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Abstract

Model and hyperparameter selection is a critical yet costly step in machine learn-
ing, often requiring expert intuition or extensive search. We investigate whether
large language models (LLMs) can reduce this cost by acting as in-context meta-
learners that generalize across tasks to propose effective model-hyperparameter
choices without iterative optimization. Each task is represented as structured
metadata, and we prompt an LLM under two strategies: Zero-Shot, using only
the target task metadata, and Meta-Informed, which augments the prompt with
metadata–recommendation pairs from prior tasks. Evaluated on 22 tabular Kaggle
challenges, Meta-Informed prompting outperforms Zero-Shot and hyperparameter
optimization baselines, approaching expert AutoML blends while yielding inter-
pretable reasoning traces and efficiency gains under tight training budgets. These
results suggest that LLMs can transfer knowledge across tasks to guide automated
model selection, establishing model and hyperparameter selection as a concrete
testbed for studying emergent adaptation beyond language domains.
Code is available at this link.

1 Introduction

As large language models (LLMs) scale, they increasingly exhibit emergent behaviors allowing them
to adapt to new tasks by reusing patterns from prior experience provided in-context [Brown et al.,
2020, Dong et al., 2024]. Studying such behaviors outside of language tasks is key to understanding
their scope and reliability. In this work, we use model and hyperparameter selection as a testbed for
evaluating whether LLMs can perform in-context meta-learning.

Performance in machine learning depends heavily on choosing model families and hyperparameters,
known as the Combined Algorithm Selection and Hyperparameter optimization (CASH) problem
[Thornton et al., 2013]. Conventional methods such as grid search and Bayesian optimization are
costly and knowledge-intensive. If LLMs can generalize across tasks in this context, it would not
only aid AutoML but also provide a concrete setting for evaluating cross-task adaptation.

Our approach consists in representing each task with structured metadata (e.g. sample size, dimen-
sionality, feature types) and prompts an LLM to output a candidate configuration model class (e.g.
LGBM, MLP) and hyperparameters. We consider two prompting strategies: Zero-Shot, using only
the target metadata, and Meta-Informed, which augments the prompt with metadata-configuration
pairs from prior tasks (Figure 1).
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Figure 1: Overview of the method. Each task is represented by metadata, and the LLM outputs
model and hyperparameter configurations. The dotted arrow indicates the inclusion of prior-task
metadata-configuration pairs in the Meta-Informed setting.

Contributions. (1) We show that LLMs can address the CASH problem in-context by mapping
task metadata to model and hyperparameter configurations. (2) On 22 Kaggle datasets under limited
budgets, we find that Meta-Informed prompting outperforms Zero-Shot and Hyperopt baselines, with
reasoning traces revealing how LLMs connect dataset characteristics to prior tasks.

Together, these results provide a compact case study of emergent LLM capabilities in a domain
beyond language.

A more detailed discussion of related work on hyperparameter optimization, meta-learning, CASH,
and recent LLM-based methods is provided in Appendix A.

2 Methodology and Results

2.1 Method

We formulate model and hyperparameter selection as an in-context meta-learning task. Each dataset
is summarized by a structured metadata block describing high-level properties such as prediction
type, evaluation metric, sample sizes, feature composition, missingness, and target statistics (see
Appendix D.1).

On each Kaggle challenge, the LLM is prompted to propose model-hyperparameter ensembles under
two modes:

• Zero-Shot: only the metadata of the target task is provided.
• Meta-Informed: the prompt additionally includes reference metadata-configuration pairs

from prior tasks.

For the reference pool used in the Meta-Informed strategy context, we extract Context Blends from
the top 10 contributors (by ensemble weight) of AutoML-generated blends obtained via extensive
hyperparameter search.

Details of the base models are provided in Appendix F. Our experiments use the DeepSeek-R1 model
[DeepSeek-AI et al., 2025], with prompt design and LLM configuration described in Appendices D
and, respectively E. Each seed corresponds to a new run with a different set of Context Blends.

2.2 Datasets

We evaluate our method on 22 Kaggle tabular challenges spanning both regression and classification.
The benchmark includes a mix of "playground" competitions (synthetic or repurposed datasets)
and "featured" challenges (real industrial or scientific applications). Prediction types range from
regression to binary and multi-class classification, with metrics including error-based losses (RMSE,
MAE, RMSLE), probabilistic measures (AUC, log-loss, NLL), and discrete scores (accuracy, F1).
Dataset scales vary widely from fewer than 2,000 training points (horses) to several hundred
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thousand (media, insurance) while feature dimensionality ranges from fewer than 10 (abalone) to
over a thousand (molecules). This diversity ensures coverage of small vs. large data regimes, low-
vs. high-dimensional settings, and synthetic vs. real-world tasks. Full dataset details are provided in
Table 2 in the Appendix.

2.3 Performance Comparison

To assess the quality of LLM-generated ensembles, we compare them against several standard
baselines that capture random selection and conventional hyperparameter optimization. For fairness,
all methods are allowed to train exactly 10 models. Specifically, we evaluate three baselines (detailed
in Appendix H): Context-Random (uniformly samples k=10 model-hyperparameter configurations
from the same context to test whether LLMs provide value beyond random reuse), Random-Hyperopt
(runs 10 iterations of hyperopt with a uniformly sampled model family), and LGBM-Hyperopt
(also runs 10 iterations of hyperopt but restricted to LightGBM, reflecting the strength of a single
well-tuned model). Both Hyperopt-based baselines are implemented with HEBO [Cowen-Rivers
et al., 2022], one of the most effective and consistent hyperparameter optimization methods across a
wide range of tasks [Kegl, 2023].

Figure 2: Comparison of prompting strate-
gies and baselines in terms of prank. The
Context Blends produced by AutoML per-
formance for each challenge are shown as a
reference. Error bars indicate 90% confidence
intervals of the mean across 8 random seeds
per dataset.

Results. Blend quality is measured using the pri-
vate leaderboard percentile rank (p-rank; higher is
better) after training on the Kaggle datasets. Fig-
ure 2 summarizes the average performance across
22 datasets. Meta-Informed achieves the strongest
LLM-driven performance (72.7), surpassing both
Zero-Shot (70.4) and Context-Random (70.0),
while clearly outperforming Random-Hyperopt
(65.7). Although the AutoML-derived Context
Blends remains higher (77.7), the gap is modest
given that no iterative search is performed, showing
that LLMs can interpret metadata and make com-
petitive recommendations. Importantly, the signifi-
cant improvement of Meta-Informed over Context-
Random indicates that the LLM is not merely sam-
pling from the metadata, but is leveraging past tasks’
information in a way that reflects genuine adaptation.

Looking at the detailed per-challenge results (Table 1)
alongside the dataset metadata (Table 2), we observe
that performance patterns vary across tasks. The
strongest improvements of the Meta-Informed LLM
appear on datasets with many samples and mixed feature types, such as mental health (140k
samples, categorical and numerical features), insurance (300k samples, mixed features), and
housing california (37k samples, purely numerical). By contrast, on relatively low-dimensional
regression benchmarks such as abalone and concrete strength, the benefit is less consistent,
and baselines can perform better. We also note that while LGBM-Hyperopt has the lowest mean
score overall, it performs strongly on certain tasks (e.g., loan approval), likely benefiting from
restricting search to a single competitive model family. Finally, across most datasets, LLM-based
methods exhibit lower variance than Hyperopt baselines, indicating more stable performance.

2.4 Performance Efficiency

To complement performance ranking, we also evaluate efficiency relative to standard hyperparameter
optimization. For this comparison, we focus on a subset of six datasets: abalone, blueberry,
covertype, heat flux fi, horses, and media.

We define one round as training a single model configuration followed by its integration into the
blending pipeline, ensuring all methods incur the same per-round cost. The LLM based methods
produce exactly ten configurations in a single forward pass, after which no additional training is
performed. By contrast, Hyperopt continues to propose new configurations sequentially. We consider
two model selection variants (see Appendix H for details): Random-Hyperopt, which runs 10
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Kaggle Challenge Meta-Informed Zero-Shot Context-Random Random-Hyperopt LGBM-Hyperopt
abalone 85.73 ± 3.3 74.67 ± 4.6 87.87 ± 2.3 58.95 ± 4.6 64.21 ± 11.3
allstate 69.92 ± 2.3 61.66 ± 2.9 65.41 ± 5.0 50.05 ± 2.4 51.0 ± 2.7
attrition 59.51 ± 1.7 61.12 ± 1.8 57.31 ± 2.3 59.36 ± 3.3 48.21 ± 5.0
blueberry 81.16 ± 2.4 79.86 ± 1.7 78.96 ± 3.8 70.77 ± 5.3 65.87 ± 7.7
churn 70.35 ± 0.9 68.73 ± 0.9 68.71 ± 3.0 65.07 ± 4.0 70.64 ± 1.0
cirrhosis 70.58 ± 3.6 69.09 ± 1.4 73.06 ± 1.8 64.61 ± 4.6 70.17 ± 2.0
concrete strength 74.34 ± 17.9 74.19 ± 6.8 59.37 ± 16.1 88.81 ± 5.4 83.21 ± 9.3
covertype 67.78 ± 4.0 58.35 ± 7.6 60.05 ± 10.3 56.75 ± 11.0 32.0 ± 3.4
crab age 68.87 ± 0.7 68.81 ± 0.6 67.67 ± 1.2 61.84 ± 2.3 63.84 ± 1.8
credit fusion 96.61 ± 1.0 96.71 ± 1.1 90.91 ± 1.7 96.35 ± 0.9 96.75 ± 1.5
failure 41.12 ± 1.5 43.52 ± 1.7 41.25 ± 0.8 43.7 ± 2.6 48.15 ± 7.0
heat flux fi 93.4 ± 5.0 90.7 ± 4.3 83.65 ± 8.6 69.07 ± 6.6 36.22 ± 17.1
horses 82.39 ± 7.7 82.78 ± 5.6 75.31 ± 10.6 81.15 ± 6.2 79.75 ± 5.7
housing california 62.53 ± 0.6 54.84 ± 2.4 60.07 ± 2.0 46.9 ± 6.8 52.71 ± 3.9
influencers 76.84 ± 7.4 83.55 ± 1.4 80.52 ± 2.8 82.95 ± 2.7 87.45 ± 1.9
insurance 74.68 ± 2.4 68.16 ± 1.8 67.9 ± 2.1 62.53 ± 5.9 64.6 ± 3.4
loan approval 71.58 ± 2.6 63.29 ± 5.5 66.84 ± 5.4 62.64 ± 6.9 74.43 ± 0.9
media 62.95 ± 1.4 57.52 ± 2.0 61.81 ± 2.5 49.5 ± 7.5 26.07 ± 2.8
mental health 92.99 ± 3.0 79.77 ± 10.2 89.69 ± 5.2 75.34 ± 9.5 80.11 ± 7.7
mercedes 17.81 ± 2.8 36.44 ± 7.8 35.26 ± 10.6 36.57 ± 8.6 25.42 ± 2.0
molecules 97.52 ± 1.5 96.34 ± 1.6 96.32 ± 3.3 96.33 ± 2.6 78.02 ± 12.6
unknown a 80.56 ± 0.8 78.6 ± 0.8 72.59 ± 2.4 66.17 ± 2.5 61.41 ± 5.5
Mean 72.69 ± 0.2 70.39 ± 0.2 70.02 ± 0.3 65.7± 1.1 61.8± 1.1

Table 1: Kaggle private leaderboard percentile rank (p-rank) across 22 challenges (higher is better).
Uncertainty is reported as ± values, representing the 90% confidence interval based on standard error
across 8 random seeds. Full results including context blends performance are given in Appendix B.2.

iterations of HEBO on a uniformly sampled model family, and MaxUCB-Hyperopt, which follows
Balef et al. [2025] by treating each family as a bandit arm and selecting the arm that maximizes an
upper-confidence bound before applying HEBO within that family.

Figure 3: prank over training rounds for Random-Hyperopt, MaxUCB-Hyperopt, Meta-Informed,
and Zero-Shot across the six selected datasets. Error bars indicate 90% confidence intervals using
standard error across 8 seeds.

On these six datasets, the LLM based methods match or exceed Hyperopt performance within the
same budget of ten training rounds, while Hyperopt seems to require substantially more rounds to
achieve similar performance (Figure 3). In practice, LLMs may be even more advantageous since
they generate all configurations in a single pass rather than sequentially.

2.5 Interpretability

Another advantage of LLM-based methods is interpretability. Unlike conventional hyperparameter
optimization, which produces configurations without explanation, the LLM generates structured
outputs accompanied by reasoning traces. These traces highlight how the model can relate task
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metadata to past examples when proposing new model-hyperparameter ensembles. For example, the
LLM often explains its choices by linking dataset properties to its choices such as favoring CatBoost
on feature sets dominated by categorical variables, or suggesting deeper trees when the regression
task involves many numeric features. Appendix G presents selected reasoning traces that illustrate
how the model draws on prior tasks and/or its internal knowledge to guide model and hyperparameter
recommendations.

3 Conclusion

We evaluated LLM-based prompting for CASH on 22 Kaggle challenges. Meta-Informed prompting
consistently outperforms Zero-Shot and Hyperopt baselines, though it remains below expert Au-
toML blends. LLM-generated ensembles offer efficiency under limited budgets and interpretability
via reasoning traces. These results suggest that LLMs can accelerate and guide AutoML while
demonstrating cross-task adaptability as a form of in-context meta-learning.
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A Related work

Hyperparameter Optimization Early hyperparameter optimization (HPO) techniques included
simple search strategies such as grid search and random search [Bergstra and Bengio, 2012]. More
sophisticated model-based methods include Bayesian optimization (e.g., Gaussian process-based BO)
which iteratively fits a surrogate model to past evaluations [Bergstra et al., 2011, Snoek et al., 2012].
Multi-fidelity and bandit-based approaches, such as Hyperband [Li et al., 2017] and Successive
Halving [Jamieson and Talwalkar, 2016], exploit early-stopping to allocate resources efficiently.
Subsequent extensions incorporate problem structure: for instance, compute-aware or multi-task
Bayesian optimization methods transfer information across related tasks [Swersky et al., 2013,
Golovin et al., 2017].

Meta-Learning and HPO Meta-learning-based hyperparameter optimization methods aim to gen-
eralize optimization strategies across tasks by leveraging prior experience. Transfer Neural Processes
(TNP) [Wei et al., 2021], for example, incorporate meta-knowledge such as surrogate models and
historical trial data to enhance sample efficiency. Meta-Bayesian optimization methods extend this
idea by using priors over surrogate models learned from related tasks, enabling faster convergence
in new optimization problems [Feurer et al., 2015, Perrone et al., 2018]. Other approaches, such as
ALFA [Baik et al., 2020], learn to adapt hyperparameters dynamically during training, modeling the
optimization process itself. Techniques like SHSR [Borboudakis et al., 2023] improve efficiency by
pruning unpromising regions of the search space using past AutoML runs. PriorBand [Mallik et al.,
2023] further accelerates HPO by combining expert beliefs with low-fidelity proxy tasks to guide the
search in deep learning pipelines.

The CASH Problem The problem of jointly searching the model class and its hyperparameters has
been coined the Combined Algorithm Selection and Hyperparameter optimization (CASH) problem
[Thornton et al., 2013]. A common approach is to treat model choice as a categorical hyperparameter
and perform HPO directly over the hierarchical space of algorithms and their parameters. AutoML
systems such as Auto-WEKA and Auto-sklearn adopt this combined-search strategy [Thornton et al.,
2013, Feurer et al., 2015], but the hierarchical and high-dimensional nature of these spaces makes
optimization challenging. Running separate HPO procedures per model class is computationally
prohibitive and scales poorly with the number of candidate algorithms. To mitigate these limitations,
recent work has proposed decomposed CASH formulations, where algorithm selection is cast as
a bandit problem and hyperparameter optimization is performed within each arm. In particular,
Balef et al. [2025] introduce MaxUCB, a Max-armed bandit algorithm designed for the light-tailed,
bounded, and left-skewed reward distributions characteristic of HPO, showing improved efficiency
compared to classical combined search and competing bandit variants such as Rising Bandits [Li
et al., 2020] and ER-UCB [Hu et al., 2021]. Unlike both combined and decomposed approaches,
our method leverages an LLM to tackle the CASH problem directly in a zero-shot manner, jointly
suggesting both model families and hyperparameters without requiring bandit-style exploration or
expensive hierarchical search.

LLM-Based HPO Recent work has explored the use of LLMs for hyperparameter optimization
in ML tasks. Zhang et al. [2024] showed that LLMs can generate effective hyperparameters by
iteratively refining suggestions and incorporating feedback, achieving results comparable to traditional
methods such as Bayesian optimization. Kochnev et al. [2025] showed that a fine-tuned Code Llama
model can suggest hyperparameters for neural networks from code descriptions, outperforming tools
like Optuna in a few trials, while Zheng et al. [2023] demonstrated that LLMs can be used to find
competitive architectures on neural architecture search benchmarks. Mahammadli and Ertekin [2025]
introduced a hybrid approach combining LLMs with Bayesian optimization, showing improved
performance on tabular classification tasks. Liu et al. [2025] proposed AgentHPO, where an LLM
autonomously designs and refines experiments based on task descriptions, performing competitively
with expert-tuned configurations. However, these methods primarily focus on hyperparameter tuning
in isolation, leaving the broader CASH problem unaddressed. In contrast, our method operates in a
purely zero-shot setting and addresses CASH directly, achieving competitive results without requiring
iterative feedback or access to validation performance during inference, while still leveraging prior
task information for cross-task generalization in the meta-informed setting.
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B Kaggle Benchmark Details

B.1 Kaggle Challenges

Table 2 summarizes the statistics of the tabular challenges used in this paper, highlighting a wide
range of problem types, metrics, and data sizes.

Kaggle type year pred metric # # # # # # # #
challenge type team train test feat cat num cls miss
abalone play 2024 reg rmsle 2606 90615 60411 8 1 7 0
allstate feat 2016 reg mae 3045 188318 125546 130 116 14 0
attrition play 2023 bin auc 665 1677 1119 33 8 25 2 0
blueberry play 2023 reg mae 1875 15289 10194 16 0 16 0
churn play 2024 bin auc 3632 165034 110023 12 6 6 2 0
cirrhosis play 2023 mult nll 1661 7905 5271 18 6 12 3 0
concrete strength play 2023 reg rmse 765 5407 3605 8 0 8 0
covertype play 2015 mult acc 1692 15120 565892 54 44 10 7 0
crab age play 2023 reg mae 1429 74051 49368 8 1 7 0
credit fusion feat 2011 bin auc 924 150000 101503 10 0 10 2 56384
failure play 2022 bin auc 1888 26570 20775 24 3 21 2 35982
heat flux fi play 2023 reg rmse 693 21229 10415 8 2 6 34603
horses play 2023 bin f1 1541 1235 824 27 17 10 3 1324
housing california play 2023 reg rmse 689 37137 24759 8 0 8 0
influencers feat 2013 bin auc 132 5500 5952 22 0 22 2 0
insurance play 2021 reg rmse 1433 300000 200000 24 10 14 0
loan approval play 2024 bin auc 3858 58645 39098 11 4 7 2 0
media play 2023 reg rmsle 952 360336 240224 15 7 8 0
mental health play 2024 bin acc 2685 140700 93800 18 7 8 2 718167
mercedes feat 2017 reg r2 3823 4209 4209 376 376 0 0
molecules feat 2012 bin nll 698 3751 2501 1776 0 1776 2 0
unknown a play 2021 reg rmse 1728 300000 200000 14 0 14 0

Table 2: Metadata of Kaggle challenges. Challenge types include "playground" (datasets from
external sources or synthetically generated) and "featured" (datasets from real scientific or industrial
applications, often with significant monetary prizes for top participants). Prediction tasks are binary
classification (bin), regression (reg), or multi-class classification (mult; with the number of classes
indicated in the #cls column). Note that in our method, mult and bin are treated the same. Features
are categorized as numerical (num) or categorical (cat). The final column reports the number of
missing entries in the training data.

B.2 Per-Challenge Results

Kaggle Challenge Meta-Informed Zero-Shot Context-Random Random-Hyperopt LGBM-Hyperopt Context-Blends
abalone 85.73 ± 3.3 74.67 ± 4.6 87.87 ± 2.3 58.95 ± 4.6 64.21 ± 11.3 92.06 ± 0.1
allstate 69.92 ± 2.3 61.66 ± 2.9 65.41 ± 5.0 50.05 ± 2.4 51.0 ± 2.7 77.15 ± 0.7
attrition 59.51 ± 1.7 61.12 ± 1.8 57.31 ± 2.3 59.36 ± 3.3 48.21 ± 5.0 57.47 ± 3.2
blueberry 81.16 ± 2.4 79.86 ± 1.7 78.96 ± 3.8 70.77 ± 5.3 65.87 ± 7.7 88.65 ± 0.8
churn 70.35 ± 0.9 68.73 ± 0.9 68.71 ± 3.0 65.07 ± 4.0 70.64 ± 1.0 71.48 ± 1.1
cirrhosis 70.58 ± 3.6 69.09 ± 1.4 73.06 ± 1.8 64.61 ± 4.6 70.17 ± 2.0 83.62 ± 2.7
concrete strength 74.34 ± 17.9 74.19 ± 6.8 59.37 ± 16.1 88.81 ± 5.4 83.21 ± 9.3 95.95 ± 2.8
covertype 67.78 ± 4.0 58.35 ± 7.6 60.05 ± 10.3 56.75 ± 11.0 32.0 ± 3.4 77.16 ± 1.0
crab age 68.87 ± 0.7 68.81 ± 0.6 67.67 ± 1.2 61.84 ± 2.3 63.84 ± 1.8 71.51 ± 0.2
credit fusion 96.61 ± 1.0 96.71 ± 1.1 90.91 ± 1.7 96.35 ± 0.9 96.75 ± 1.5 97.93 ± 0.8
failure 41.12 ± 1.5 43.52 ± 1.7 41.25 ± 0.8 43.7 ± 2.6 48.15 ± 7.0 38.87 ± 2.9
heat flux fi 93.4 ± 5.0 90.7 ± 4.3 83.65 ± 8.6 69.07 ± 6.6 36.22 ± 17.1 99.3 ± 0.1
horses 82.39 ± 7.7 82.78 ± 5.6 75.31 ± 10.6 81.15 ± 6.2 79.75 ± 5.7 73.73 ± 12.0
housing california 62.53 ± 0.6 54.84 ± 2.4 60.07 ± 2.0 46.9 ± 6.8 52.71 ± 3.9 71.57 ± 1.0
influencers 76.84 ± 7.4 83.55 ± 1.4 80.52 ± 2.8 82.95 ± 2.7 87.45 ± 1.9 74.24 ± 1.9
insurance 74.68 ± 2.4 68.16 ± 1.8 67.9 ± 2.1 62.53 ± 5.9 64.6 ± 3.4 84.46 ± 6.5
loan approval 71.58 ± 2.6 63.29 ± 5.5 66.84 ± 5.4 62.64 ± 6.9 74.43 ± 0.9 78.55 ± 0.9
media 62.95 ± 1.4 57.52 ± 2.0 61.81 ± 2.5 49.5 ± 7.5 26.07 ± 2.8 72.0 ± 0.6
mental health 92.99 ± 3.0 79.77 ± 10.2 89.69 ± 5.2 75.34 ± 9.5 80.11 ± 7.7 75.03 ± 5.2
mercedes 17.81 ± 2.8 36.44 ± 7.8 35.26 ± 10.6 36.57 ± 8.6 25.42 ± 2.0 59.43 ± 4.8
molecules 97.52 ± 1.5 96.34 ± 1.6 96.32 ± 3.3 96.33 ± 2.6 78.02 ± 12.6 83.63 ± 12.2
unknown a 80.56 ± 0.8 78.6 ± 0.8 72.59 ± 2.4 66.17 ± 2.5 61.41 ± 5.5 86.06 ± 1.4
Mean 72.69 ± 0.2 70.39 ± 0.2 70.02 ± 0.3 65.7 ± 1.1 61.8 ± 1.1 77.72 ± 0.2

Table 3: Kaggle p-rank results across all challenges (the higher, the better). Uncertainty is reported
as ± values, representing the 90% confidence interval based on the standard error across 8 random
seeds.
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C Ensembling Pipeline

To evaluate and combine the model configurations proposed by the LLM, we implement a two stage
ensembling pipeline using cross validation bagging (CV bagging) followed by feedforward greedy
blending [Caruana et al., 2004].

CV-Bagging. Each base model is trained using k-fold cross-validation. For each fold, the model
is trained on k − 1 partitions and evaluated on the held-out fold. This yields out-of-fold (OOF)
predictions for the full training set, with no data leakage. These OOF predictions provide a reliable
estimate of each model’s generalization performance and serve as inputs to the blending stage.

Feedforward Greedy Blending. After collecting OOF predictions from all candidate models, we
construct an ensemble using feedforward greedy blending. This method builds the blend iteratively:
at each step, it adds the model that leads to the largest improvement on a validation score when
combined (typically using a linear combination) with the current blend. The process continues until
no further improvement is observed or a predefined limit on ensemble size is reached. Blending
weights are determined incrementally during this selection process.

The final predictions on the test set are obtained by retraining each selected base model on the
training data and applying the learned blend weights to their outputs. This Bag-Then-Blend pipeline
is task-agnostic and metric-independent, making it suitable for systematic evaluation across diverse
datasets and prediction objectives.

D Prompting Strategies

D.1 Current Task Description Format

For both prompting strategies, the LLM receives the current task description in the following
structured format. Below is an example for the Abalone challenge:

# Metadata for kaggle_abalone

## name
kaggle_abalone

## prediction_type
regression

## score_name
rmsle

## n_train: 90615 n_test: 60411 total_samples: 151026 train_test_ratio: 1.5

## features
total: 9 numeric: 8 numerical_range_avg: 11327.82 categorical: 1

### unique_values_per_categorical
min: 3 max: 3 median: 3 mode: 3

## missing_data
has_missing: False total_missing_values: 0 data_density: 1.0

## target_values
min: 1 max: 29 mean: 9.697 median: 9.0 std: 3.176 skewness: 1.204 kurtosis: 2.613
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D.2 Zero-Shot Setting

The following system prompt is used for the Zero-Shot setting.

Zero-Shot System Prompt

You are a data science expert specializing in model blending. You will receive a description of
a machine learning tasks and dataset. Your task is to propose a new model blend with exactly
10 models by completing a given JSON file that describes a new task, maintaining the same
format. You must output the json with 10 different choices of models and “models" as a key
following exactly the input format JSON but removing the prank and mean score columns.
Select models and hyperparameters considering factors such as dataset characteristics and
task type. Don’t forget to give exactly 10 different variations and use the given format for the
output adding the needed values lists. A predefined hyperparameter grid will be provided
beforehand. Ensure your selections of the 10 models adhere to the available hyperparameter
choices and that the number of models given is 10.

In the Zero-Shot setting, the LLM is not provided with in-context examples. To guide its output, it is
instead given the expected JSON schema, as shown below.

{
"models ": {

"catboost ": {
"columns ": [" bootstrap_type", "border_count", "grow_policy", "l2_leaf_reg",

"learning_rate",
"max_depth", "min_data_in_leaf", "n_estimators", "random_strength "],
"values ": []

},
"lgbm": {

"columns ": [" boosting_type", "colsample_bynode", "colsample_bytree", "drop_rate",
"learning_rate", "max_bin", "max_depth", "min_child_weight", "min_data_in_leaf",
"min_split_gain", "n_estimators", "reg_alpha", "reg_lambda", "subsample"],
"values ": []

},
"xgboost ": {

"columns ": [" colsample_bylevel", "colsample_bynode", "colsample_bytree", "gamma",
"learning_rate", "max_depth", "min_child_weight", "n_estimators", "reg_alpha",

"reg_lambda",
"subsample"],
"values ": []

},
"skmlp": {

"columns ": [" activation", "alpha", "beta_1", "beta_2", "epsilon", "layers",
"learning_rate_init", "max_iter", "n_iter_no_change", "n_knots"],
"values ": []

}
}

}
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D.3 Meta-Informed Setting

The following system prompt is used for the Meta-Informed setting.

Meta-Informed System Prompt

You are a data science expert specializing in model blending. You will receive multiple
descriptions of machine learning tasks, datasets, and the top 10 performing models in an
blend in JSON format, including their individual mean scores and percentile ranks. Your task
is to propose a new model blend with exactly 10 models by completing a given JSON file
that describes a new task, maintaining the same format. You must output the json with 10
different choices of models and "models" as a key following exactly the input format JSON
but removing the prank and mean score columns. Select models and hyperparameters based
on the similarity between the new task and previous ones, considering factors such as dataset
characteristics, task type, and model performance trends. Don’t forget to give exactly 10
different variations and use the same format as the input. A predefined hyperparameter grid
will be provided beforehand. Ensure your selections of the 10 models adhere to the available
hyperparameter choices and that the number of models given is 10.

The prompt is enriched with information from other challenges, provided as pairs of task metadata
and the top 10 models in the solution blend, formatted as previously described. For each given
challenge, we include all other challenges of the same type (classification or regression).

E Chat API Configuration and Defaults

To invoke the DeepSeek-R1 API, we use the client.chat.completions.create function from
the OpenAI SDK with default hyperparameters.

For more information, refer to the official documentation:

• OpenAI Platform: https://platform.openai.com/
• DeepSeek API Docs: https://api-docs.deepseek.com/
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F Base Model Details

We use four base models in our experiments: XGBOOST [Chen and Guestrin, 2016], CATBOOST
[Prokhorenkova et al., 2018], LGBM, and SKMLP [Pedregosa et al., 2011]. The corresponding
hyperparameter grids for each model are provided in Figure 4.

CatBoost hyperparameter grid.

LGBM hyperparameter grid.

XGBoost hyperparameter grid.

SKMLP hyperparameter grid.

Figure 4: Base models hyperparameters.
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G Example Reasoning Traces

To illustrate the model’s decision-making process, we show a few selected excerpts from its reasoning
traces on different Kaggle tasks.

Mercedes Dataset (Zero-Shot)

Okay, so I need to create a new model blend for the Kaggle Mercedes regression task. The dataset has 377 features, mostly
categorical (376) and one numeric. The target is continuous with some skewness. The goal is to propose 10 different models across
CatBoost, LGBM, XGBoost, and SKMLP, using the given hyperparameters.
First, let’s think about the dataset characteristics. Since there are a lot of categorical features, tree-based models like CatBoost,
LGBM, and XGBoost might perform well because they handle categorical variables effectively. skmlp might need more tuning but
could add diversity to the blend.
For CatBoost, since it’s good with categorical data, I’ll focus on parameters that handle that. bootstrap_type could be Bayesian
variants for better handling. border_count might be higher (like 512 or 1024) to capture more splits. grow_policy could be
Lossguide for deeper trees. learning_rate should be moderate, maybe 0.05 to 0.1. L2 regularization (l2_leaf_reg) around
3.0 to prevent overfitting. n_estimators around 500–700 for sufficient depth. random_strength maybe 1.0 or 5.0 for some
randomness.
For LGBM, boosting_type like goss or dart could be efficient. Since there are many features, colsample_bytree and
subsample around 0.8 to reduce overfitting. learning_rate similar to CatBoost. max_depth around 7–10. min_data_in_leaf
higher (like 50) given the dataset size. n_estimators around 300–500. Regularization parameters (reg_alpha and reg_lambda)
around 0.5–2.0.
XGBoost would need similar considerations. colsample_bytree and subsample around 0.8. learning_rate 0.05–0.1.
max_depth 6–10. gamma around 0.5 to control splits. reg_alpha and reg_lambda similar to LGBM. n_estimators 300–
500.
skmlp might have layers like 512-256 to handle high dimensionality. activation=relu for non-linearity.
learning_rate_init=0.01. alpha (L2 regularization) 0.001 or 0.01. Beta parameters (Adam optimizer) default to 0.9 and 0.999.
max_iter high (20000) since MLPs need time. n_iter_no_change=10. n_knots maybe 10 for spline layers.
I need to ensure 10 models in total. Maybe distribute them as 3 CatBoost, 3 LGBM, 3 XGBoost, and 1 SKMLP for diversity.
Each model should have unique hyperparameters within the grid. Check each parameter against the allowed values. For example,
CatBoost’s bootstrap_type can’t be “No” but has Bayesian options. Ensure all selected values are in the provided grid. Also, no
duplicates in the models. Each entry must have distinct hyperparameter combinations.

Abalone Dataset (Meta-Informed)

Okay, I need to create a new model blend for the kaggle_abalone task. Let me start by understanding the problem. The task is
regression with RMSLE as the score. The dataset has 9 features, 8 numeric and 1 categorical with 3 unique values. The target has a
mean around 9.7, with some skewness and kurtosis. The data is clean with no missing values.
Looking at the past tasks, kaggle_crab_age seems similar. Both have regression, a categorical feature with 3 unique values,
and similar target distributions (mean around 9–10, skewness > 1). In kaggle_crab_age, the top models were CatBoost and
LGBM. For example, CatBoost used bootstrap_type=Bernoulli, high border_count=1024, grow_policy=Lossguide, and
n_estimators around 500–700. LGBM models had boosting_type=gbdt_1 or gbdt_5, high n_estimators (1000), and
specific regularization parameters.
Also, kaggle_unknown_a had a similar setup with all numeric features and high n_estimators. XGBoost models there
used colsample_bytree around 0.5–0.8 and learning_rate 0.01–0.1. SKMLP models used activation=logistic, low
alpha=0.0001, and layers such as 256-128.
Considering hyperparameters from the grid: for CatBoost, possible bootstrap_type values include Bernoulli or Bayesian,
border_count=1024, grow_policy=Lossguide or Depthwise, l2_leaf_reg around 0.2–3.0, learning_rate=0.1,
max_depth around 9–12, and min_data_in_leaf=700. For LGBM, suitable choices are boosting_type=gbdt_1 or gbdt_5,
colsample_bynode 0.8–1.0, learning_rate=0.05, max_depth around 90, and min_data_in_leaf=50. XGBoost could use
colsample_bytree 0.5–0.8, gamma 0.0–1.5, learning_rate 0.05–0.1, max_depth=9, and n_estimators=1000. For SKMLP,
I will use activation=logistic, alpha=0.0001, layers 256-128, and learning_rate_init=0.001.
I need to select 10 models across different algorithms. Let’s pick 4 CatBoost, 3 LGBM, 2 XGBoost, and 1 SKMLP, ensuring hyper-
parameters are drawn from the predefined grid. Check each parameter against the allowed values (e.g., CatBoost bootstrap_type,
LGBM boosting_type), and ensure n_estimators is valid. Each model must be unique in its parameter combination. Finally, I
will compile the JSON structure without mean_score and prank, keeping the same format as the input examples.
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Heat Flux Fi Dataset (Meta-Informed)

Okay, I need to create a new model blend for the kaggle_heat_flux_fi task. Let’s start by understanding the new task’s
characteristics. The prediction type is regression, and the score is RMSE. The dataset has 21,229 training samples and 10,415 test
samples. There are 9 features: 7 numeric and 2 categorical. The numeric features have an average range of about 6,121, which is
similar to some previous tasks like kaggle_abalone or kaggle_crab_age. The categorical features have 4 and 11 unique values,
which is a moderate number. There’s missing data with a data density of 0.88, which means some imputation might be needed. The
target has a mean close to zero, a negative skewness, and high kurtosis, indicating a peaky distribution with a left tail.
Looking at past tasks, models that performed well on datasets with mixed numeric and categorical features, especially those using
CatBoost and LGBM, might be relevant. For example, kaggle_abalone used CatBoost with grow_policy=Lossguide and high
border_count, which handles categorical features well. Also, tasks with missing data like kaggle_media had LGBM models
with certain parameters.
The hyperparameter grids need to be considered. For CatBoost, handling missing data is inherent, so models with bootstrap_type
like Bayesian or MVS might be good. LGBM can handle missing values too. XGBoost doesn’t handle categoricals natively, so
maybe less emphasis here unless the categoricals are encoded. Since the new task has categorical features, CatBoost and LGBM are
probably better choices.
Looking at the previous top models, for regression tasks with similar features, CatBoost models with higher border_count (like
1024) and LGBM with higher max_depth (like 40, 90) and n_estimators (1000) performed well. Also, models with lower
learning rates (0.1, 0.15) and regularization (l2_leaf_reg around 0.5–2.0) were common.
Considering the new task’s missing data, models that handle missing values well are crucial. CatBoost’s bootstrap_type options
like Bayesian or MVS, and LGBM with drop_rate and subsample parameters could be beneficial. Also, since the target has a
negative skew, maybe models that are robust to such distributions, like those with appropriate loss functions or regularization.
Now, selecting 10 models. Let’s check the hyperparameter grids to ensure valid choices. For CatBoost, possible bootstrap_type:
Bayesian_0, MVS, Bernoulli. border_count options: 32, 64, 128, etc. For LGBM, boosting_type: gbdt_0, dart_1, goss.
Also, subsample and colsample parameters. skmlp might be less prioritized due to the categorical features, but maybe include
one if previous tasks with similar data used it.
Looking at the previous models, in kaggle_unknown_a, CatBoost with bootstrap_type=No and grow_policy=Depthwise
was used. For the new task, maybe mix different bootstrap types. For LGBM, models with higher n_estimators (1000) and
max_depth (like 40, 90) from kaggle_abalone and kaggle_housing_california.
Also, in the new task, the data has missing values, so models that handle missing data without imputation (like CatBoost and LGBM)
are preferred. XGBoost requires handling missing data externally, so maybe less emphasis unless parameters are adjusted, but the
hyperparameter grid doesn’t include handling for missing data, so maybe avoid XGBoost unless necessary.
Looking at skmlp, in past tasks like kaggle_insurance, activation=logistic with certain layers was used. Maybe include
one skmlp model for diversity.
Now, compiling 10 models.
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H Baselines description

H.1 Context-Random

For the Context-Random baseline, we uniformly sample k model-hyperparameter configurations
from the same pool of prior-task blends that are provided as context in the Meta-Informed setting.
This isolates whether improvements come from meaningful adaptation by the LLM or simply from
re-using high-quality configurations already present in the context.

We fix k = 10 to match the number of configurations proposed by the LLM in a single run.

H.2 Random-Hyperopt

For the Random-Hyperopt baseline, we use HEBO to optimize hyperparameters within a model
family, but the model family itself is selected uniformly at random at each round. Concretely, at each
iteration one of the base learners is sampled with equal probability, after which HEBO proposes a
new configuration for that family. This ensures a simple exploration strategy without bias toward any
particular model type.

H.3 LGBM-Hyperopt

For the LGBM-Hyperopt baseline, we restrict the search space to the LightGBM model family. At
each evaluation round, we apply the HEBO optimizer to propose a new LightGBM configuration,
which is then trained and evaluated on the target dataset. This baseline isolates the performance
of hyperparameter optimization when applied to a single strong gradient boosting method without
model family selection. As with the other baselines, we allocate a fixed budget of 10 evaluations
when comparing against the LLM recommendations.

H.4 MaxUCB-Hyperopt

For the MaxUCB-Hyperopt baseline, we implement the bandit-based CASH formulation proposed
by Balef et al. [2025]. In this setting, each candidate model family is treated as an arm in a multi-
armed bandit, and hyperparameter optimization is carried out within the selected arm using HEBO.
The Max-UCB algorithm balances exploration of new model families with exploitation of those that
have already demonstrated promising performance.

At each round t, the utility of arm i is computed as:

Ui = max(ri,1, . . . , ri,ni) +

(
α log(t)

ni

)2

,

where ri,j denotes the observed rewards (validation scores) from the j-th configuration of model
family i, and ni is the number of configurations tried so far for that family. The algorithm selects the
arm

It = argmax
i≤K

Ui,

applies HEBO within that model family to propose a new hyperparameter configuration, and observes
the resulting reward.

Following recommendations from the original paper, we set the exploration parameter to α = 0.5,
which provides a favorable balance between exploration and exploitation across tasks.
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