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Abstract

Model and hyperparameter selection is a critical yet costly step in machine learn-1

ing, often requiring expert intuition or extensive search. We investigate whether2

large language models (LLMs) can reduce this cost by acting as in-context meta-3

learners that generalize across tasks to propose effective model-hyperparameter4

choices without iterative optimization. Each task is represented as structured5

metadata, and we prompt an LLM under two strategies: Zero-Shot, using only6

the target task metadata, and Meta-Informed, which augments the prompt with7

metadata–recommendation pairs from prior tasks. Evaluated on 22 tabular Kaggle8

challenges, Meta-Informed prompting outperforms Zero-Shot and hyperparameter9

optimization baselines, approaching expert AutoML blends while yielding inter-10

pretable reasoning traces and efficiency gains under tight training budgets. These11

results suggest that LLMs can transfer knowledge across tasks to guide automated12

model selection, establishing model and hyperparameter selection as a concrete13

testbed for studying emergent adaptation beyond language domains.14

1 Introduction15

As large language models (LLMs) scale, they increasingly exhibit emergent behaviors allowing them16

to adapt to new tasks by reusing patterns from prior experience provided in-context [Brown et al.,17

2020, Dong et al., 2024]. Studying such behaviors outside of language tasks is key to understanding18

their scope and reliability. In this work, we use model and hyperparameter selection as a testbed for19

evaluating whether LLMs can perform in-context meta-learning.20

Performance in machine learning depends heavily on choosing model families and hyperparameters,21

known as the Combined Algorithm Selection and Hyperparameter optimization (CASH) problem22

[Thornton et al., 2013]. Conventional methods such as grid search and Bayesian optimization are23

costly and knowledge-intensive. If LLMs can generalize across tasks in this context, it would not24

only aid AutoML but also provide a concrete setting for evaluating cross-task adaptation.25

Our approach consists in representing each task with structured metadata (e.g. sample size, dimen-26

sionality, feature types) and prompts an LLM to output a candidate configuration model class (e.g.27

LGBM, MLP) and hyperparameters. We consider two prompting strategies: Zero-Shot, using only28

the target metadata, and Meta-Informed, which augments the prompt with metadata-configuration29

pairs from prior tasks (Figure 1).30

Contributions. (1) We show that LLMs can address the CASH problem in-context by mapping31

task metadata to model and hyperparameter configurations. (2) On 22 Kaggle datasets under limited32

budgets, we find that Meta-Informed prompting outperforms Zero-Shot and Hyperopt baselines, with33

reasoning traces revealing how LLMs connect dataset characteristics to prior tasks.34
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Figure 1: Overview of the method. Each task is represented by metadata, and the LLM outputs
model and hyperparameter configurations. The dotted arrow indicates the inclusion of prior-task
metadata-configuration pairs in the Meta-Informed setting.

Together, these results provide a compact case study of emergent LLM capabilities in a domain35

beyond language.36

A more detailed discussion of related work on hyperparameter optimization, meta-learning, CASH,37

and recent LLM-based methods is provided in Appendix A.38

2 Methodology and Results39

2.1 Method40

We formulate model and hyperparameter selection as an in-context meta-learning task. Each dataset41

is summarized by a structured metadata block describing high-level properties such as prediction42

type, evaluation metric, sample sizes, feature composition, missingness, and target statistics (see43

Appendix D.1).44

On each Kaggle challenge, the LLM is prompted to propose model-hyperparameter ensembles under45

two modes:46

• Zero-Shot: only the metadata of the target task is provided.47

• Meta-Informed: the prompt additionally includes reference metadata-configuration pairs48

from prior tasks.49

For the reference pool used in the Meta-Informed strategy context, we extract Context Blends from50

the top 10 contributors (by ensemble weight) of AutoML-generated blends obtained via extensive51

hyperparameter search.52

Details of the base models are provided in Appendix F. Our experiments use the DeepSeek-R1 model53

[DeepSeek-AI et al., 2025], with prompt design and LLM configuration described in Appendices D54

and, respectively E. Each seed corresponds to a new run with a different set of Context Blends.55

2.2 Datasets56

We evaluate our method on 22 Kaggle tabular challenges spanning both regression and classification.57

The benchmark includes a mix of "playground" competitions (synthetic or repurposed datasets)58

and "featured" challenges (real industrial or scientific applications). Prediction types range from59

regression to binary and multi-class classification, with metrics including error-based losses (RMSE,60

MAE, RMSLE), probabilistic measures (AUC, log-loss, NLL), and discrete scores (accuracy, F1).61

Dataset scales vary widely from fewer than 2,000 training points (horses) to several hundred62

thousand (media, insurance) while feature dimensionality ranges from fewer than 10 (abalone) to63

over a thousand (molecules). This diversity ensures coverage of small vs. large data regimes, low-64

vs. high-dimensional settings, and synthetic vs. real-world tasks. Full dataset details are provided in65

Table 2 in the Appendix.66
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2.3 Performance Comparison67

To assess the quality of LLM-generated ensembles, we compare them against several stan-68

dard baselines that capture random selection and conventional hyperparameter optimization.69

For fairness, all methods are allowed to train exactly 10 models. Specifically, we evaluate70

three baselines (detailed in Appendix H): Context-Random (uniformly samples k=10 model-71

hyperparameter configurations from the same context to test whether LLMs provide value be-72

yond random reuse), Random-Hyperopt (runs 10 iterations of hyperopt with a uniformly sam-73

pled model family), and LGBM-Hyperopt (also runs 10 iterations of hyperopt but restricted74

to LightGBM, reflecting the strength of a single well-tuned model). Both Hyperopt-based75

baselines are implemented with HEBO [Cowen-Rivers et al., 2022], one of the most effective76

and consistent hyperparameter optimization methods across a wide range of tasks [Kegl, 2023].77

Figure 2: Comparison of prompting strategies and
baselines in terms of prank. The Context Blends
produced by AutoML performance for each chal-
lenge are shown as a reference. Error bars indicate
90% confidence intervals of the mean across 8 ran-
dom seeds per dataset.

78

Results. Blend quality is measured using the79

private leaderboard percentile rank (p-rank;80

higher is better) after training on the Kaggle81

datasets. Figure 2 summarizes the average per-82

formance across 22 datasets. Meta-Informed83

achieves the strongest LLM-driven performance84

(72.7), surpassing both Zero-Shot (70.4) and85

Context-Random (70.0), while clearly outper-86

forming Random-Hyperopt (65.7). Although87

the AutoML-derived Context Blends remains88

higher (77.7), the gap is modest given that no it-89

erative search is performed, showing that LLMs90

can interpret metadata and make competitive91

recommendations. Importantly, the significant92

improvement of Meta-Informed over Context-93

Random indicates that the LLM is not merely94

sampling from the metadata, but is leveraging95

past tasks’ information in a way that reflects96

genuine adaptation.97

Looking at the detailed per-challenge results (Table 1) alongside the dataset metadata (Table 2),98

we observe that performance patterns vary across tasks. The strongest improvements of the Meta-99

Informed LLM appear on datasets with many samples and mixed feature types, such as mental100

health (140k samples, categorical and numerical features), insurance (300k samples, mixed101

features), and housing california (37k samples, purely numerical). By contrast, on relatively102

low-dimensional regression benchmarks such as abalone and concrete strength, the benefit103

is less consistent, and baselines can perform better. We also note that while LGBM-Hyperopt104

has the lowest mean score overall, it performs strongly on certain tasks (e.g., loan approval),105

likely benefiting from restricting search to a single competitive model family. Finally, across most106

datasets, LLM-based methods exhibit lower variance than Hyperopt baselines, indicating more stable107

performance.108

2.4 Performance Efficiency109

To complement performance ranking, we also evaluate efficiency relative to standard hyperparameter110

optimization. For this comparison, we focus on a subset of six datasets: abalone, blueberry,111

covertype, heat flux fi, horses, and media.112

We define one round as training a single model configuration followed by its integration into the113

blending pipeline, ensuring all methods incur the same per-round cost. The LLM based methods114

produce exactly ten configurations in a single forward pass, after which no additional training is115

performed. By contrast, Hyperopt continues to propose new configurations sequentially.116

We consider two model selection variants (see Appendix H for details): Random-Hyperopt, which117

runs 10 iterations of HEBO on a uniformly sampled model family, and MaxUCB-Hyperopt, which118

follows Balef et al. [2025] by treating each family as a bandit arm and selecting the arm that maximizes119

an upper-confidence bound before applying HEBO within that family.120
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Kaggle Challenge Meta-Informed Zero-Shot Context-Random Random-Hyperopt LGBM-Hyperopt
abalone 85.73 ± 3.3 74.67 ± 4.6 87.87 ± 2.3 58.95 ± 4.6 64.21 ± 11.3
allstate 69.92 ± 2.3 61.66 ± 2.9 65.41 ± 5.0 50.05 ± 2.4 51.0 ± 2.7
attrition 59.51 ± 1.7 61.12 ± 1.8 57.31 ± 2.3 59.36 ± 3.3 48.21 ± 5.0
blueberry 81.16 ± 2.4 79.86 ± 1.7 78.96 ± 3.8 70.77 ± 5.3 65.87 ± 7.7
churn 70.35 ± 0.9 68.73 ± 0.9 68.71 ± 3.0 65.07 ± 4.0 70.64 ± 1.0
cirrhosis 70.58 ± 3.6 69.09 ± 1.4 73.06 ± 1.8 64.61 ± 4.6 70.17 ± 2.0
concrete strength 74.34 ± 17.9 74.19 ± 6.8 59.37 ± 16.1 88.81 ± 5.4 83.21 ± 9.3
covertype 67.78 ± 4.0 58.35 ± 7.6 60.05 ± 10.3 56.75 ± 11.0 32.0 ± 3.4
crab age 68.87 ± 0.7 68.81 ± 0.6 67.67 ± 1.2 61.84 ± 2.3 63.84 ± 1.8
credit fusion 96.61 ± 1.0 96.71 ± 1.1 90.91 ± 1.7 96.35 ± 0.9 96.75 ± 1.5
failure 41.12 ± 1.5 43.52 ± 1.7 41.25 ± 0.8 43.7 ± 2.6 48.15 ± 7.0
heat flux fi 93.4 ± 5.0 90.7 ± 4.3 83.65 ± 8.6 69.07 ± 6.6 36.22 ± 17.1
horses 82.39 ± 7.7 82.78 ± 5.6 75.31 ± 10.6 81.15 ± 6.2 79.75 ± 5.7
housing california 62.53 ± 0.6 54.84 ± 2.4 60.07 ± 2.0 46.9 ± 6.8 52.71 ± 3.9
influencers 76.84 ± 7.4 83.55 ± 1.4 80.52 ± 2.8 82.95 ± 2.7 87.45 ± 1.9
insurance 74.68 ± 2.4 68.16 ± 1.8 67.9 ± 2.1 62.53 ± 5.9 64.6 ± 3.4
loan approval 71.58 ± 2.6 63.29 ± 5.5 66.84 ± 5.4 62.64 ± 6.9 74.43 ± 0.9
media 62.95 ± 1.4 57.52 ± 2.0 61.81 ± 2.5 49.5 ± 7.5 26.07 ± 2.8
mental health 92.99 ± 3.0 79.77 ± 10.2 89.69 ± 5.2 75.34 ± 9.5 80.11 ± 7.7
mercedes 17.81 ± 2.8 36.44 ± 7.8 35.26 ± 10.6 36.57 ± 8.6 25.42 ± 2.0
molecules 97.52 ± 1.5 96.34 ± 1.6 96.32 ± 3.3 96.33 ± 2.6 78.02 ± 12.6
unknown a 80.56 ± 0.8 78.6 ± 0.8 72.59 ± 2.4 66.17 ± 2.5 61.41 ± 5.5
Mean 72.69 ± 0.2 70.39 ± 0.2 70.02 ± 0.3 65.7± 1.1 61.8± 1.1

Table 1: Kaggle private leaderboard percentile rank (p-rank) across 22 challenges (higher is better).
Uncertainty is reported as ± values, representing the 90% confidence interval based on standard error
across 8 random seeds. Full results including context blends performance are given in Appendix B.2.

Figure 3: prank over training rounds for Random-Hyperopt,
MaxUCB-Hyperopt, Meta-Informed, and Zero-Shot
across the six selected datasets. Error bars indicate 90%
confidence intervals using standard error across 8 seeds.

On these six datasets, the LLM based121

methods match or exceed Hyperopt122

performance within the same budget123

of ten training rounds, while Hyperopt124

seems to require substantially more125

rounds to achieve similar performance126

(Figure 3). In practice, LLMs may be127

even more advantageous since they128

generate all configurations in a single129

pass rather than sequentially.130

2.5 Interpretability131

Another advantage of LLM-based132

methods is interpretability. Un-133

like conventional hyperparameter op-134

timization, which produces configura-135

tions without explanation, the LLM136

generates structured outputs accompa-137

nied by reasoning traces. These traces138

highlight how the model can relate139

task metadata to past examples when140

proposing new model-hyperparameter ensembles. For example, the LLM often explains its choices141

by linking dataset properties to its choices such as favoring CatBoost on feature sets dominated by142

categorical variables, or suggesting deeper trees when the regression task involves many numeric143

features. Appendix G presents selected reasoning traces that illustrate how the model draws on prior144

tasks and/or its internal knowledge to guide model and hyperparameter recommendations.145

3 Conclusion146

We evaluated LLM-based prompting for CASH on 22 Kaggle challenges. Meta-Informed prompting147

consistently outperforms Zero-Shot and Hyperopt baselines, though it remains below expert Au-148

toML blends. LLM-generated ensembles offer efficiency under limited budgets and interpretability149

via reasoning traces. These results suggest that LLMs can accelerate and guide AutoML while150

demonstrating cross-task adaptability as a form of in-context meta-learning.151
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A Related work318

Hyperparameter Optimization Early hyperparameter optimization (HPO) techniques included319

simple search strategies such as grid search and random search [Bergstra and Bengio, 2012]. More320

sophisticated model-based methods include Bayesian optimization (e.g., Gaussian process-based BO)321

which iteratively fits a surrogate model to past evaluations [Bergstra et al., 2011, Snoek et al., 2012].322

Multi-fidelity and bandit-based approaches, such as Hyperband [Li et al., 2017] and Successive323

Halving [Jamieson and Talwalkar, 2016], exploit early-stopping to allocate resources efficiently.324

Subsequent extensions incorporate problem structure: for instance, compute-aware or multi-task325

Bayesian optimization methods transfer information across related tasks [Swersky et al., 2013,326

Golovin et al., 2017].327

Meta-Learning and HPO Meta-learning-based hyperparameter optimization methods aim to gen-328

eralize optimization strategies across tasks by leveraging prior experience. Transfer Neural Processes329

(TNP) [Wei et al., 2021], for example, incorporate meta-knowledge such as surrogate models and330

historical trial data to enhance sample efficiency. Meta-Bayesian optimization methods extend this331

idea by using priors over surrogate models learned from related tasks, enabling faster convergence332

in new optimization problems [Feurer et al., 2015, Perrone et al., 2018]. Other approaches, such as333

ALFA [Baik et al., 2020], learn to adapt hyperparameters dynamically during training, modeling the334

optimization process itself. Techniques like SHSR [Borboudakis et al., 2023] improve efficiency by335

pruning unpromising regions of the search space using past AutoML runs. PriorBand [Mallik et al.,336

2023] further accelerates HPO by combining expert beliefs with low-fidelity proxy tasks to guide the337

search in deep learning pipelines.338

The CASH Problem The problem of jointly searching the model class and its hyperparameters has339

been coined the Combined Algorithm Selection and Hyperparameter optimization (CASH) problem340

[Thornton et al., 2013]. A common approach is to treat model choice as a categorical hyperparameter341

and perform HPO directly over the hierarchical space of algorithms and their parameters. AutoML342

systems such as Auto-WEKA and Auto-sklearn adopt this combined-search strategy [Thornton et al.,343

2013, Feurer et al., 2015], but the hierarchical and high-dimensional nature of these spaces makes344

optimization challenging. Running separate HPO procedures per model class is computationally345

prohibitive and scales poorly with the number of candidate algorithms. To mitigate these limitations,346

recent work has proposed decomposed CASH formulations, where algorithm selection is cast as347

a bandit problem and hyperparameter optimization is performed within each arm. In particular,348

Balef et al. [2025] introduce MaxUCB, a Max-armed bandit algorithm designed for the light-tailed,349

bounded, and left-skewed reward distributions characteristic of HPO, showing improved efficiency350

compared to classical combined search and competing bandit variants such as Rising Bandits [Li351

et al., 2020] and ER-UCB [Hu et al., 2021]. Unlike both combined and decomposed approaches,352

our method leverages an LLM to tackle the CASH problem directly in a zero-shot manner, jointly353

suggesting both model families and hyperparameters without requiring bandit-style exploration or354

expensive hierarchical search.355

LLM-Based HPO Recent work has explored the use of LLMs for hyperparameter optimization356

in ML tasks. Zhang et al. [2024] showed that LLMs can generate effective hyperparameters by357

iteratively refining suggestions and incorporating feedback, achieving results comparable to traditional358

methods such as Bayesian optimization. Kochnev et al. [2025] showed that a fine-tuned Code Llama359

model can suggest hyperparameters for neural networks from code descriptions, outperforming tools360

like Optuna in a few trials, while Zheng et al. [2023] demonstrated that LLMs can be used to find361

competitive architectures on neural architecture search benchmarks. Mahammadli and Ertekin [2025]362

introduced a hybrid approach combining LLMs with Bayesian optimization, showing improved363

performance on tabular classification tasks. Liu et al. [2025] proposed AgentHPO, where an LLM364

autonomously designs and refines experiments based on task descriptions, performing competitively365

with expert-tuned configurations. However, these methods primarily focus on hyperparameter tuning366

in isolation, leaving the broader CASH problem unaddressed. In contrast, our method operates in a367

purely zero-shot setting and addresses CASH directly, achieving competitive results without requiring368

iterative feedback or access to validation performance during inference, while still leveraging prior369

task information for cross-task generalization in the meta-informed setting.370

9



B Kaggle Benchmark Details371

B.1 Kaggle Challenges372

Table 2 summarizes the statistics of the tabular challenges used in this paper, highlighting a wide373

range of problem types, metrics, and data sizes.374

Kaggle type year pred metric # # # # # # # #
challenge type team train test feat cat num cls miss
abalone play 2024 reg rmsle 2606 90615 60411 8 1 7 0
allstate feat 2016 reg mae 3045 188318 125546 130 116 14 0
attrition play 2023 bin auc 665 1677 1119 33 8 25 2 0
blueberry play 2023 reg mae 1875 15289 10194 16 0 16 0
churn play 2024 bin auc 3632 165034 110023 12 6 6 2 0
cirrhosis play 2023 mult nll 1661 7905 5271 18 6 12 3 0
concrete strength play 2023 reg rmse 765 5407 3605 8 0 8 0
covertype play 2015 mult acc 1692 15120 565892 54 44 10 7 0
crab age play 2023 reg mae 1429 74051 49368 8 1 7 0
credit fusion feat 2011 bin auc 924 150000 101503 10 0 10 2 56384
failure play 2022 bin auc 1888 26570 20775 24 3 21 2 35982
heat flux fi play 2023 reg rmse 693 21229 10415 8 2 6 34603
horses play 2023 bin f1 1541 1235 824 27 17 10 3 1324
housing california play 2023 reg rmse 689 37137 24759 8 0 8 0
influencers feat 2013 bin auc 132 5500 5952 22 0 22 2 0
insurance play 2021 reg rmse 1433 300000 200000 24 10 14 0
loan approval play 2024 bin auc 3858 58645 39098 11 4 7 2 0
media play 2023 reg rmsle 952 360336 240224 15 7 8 0
mental health play 2024 bin acc 2685 140700 93800 18 7 8 2 718167
mercedes feat 2017 reg r2 3823 4209 4209 376 376 0 0
molecules feat 2012 bin nll 698 3751 2501 1776 0 1776 2 0
unknown a play 2021 reg rmse 1728 300000 200000 14 0 14 0

Table 2: Metadata of Kaggle challenges. Challenge types include "playground" (datasets from
external sources or synthetically generated) and "featured" (datasets from real scientific or industrial
applications, often with significant monetary prizes for top participants). Prediction tasks are binary
classification (bin), regression (reg), or multi-class classification (mult; with the number of classes
indicated in the #cls column). Note that in our method, mult and bin are treated the same. Features
are categorized as numerical (num) or categorical (cat). The final column reports the number of
missing entries in the training data.

B.2 Per-Challenge Results375

Kaggle Challenge Meta-Informed Zero-Shot Context-Random Random-Hyperopt LGBM-Hyperopt Context-Blends
abalone 85.73 ± 3.3 74.67 ± 4.6 87.87 ± 2.3 58.95 ± 4.6 64.21 ± 11.3 92.06 ± 0.1
allstate 69.92 ± 2.3 61.66 ± 2.9 65.41 ± 5.0 50.05 ± 2.4 51.0 ± 2.7 77.15 ± 0.7
attrition 59.51 ± 1.7 61.12 ± 1.8 57.31 ± 2.3 59.36 ± 3.3 48.21 ± 5.0 57.47 ± 3.2
blueberry 81.16 ± 2.4 79.86 ± 1.7 78.96 ± 3.8 70.77 ± 5.3 65.87 ± 7.7 88.65 ± 0.8
churn 70.35 ± 0.9 68.73 ± 0.9 68.71 ± 3.0 65.07 ± 4.0 70.64 ± 1.0 71.48 ± 1.1
cirrhosis 70.58 ± 3.6 69.09 ± 1.4 73.06 ± 1.8 64.61 ± 4.6 70.17 ± 2.0 83.62 ± 2.7
concrete strength 74.34 ± 17.9 74.19 ± 6.8 59.37 ± 16.1 88.81 ± 5.4 83.21 ± 9.3 95.95 ± 2.8
covertype 67.78 ± 4.0 58.35 ± 7.6 60.05 ± 10.3 56.75 ± 11.0 32.0 ± 3.4 77.16 ± 1.0
crab age 68.87 ± 0.7 68.81 ± 0.6 67.67 ± 1.2 61.84 ± 2.3 63.84 ± 1.8 71.51 ± 0.2
credit fusion 96.61 ± 1.0 96.71 ± 1.1 90.91 ± 1.7 96.35 ± 0.9 96.75 ± 1.5 97.93 ± 0.8
failure 41.12 ± 1.5 43.52 ± 1.7 41.25 ± 0.8 43.7 ± 2.6 48.15 ± 7.0 38.87 ± 2.9
heat flux fi 93.4 ± 5.0 90.7 ± 4.3 83.65 ± 8.6 69.07 ± 6.6 36.22 ± 17.1 99.3 ± 0.1
horses 82.39 ± 7.7 82.78 ± 5.6 75.31 ± 10.6 81.15 ± 6.2 79.75 ± 5.7 73.73 ± 12.0
housing california 62.53 ± 0.6 54.84 ± 2.4 60.07 ± 2.0 46.9 ± 6.8 52.71 ± 3.9 71.57 ± 1.0
influencers 76.84 ± 7.4 83.55 ± 1.4 80.52 ± 2.8 82.95 ± 2.7 87.45 ± 1.9 74.24 ± 1.9
insurance 74.68 ± 2.4 68.16 ± 1.8 67.9 ± 2.1 62.53 ± 5.9 64.6 ± 3.4 84.46 ± 6.5
loan approval 71.58 ± 2.6 63.29 ± 5.5 66.84 ± 5.4 62.64 ± 6.9 74.43 ± 0.9 78.55 ± 0.9
media 62.95 ± 1.4 57.52 ± 2.0 61.81 ± 2.5 49.5 ± 7.5 26.07 ± 2.8 72.0 ± 0.6
mental health 92.99 ± 3.0 79.77 ± 10.2 89.69 ± 5.2 75.34 ± 9.5 80.11 ± 7.7 75.03 ± 5.2
mercedes 17.81 ± 2.8 36.44 ± 7.8 35.26 ± 10.6 36.57 ± 8.6 25.42 ± 2.0 59.43 ± 4.8
molecules 97.52 ± 1.5 96.34 ± 1.6 96.32 ± 3.3 96.33 ± 2.6 78.02 ± 12.6 83.63 ± 12.2
unknown a 80.56 ± 0.8 78.6 ± 0.8 72.59 ± 2.4 66.17 ± 2.5 61.41 ± 5.5 86.06 ± 1.4
Mean 72.69 ± 0.2 70.39 ± 0.2 70.02 ± 0.3 65.7 ± 1.1 61.8 ± 1.1 77.72 ± 0.2

Table 3: Kaggle p-rank results across all challenges (the higher, the better). Uncertainty is reported
as ± values, representing the 90% confidence interval based on the standard error across 8 random
seeds.
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C Ensembling Pipeline376

To evaluate and combine the model configurations proposed by the LLM, we implement a two stage377

ensembling pipeline using cross validation bagging (CV bagging) followed by feedforward greedy378

blending [Caruana et al., 2004].379

CV-Bagging. Each base model is trained using k-fold cross-validation. For each fold, the model380

is trained on k − 1 partitions and evaluated on the held-out fold. This yields out-of-fold (OOF)381

predictions for the full training set, with no data leakage. These OOF predictions provide a reliable382

estimate of each model’s generalization performance and serve as inputs to the blending stage.383

Feedforward Greedy Blending. After collecting OOF predictions from all candidate models, we384

construct an ensemble using feedforward greedy blending. This method builds the blend iteratively:385

at each step, it adds the model that leads to the largest improvement on a validation score when386

combined (typically using a linear combination) with the current blend. The process continues until387

no further improvement is observed or a predefined limit on ensemble size is reached. Blending388

weights are determined incrementally during this selection process.389

The final predictions on the test set are obtained by retraining each selected base model on the390

training data and applying the learned blend weights to their outputs. This Bag-Then-Blend pipeline391

is task-agnostic and metric-independent, making it suitable for systematic evaluation across diverse392

datasets and prediction objectives.393

D Prompting Strategies394

D.1 Current Task Description Format395

For both prompting strategies, the LLM receives the current task description in the following396

structured format. Below is an example for the Abalone challenge:397

# Metadata for kaggle_abalone398
399

## name400
kaggle_abalone401

402
## prediction_type403
regression404

405
## score_name406
rmsle407

408
## n_train: 90615 n_test: 60411 total_samples: 151026 train_test_ratio: 1.5409

410
## features411
total: 9 numeric: 8 numerical_range_avg: 11327.82 categorical: 1412

413
### unique_values_per_categorical414
min: 3 max: 3 median: 3 mode: 3415

416
## missing_data417
has_missing: False total_missing_values: 0 data_density: 1.0418

419
## target_values420
min: 1 max: 29 mean: 9.697 median: 9.0 std: 3.176 skewness: 1.204 kurtosis: 2.613421
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D.2 Zero-Shot Setting422

The following system prompt is used for the Zero-Shot setting.423

Zero-Shot System Prompt

You are a data science expert specializing in model blending. You will receive a description of
a machine learning tasks and dataset. Your task is to propose a new model blend with exactly
10 models by completing a given JSON file that describes a new task, maintaining the same
format. You must output the json with 10 different choices of models and “models" as a key
following exactly the input format JSON but removing the prank and mean score columns.
Select models and hyperparameters considering factors such as dataset characteristics and
task type. Don’t forget to give exactly 10 different variations and use the given format for the
output adding the needed values lists. A predefined hyperparameter grid will be provided
beforehand. Ensure your selections of the 10 models adhere to the available hyperparameter
choices and that the number of models given is 10.

424

In the Zero-Shot setting, the LLM is not provided with in-context examples. To guide its output, it is425

instead given the expected JSON schema, as shown below.426

427
{428

"models ": {429
"catboost ": {430

"columns ": [" bootstrap_type", "border_count", "grow_policy", "l2_leaf_reg",431
"learning_rate",432
"max_depth", "min_data_in_leaf", "n_estimators", "random_strength "],433
"values ": []434

},435
"lgbm": {436

"columns ": [" boosting_type", "colsample_bynode", "colsample_bytree", "drop_rate",437
"learning_rate", "max_bin", "max_depth", "min_child_weight", "min_data_in_leaf",438
"min_split_gain", "n_estimators", "reg_alpha", "reg_lambda", "subsample"],439
"values ": []440

},441
"xgboost ": {442

"columns ": [" colsample_bylevel", "colsample_bynode", "colsample_bytree", "gamma",443
"learning_rate", "max_depth", "min_child_weight", "n_estimators", "reg_alpha",444

"reg_lambda",445
"subsample"],446
"values ": []447

},448
"skmlp": {449

"columns ": [" activation", "alpha", "beta_1", "beta_2", "epsilon", "layers",450
"learning_rate_init", "max_iter", "n_iter_no_change", "n_knots"],451
"values ": []452

}453
}454

}455456
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D.3 Meta-Informed Setting457

The following system prompt is used for the Meta-Informed setting.458

Meta-Informed System Prompt

You are a data science expert specializing in model blending. You will receive multiple
descriptions of machine learning tasks, datasets, and the top 10 performing models in an
blend in JSON format, including their individual mean scores and percentile ranks. Your task
is to propose a new model blend with exactly 10 models by completing a given JSON file
that describes a new task, maintaining the same format. You must output the json with 10
different choices of models and "models" as a key following exactly the input format JSON
but removing the prank and mean score columns. Select models and hyperparameters based
on the similarity between the new task and previous ones, considering factors such as dataset
characteristics, task type, and model performance trends. Don’t forget to give exactly 10
different variations and use the same format as the input. A predefined hyperparameter grid
will be provided beforehand. Ensure your selections of the 10 models adhere to the available
hyperparameter choices and that the number of models given is 10.

459

The prompt is enriched with information from other challenges, provided as pairs of task metadata460

and the top 10 models in the solution blend, formatted as previously described. For each given461

challenge, we include all other challenges of the same type (classification or regression).462

E Chat API Configuration and Defaults463

To invoke the DeepSeek-R1 API, we use the client.chat.completions.create function from464

the OpenAI SDK with default hyperparameters.465

For more information, refer to the official documentation:466

• OpenAI Platform: https://platform.openai.com/467

• DeepSeek API Docs: https://api-docs.deepseek.com/468
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F Base Model Details469

We use four base models in our experiments: XGBOOST [Chen and Guestrin, 2016], CATBOOST470

[Prokhorenkova et al., 2018], LGBM, and SKMLP [Pedregosa et al., 2011]. The corresponding471

hyperparameter grids for each model are provided in Figure 4.472

CatBoost hyperparameter grid.

LGBM hyperparameter grid.

XGBoost hyperparameter grid.

SKMLP hyperparameter grid.

Figure 4: Base models hyperparameters.
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G Example Reasoning Traces473

To illustrate the model’s decision-making process, we show a few selected excerpts from its reasoning474

traces on different Kaggle tasks.475

Mercedes Dataset (Zero-Shot)

Okay, so I need to create a new model blend for the Kaggle Mercedes regression task. The dataset has 377 features, mostly
categorical (376) and one numeric. The target is continuous with some skewness. The goal is to propose 10 different models across
CatBoost, LGBM, XGBoost, and SKMLP, using the given hyperparameters.
First, let’s think about the dataset characteristics. Since there are a lot of categorical features, tree-based models like CatBoost,
LGBM, and XGBoost might perform well because they handle categorical variables effectively. skmlp might need more tuning but
could add diversity to the blend.
For CatBoost, since it’s good with categorical data, I’ll focus on parameters that handle that. bootstrap_type could be Bayesian
variants for better handling. border_count might be higher (like 512 or 1024) to capture more splits. grow_policy could be
Lossguide for deeper trees. learning_rate should be moderate, maybe 0.05 to 0.1. L2 regularization (l2_leaf_reg) around
3.0 to prevent overfitting. n_estimators around 500–700 for sufficient depth. random_strength maybe 1.0 or 5.0 for some
randomness.
For LGBM, boosting_type like goss or dart could be efficient. Since there are many features, colsample_bytree and
subsample around 0.8 to reduce overfitting. learning_rate similar to CatBoost. max_depth around 7–10. min_data_in_leaf
higher (like 50) given the dataset size. n_estimators around 300–500. Regularization parameters (reg_alpha and reg_lambda)
around 0.5–2.0.
XGBoost would need similar considerations. colsample_bytree and subsample around 0.8. learning_rate 0.05–0.1.
max_depth 6–10. gamma around 0.5 to control splits. reg_alpha and reg_lambda similar to LGBM. n_estimators 300–
500.
skmlp might have layers like 512-256 to handle high dimensionality. activation=relu for non-linearity.
learning_rate_init=0.01. alpha (L2 regularization) 0.001 or 0.01. Beta parameters (Adam optimizer) default to 0.9 and 0.999.
max_iter high (20000) since MLPs need time. n_iter_no_change=10. n_knots maybe 10 for spline layers.
I need to ensure 10 models in total. Maybe distribute them as 3 CatBoost, 3 LGBM, 3 XGBoost, and 1 SKMLP for diversity.
Each model should have unique hyperparameters within the grid. Check each parameter against the allowed values. For example,
CatBoost’s bootstrap_type can’t be “No” but has Bayesian options. Ensure all selected values are in the provided grid. Also, no
duplicates in the models. Each entry must have distinct hyperparameter combinations.

476

Abalone Dataset (Meta-Informed)

Okay, I need to create a new model blend for the kaggle_abalone task. Let me start by understanding the problem. The task is
regression with RMSLE as the score. The dataset has 9 features, 8 numeric and 1 categorical with 3 unique values. The target has a
mean around 9.7, with some skewness and kurtosis. The data is clean with no missing values.
Looking at the past tasks, kaggle_crab_age seems similar. Both have regression, a categorical feature with 3 unique values,
and similar target distributions (mean around 9–10, skewness > 1). In kaggle_crab_age, the top models were CatBoost and
LGBM. For example, CatBoost used bootstrap_type=Bernoulli, high border_count=1024, grow_policy=Lossguide, and
n_estimators around 500–700. LGBM models had boosting_type=gbdt_1 or gbdt_5, high n_estimators (1000), and
specific regularization parameters.
Also, kaggle_unknown_a had a similar setup with all numeric features and high n_estimators. XGBoost models there
used colsample_bytree around 0.5–0.8 and learning_rate 0.01–0.1. SKMLP models used activation=logistic, low
alpha=0.0001, and layers such as 256-128.
Considering hyperparameters from the grid: for CatBoost, possible bootstrap_type values include Bernoulli or Bayesian,
border_count=1024, grow_policy=Lossguide or Depthwise, l2_leaf_reg around 0.2–3.0, learning_rate=0.1,
max_depth around 9–12, and min_data_in_leaf=700. For LGBM, suitable choices are boosting_type=gbdt_1 or gbdt_5,
colsample_bynode 0.8–1.0, learning_rate=0.05, max_depth around 90, and min_data_in_leaf=50. XGBoost could use
colsample_bytree 0.5–0.8, gamma 0.0–1.5, learning_rate 0.05–0.1, max_depth=9, and n_estimators=1000. For SKMLP,
I will use activation=logistic, alpha=0.0001, layers 256-128, and learning_rate_init=0.001.
I need to select 10 models across different algorithms. Let’s pick 4 CatBoost, 3 LGBM, 2 XGBoost, and 1 SKMLP, ensuring hyper-
parameters are drawn from the predefined grid. Check each parameter against the allowed values (e.g., CatBoost bootstrap_type,
LGBM boosting_type), and ensure n_estimators is valid. Each model must be unique in its parameter combination. Finally, I
will compile the JSON structure without mean_score and prank, keeping the same format as the input examples.

477

15



Heat Flux Fi Dataset (Meta-Informed)

Okay, I need to create a new model blend for the kaggle_heat_flux_fi task. Let’s start by understanding the new task’s
characteristics. The prediction type is regression, and the score is RMSE. The dataset has 21,229 training samples and 10,415 test
samples. There are 9 features: 7 numeric and 2 categorical. The numeric features have an average range of about 6,121, which is
similar to some previous tasks like kaggle_abalone or kaggle_crab_age. The categorical features have 4 and 11 unique values,
which is a moderate number. There’s missing data with a data density of 0.88, which means some imputation might be needed. The
target has a mean close to zero, a negative skewness, and high kurtosis, indicating a peaky distribution with a left tail.
Looking at past tasks, models that performed well on datasets with mixed numeric and categorical features, especially those using
CatBoost and LGBM, might be relevant. For example, kaggle_abalone used CatBoost with grow_policy=Lossguide and high
border_count, which handles categorical features well. Also, tasks with missing data like kaggle_media had LGBM models
with certain parameters.
The hyperparameter grids need to be considered. For CatBoost, handling missing data is inherent, so models with bootstrap_type
like Bayesian or MVS might be good. LGBM can handle missing values too. XGBoost doesn’t handle categoricals natively, so
maybe less emphasis here unless the categoricals are encoded. Since the new task has categorical features, CatBoost and LGBM are
probably better choices.
Looking at the previous top models, for regression tasks with similar features, CatBoost models with higher border_count (like
1024) and LGBM with higher max_depth (like 40, 90) and n_estimators (1000) performed well. Also, models with lower
learning rates (0.1, 0.15) and regularization (l2_leaf_reg around 0.5–2.0) were common.
Considering the new task’s missing data, models that handle missing values well are crucial. CatBoost’s bootstrap_type options
like Bayesian or MVS, and LGBM with drop_rate and subsample parameters could be beneficial. Also, since the target has a
negative skew, maybe models that are robust to such distributions, like those with appropriate loss functions or regularization.
Now, selecting 10 models. Let’s check the hyperparameter grids to ensure valid choices. For CatBoost, possible bootstrap_type:
Bayesian_0, MVS, Bernoulli. border_count options: 32, 64, 128, etc. For LGBM, boosting_type: gbdt_0, dart_1, goss.
Also, subsample and colsample parameters. skmlp might be less prioritized due to the categorical features, but maybe include
one if previous tasks with similar data used it.
Looking at the previous models, in kaggle_unknown_a, CatBoost with bootstrap_type=No and grow_policy=Depthwise
was used. For the new task, maybe mix different bootstrap types. For LGBM, models with higher n_estimators (1000) and
max_depth (like 40, 90) from kaggle_abalone and kaggle_housing_california.
Also, in the new task, the data has missing values, so models that handle missing data without imputation (like CatBoost and LGBM)
are preferred. XGBoost requires handling missing data externally, so maybe less emphasis unless parameters are adjusted, but the
hyperparameter grid doesn’t include handling for missing data, so maybe avoid XGBoost unless necessary.
Looking at skmlp, in past tasks like kaggle_insurance, activation=logistic with certain layers was used. Maybe include
one skmlp model for diversity.
Now, compiling 10 models.
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H Baselines description479

H.1 Context-Random480

For the Context-Random baseline, we uniformly sample k model-hyperparameter configurations481

from the same pool of prior-task blends that are provided as context in the Meta-Informed setting.482

This isolates whether improvements come from meaningful adaptation by the LLM or simply from483

re-using high-quality configurations already present in the context.484

We fix k = 10 to match the number of configurations proposed by the LLM in a single run.485

H.2 Random-Hyperopt486

For the Random-Hyperopt baseline, we use HEBO to optimize hyperparameters within a model487

family, but the model family itself is selected uniformly at random at each round. Concretely, at each488

iteration one of the base learners is sampled with equal probability, after which HEBO proposes a489

new configuration for that family. This ensures a simple exploration strategy without bias toward any490

particular model type.491

H.3 LGBM-Hyperopt492

For the LGBM-Hyperopt baseline, we restrict the search space to the LightGBM model family. At493

each evaluation round, we apply the HEBO optimizer to propose a new LightGBM configuration,494

which is then trained and evaluated on the target dataset. This baseline isolates the performance495

of hyperparameter optimization when applied to a single strong gradient boosting method without496

model family selection. As with the other baselines, we allocate a fixed budget of 10 evaluations497

when comparing against the LLM recommendations.498

H.4 MaxUCB-Hyperopt499

For the MaxUCB-Hyperopt baseline, we implement the bandit-based CASH formulation proposed500

by Balef et al. [2025]. In this setting, each candidate model family is treated as an arm in a multi-501

armed bandit, and hyperparameter optimization is carried out within the selected arm using HEBO.502

The Max-UCB algorithm balances exploration of new model families with exploitation of those that503

have already demonstrated promising performance.504

At each round t, the utility of arm i is computed as:505

Ui = max(ri,1, . . . , ri,ni) +

(
α log(t)

ni

)2

,

where ri,j denotes the observed rewards (validation scores) from the j-th configuration of model506

family i, and ni is the number of configurations tried so far for that family. The algorithm selects the507

arm508

It = argmax
i≤K

Ui,

applies HEBO within that model family to propose a new hyperparameter configuration, and observes509

the resulting reward.510

Following recommendations from the original paper, we set the exploration parameter to α = 0.5,511

which provides a favorable balance between exploration and exploitation across tasks.512
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NeurIPS Paper Checklist513

1. Claims514

Question: Do the main claims made in the abstract and introduction accurately reflect the515

paper’s contributions and scope?516

Answer: [Yes]517

Justification: The abstract and introduction claim (i) LLMs can act as in-context meta-518

learners for CASH, (ii) Meta-Informed prompting outperforms Zero-Shot and Hyperopt519

baselines on 22 Kaggle tasks, and offer interpretability/efficiency. these match the results520

given in (Figs. 2, 3 and Table 1).521

Guidelines:522

• The answer NA means that the abstract and introduction do not include the claims523

made in the paper.524

• The abstract and/or introduction should clearly state the claims made, including the525

contributions made in the paper and important assumptions and limitations. A No or526

NA answer to this question will not be perceived well by the reviewers.527

• The claims made should match theoretical and experimental results, and reflect how528

much the results can be expected to generalize to other settings.529

• It is fine to include aspirational goals as motivation as long as it is clear that these goals530

are not attained by the paper.531

2. Limitations532

Question: Does the paper discuss the limitations of the work performed by the authors?533

Answer: [Yes]534

Justification: While we do not have a separate limitations section, we note several limitations535

such as the fact that performance is still below expert AutoML blends as well as variable536

gains across datasets with some tasks favoring baselines discussed in Subsection 2.3.537

Guidelines:538

• The answer NA means that the paper has no limitation while the answer No means that539

the paper has limitations, but those are not discussed in the paper.540

• The authors are encouraged to create a separate "Limitations" section in their paper.541

• The paper should point out any strong assumptions and how robust the results are to542

violations of these assumptions (e.g., independence assumptions, noiseless settings,543

model well-specification, asymptotic approximations only holding locally). The authors544

should reflect on how these assumptions might be violated in practice and what the545

implications would be.546

• The authors should reflect on the scope of the claims made, e.g., if the approach was547

only tested on a few datasets or with a few runs. In general, empirical results often548

depend on implicit assumptions, which should be articulated.549

• The authors should reflect on the factors that influence the performance of the approach.550

For example, a facial recognition algorithm may perform poorly when image resolution551

is low or images are taken in low lighting. Or a speech-to-text system might not be552

used reliably to provide closed captions for online lectures because it fails to handle553

technical jargon.554

• The authors should discuss the computational efficiency of the proposed algorithms555

and how they scale with dataset size.556

• If applicable, the authors should discuss possible limitations of their approach to557

address problems of privacy and fairness.558

• While the authors might fear that complete honesty about limitations might be used by559

reviewers as grounds for rejection, a worse outcome might be that reviewers discover560

limitations that aren’t acknowledged in the paper. The authors should use their best561

judgment and recognize that individual actions in favor of transparency play an impor-562

tant role in developing norms that preserve the integrity of the community. Reviewers563

will be specifically instructed to not penalize honesty concerning limitations.564

3. Theory assumptions and proofs565
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Question: For each theoretical result, does the paper provide the full set of assumptions and566

a complete (and correct) proof?567

Answer: [NA]568

Justification: No theoretical result.569

Guidelines:570

• The answer NA means that the paper does not include theoretical results.571

• All the theorems, formulas, and proofs in the paper should be numbered and cross-572

referenced.573

• All assumptions should be clearly stated or referenced in the statement of any theorems.574

• The proofs can either appear in the main paper or the supplemental material, but if575

they appear in the supplemental material, the authors are encouraged to provide a short576

proof sketch to provide intuition.577

• Inversely, any informal proof provided in the core of the paper should be complemented578

by formal proofs provided in appendix or supplemental material.579

• Theorems and Lemmas that the proof relies upon should be properly referenced.580

4. Experimental result reproducibility581

Question: Does the paper fully disclose all the information needed to reproduce the main ex-582

perimental results of the paper to the extent that it affects the main claims and/or conclusions583

of the paper (regardless of whether the code and data are provided or not)?584

Answer: [Yes]585

Justification: We specify in the Appendix and Section 2 datasets and model grids, prompting586

strategies, LLM and API setting, baseline details and the ensembling pipeline.587

Guidelines:588

• The answer NA means that the paper does not include experiments.589

• If the paper includes experiments, a No answer to this question will not be perceived590

well by the reviewers: Making the paper reproducible is important, regardless of591

whether the code and data are provided or not.592

• If the contribution is a dataset and/or model, the authors should describe the steps taken593

to make their results reproducible or verifiable.594

• Depending on the contribution, reproducibility can be accomplished in various ways.595

For example, if the contribution is a novel architecture, describing the architecture fully596

might suffice, or if the contribution is a specific model and empirical evaluation, it may597

be necessary to either make it possible for others to replicate the model with the same598

dataset, or provide access to the model. In general. releasing code and data is often599

one good way to accomplish this, but reproducibility can also be provided via detailed600

instructions for how to replicate the results, access to a hosted model (e.g., in the case601

of a large language model), releasing of a model checkpoint, or other means that are602

appropriate to the research performed.603

• While NeurIPS does not require releasing code, the conference does require all submis-604

sions to provide some reasonable avenue for reproducibility, which may depend on the605

nature of the contribution. For example606

(a) If the contribution is primarily a new algorithm, the paper should make it clear how607

to reproduce that algorithm.608

(b) If the contribution is primarily a new model architecture, the paper should describe609

the architecture clearly and fully.610

(c) If the contribution is a new model (e.g., a large language model), then there should611

either be a way to access this model for reproducing the results or a way to reproduce612

the model (e.g., with an open-source dataset or instructions for how to construct613

the dataset).614

(d) We recognize that reproducibility may be tricky in some cases, in which case615

authors are welcome to describe the particular way they provide for reproducibility.616

In the case of closed-source models, it may be that access to the model is limited in617

some way (e.g., to registered users), but it should be possible for other researchers618

to have some path to reproducing or verifying the results.619
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5. Open access to data and code620

Question: Does the paper provide open access to the data and code, with sufficient instruc-621

tions to faithfully reproduce the main experimental results, as described in supplemental622

material?623

Answer: [No]624

Justification: We do not release code in the submission.625

Guidelines:626

• The answer NA means that paper does not include experiments requiring code.627

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/628

public/guides/CodeSubmissionPolicy) for more details.629

• While we encourage the release of code and data, we understand that this might not be630

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not631

including code, unless this is central to the contribution (e.g., for a new open-source632

benchmark).633

• The instructions should contain the exact command and environment needed to run to634

reproduce the results. See the NeurIPS code and data submission guidelines (https:635

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.636

• The authors should provide instructions on data access and preparation, including how637

to access the raw data, preprocessed data, intermediate data, and generated data, etc.638

• The authors should provide scripts to reproduce all experimental results for the new639

proposed method and baselines. If only a subset of experiments are reproducible, they640

should state which ones are omitted from the script and why.641

• At submission time, to preserve anonymity, the authors should release anonymized642

versions (if applicable).643

• Providing as much information as possible in supplemental material (appended to the644

paper) is recommended, but including URLs to data and code is permitted.645

6. Experimental setting/details646

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-647

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the648

results?649

Answer: [Yes]650

Justification: We specify in the Appendix and Section 2 datasets and model grids, prompting651

strategies, LLM and API setting, baseline details and the ensembling pipeline.652

Guidelines:653

• The answer NA means that the paper does not include experiments.654

• The experimental setting should be presented in the core of the paper to a level of detail655

that is necessary to appreciate the results and make sense of them.656

• The full details can be provided either with the code, in appendix, or as supplemental657

material.658

7. Experiment statistical significance659

Question: Does the paper report error bars suitably and correctly defined or other appropriate660

information about the statistical significance of the experiments?661

Answer: [Yes]662

Justification: We report 90% confidence intervals via standard error across for plots and663

tables (Fig. 2, Fig. 3, Table 1).664

Guidelines:665

• The answer NA means that the paper does not include experiments.666

• The authors should answer "Yes" if the results are accompanied by error bars, confi-667

dence intervals, or statistical significance tests, at least for the experiments that support668

the main claims of the paper.669
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• The factors of variability that the error bars are capturing should be clearly stated (for670

example, train/test split, initialization, random drawing of some parameter, or overall671

run with given experimental conditions).672

• The method for calculating the error bars should be explained (closed form formula,673

call to a library function, bootstrap, etc.)674

• The assumptions made should be given (e.g., Normally distributed errors).675

• It should be clear whether the error bar is the standard deviation or the standard error676

of the mean.677

• It is OK to report 1-sigma error bars, but one should state it. The authors should678

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis679

of Normality of errors is not verified.680

• For asymmetric distributions, the authors should be careful not to show in tables or681

figures symmetric error bars that would yield results that are out of range (e.g. negative682

error rates).683

• If error bars are reported in tables or plots, The authors should explain in the text how684

they were calculated and reference the corresponding figures or tables in the text.685

8. Experiments compute resources686

Question: For each experiment, does the paper provide sufficient information on the com-687

puter resources (type of compute workers, memory, time of execution) needed to reproduce688

the experiments?689

Answer: [No]690

Justification: We fix a round budget and number of models (Section 2) but do not enumerate691

hardware specs, memory, or wall-clock times.692

Guidelines:693

• The answer NA means that the paper does not include experiments.694

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,695

or cloud provider, including relevant memory and storage.696

• The paper should provide the amount of compute required for each of the individual697

experimental runs as well as estimate the total compute.698

• The paper should disclose whether the full research project required more compute699

than the experiments reported in the paper (e.g., preliminary or failed experiments that700

didn’t make it into the paper).701

9. Code of ethics702

Question: Does the research conducted in the paper conform, in every respect, with the703

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?704

Answer: [Yes]705

Justification: The work uses public/tabular datasets and standard AutoML components,706

involves no human subjects or sensitive personal data beyond what is present in the public707

benchmarks, and cites all sources708

Guidelines:709

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.710

• If the authors answer No, they should explain the special circumstances that require a711

deviation from the Code of Ethics.712

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-713

eration due to laws or regulations in their jurisdiction).714

10. Broader impacts715

Question: Does the paper discuss both potential positive societal impacts and negative716

societal impacts of the work performed?717

Answer: [NA]718

Justification: No societal impact719

Guidelines:720
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• The answer NA means that there is no societal impact of the work performed.721

• If the authors answer NA or No, they should explain why their work has no societal722

impact or why the paper does not address societal impact.723

• Examples of negative societal impacts include potential malicious or unintended uses724

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations725

(e.g., deployment of technologies that could make decisions that unfairly impact specific726

groups), privacy considerations, and security considerations.727

• The conference expects that many papers will be foundational research and not tied728

to particular applications, let alone deployments. However, if there is a direct path to729

any negative applications, the authors should point it out. For example, it is legitimate730

to point out that an improvement in the quality of generative models could be used to731

generate deepfakes for disinformation. On the other hand, it is not needed to point out732

that a generic algorithm for optimizing neural networks could enable people to train733

models that generate Deepfakes faster.734

• The authors should consider possible harms that could arise when the technology is735

being used as intended and functioning correctly, harms that could arise when the736

technology is being used as intended but gives incorrect results, and harms following737

from (intentional or unintentional) misuse of the technology.738

• If there are negative societal impacts, the authors could also discuss possible mitigation739

strategies (e.g., gated release of models, providing defenses in addition to attacks,740

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from741

feedback over time, improving the efficiency and accessibility of ML).742

11. Safeguards743

Question: Does the paper describe safeguards that have been put in place for responsible744

release of data or models that have a high risk for misuse (e.g., pretrained language models,745

image generators, or scraped datasets)?746

Answer: [NA]747

Justification: No specific risk748

Guidelines:749

• The answer NA means that the paper poses no such risks.750

• Released models that have a high risk for misuse or dual-use should be released with751

necessary safeguards to allow for controlled use of the model, for example by requiring752

that users adhere to usage guidelines or restrictions to access the model or implementing753

safety filters.754

• Datasets that have been scraped from the Internet could pose safety risks. The authors755

should describe how they avoided releasing unsafe images.756

• We recognize that providing effective safeguards is challenging, and many papers do757

not require this, but we encourage authors to take this into account and make a best758

faith effort.759

12. Licenses for existing assets760

Question: Are the creators or original owners of assets (e.g., code, data, models), used in761

the paper, properly credited and are the license and terms of use explicitly mentioned and762

properly respected?763

Answer: [Yes]764

Justification: We cite papers and competitions/datasets with their url. Licence and terms of765

use are not explicitly mentioned.766

Guidelines:767

• The answer NA means that the paper does not use existing assets.768

• The authors should cite the original paper that produced the code package or dataset.769

• The authors should state which version of the asset is used and, if possible, include a770

URL.771

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.772
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• For scraped data from a particular source (e.g., website), the copyright and terms of773

service of that source should be provided.774

• If assets are released, the license, copyright information, and terms of use in the775

package should be provided. For popular datasets, paperswithcode.com/datasets776

has curated licenses for some datasets. Their licensing guide can help determine the777

license of a dataset.778

• For existing datasets that are re-packaged, both the original license and the license of779

the derived asset (if it has changed) should be provided.780

• If this information is not available online, the authors are encouraged to reach out to781

the asset’s creators.782

13. New assets783

Question: Are new assets introduced in the paper well documented and is the documentation784

provided alongside the assets?785

Answer: [NA]786

Justification:787

Guidelines:788

• The answer NA means that the paper does not release new assets.789

• Researchers should communicate the details of the dataset/code/model as part of their790

submissions via structured templates. This includes details about training, license,791

limitations, etc.792

• The paper should discuss whether and how consent was obtained from people whose793

asset is used.794

• At submission time, remember to anonymize your assets (if applicable). You can either795

create an anonymized URL or include an anonymized zip file.796

14. Crowdsourcing and research with human subjects797

Question: For crowdsourcing experiments and research with human subjects, does the paper798

include the full text of instructions given to participants and screenshots, if applicable, as799

well as details about compensation (if any)?800

Answer: [NA]801

Justification:802

Guidelines:803

• The answer NA means that the paper does not involve crowdsourcing nor research with804

human subjects.805

• Including this information in the supplemental material is fine, but if the main contribu-806

tion of the paper involves human subjects, then as much detail as possible should be807

included in the main paper.808

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,809

or other labor should be paid at least the minimum wage in the country of the data810

collector.811

15. Institutional review board (IRB) approvals or equivalent for research with human812

subjects813

Question: Does the paper describe potential risks incurred by study participants, whether814

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)815

approvals (or an equivalent approval/review based on the requirements of your country or816

institution) were obtained?817

Answer: [NA]818

Justification:819

Guidelines:820

• The answer NA means that the paper does not involve crowdsourcing nor research with821

human subjects.822
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• Depending on the country in which research is conducted, IRB approval (or equivalent)823

may be required for any human subjects research. If you obtained IRB approval, you824

should clearly state this in the paper.825

• We recognize that the procedures for this may vary significantly between institutions826

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the827

guidelines for their institution.828

• For initial submissions, do not include any information that would break anonymity (if829

applicable), such as the institution conducting the review.830

16. Declaration of LLM usage831

Question: Does the paper describe the usage of LLMs if it is an important, original, or832

non-standard component of the core methods in this research? Note that if the LLM is used833

only for writing, editing, or formatting purposes and does not impact the core methodology,834

scientific rigorousness, or originality of the research, declaration is not required.835

Answer: [Yes]836

Justification: LLMs are used in the method. The way they are used is described in the837

introduction and Section 2.838

Guidelines:839

• The answer NA means that the core method development in this research does not840

involve LLMs as any important, original, or non-standard components.841

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)842

for what should or should not be described.843
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