. Queries mirror real-world inquiries that span mul-

tiple themes, needing deeper reasoning.

• Structure. Each entry includes amulti-hop question, a ground

truth answer (from multiple chunks) and document snippets.

Ground truth answers are synthesized from multiple docu-

ment snippets and validated for factual accuracy.

5.2 Pipeline Architecture
Our dataset creation process uses a four-stage pipeline:

(1) Topic Collection. From a seed topic, we retrieve semanti-

cally related topics from different documents.

(2) Chunk Selection. Collect chunks from each relevant topic

(3-5 distinct articles) for cohesive context.

(3) Query Generation. Prompt an LLM with diverse chunks

to generate a multi-hop question. These questions require

synthesizing information across articles (e.g., cause-effect,
contrasting perspectives, complementary insights).

(4) Critiquing and Refinement. Queries are refined and val-

idated by a second LLM pass to ensure clarity, coherence,

and multi-article coverage. Queries that fail validation, for

instance due to insufficient evidence, are discarded.

Quality Control and Filtering. In Step 4, we utilize a superior

LLM (Claude-3.5 Sonnet v2 [2]) than the one used for query-

generation (Claude-3 Sonnet [1]), to align better with human

judgement [16]. We incorporate a two-stage critique:

• Query Refinement: Each initial query-answer pair is exam-

ined to enhance clarity, address ambiguities, and enrich the

multi-hop nature (ensuring at least three distinct sources).

• Query Validation: Refined queries are paired with their asso-

ciated document snippets and evaluated against the ground

truth. An internal retriever pipeline is used to simulate the

reasoning path. A query is accepted only if the system can

reconstruct the ground truth from the provided snippets, in-

dicating sufficient evidence coverage and reasoning fidelity.

5.3 Dataset Statistics
Using the MultiHop-RAG Corpus [21], we initially generated 1,173

questions and retained 674 high-quality queries after filtering. On

average, each query spans 4.1 chunks and 3.4 documents (4 entities

per question and 9 entities per answer).

Sample Synthetic Query.

How has Manchester United’s on-field performance un-
der Erik ten Hag evolved amid the impending Ratcliffe
ownership transition, considering their pressing statis-
tics, Champions League failure, and potential manage-
rial succession plans?

Ground-truth answer: "Manchester United’s current situation
reflects a complex intersection of tactical evolution and organizational
transition. While Ten Hag has shown some statistical improvements in
certain areas—notably with United ranking at the top of the Premier
League in high ball regains and middle-third possession win..."

This demands the system’s ability to integrate performance met-

rics (pressing and possession statistics), organizational context

(ownership transition), and multi-document references (Champions

League details, managerial prospects).

6 Experimental Setup
We describe our experimental design, including datasets, indexing

procedures, retrieval approaches, and evaluation metrics.

6.1 Datasets
Our experiments span five diverse datasets (Table 1), selected to

evaluate multi-hop reasoning, domain-specific language, and tabu-

lar/context integration:

MultiHop-RAG [21]. Multi-document QA dataset with queries

that require synthesizing evidence from multiple sources, covering

inference, temporal reasoning, comparisons, and null cases.

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Abdellah Ghassel et al.

SEC-10Q [15]. Quarterly financial reports (Form 10-Q) from

publicly traded companies, filed with the U.S. Securities and Ex-

change Commission. These reports include financial statements,

management discussions, and disclosures of market risks.

ConcurrentQA [3]. A multi-hop QA benchmark requiring rea-

soning across both public (Wikipedia) and private (emails) data

sources. It builds on HotpotQA [23] and evaluates the ability to

handle complex cross-domain queries.

NTSB [15]. Corpus of aviation accident and incident reports from

the National Transportation Safety Board. Each report details the

event date, location, aircraft involved, and probable causal factors.

WikiHowQA [6]. Derived fromWikiHow articles, with community-

generated questions, along with step-by-step procedures.

6.2 Indexing Steps
All datasets undergo a four-step indexing procedure. Steps 2–3 rely

on an LLM (Claude–3 Sonnet [1] used here) to relate domain-

relevant entities and topics, with fine-grained propositions. We use

AWS Neptune Analytics for the graph store and AWS OpenSearch

for vector storage. At the time of writing, the framework also sup-

ports PostgreSQL with pgVector, FalkorDB, and MosaicML.

(1) Chunking. Each document is segmented into 300-token

chunks, with a 20% overlap to preserve context.

(2) Domain-Adaptive Refinement. We sample five chunks

from each dataset to infer domain-specific entity types and

topics (e.g., financial terminology in SEC-10Q). This ensures

that HLG reflects relevant domain concepts.

(3) Proposition & Graph Construction. From each chunk, we

extract fine-grained propositions, and then link them with

topics, entities, and relationships in HLG.

(4) EmbeddingGeneration. Embeddings for topics, statements,

or both, per retrieval method. We use Cohere-Embed-English-
v3 to compute 1024-dimensional vectors [8].

6.3 Retrieval Approaches
We evaluate three baseline methods and four HLG-based retrieval

approaches. For all methods, the context window is fixed at 10

chunks, which corresponds to approximately 3,000 tokens. Follow-

ing retrieval, (BAAI/bge-reranker-v2-minicpm-layerwise [18])

selects the final set of passages (chunks/statements). This reranker,

based on a streamlined 2B-LLM, processes queries and retrieved

statements jointly, enabling deeper context understanding com-

pared to embedding-based methods that rely on fixed vector rep-

resentations. All methods, including baselines, use the same LLM

(Claude-3 Sonnet [1]) and identical prompting for answer genera-

tion. We avoid techniques like Chain-of-Thought (CoT) prompting,

as they can conflate retrieval effectiveness with reasoning abil-

ity. Our focus is strictly on retrieval augmentation. Importantly,

Claude-3 Sonnet’s training data was frozen in August 2023 [1],

predating the MultiHop-RAG articles (Sept-Dec 2023) [21]. Thus, its

performance on this dataset cannot be attributed to memorization.

6.3.1 Baselines.

• Naive RAG (B0). Retrieves 10 chunks via VSS. VSS uses a

dense retriever, applying k-nearest neighbour (kNN) algo-

rithms to rank chunks based on the similarity between the

query and chunk embedding [9].

• Naive RAG (w/ reranking) (B1). Retrieves 50 chunks ini-
tially, applies the reranking model, and prunes the output to

retain the top 10 chunks for the final set.

• Entity-Linking Expansion (E1). A simpler graph-like base-

line. Retrieves 5 chunks via VSS, expandswith one-hop entity

links from HLG, merges up to 50 nodes (chunks associated

with linked entities), then reranks to top 10 chunks. This is

similar to the triplet extraction idea in some related works.

6.3.2 Our Approaches.

• StatementRAG (SRAG). Performs VSS on individual state-

ments (rather than entire chunks). Retrieve 100 statements,

then reranks and truncates the top results.

• StatementGraphRAG (SGRAG). Extends SRAGwith graph-

based expansions. Starting from 100 initial statements, we

run a beam search over graph neighbours (width=50, depth=3).

The expanded pool is reranked and truncated.

• TopicRAG (TRAG). Retrieves 50 topics based on VSS. The

associated statements for each topic are retrieved. The state-

ments are then reranked and truncated.

• TopicGraphRAG (TGRAG). Combines topic-level retrieval

with graph expansions. First, retrieves 50 topics via VSS, ex-

pands using beam search (width=50, depth=3), and reranks.

6.4 Chunks as the Generation Unit
In certain domains, compliance regulations mandate the use of

original text blocks rather than LLM-generated statements. To ad-

dress this, we evaluate two HLGmethods (SGRAG and TGRAG) in a

"chunk-based" variant. This approach leverages the detailed connec-

tions between individual statements during graph expansion, while

ensuring the generation prompt is composed solely of original text

blocks. In the final step, the top-ranked statements are traced back

to their source chunks. We select up to 10 unique chunks and ap-

ply a diversity filter to remove near-duplicates, further promoting

chunk-level diversity in the final output.

6.5 Evaluation Metrics
Correctness is used for single-answer datasets (MultiHop-RAG,

SEC-10Q, ConcurrentQA) and Answer Recall for multi-answer

datasets (NTSB, WikiHowQA). Correctness assesses if the generated
answer semantically contains all necessary information from the

gold answer, even if phrasing differs. For single-answer datasets,

correctness is akin to accuracy, requiring a semantically correct

response (e.g., a "true" response may be conceptually correct for

a "yes" ground truth, even if not an exact string match). This is

preferred over exact match, which can be overly rigid for free-form,

multi-part responses.Answer Recallmeasures the proportion of gold

answer facts correctly included in the generated answer. For in-

stance, listing 4 of 5 steps scores 0% on strict correctness but 80% on

recall. This captures partial coverage. For the synthetic dataset, we

evaluate the retrievers using claim recall (CR) and context precision

(CP) from RAGChecker [19].

Hierarchical Lexical Graph for Enhanced Multi-Hop Retrieval KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Table 1: Overview of the datasets used for evaluation.

Dataset Domain # Queries # Docs Sample Query

MultiHop-RAG News Articles 2,556 609 Who is the individual associated with OpenAI, recognized for both his vision

of AI agents and his generosity and has made headlines in both Fortune and

TechCrunch for his controversial departure?

SEC-10Q Finance 195 20 How has Apple’s revenue from iPhone sales fluctuated across quarters?

NTSB Aviation 197 20 Which operators have been involved in fatal accidents with amateur-built

aircraft?

WikiHowQA General 300 5,000 How to grow orchids in a greenhouse?

ConcurrentQA Email 400 13,500 Which OpenTable.com investor also invested in Acta?

7 Results
We present retrieval evaluations across multiple datasets and met-

rics. We compare (a) chunk- vs. statement-level retrieval, (b) cor-

rectness vs. recall, and (c) pairwise comparisons against baselines.

7.1 Overall Retrieval Performance
Table 2 reports results on three datasets with a single gold answer

(MultiHop-RAG, SEC-10Q, and ConcurrentQA) and two datasets

allowing multiple valid answers (NTSB, WikiHowQA).

Discussion. Among the baselines, B1 achieves 66.1% correctness

averaged over the three single-answer datasets, surpassing B0 by

4.1 absolute percentage points. E1, which performs simple entity

linking, shows minimal improvement over B1 on average (65.6%

correctness) and underperforms on SEC-10Q, suggesting that naive

entity expansion alone is not consistently beneficial. In contrast,

every HLG-basedmethod (SRAG, SGRAG, TRAG, TGRAG, and their

variants) outperforms B1 in at least one dimension (correctness or

recall). SGRAG-0.5% attains the highest average correctness (73.6%),

an overall improvement of 7.5 points over B1. This method also

improves average answer recall (52.4%), up from 50.8% with B1.

On multi-answer tasks (NTSB and WikiHowQA), TGRAG yields

the best average recall (53.8%), outperforming SGRAG-0.5% by

1.4 absolute points. Meanwhile, statement-based methods such

as SRAG and SGRAG demonstrate consistently higher correctness

on single-answer datasets, with SRAG reaching 87.0% on MultiHop-

RAG and SGRAG-0.5% yielding 74.4% on SEC-10Q. These results

suggest that statement-level retrieval is adept at pinpointing a sin-

gle correct piece of evidence, whereas topic-based retrieval may

capture a broader set of relevant facts. The WikiHowQA dataset

predominantly comprises single-hop, procedural questions (further

discussed in Appendix C.1.2). In such cases, multi-hop graph expan-

sions (as in SGRAG/TGRAG) can introduce noise or irrelevant hops,

potentially degrading performance compared to simpler methods

like B1, which performs best on this dataset. While HLG-based

methods underperform slightly on WikiHowQA, they consistently

outperform baselines on all truemulti-hop datasets (MultiHop-RAG,

ConcurrentQA). This dataset-specific behaviour shows that HLG is

optimized for multi-hop retrieval, and single-hop cases may benefit

from reduced complexity or early-stopping heuristics.

7.2 HLG Chunk-Based Variants
Because some applications require preserving the original text at the

chunk level, we also evaluate Chunk-SGRAG and Chunk-TGRAG.

These methods internally retrieve statements using graph traversal,

but for the final output, theymap the selected top statements back to

their parent chunks. Table 3 shows how these chunk-level variants

compare to the baselines.

Discussion. Relative to naive chunk-only retrieval (B0 or B1), the

hybrid chunk-based variants consistently yield higher correctness.

On ConcurrentQA, for example, Chunk-SGRAG-0.5% reaches 67.0%

correctness, a 23.7-point increase over B0 and 16.0 points over B1.

Despite initially retrieving content at the finer statement granu-

larity, the final output remains chunked. This suggests that graph-

based expansions are beneficial even if the generation context win-

dow must be text segments (chunks).

7.3 Synthetic Dataset Evaluation
7.3.1 RAGChecker Evaluation. We further investigated retrieval

quality on our synthetic MultiHop-RAG subset using RAGChecker

[19], which provides fine-grained retriever metrics such as claim

recall (CR) and context precision (CP). Table 4 reports these metrics

for the baselines (B0, B1) and our primary HLG-based methods

(SGRAG, TGRAG). Generator metrics are omitted because all sys-

tems use the same LLM for answer generation.

Discussion. Although the baselines (B0, B1) show slightly higher

context precision (78.8%-81.5%), both SGRAG and TGRAG surpass

them in recall and F1. In particular, TGRAG achieves 49.3% recall and

47.9% F1, exceeding B1 by 3.0 and 1.6 absolute points, respectively.

The stronger claim recall (67.6% vs. 62.2% for B1) also showcases

TGRAG’s multi-hop capabilities, as it is more likely to gather all

relevant facts for each query.

7.3.2 Pairwise Evaluation: Win Rates. We also conducted a head-to-

head comparison of SGRAG and TGRAG against the baselines. In

each comparison, an LLM evaluator was shown the two retrieved

answers in random order to mitigate any position bias. Table 5

presents the percentage of times each method won, lost, or tied.

Discussion. Both SGRAG and TGRAG significantly outperform

the chunk-based baselines, winning over 74% of head-to-head com-

parisons. TGRAG achieves a slightly higher win rate against B0

(78.3%) compared to SGRAG (74.8%), reflecting its stronger coverage

of multiple answers. These consistent pairwise improvements high-

light that graph-based retrieval methods (whether statement- or

topic-centered) tend to produce more relevant and higher-quality

evidence than VSS retrieval.

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Abdellah Ghassel et al.

Table 2: Correctness and answer recall results. Bold = highest in column; underlined = second highest.

Correctness Correctness
Average

Answer Recall Answer Recall
Average

MultiHop-RAG SEC-10Q ConcurrentQA NTSB WikiHowQA

B0 (Naive RAG) 78.7% 64.1% 43.3% 62.0% 24.2% 69.6% 46.9%

B1 (Naive RAG + rerank) 82.8% 64.6% 51.0% 66.1% 31.1% 70.5% 50.8%

E1 (Entity-Linking RAG) 82.6% 61.5% 52.8% 65.6% 31.2% 70.0% 50.6%

SRAG 87.0% 69.2% 51.3% 69.2% 33.4% 65.0% 49.2%

SGRAG 86.9% 73.9% 57.3% 72.7% 34.8% 67.1% 50.9%

SGRAG-0.5% 86.9% 74.4% 59.5% 73.6% 36.1% 68.7% 52.4%

TRAG 84.2% 70.3% 53.8% 69.4% 35.7% 68.3% 52.0%

TGRAG 84.5% 72.3% 59.8% 72.2% 39.3% 68.2% 53.8%

Table 3: Chunk-based variants of StatementGraphRAG and TopicGraphRAG.

Correctness Correctness
Average

Answer Recall Answer Recall
Average

MultiHop-RAG SEC-10Q ConcurrentQA NTSB WikiHowQA

Chunk-SGRAG 86.1% 65.6% 66.8% 72.8% 25.8% 67.2% 46.5%

Chunk-SGRAG-0.5% 86.1% 66.2% 67.0% 73.1% 25.8% 67.7% 46.7%

Chunk-TGRAG 86.3% 72.8% 61.8% 73.6% 27.7% 67.0% 47.3%

Chunk-TGRAG-0.5% 86.0% 73.3% 64.3% 74.5% 26.7% 67.5% 47.1%

Table 4: RAGChecker metrics on a synthetic MultiHop-RAG
subset. Retriever is assessed using claim recall (CR) and con-
text precision (CP).

Overall Retriever

Precision (↑) Recall (↑) F1 (↑) CR (↑) CP (↑)

B0 51.2 46.0 46.1 58.3 78.8

B1 51.1 46.3 46.3 62.2 81.5

SGRAG 50.8 48.6 47.5 59.5 50.9

TGRAG 50.8 49.3 47.9 67.6 66.1

Table 5: Pairwise comparisons of StatementGraphRAG and
TopicGraphRAG vs. chunk-based baselines (B0 and B1).

Baseline Win (%) Loss (%) Tie (%) Win/Loss Ratio

SGRAG
B0 74.8 21.5 3.7 3.5

B1 74.8 22.9 2.8 3.3

TGRAG
B0 78.3 17.4 4.3 4.5

B1 76.3 18.4 5.3 4.2

7.4 Summary of Findings
For single-answer tasks, statement-based retrieval methods (SRAG,

SGRAG) consistently achieve higher correctness, averaging 72.7%-

73.6%, compared to 62.0%-66.1% for naive baselines. In contrast,

topic-based approaches (TRAG, TGRAG) perform best on multi-

answer tasks. Graph expansions yield significant improvements:

SGRAG-0.5% exceeds the naive baseline (B0) by 8-12 points in

correctness across single-answer datasets, while TGRAG improves

answer recall by more than 10 points over B0 in multi-answer

settings. Introducing a modest diversity threshold (0.5%) further

enhances coverage by filtering near-duplicate statements, resulting

in an additional 1-point gain in correctness. Even when chunk-

based outputs are used, leveraging statement-level graph traversals

internally enables retrieval of more relevant content, demonstrating

that fine-grained graph expansions enhance overall chunk selection.

8 Conclusion
We presented a Hierarchical Lexical Graph framework that supports

fine-grained, multi-hop retrieval for QA tasks. Our experiments

demonstrated that statement-level and topic-level retrieval consis-

tently outperform baselines across correctness, answer recall, and

pairwise judgements, with TopicGraphRAG especially strong in

multi-hop scenarios demanding broader coverage. The graph ex-

pansion strategies capture inter-document relationships more effec-

tively, while a lightweight reranking model balances performance

with reduced latency. Despite higher indexing costs and domain

constraints, experimental results, including strong statement-to-

source alignment, show viability for structured and unstructured

data. Future work will focus on refining proposition extraction with

smaller models, incorporating adaptive multi-hop detection, and

expanding domain specialization, thereby advancing the accuracy

and efficiency of multi-hop RAG systems in real-world applications.

Hierarchical Lexical Graph for Enhanced Multi-Hop Retrieval KDD ’25, August 3–7, 2025, Toronto, ON, Canada

References
[1] Anthropic. 2024. Claude 3 Model Card. https://www.anthropic.com/model_

cards/claude_3.pdf

[2] Anthropic. 2024. Model Card Addendum: Claude 3.5 Haiku and Upgraded Claude

3.5 Sonnet. https://assets.anthropic.com/m/1cd9d098ac3e6467/original/Claude-

3-Model-Card-October-Addendum.pdf

[3] Simran Arora, Patrick Lewis, Angela Fan, Jacob Kahn, and Christopher Ré. 2023.

Reasoning over Public and Private Data in Retrieval-Based Systems. Transactions
of the Association for Computational Linguistics 11 (2023), 902–921. https://doi.

org/10.1162/tacl_a_00580

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2016. Neural Machine

Translation by Jointly Learning to Align and Translate. arXiv:1409.0473 [cs.CL]

https://arxiv.org/abs/1409.0473

[5] Maciej Besta, Ales Kubicek, Roman Niggli, Robert Gerstenberger, Lucas Weitzen-

dorf, Mingyuan Chi, Patrick Iff, Joanna Gajda, Piotr Nyczyk, Jürgen Müller,

Hubert Niewiadomski, Marcin Chrapek, Michał Podstawski, and Torsten Hoe-

fler. 2024. Multi-Head RAG: Solving Multi-Aspect Problems with LLMs.

arXiv:2406.05085 [cs.CL] https://arxiv.org/abs/2406.05085

[6] Valeriia Bolotova-Baranova, Vladislav Blinov, Sofya Filippova, Falk Scholer, and

Mark Sanderson. 2023. WikiHowQA: A Comprehensive Benchmark for Multi-

Document Non-Factoid Question Answering. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (Eds.). Association for

Computational Linguistics, Toronto, Canada, 5291–5314. https://doi.org/10.

18653/v1/2023.acl-long.290

[7] Tong Chen, Hongwei Wang, Sihao Chen, Wenhao Yu, Kaixin Ma, Xinran Zhao,

Hongming Zhang, and Dong Yu. 2024. Dense X Retrieval: What Retrieval Granu-

larity Should We Use?. In Proceedings of the 2024 Conference on Empirical Methods
in Natural Language Processing, Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung

Chen (Eds.). Association for Computational Linguistics, Miami, Florida, USA,

15159–15177. https://doi.org/10.18653/v1/2024.emnlp-main.845

[8] Cohere. 2023. Introducing Embed v3. https://cohere.com/blog/introducing-

embed-v3. Accessed: 2025-05-27.

[9] T. Cover and P. Hart. 1967. Nearest neighbor pattern classification. IEEE Trans-
actions on Information Theory 13, 1 (1967), 21–27. https://doi.org/10.1109/TIT.

1967.1053964

[10] Nicola De Cao, Wilker Aziz, and Ivan Titov. 2019. Question Answering by

Reasoning Across Documents with Graph Convolutional Networks. In Proceed-
ings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), Jill Burstein, Christy Doran, and Thamar Solorio (Eds.). As-

sociation for Computational Linguistics, Minneapolis, Minnesota, 2306–2317.

https://doi.org/10.18653/v1/N19-1240

[11] Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva

Mody, Steven Truitt, and Jonathan Larson. 2024. From Local to Global: A Graph

RAG Approach to Query-Focused Summarization. arXiv:2404.16130 [cs.CL]

https://arxiv.org/abs/2404.16130

[12] Yuwei Fang, Siqi Sun, Zhe Gan, Rohit Pillai, Shuohang Wang, and Jingjing

Liu. 2020. Hierarchical Graph Network for Multi-hop Question Answering.

In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu

(Eds.). Association for Computational Linguistics, Online, 8823–8838. https:

//doi.org/10.18653/v1/2020.emnlp-main.710

[13] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi,

Yi Dai, Jiawei Sun, Qianyu Guo, Meng Wang, and Haofen Wang. 2023.

Retrieval-Augmented Generation for Large Language Models: A Survey.

CoRR abs/2312.10997 (2023). https://doi.org/10.48550/ARXIV.2312.10997

arXiv:2312.10997

[14] Yunjie He, Philip John Gorinski, Ieva Staliunaite, and Pontus Stenetorp.

2023. Graph Attention with Hierarchies for Multi-hop Question Answering.

arXiv:2301.11792 [cs.CL] https://arxiv.org/abs/2301.11792

[15] Taqi Jaffri. 2023. Announcing Docugami Knowledge Graph Retrieval Augmented

Generation (KG-RAG) Datasets in the LlamaHub. https://www.docugami.com/

blog/kg-rag-datasets-llama-index

[16] Seungone Kim, Juyoung Suk, Shayne Longpre, Bill Yuchen Lin, Jamin Shin, Sean

Welleck, Graham Neubig, Moontae Lee, Kyungjae Lee, and Minjoon Seo. 2024.

Prometheus 2: An Open Source Language Model Specialized in Evaluating Other

Language Models. In Proceedings of the 2024 Conference on Empirical Methods in
Natural Language Processing, Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung

Chen (Eds.). Association for Computational Linguistics, Miami, Florida, USA,

4334–4353. https://doi.org/10.18653/v1/2024.emnlp-main.248

[17] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,

Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel,

Sebastian Riedel, and Douwe Kiela. 2020. Retrieval-augmented generation for

knowledge-intensive NLP tasks. In Proceedings of the 34th International Conference
on Neural Information Processing Systems (Vancouver, BC, Canada) (NIPS ’20).
Curran Associates Inc., Red Hook, NY, USA, Article 793, 16 pages.

[18] Chaofan Li, Zheng Liu, Shitao Xiao, and Yingxia Shao. 2023. Making Large

Language Models A Better Foundation For Dense Retrieval. CoRR abs/2312.15503

(2023). https://doi.org/10.48550/arXiv.2312.15503

[19] Dongyu Ru, Lin Qiu, Xiangkun Hu, Tianhang Zhang, Peng Shi, Shuaichen Chang,

Cheng Jiayang, Cunxiang Wang, Shichao Sun, Huanyu Li, Zizhao Zhang, Binjie

Wang, Jiarong Jiang, Tong He, Zhiguo Wang, Pengfei Liu, Yue Zhang, and Zheng

Zhang. 2024. RAGChecker: A Fine-grained Framework for Diagnosing Retrieval-

Augmented Generation. In Advances in Neural Information Processing Systems,
A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang

(Eds.), Vol. 37. Curran Associates, Inc., 21999–22027. https://proceedings.

neurips.cc/paper_files/paper/2024/file/27245589131d17368cccdfa990cbf16e-

Paper-Datasets_and_Benchmarks_Track.pdf

[20] K. Sparck Jones. 1972. A Statistical Interpretation of Term Specificity and Its

Application in Retrieval. Journal of Documentation 28, 1 (1972), 11–21. https:

//doi.org/10.1108/eb026526

[21] Yixuan Tang and Yi Yang. 2024. MultiHop-RAG: Benchmarking Retrieval-

Augmented Generation for Multi-Hop Queries. CoRR abs/2401.15391 (2024).

https://doi.org/10.48550/ARXIV.2401.15391 arXiv:2401.15391

[22] V. A. Traag, L. Waltman, and N. J. van Eck. 2019. From Louvain to Leiden:

guaranteeing well-connected communities. Scientific Reports 9, 1 (March 2019).

https://doi.org/10.1038/s41598-019-41695-z

[23] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, WilliamW. Cohen, Ruslan

Salakhutdinov, and Christopher D. Manning. 2018. HotpotQA: A Dataset for

Diverse, Explainable Multi-hop Question Answering. In Conference on Empirical
Methods in Natural Language Processing (EMNLP).

A Validation of Generated Statements
We evaluated statement extraction faithfulness by sampling 1,000

statements per dataset and comparing each one to the original text

block. Table 6 reports the proportion of accurate statements for

general and tabular domains. A statement is considered accurate if

it preserves the intended meaning of the original chunk without

introducing errors such as hallucinations.

Table 6: Alignment of generated statements against the orig-
inal chunked text.

Domain Dataset Statement Accuracy

General

MultiHop-RAG 96.5%

ConcurrentQA 97.4%

WikiHowQA 97.9%

Average 97.3%

Tabular

SEC-10Q 94.3%

NTSB 97.7%

Average 96.0%

Statement generation attains ≥ 96% accuracy, slipping only

slightly on table-centric sources. This confirms that our LLM-proposition

extractor still delivers high precision. SEC-10Q tables pose extra

hurdles, such as scattered units/periods and repetitive layouts that

split related details and blur entity links. The tabular enhancement

step (Section 4.3.2) restores context by attaching headers, units, and

other metadata to each extracted proposition.

B HLG Structure Analysis
Table 7 provides an overview of the node distribution within HLG

across multiple datasets.

B.1 Scalability and Performance
B.1.1 Indexing Performance (MultiHop-RAG dataset): The dataset
can be indexed and ingested in under 1 hour using AWS Neptune

https://www.anthropic.com/model_cards/claude_3.pdf
https://www.anthropic.com/model_cards/claude_3.pdf
https://assets.anthropic.com/m/1cd9d098ac3e6467/original/Claude-3-Model-Card-October-Addendum.pdf
https://assets.anthropic.com/m/1cd9d098ac3e6467/original/Claude-3-Model-Card-October-Addendum.pdf
https://doi.org/10.1162/tacl_a_00580
https://doi.org/10.1162/tacl_a_00580
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/2406.05085
https://arxiv.org/abs/2406.05085
https://doi.org/10.18653/v1/2023.acl-long.290
https://doi.org/10.18653/v1/2023.acl-long.290
https://doi.org/10.18653/v1/2024.emnlp-main.845
https://cohere.com/blog/introducing-embed-v3
https://cohere.com/blog/introducing-embed-v3
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.18653/v1/N19-1240
https://arxiv.org/abs/2404.16130
https://arxiv.org/abs/2404.16130
https://doi.org/10.18653/v1/2020.emnlp-main.710
https://doi.org/10.18653/v1/2020.emnlp-main.710
https://doi.org/10.48550/ARXIV.2312.10997
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2301.11792
https://arxiv.org/abs/2301.11792
https://www.docugami.com/blog/kg-rag-datasets-llama-index
https://www.docugami.com/blog/kg-rag-datasets-llama-index
https://doi.org/10.18653/v1/2024.emnlp-main.248
https://doi.org/10.48550/arXiv.2312.15503
https://proceedings.neurips.cc/paper_files/paper/2024/file/27245589131d17368cccdfa990cbf16e-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/27245589131d17368cccdfa990cbf16e-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/27245589131d17368cccdfa990cbf16e-Paper-Datasets_and_Benchmarks_Track.pdf
https://doi.org/10.1108/eb026526
https://doi.org/10.1108/eb026526
https://doi.org/10.48550/ARXIV.2401.15391
https://arxiv.org/abs/2401.15391
https://doi.org/10.1038/s41598-019-41695-z

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Abdellah Ghassel et al.

Table 7: Number of nodes in each tier of HLG for each dataset.

Dataset Source Chunk Topic Statement Fact Entity

MultiHop-RAG 609 6,272 7,067 53,927 274,890 18,291

SEC-10Q 20 5,054 5,219 47,284 57,443 6,903

NTSB 20 6,574 7,633 86,837 50,462 8,867

WikiHowQA 5000 15,255 15,455 163,456 174,262 36,997

ConcurrentQA 13,500 55,328 57,213 495,835 558,897 106,859

Analytics for graph storage and AWSOpenSearch for vector storage.

Token consumption for LLM-based extraction (Claude-3 Sonnet):

Table 8: Token statistics during indexing

Stage Input Tokens Output Tokens
Statement Extraction 3,098,745 1,827,175

Topics/Entities/Relationships 10,812,763 5,080,192

Total 13,911,508 6,907,367

Under AWS Bedrock prices (December 2024), end-to-end in-

dexing with Claude-3 Sonnet for LLM inference and Cohere
Embed-English-v3 for embeddings costs $145.34. Running the

same workload in batch mode halves the LLM expenditure to $72.67

without affecting quality, and the embedding stage adds only $0.22.

Since boilerplate text (e.g., legal disclaimers) recurs across articles,

enabling caching lowers token counts and total spend even further.

B.1.2 Retrieval Performance. On a standard AWS g5.xlarge in-

stance, an uncached query, covering passage retrieval, embedding

creation, and LLM call(s), completes in 20–30 s and costs $0.032.

Once the query’s vectors and LLM outputs are cached, the same

request is answered in well under one second with no additional

charge, meeting real-time requirements while keeping operating

costs minimal. Future work includes methods to recognize single-

hop queries to avoid unnecessary multi-hop expansions, further

reducing costs and latency (Section C).

C Limitations and Future Work
C.1 Limitations
C.1.1 LLM Invocation and Indexing Costs. HLGdelivers high-fidelity

extractions, but at the cost of multiple LLM calls. Each chunk is

processed twice; first to extract statements, then to refine topics

and entities, so corpora with hundreds of millions of tokens accu-

mulate substantial compute. These costs arise from building a fine-

grained knowledge graph that explicitly encodes topics, entities,

and relations. Expenses can be reduced by delegating the statement

extraction step to a lighter model such as wiki-flan-t5-large (783 M
parameters) with little loss in retrieval quality. Because extraction

is performed once offline during index construction, online queries

add no further LLM latency.

C.1.2 Single-Hop Domains and Early Stopping. Our evaluation of

WikiHowQA highlights a minor regression for multi-hop graph

methods in single-hop contexts. When the query addresses a single

chunk of text, graph expansions can introduce extraneous state-

ments or prolong retrieval. An early-stopping heuristic could detect

queries dominated by a single source document and return top-𝑘

statements directly from that source, improving efficiency and re-

ducing noise.

C.1.3 LLM Beam Search vs. Lightweight Reranking. An early alter-

native to our BGE-based reranker was an LLM-driven beam search,

where each expansion step invoked a languagemodel to rank expan-

sions. This approach showed strong semantic alignment but was

prohibitively slow for practical use. Swapping to a lighter reranker

maintained strong performance gains while lowering latency, mak-

ing graph-based methods viable in production environments.

C.2 Error Analysis
We observe several recurring error modes:

C.2.1 Over-Expansion. Even with beam size limited to 3 expan-

sions, queries with highly connected entities (i.e., supernodes) can

cause the pipeline to retrieve loosely related statements. Our entity-

overlap ranking mitigates this by surfacing neighbours that share

more than one entity, but some out-of-scope expansions remain.

C.2.2 Numeric/Tables Misalignment. In SEC-10Q, numeric values

sometimes appear in multiple contexts. If two statements are seman-

tically similar but reference different quarters, the top-𝑘 filtering

can inadvertently retrieve the wrong time period. This is especially

important for statement-level tabular enhancements (Section 4.3.2).

C.2.3 Duplicate or Near-Duplicate Statements. The same or nearly

identical facts can appear across different documents or versions

(especially in historical filings). Without diversity filtering, these

duplicates can dominate the top-𝑘 and reduce coverage. Our 0.5%

threshold helps alleviate this but does not fully eliminate overlap-

ping data for heavily repeated claims.

C.3 Future Work
C.3.1 Propositionizer Pipelines. Subsequent researchwill prioritize
the development of more efficient propositionization, reducing in-

dexing tokens and LLM calls. Aligning the propositionizer’s output

with our knowledge-graph schema (topics/entities/relationships)

remains key to maintaining high-quality links.

C.3.2 Hybrid Retrieval of Chunks and Statements. We plan to ex-

plore a layered pipeline that first employs chunk-level searches to

localize relevant segments, followed by statement-level expansions

or reranking for multi-hop clarity. Such a hybrid approach might

preserve the speed of chunk-based retrieval while leveraging more

precise graph-based statements where necessary.

C.3.3 Domain Specialization and Fine-Tuning. Enhanced domain

adaptation, particularly within finance, healthcare, and legal cor-

pora, may sharpen the extraction of domain-specific topics, entities,

and relations. Targeted fine-tuning of the reranker and proposi-

tionizer components in these specialized settings is expected to

improve precision while keeping inference costs manageable. Al-

though we deliberately avoided highly specialized models in this

work to ensure broad applicability with general-purpose LLMs, we

are internally testing fine-tuned approaches for structured numeric

data (e.g., unit conversion tools, temporal linking improvements).

These are ongoing efforts to refine proposition extraction in com-

plex, table-based contexts like legal or financial search.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Multi-hop Reasoning with Graphs
	2.2 Dense Retrieval Granularity

	3 Hierarchical Lexical Graph
	3.1 Statement Retrieval and Graph Structures
	3.2 Graph Connectivity

	4 Proposed Retrieval Models
	4.1 StatementGraphRAG
	4.2 TopicGraphRAG
	4.3 Post-Retrieval Processing

	5 Synthetic Multi-Hop Summarization
	5.1 Dataset Characteristics
	5.2 Pipeline Architecture
	5.3 Dataset Statistics

	6 Experimental Setup
	6.1 Datasets
	6.2 Indexing Steps
	6.3 Retrieval Approaches
	6.4 Chunks as the Generation Unit
	6.5 Evaluation Metrics

	7 Results
	7.1 Overall Retrieval Performance
	7.2 HLG Chunk-Based Variants
	7.3 Synthetic Dataset Evaluation
	7.4 Summary of Findings

	8 Conclusion
	References
	A Validation of Generated Statements
	B HLG Structure Analysis
	B.1 Scalability and Performance

	C Limitations and Future Work
	C.1 Limitations
	C.2 Error Analysis
	C.3 Future Work

