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Figure 1: Impact of loss functions on point cloud completion (using FoldingNet), and generation
(using CSI2PC). Compared with Chamfer distance-based losses, APML preserves structure better in
sparse regions, reduces clumping, and generalizes across input modalities.

Abstract

Training deep learning models for point cloud prediction tasks such as shape
completion and generation depends critically on loss functions that measure dis-
crepancies between predicted and ground-truth point sets. Commonly used func-
tions such as Chamfer Distance (CD), HyperCD, InfoCD and Density-aware CD
rely on nearest-neighbor assignments, which often induce many-to-one correspon-
dences, leading to point congestion in dense regions and poor coverage in sparse
regions. These losses also involve non-differentiable operations due to index se-
lection, which may affect gradient-based optimization. Earth Mover Distance
(EMD) enforces one-to-one correspondences and captures structural similarity
more effectively, but its cubic computational complexity limits its practical use. We
propose the Adaptive Probabilistic Matching Loss (APML), a fully differentiable
approximation of one-to-one matching that leverages Sinkhorn iterations on a
temperature-scaled similarity matrix derived from pairwise distances. We analyt-
ically compute the temperature to guarantee a minimum assignment probability,
eliminating manual tuning. APML achieves near-quadratic runtime, comparable to
Chamfer-based losses, and avoids non-differentiable operations. When integrated
into state-of-the-art architectures (PoinTr, PCN, FoldingNet) on ShapeNet bench-
marks and on a spatio-temporal Transformer (CSI2PC) that generates 3-D human
point clouds from WiFi-CSI measurements, APM loss yields faster convergence,
superior spatial distribution, especially in low-density regions, and improved or
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on-par quantitative performance without additional hyperparameter search. The
code is available at: https://github.com/apm-loss/apml.

1 Introduction

Point sets are a primary representation for three-dimensional data acquired through sensors such
as LiDAR, structured-light scanners, and depth cameras [13]. They are widely used in geometric
learning tasks, including surface reconstruction, object generation, shape completion, and registration
across different views [9, 21, 31, 33], as shown in Figure 1. Many of these applications involve
learning to map an input representation to a set of output points, where supervision requires aligning
predicted points with a ground truth set. This alignment is typically enforced through a loss function
that quantifies the similarity between point sets. Since these sets are unordered and may vary in
cardinality or density, standard vector-based loss functions are not directly applicable. This has
motivated the development of set-based loss functions that directly compare point sets during training
[10, 1].

Widely adopted metrics such as Chamfer distance (CD) offer computational efficiency but often
struggle with accurately capturing geometric details due to limitations such as sensitivity to outliers,
tendency to cause point clustering, and issues arising from discrete nearest-neighbor assignments [1,
17]. Conversely, Earth Mover’s Distance (EMD) provides superior geometric fidelity by encouraging
one-to-one correspondences but is typically too computationally expensive for direct use in large-
scale deep learning [22, 7]. Although several modifications to CD have been proposed to address
some of its shortcomings [28, 17, 16], a fundamental need persists for a loss function that robustly
approximates the desirable one-to-one matching properties of EMD without its prohibitive cost, while
also offering smooth gradients suitable for training modern deep networks.

To address this gap, we introduce the Adaptive Probabilistic Matching Loss (APML). APML is
a novel, fully differentiable loss function that applies principles from optimal transport to establish
soft, probabilistic correspondences between point sets. By approximating a transport plan through
application of an efficient Sinkhorn-based mechanism, combined with a key innovation, a data-driven,
analytically derived temperature schedule, APML is designed to overcome the limitations of prior
methods. This adaptive temperature controls the sharpness of the probabilistic assignments without
requiring manual regularization tuning, thereby contributing to stable training and encouraging the
generation of high-fidelity point clouds with good structural coherence and surface coverage. Our
approach is designed to be a broadly applicable tool for multiple point cloud prediction tasks.

The main contributions of this work are the following:

• We introduce Adaptive Probabilistic Matching Loss (APML), a novel loss function which
enforces soft one-to-one correspondences. This approach mitigates common shortcomings
of Chamfer Distance, such as point clumping, density bias, and outlier sensitivity. APML
approximates the matching quality of Earth Mover’s Distance with near-quadratic complexity
in the point count and a runtime comparable to CD-based losses.

• We introduce an adaptive temperature selection mechanism where each row and column in
the transport plan assigns a minimum probability mass (pmin). This closed-form schedule
removes the need for manual tuning of the Sinkhorn regularizer and adapts to the local
geometric context of the point sets.

• We perform quantitative and qualitative evaluations on standard point cloud completion
benchmarks, including ShapeNet and PCN, using three well-established backbone models.
These evaluations show that APML obtains performance improvements or comparable
results relative to established CD-based losses when measured by metrics sensitive to
structural fidelity, such as EMD.

• We present real-world data evaluations on the challenging MM-Fi dataset. For these, a
transformer-based architecture predicts 3D point clouds of humans in indoor spaces using
WiFi Channel State Information (CSI) data as an input modality. These experiments
demonstrate the ability of APML to improve training stability and the preservation of
structural details and surface coverage, in a different task and domain.

APML is designed as a drop-in replacement for CD, requiring minimal changes in system implemen-
tation and introducing only one interpretable hyperparameter.
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2 Related Work

Point Cloud Prediction Tasks. Point cloud prediction tasks include completion, generation, and
reconstruction from partial or transformed inputs. These tasks are relevant to applications such as 3D
scene understanding, autonomous systems, and human-centered sensing. Learning-based models
have become the standard approach due to their ability to infer dense geometry from incomplete or
abstract inputs [13].

A representative method for shape completion is PCN [33], which builds on PointNet [21] and
FoldingNet [31] using an encoder–decoder design that refines a coarse output via grid deformation.
This framework has been extended in models such as SnowflakeNet [29], which applies progressive
refinement, and Transformer-based approaches like PoinTr [32] and SeedFormer [35], which model
long-range dependencies through attention mechanisms. These models typically combine coarse-
to-fine stages to first establish global shape and then improve local detail. Alongside completion
from visual inputs, recent work has explored point cloud generation from RF-based signals such
as WiFi-CSI. The CSI2PC model [18] applies a spatio-temporal Transformer to map CSI data
into structured 3D point clouds, processing amplitude and phase information across antennas and
subcarriers. It generates representations of indoor scenes with humans and furniture. Evaluation on
the MM-Fi dataset [30] demonstrates generalization to unseen subjects and environments, supporting
its relevance in joint communication and sensing [18]. These architectures highlight the need for
effective supervision in learning from unordered point sets. Since predictions are sets without fixed
ordering, loss functions must provide permutation-invariant comparisons with accurate geometric
feedback. This motivates the development of distance metrics suitable for guiding such models during
training.

Point Cloud Distance Metrics and Loss Functions. Supervising deep learning models for point
cloud completion and generation requires loss functions that can compare unordered sets of points.
Since point clouds may vary in density and cardinality, standard vector-based losses are not directly
applicable. Instead, permutation-invariant set-based distances such as Chamfer Distance (CD)
[10] and Earth Mover’s Distance (EMD) [1] are commonly used. CD computes nearest-neighbor
distances between the two sets in both directions and averages them. It is widely adopted due to its
computational efficiency and ease of implementation in frameworks used for models like PCN [33],
PoinTr [32], and CSI2PC [18]. However, CD allows many-to-one mappings, which often lead to
clustering in dense regions and poor coverage in sparse areas. Its reliance on discrete assignments also
introduces non-differentiability, affecting gradient-based optimization [1, 17]. EMD, or Wasserstein-1
distance, addresses these issues by computing a one-to-one correspondence that minimizes the total
transport cost between sets [10, 22]. This makes it more effective in preserving global shape structure
and assigning geometrically meaningful matches. Nonetheless, its cubic complexity in the number of
points [4] and requirement for equal cardinality render it impractical for training deep models at scale
[7].

To improve over CD while avoiding the cost of exact EMD, several modifications have been in-
troduced. Density-aware Chamfer Distance (DCD) incorporates local density weights to balance
sparse and dense regions [28], though it may still amplify the influence of isolated points. Hyperbolic
Chamfer Distance (HyperCD) modifies the metric space to reduce the effect of distant mismatches
and sharpen local gradient behavior [17]. Contrastive Chamfer Distance (InfoCD) incorporates a
regularization term inspired by contrastive learning to spread predicted points across the target shape,
improving coverage and robustness to sampling noise [16]. Another recently proposed approach is
the Learnable Chamfer Distance (LCD) [14], which replaces static matching rules with dynamically
predicted weight distributions. LCD introduces a learnable attention mechanism that adaptively em-
phasizes critical reconstruction errors, improving convergence and representation learning. Through
adversarial training, LCD identifies structural defects and adjusts local weightings in the distance
computation, resulting in faster convergence and enhanced geometric fidelity while maintaining the
computational simplicity of CD. Another alternative formulation is the Sliced Wasserstein Distance
(SWD) [19], which approximates the Wasserstein transport by projecting point clouds into lower-
dimensional spaces and averaging transport costs across multiple random slices. SWD preserves
the geometric consistency of EMD while having a computational complexity comparable to CD,
making it suitable for evaluating or training models where EMD would be computationally infeasible.
Despite their improvements, DCD, HyperCD, InfoCD, LCD, and SWD remain based on fixed-point
correspondences or approximations of transport that may still lead to partial many-to-one mappings
and suboptimal gradient flow in sparse or non-uniform distributions.
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Probabilistic Matching and Optimal Transport. Optimal transport (OT) provides a formalism for
measuring dissimilarity between distributions by computing the minimal cost of reassigning mass
from one to another [20]. In the context of point cloud comparison, Earth Mover’s Distance (EMD) is
a special case of OT that seeks a cost-minimizing transport plan between two sets, subject to marginal
constraints. EMD produces one-to-one matchings and captures global structure but requires solving a
linear program with cubic time complexity [22], making it impractical for large-scale learning. It
also assumes equal cardinality between sets, which is often not the case in real applications.

To address these limitations, Cuturi [7] introduced an entropy-regularized formulation of OT that
smooths the transport objective by adding a negative entropy term. This modification enables a fast
and differentiable approximation using the Sinkhorn-Knopp algorithm, which iteratively normalizes
the rows and columns of a cost-derived matrix. The result is a doubly stochastic matrix that defines
soft, probabilistic correspondences between point sets [7, 27]. Unlike hard nearest-neighbor matching,
this approach improves gradient stability during training and allows for continuous optimization. The
regularization parameter ε controls the sharpness of the assignment, with lower values approaching
hard matchings and higher values producing smoother distributions. This tunable behavior has
made Sinkhorn-based OT a common tool in differentiable applications [12], including 3D point
cloud registration and alignment under uncertainty [24, 23]. These formulations support learning in
cases where exact matching is ambiguous or ill-defined. Building on this foundation, we propose a
loss function that approximates one-to-one matching through soft, differentiable assignments while
dynamically adjusting assignment sharpness using local distance structure.

3 Adaptive Probabilistic Matching Loss (APML)

Drawing from the principles of optimal transport and the computational efficiency of entropy-
regularized approaches such as the Sinkhorn algorithm [7], we introduce the Adaptive Probabilistic
Matching Loss (APML). APML is a fully differentiable loss function that compares unordered
point sets by constructing a soft, probabilistic approximation of one-to-one correspondences. The
objective is to provide the geometric supervision properties of transport-based losses while avoiding
the computational burden and set cardinality constraints associated with exact methods. Unlike
nearest-neighbor-based losses, such as CD and its variants, APML does not rely on discrete index
selection, which can interfere with gradient propagation. A key distinction from existing Sinkhorn-
based approaches is the introduction of a data-dependent mechanism that adaptively selects the
temperature parameter controlling the sharpness of the transport distribution. This parameter is
computed analytically from the pairwise distances, ensuring that each point maintains a minimum
level of probabilistic assignment and eliminating the need for manual tuning of the regularization.

The APML procedure begins by constructing a soft assignment matrix from the pairwise distances
between predicted and ground truth point sets. Rather than computing hard matchings, the assignment
distributes mass across all candidates based on temperature-scaled similarities. Assignments are
computed independently in both directions and averaged to maintain consistency. The resulting
matrix is then refined using normalization steps to approximate a doubly stochastic transport plan.
The adaptive control of sharpness allows the loss to adjust locally to the geometry of each pairwise
comparison, providing more stable gradients and improved point coverage.

Before defining the complete loss function, we describe the mathematical preliminaries. Let X̂ ∈
RB×N×d denote the predicted point sets and X ∈ RB×M×d the ground truth point sets, where B
is the batch size, N and M are the number of predicted and ground truth points, respectively, and
d is the spatial dimensionality. For each batch element b ∈ {1, . . . , B}, the pairwise cost matrix
Cb ∈ RN×M is computed using the Euclidean distance:

Cb,i,j =
∥∥∥X̂b,i −Xb,j

∥∥∥
2
, (1)

where i ∈ {1, . . . , N} indexes the predicted points and j ∈ {1, . . . ,M} indexes the ground truth
points. The construction of the transport matrix, the adaptive temperature schedule, and the final loss
objective are defined in the following subsections.

Adaptive Softmax. To generate soft correspondences between point sets, the APML method defines
an adaptive softmax function. This function is designed to ensure that for any given point, its
resulting probability distribution over potential matches assigns at least a minimum probability,
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pmin ∈ (0, 1), to its most likely match (i.e., the match with the lowest cost). This mechanism is
applied independently to each row and each column of the cost matrix C.

Consider a generic cost vector c = (c1, c2, . . . , cK) ∈ RK , representing the costs from one point to
K other points. The adaptive softmax computation for this vector proceeds as follows:

1. Cost Normalization: The cost vector c is first normalized by subtracting its minimum value to
prevent potential numerical issues with large cost values in the exponential function and to focus
on relative differences. Let c̃ be the normalized cost vector, defined as c̃j = cj −minl=1,...,K cl
for j = 1, . . . ,K. Thus, minj c̃j = 0.

2. Local Gap Definition: Let c̃(1) and c̃(2) be the smallest (i.e., 0) and the second smallest different
values in c̃, respectively. If all elements are identical (i.e., c̃j = 0 for all j), c̃(2) can be considered
notionally large or handled as a special case (see step 4). The local gap, g, is defined to ensure a
margin if c̃(2) is very close to c̃(1) as g = c̃(2) + δ, where δ > 0 is a small positive constant (e.g.,
10−6) added for numerical stability, particularly if c̃(2) = 0.

3. Adaptive Temperature Calculation: To ensure that the probability assigned to the element
with the minimum cost (i.e., c̃(1) = 0) is at least pmin, we solve the following inequality for the
temperature T > 0, assuming K > 1:

exp(−T · 0)
exp(−T · 0) +

∑K
k=2 exp(−T c̃(k))

≈ 1

1 + (K − 1) exp(−Tg)
≥ pmin. (2)

The approximation uses the second smallest cost c̃(2) (via g) as a representative for other non-
minimal costs to simplify the derivation of T . This leads to the adaptive temperature:

T =
− log

(
1−pmin

(K−1)pmin

)
g

. (3)

This expression for T is valid under the conditions K > 1 and 0 < pmin < 1, which ensure
that the logarithmic term is well-defined and strictly positive. When K = 1, the assignment is
trivially deterministic with probability 1, and no temperature scaling is required. The constraints
(K − 1)pmin > 0 and 1− pmin > 0 must hold to avoid numerical instability and to ensure that the
denominator within the logarithm remains positive.

4. Numerical Stability for Multiple Minima: If multiple elements in the cost vector c share
the same minimum value (i.e., after normalization, c̃(1) = c̃(2) = 0), the gap g becomes
approximately equal to δ. A small gap leads to a large temperature T , which may produce
numerically unstable behavior and overly concentrated assignments. To prevent this, if c̃(2) < ϵg
for a small threshold ϵg (e.g., 10−5), we override the temperature-scaled softmax with a uniform
probability distribution. Let Pj denote the assignment probability to the j-th element of the vector,
where then the assignment is defined as:

Pj =
1

K
, for all j = 1, . . . ,K, (4)

where K is the number of elements in c. This guarantees numerical stability in cases where
multiple effective minima are present and avoids assigning excessively high confidence to any
individual element.

5. Scaled Softmax Application: If the uniform override (Step 4) is not triggered, the temperature
T from Step 3 is used to compute the soft probability distribution P = (P1, . . . , PK) over the K
elements:

Pj =
exp(−T c̃j)∑K
k=1 exp(−T c̃k)

. (5)

The adaptive softmax procedure detailed above (Steps 1-5) is then applied to the overall cost matrix
Cb ∈ RN×M (for each batch element b; subscript b is omitted below for simplicity) to generate two
initial probability matrices, P1 and P2:
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• The matrix P1 ∈ RN×M is obtained by applying the 5-step adaptive softmax procedure row-
wise to C. For each row i of C (i.e., for the i-th predicted point X̂i), the input cost vector is
ci,· = (Ci,1, . . . , Ci,M ) ∈ RM . In this application, K = M . Each row of P1 thus forms a
probability distribution:

∑M
j=1(P1)ij = 1 for each i = 1, . . . , N .

• The matrix P2 ∈ RN×M is obtained by applying the 5-step adaptive softmax procedure column-
wise to C. For each column j of C (i.e., for the j-th ground truth point Xj), the input cost vector
is c·,j = (C1,j , . . . , CN,j) ∈ RN . In this application, K = N . Each column of P2 forms a
probability distribution:

∑N
i=1(P2)ij = 1 for each j = 1, . . . ,M .

To enforce consistency between these two directional perspectives (predicted-to-ground truth and
ground truth-to-predicted), the resulting probability matrices P1 and P2 are averaged element-wise:

P =
1

2
(P1 + P2). (6)

This matrix P ∈ RN×M represents the initial symmetrized soft assignment probabilities that will be
further refined by Sinkhorn normalization.

Sinkhorn Normalization. The symmetrized probability matrix P ∈ RN×M , obtained from the
adaptive softmax stage (Equation (6)), represents initial soft correspondences. However, this matrix P
is not guaranteed to be doubly stochastic; that is, its row sums and column sums may not consistently
adhere to the marginal constraints of a transport plan (e.g., rows summing to 1/N and columns
to 1/M for uniform marginals, or more generally, rows and columns summing to 1 if P is to be
interpreted as a joint probability distribution between individual points).

To refine P into an approximate doubly stochastic matrix, which better reflects a coherent transport
plan, we apply Sinkhorn-Knopp normalization [25]. This is an iterative algorithm that alternates
between normalizing the rows and columns of the matrix to sum to specific values (typically 1 in this
context for each row and column, assuming we want Pij to represent the probability of matching
point X̂i to Xj such that each point is fully "assigned"). The iterative process is performed for a
fixed number of iterations, denoted as Liter (e.g., Liter = 20). In each iteration l = 1, . . . , Liter, the
following two normalization steps are applied sequentially to the matrix P (denoting the matrix at
the beginning of an iteration step as P and its updated version also as P for simplicity):

1. Column Normalization Step: Each element Pij is divided by the sum of its respective column.
For all i = 1, . . . , N and j = 1, . . . ,M :

Pij ←
Pij∑N

k=1 Pkj + εstab
, (7)

This step ensures that after its application, each column of P sums approximately to 1 (i.e.,∑N
i=1 Pij ≈ 1 for each j).

2. Row Normalization Step: Each element Pij is then divided by the sum of its respective row. For
all i = 1, . . . , N and j = 1, . . . ,M :

Pij ←
Pij∑M

k=1 Pik + εstab
. (8)

This step ensures that after its application, each row of P sums approximately to 1 (i.e.,∑M
j=1 Pij ≈ 1 for each i).

In these equations, εstab is a small positive constant (e.g., 10−8) added to the denominator to prevent
division by zero, ensuring numerical stability, particularly if some row or column sums happen to be
zero or very close to zero during the iterations. After Liter iterations of these alternating normalizations,
the resulting matrix P ∈ RN×M serves as the refined, approximately doubly stochastic transport
plan representing the soft correspondences between the predicted point set X̂ and the ground truth
point set X .

APML Objective Function. Having computed the refined, approximately doubly stochastic transport
plan Pb ∈ RN×M for each batch element b (as detailed in the Sinkhorn Normalization subsection,
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using the output of Equation (7) or (8) after Liter iterations), and utilizing the original pairwise cost
matrix Cb ∈ RN×M , the Adaptive Probabilistic Matching Loss (LAPML) is defined. The loss LAPML
is computed as the expected matching cost under the learned soft assignment probabilities Pb,i,j .
This is averaged over all predicted points, all ground truth points (implicitly through the sum over j
weighted by Pb,i,j which itself sums to 1 over j for each i), and all elements in the batch B:

LAPML =
1

B

B∑
b=1

 N∑
i=1

M∑
j=1

Pb,i,j · Cb,i,j

 . (9)

In this formulation, Pb,i,j represents the refined probability of matching the i-th predicted point to
the j-th ground truth point for the b-th element in the batch, and Cb,i,j is the corresponding cost
(distance) between them. The inner double summation

∑N
i=1

∑M
j=1 Pb,i,j · Cb,i,j can be interpreted

as the Frobenius inner product ⟨Pb, Cb⟩F , representing the total cost for the b-th pair of point sets
under the soft assignment Pb.

This loss formulation encourages accurate point-to-point alignment by penalizing mismatches ac-
cording to the learned soft correspondences, while the differentiability of the transport plan P (due to
the differentiable nature of the adaptive softmax and Sinkhorn steps) ensures a smooth gradient flow
for optimization. The adaptive control of assignment sharpness and the enforcement of bidirectional
consistency, as detailed in the preceding subsections, contribute to APML providing a robust and
efficient mechanism for soft matching in learning-based geometric tasks.

4 Experimental Evaluation

Experimental Setup. All experiments are conducted using Python 3.11, PyTorch 2.5, and CUDA
12.8. The models are trained on a publicly available supercomputer, using 4 nodes, each equipped
with four Nvidia Volta V100 GPUs with 32 GB of memory each and 2 Intel Xeon processors Cascade
Lake, with 20 cores each running at 2,1 GHz. We use the official open-source implementations of
FoldingNet, PCN, and PoinTr from [34], with their default training configurations, including learning
rate, optimizer, and batch size. For point cloud generation from WiFi Channel State Information,
we use the CSI2PointCloud model [18], a transformer-based architecture that estimates 3D spatio-
temporal point clouds from raw CSI input. The implementation is available online [2] and is used
with its default training protocol. We use the official implementations of CD, HyperCD, and InfoCD
for loss computation. For our proposed APML, the hyperparameters were set consistently across
most experiments, unless otherwise noted: minimum assignment probability pmin = 0.8, adaptive
softmax gap margin δ = 10−6, gap threshold for uniform override ϵg = 10−5, number of Sinkhorn
iterations Liter = 10, and Sinkhorn stability constant εstab = 10−8. Any deviations from these settings
for specific experiments will be explicitly mentioned. For all experiments, we use a fixed threshold of
τ = 0.01 when computing the F1-score. This value corresponds to the default setting in the PoinTr
evaluation framework and is commonly adopted in the literature for point cloud completion tasks, as
it provides a reasonable balance between spatial tolerance and sensitivity to local geometric accuracy.

Evaluation Benchmark. We evaluate APML against three leading point cloud supervision objectives,
CD, InfoCD, and HyperCD, across a diverse set of benchmarks encompassing both point cloud
completion and cross-modal generation. Our experiments span three datasets: PCN [33], ShapeNet
(SN34/SN55) [6], and MM-Fi [30], covering both synthetic and real-world modalities, including
the challenging task of generating 3D point clouds from WiFi CSI signals. In addition, we include
the synthetic PCOU3D dataset [5], as shown in Figure 3, designed as a controlled environment to
systematically evaluate stability and density robustness under five defined input regimes. These
datasets enable evaluation in both single-category and multi-category settings. Performance is
assessed using standard metrics: Chamfer Distance [10], Earth Mover’s Distance [22], and F1 score
[33] at a fixed threshold. Detailed descriptions of the datasets and metric definitions are provided
in Appendix B.1 and Appendix B.2. In addition, we include two widely used alternative loss
formulations in the comparison: the density-aware Chamfer variant DCD, which enhances CD by
accounting for local point density, and SWD, an EMD-inspired distance based on sliced Wasserstein
projections. We report DCD and SWD on configurations where they are applicable (for example,
SWD requires equal cardinality between prediction and ground truth) and where we conducted
additional runs; other entries are left unreported.
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Experimental Results. Table 1 summarizes our main validation results. For each completion dataset
and backbone, we report the F1 score and EMD×100; for generation, we report CD and EMD×100.
In all settings, APML consistently achieves significantly lower EMD compared to previous losses,
often by wide margins of 15–81%, while maintaining comparable or slightly better F1 scores. This
trend holds for both simpler models like FoldingNet and more expressive architectures like PoinTr.
Where available, the DCD and SWD rows show that APML reduces EMD×100 relative to these
surrogates while matching or improving F1 (e.g., SN34 with PoinTr and FoldingNet), and on MM-Fi
achieves substantially lower EMD×100 than DCD with comparable CD. The disaggregated results,
additional metrics (CD L1 & CD L2) for the PCN dataset, and an analysis of statistical significance
are reported in Appendix C.

Table 1: Aggregated validation results with additional surrogates (DCD, SWD). Completion uses F1
(↑) and EMD×100 (↓); generation uses CD (↓) / EMD×100 (↓). A dash (–) denotes not reported in our
extended runs (e.g., due to applicability under our setup, such as SWD equal-cardinality assumption
or unstable training). Bold denotes the best result within each row.

Loss function

Dataset / Backbone CD [10] HCD [17] InfoCD [16] DCD [28] SWD [19] APML
Point cloud completion (F1 / EMD×100)

PCN
PCN 0.60 / 12.87 0.64 / 6.53 0.64 / 5.54 – – 0.62 / 4.72
FoldingNet 0.43 / 28.71 0.52 / 22.93 0.54 / 21.24 – – 0.56 / 5.34
PoinTr 0.75 / 9.46 0.77 / 8.79 0.43 / 9.72 – – 0.67 / 5.62

ShapeNet-55
FoldingNet 0.11 / 26.50 0.15 / 23.20 0.17 / 19.55 – – 0.20 / 9.07
PoinTr 0.46 / 7.55 0.56 / 9.02 0.35 / 10.35 – – 0.51 / 6.08

ShapeNet-34
FoldingNet 0.11 / 27.71 0.19 / 16.53 0.18 / 22.26 0.19 / 11.52 0.11 / 11.98 0.20 / 9.49
PoinTr 0.42 / 11.88 0.52 / 12.03 0.35 / 13.41 0.47 / 9.48 – 0.50 / 8.14

SN Unseen-21
FoldingNet 0.11 / 32.10 0.19 / 19.27 0.18 / 25.47 – – 0.20 / 10.42
PoinTr 0.42 / 12.89 0.52 / 13.27 0.35 / 15.19 – – 0.49 / 9.19

Point cloud generation from Wi-Fi (CD / EMD×100)

MM-Fi
CSI2PC 0.150 / 34.20 0.149 / 36.75 0.147 / 35.19 0.148 / 25.68 – 0.152 / 14.11

Interestingly, while F1 reflects discrete matching accuracy, it does not fully capture perceptual
alignment or structure preservation. In cases where F1 scores are similar, qualitative samples (see
Fig. 1) and EMD values demonstrate that APML produces more geometrically faithful reconstructions.
This suggests that APML acts as a regularizer toward semantically meaningful one-to-one alignments
that Chamfer-based objectives often miss. On SN34, APML lowers EMD×100 with respect to
DCD while matching or improving F1 (FoldingNet and PoinTr). In MM-Fi, APML achieves a CD
comparable to DCD but reduces EMD×100 by a large margin (from 25.68 to 14.11). A comparative
evaluation of visual perception against the metrics for point clouds can be seen in Appendix D.1.

Stability Analysis. We evaluated APML robustness to input density and batch composition variations
using the synthetic PCOU3D dataset (four primitives, five regimes A–E: sparse, dense, mixed,
completion). We trained FoldingNet comparing APML with CD and InfoCD. The decoder was
always supervised with the 1024-point ground truth.APML was the most stable in all regimes, with
σCD = 0.0013 and σEMD = 0.0025, an order of magnitude lower than CD or InfoCD. On sparse
inputs (regime A) CD’s EMD increased 17% due to many-to-one point collapses, while APML
changed < 6%, near one-to-one correspondences. This confirms that the adaptive temperature
mechanism effectively regularizes matching, reducing sensitivity to density and batch composition
without introducing instability. Further details are provided in Appendix C.1.

Sensitivity to pmin. APML’s only interpretable hyperparameter pmin places a lower bound on the
probability mass for the closest target in the adaptive softmax. We assessed its impact on PCOU3D
and MM-Fi, varying pmin ∈ {0.01, 0.1, 0.5, 0.8}. Across sparse, dense, and completion regimes,
CD and EMD vary < 5% for pmin ∈ [0.01, 0.8]. This weak dependence stems from the analytic
temperature T in Eq. 3, which scales inversely with the local distance gap g. Small gaps increase T ,
distributing probability; large gaps decrease T , yielding sharp assignments. Because T is recomputed
row by row, changing pmin within this broad band leaves the transport plan and its gradients nearly
unchanged. Quantitative results appear in Table 6 and Appendix C.2.
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Ablation of APML components. We isolated the role of each component using PCOU3D regimes
A, B, and E. Removing Sinkhorn normalization markedly increases EMD, especially in dense and
completion settings, due to unconstrained marginals. Using a fixed temperature without adaptivity
(T = 0.1) leads to unstable optimization and much higher losses, indicating the adaptive link between
T and g is necessary. Dropping bidirectional symmetrization introduces directional bias and severely
degrades completion. The complete APML configuration yields the lowest CD and EMD across the
three regimes. Quantitative results appear in Table 7 and Appendix C.2.

Next, we analyze the convergence behavior and runtime characteristics. Table 2 compare wall-
clock training time and memory usage for FoldingNet on the PCN dataset using four different loss
functions. Although APML introduces a ∼30% increase in training time per epoch relative to CD,
its convergence plot, shown in Figure 2, shows substantially faster improvement in validation F1,
reaching strong performance much earlier in training. In practice, this means that APML could
achieve competitive results in significantly fewer epochs, despite all models here being trained for
150 epochs for consistency. Other backbones show similar relative overhead (∼15% and 4-5 x RAM
for FoldingNet).

Table 2: Wall-clock training time and peak
GPU memory usage for FoldingNet trained on
ShapeNet-55 (150 epochs on V100 32GB, batch
size 128).

Loss Time Mem

CD 55 h < 64 GB
HyperCD 57 h < 64 GB
InfoCD 58 h < 64 GB
APML 76 h < 320 GB

Figure 2: F1 score on SN55 validation set across
150 epochs with FoldingNet. APML converges
faster and achieves higher final performance.

Although APML’s memory usage is higher due to the quadratic cost of maintaining a pairwise cost
matrix, this matrix is consistently sparse with over 90% of entries falling near zero before Sinkhorn
normalization. Leveraging sparsity, we can prune almost 99.9% of elements of value < 10−8 with
negligible impact on both qualitative and quantitative results, as seen in Appendix D.3).

5 Discussion

Deep point-cloud supervision has long been torn between efficiency (Chamfer Distance objectives)
and geometric fidelity (exact Earth Mover’s Distance, EMD). Our results show that the proposed
APML largely closes this gap: at a computational cost from ∼15 to 30% higher than CD loss, APML
achieves enough one-to-one alignments to reduce EMD by ∼15–80% across three architectures
and three datasets. In addition, APML reaches its peak validation EMD in fewer epochs than
Chamfer-based training, further lowering the effective computational budget.

Exact EMD is a useful reference for correspondence quality, but its cubic complexity and equal-
cardinality constraint make full-scale training and evaluation impractical for high-resolution com-
pletion and cross-modal generation. We therefore include comparisons to DCD, a density-aware
CD variant, and SWD, an EMD-inspired sliced Wasserstein formulation. In the settings where these
methods are applicable and stable, APML reduces EMD×100 and improves qualitative alignment
(Table 1). Full EMD supervision at scale is out of scope, and the appendix provides added qualitative
comparisons and notes the equal-cardinality and stability constraints that shaped this evaluation.

The controlled study on PCOU3D confirms robustness to input density and batch composition:
across regimes A–D the standard deviation of APML is σCD = 0.0013 and σEMD = 0.0025, well
below CD and InfoCD, and sparse-only training increases EMD by about 17% for CD but by less
than 6% for APML. The analytic temperature that depends on the local distance gap maintains soft
assignments when targets are ambiguous and sharp assignments when a clear match exists, which
stabilizes gradients without manual tuning.

These improvements are enabled by a combination of design choices in APML. First, the data-driven
temperature scheme eliminates the need for a manually tuned Sinkhorn regulariser, as used in
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related optimal transport surrogates [7], yet remains numerically stable; rows with duplicate minima
occurred in fewer than 0.6% of batches. Surprisingly, APML sometimes increases CD-L1/L2
on the strongest backbone (PoinTr), while still improving perceptual metrics and visual quality,
as illustrated in Appendix A. This divergence reinforces recent critiques that Chamfer distance
overweights dense regions and correlates poorly with human judgment [17]. The component ablations
further indicate that temperature and Sinkhorn are coupled parts of a single probabilistic matching
process. Fixing the temperature or removing Sinkhorn sharply degrades performance, and dropping
the bidirectional symmetrization introduces directional bias, especially in completion. The full
configuration consistently yields the lowest CD and EMD on PCOU3D. Second, the benefit is
architecture-agnostic: even the weakest encoder (FoldingNet) enjoys a fivefold reduction in EMD,
suggesting that APML also acts as a geometric regulariser when model capacity is limited. These
gains persist without hyperparameter re-tuning when transferring from ShapeNet to the WiFi-CSI
MM-Fi benchmark, underscoring the robustness of the adaptive temperature mechanism.

Limitations. Despite the strong empirical performance of APML, its general applicability across
architectures, and the absence of extensive tuning requirements, certain limitations remain. First,
although APML eliminates the Sinkhorn regulariser ε, it introduces a single hyper-parameter, the
soft-assignment threshold pmin. We hold pmin = 0.01 constant for all experiments; no tuning was
attempted. During training, the resulting maximum row/column probability typically increases to
∼ 0.8, but this value is a outcome, not a preset. Extremely small or large pmin values can, in principle,
destabilize training, and investigating this sensitivity remains a future work. Our ablation shows
that CD and EMD vary by less than 5% once pmin ∈ [0.01, 0.8] on PCOU3D and MM-Fi, which is
consistent with adaptive temperature computed from the local gap governing the effective sharpness.

Second, the required memory still scales quadratically with point count; for 16k points, the cost
matrix consumes approximately 1.8 GB, which restricts the use of larger batch sizes. Empirically,
most of the similarity values fall to near-zero values after the exponential transformation, rendering
the matrix effectively sparse. We currently store it densely for simplicity; exploiting sparsity or
low-rank factoring [3, 15, 26] could push the effective cost toward O(N logN) and is an obvious
next step. Likewise, our runtime figures use plain PyTorch tensor ops; a fused CUDA kernel could
further narrow the overhead when compared with CD.

Finally, our evaluation spans two synthetic completion sets and one real generation set. We have not
yet measured completion in real-scan datasets such as ScanNet [8] or KITTI [11], nor generation
beyond silhouettes. Thin structures and sensor noise may expose additional failure modes that affect
all transport-based losses, although given the current empirical evidence, we find this unlikely.

Future Work and Broader Impact. Future work will explore learnable or schedule-based alterna-
tives to pmin, low-rank or sliced Sinkhorn variants to reduce memory usage, and a fully optimized
CUDA implementation of APML. Extending evaluation to noisy, real-world scans and non-Euclidean
domains (e.g., surfaces or graphs) is also a priority. These steps aim to bring APML closer to practical
deployment in robotics, AR, and digital twin and simulation settings where perceptual structure
is more important than point-wise precision. In contrast, the same technology might reduce the
barrier to improve indoor sensing from commodity WiFi devices. APML’s one-to-one regularization
could enable lighter, energy-efficient models for edge devices, facilitating real-time 3-D feedback for
low-vision navigation or affordable home robotics. At the same time, stronger completion and WiFi-
based reconstruction lower the technical barrier for covert sensing and would require usage-restricted
licenses and automated filters that reject models fine-tuned on non-consensual data.

6 Conclusion

We introduced Adaptive Probabilistic Matching Loss (APML), a differentiable, near-quadratic
surrogate for Earth Mover’s Distance that brings one-to-one point-set alignment to deep point-cloud
learning with only a modest (∼15%) runtime overhead relative to Chamfer Distance. APML’s
analytically derived, data-driven temperature removes the need for manual Sinkhorn tuning, remains
numerically stable across diverse inputs, and improves perceptual metrics, reducing EMD by 15–81%
on three architectures and 24 ShapeNet classes, while maintaining strong generalisation to domain-
specific WiFi-CSI data. The method’s architecture-agnostic gains, minimal hyperparameter burden,
and competitive efficiency position APML as a drop-in replacement for Chamfer-style losses in point
cloud reconstruction, completion, and generation pipelines.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We believe our claims match with the methods and results. We provide an
overview of our contributions at the end of the introduction (see section 1, that closely match
the presented results in Section 4 and Apendices).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the method and the experimental validation in
the Discussion Section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: No formal theorems presented, although the definition of the loss function is
explained mathematically.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide in an accompanying github repository (https://github.com/
apm-loss/apml)with the code , models and seeds to reproduce the results of both our
method (loss function) and the comparative loss functions. The description of the algorithm
makes it also suitable to be re-implemented.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We evaluate our loss function using publicly available datasets under non-
restrictive licenses; our code is also available on an anonymized GitHub ((https://github.
com/apm-loss/apml).

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide details on the experimental evaluation including the chosen
backbones, possible hyperparameters for the comparative methods, and a description of the
used datasets and metrics.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars or multiple runs over different seeds are not reported because
it would be too computationally expensive to train the models multiple times. Each run
took from 42 to 76h supercomputing-hours; we therefore ran one seed per configuration,
Additionally, the computation of evaluation metrics does not involve significant randomness
or variation. However, we provide limited insights into statistical significance by reporting a
Wilcoxon test across different categories of the PND dataset and report it in Appendix C.3.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In the experiment section we report the computational resources used, running
time during training, and memory consumption

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Upon reading the NeuIPS code of ethics, no ethical concerns were identified.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]
Justification: We briefly discuss the broader impacts of our methods in the discussion
section.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work poses a very low risk of misuse, as it basically covers a new loss
function with similar utility as those available.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Datasets and backbone models are appropriately cited, referenced and credited,
and the terms of use are summarized in the dataset descriptions. We have properly respected
all licenses and terms of use.
Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: APML code is documented in the repository: (https://github.com/
apm-loss/apml)
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human subjects used.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe IRB approvals?
Answer: [NA]
Justification: Not applicable. No human subjects included
Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No LLM in methodology or code. Only used in grammar correction, text
editing and assistive LaTeX formatting.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Appendix: Algorithm description and theoretical analysis

This appendix collects algorithm pseudocode, and a theoretical analysis and comparison against other
loss functions.

A.1 APML Algorithm Summary

The computation of the Adaptive Probabilistic Matching Loss for a batch of predicted point sets X̂
and ground truth point sets X is summarized in Algorithm 1. This procedure includes pairwise cost
computation, adaptive softmax with bidirectional matching, Sinkhorn normalization, and final loss
evaluation.

Input: Predicted point sets X̂ ∈ RB×N×d, Ground truth point sets X ∈ RB×M×d

Input: Hyperparameters: pmin, δ, ϵg (adaptive softmax); Liter, εstab (Sinkhorn)
Output: Loss value LAPML
Initialize total loss: Ltotal ← 0;
for b← 1 to B do

X̂b ← X̂[b, :, :], Xb ← X[b, :, :];
Compute cost matrix Cb ∈ RN×M where (Cb)ij = ∥X̂b,i −Xb,j∥2;
// Compute soft assignments from predicted to ground truth
for i← 1 to N do

ci,· ← (Cb)i,:;
(P1,b)i,: ← AdaptiveSoftmaxVec(ci,·,M, pmin, δ, ϵg);

end
// Compute soft assignments from ground truth to predicted
for j ← 1 to M do

c·,j ← (Cb):,j ;
(P2,b):,j ← AdaptiveSoftmaxVec(c·,j , N, pmin, δ, ϵg);

end
// Symmetrize
Pinit ← 1

2 (P1,b + P2,b);
// Apply Sinkhorn normalization
P ← Pinit;
for l← 1 to Liter do

for j ← 1 to M do
P:,j ← P:,j/

(∑N
k=1 Pk,j + εstab

)
;

end
for i← 1 to N do

Pi,: ← Pi,:/
(∑M

k=1 Pi,k + εstab

)
;

end
end
// Compute loss for current batch item
Lb ←

∑N
i=1

∑M
j=1 Pij · Cb,ij ;

Ltotal ← Ltotal + Lb;
end
LAPML ← Ltotal/B;
return LAPML;

Algorithm 1: Adaptive Probabilistic Matching Loss (APML)

A.2 Theoretical Analysis and Comparison with Other Loss Functions for Point Cloud Tasks

We provide a theoretical comparison of APML with representative loss functions commonly used
in point cloud prediction tasks. The comparison focuses on computational complexity, sensitivity
to outliers and local density variations, and the nature of the assignment strategy. The proposed
APML is contrasted with methods based on nearest-neighbor correspondence and with loss functions
inspired by optimal transport. The comparison is summarized in Table 3.
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Unlike nearest-neighbor-based losses, which rely on discrete assignments and may suffer from
clustering artifacts or instability in sparse regions, APML constructs a probabilistic transport plan
that is refined through iterative normalization. Its formulation avoids the high complexity of exact
optimal transport by using a fixed number of Sinkhorn scaling steps, while introducing an adaptive
temperature mechanism that automatically adjusts the sharpness of the assignment based on the
local cost structure. This allows APML to improve alignment quality without requiring manual
regularization tuning.

Table 3: Theoretical comparison of point cloud loss functions. Complexity assumes N predicted
points, M ground truth points, dimensionality d, and L Sinkhorn iterations (for APML). For EMD,
K = max(N,M) (complexity often cited assuming N ≈M = K).

Loss Function Core Mechanism Complexity (Approx.) Outlier
Sensitivity

Density
Sensitivity

Mapping Pref-
erence

Theoretical Advan-
tages

Limitations

CD [10] Nearest Neighbor
(NN)

O(NMd) (naive) or
O((N + M) logM ·
d) (with spatial struc-
tures)

High Low Many-to-one Simplicity; Relatively
Fast

Outlier & density is-
sues; Clumping; Gradi-
ent quality

EMD [22] Optimal Transport
(Exact LP)

O(K3 logK) Low High One-to-one High geometric fi-
delity; Robustness

Very high computa-
tional cost; Cardinality
constraint (std. form)

DCD [28] Density-weighted
NN

O(NMd) Medium Medium-
High

Many-to-one Attempts improved
density awareness

Can boost sparse out-
liers; Weight tuning

HyperCD [17] Hyperbolic space
NN

O(NMd) Medium Low Many-to-one Down-weights distant
pairs (outlier robust-
ness)

Requires α tuning; Still
NN-based

InfoCD [16] Contrastive NN
Regularization

O(NMd) + Con-
trastive Overhead

Medium Medium
(via spread-
ing)

Many-to-one
(encourages
spreading)

Mitigates clumping;
Improves coverage

Added setup complex-
ity; Contrastive tuning;
Still NN-based

APML (ours) Sinkhorn OT Ap-
prox. w/ Adaptive
Temp.

O(NM(d+ L)) Low-
Medium

Medium-
High

Soft one-to-one EMD-like properties;
Differentiable; Adap-
tive temp. (no global
ϵ tuning)

Higher cost than CD;
Approx. quality (vs ex-
act EMD)

The dominant computational costs of APML arise from the pairwise distance computation, with
complexity O(NMd), and the iterative Sinkhorn normalization, which requires L matrix scaling
steps. This results in an overall complexity of O(NM(d+L)). For point clouds of low dimensionality
(e.g., d = 3) and fixed L (e.g., L = 20), the total cost remains within a practical regime. In contrast
to exact EMD solvers, APML avoids combinatorial optimization by relying on differentiable scaling
operations, making it compatible with standard backpropagation pipelines.

The adaptive temperature mechanism further differentiates APML from other methods that require
manual tuning of regularization parameters, such as ϵ in entropy-regularized Sinkhorn distances or
α in HyperCD. This adaptivity provides per-instance control over the sharpness of the assignment,
enabling the loss to adjust locally to the underlying geometry of the point sets. This design aims to
preserve stable gradients and promote better structural alignment in both dense and sparse regions.

By integrating a transport-based formulation with adaptive regularization, APML represents a
principled alternative to existing point-based losses, combining efficiency, flexibility, and improved
theoretical properties for learning-based geometric matching.

B Technical Appendix: Description of datasets and metrics

This appendix describes in more detail the datasets used and the evaluation metrics chosen.

B.1 Evaluation Databases

The evaluation is conducted using three datasets, which cover standard benchmarks for point cloud
completion and a modality-specific task involving generation from WiFi-based measurements:

• PCN Dataset [33]: The PCN dataset is a commonly used benchmark derived from ShapeNet-
Core [6]. It includes pairs of partial and complete 3D point clouds for a set of object
categories such as airplane, cabinet, car, chair, lamp, sofa, table, and watercraft. The partial
inputs typically contain 2048 points, while the ground truth shapes consist of 16384 points.
These data pairs are used to assess the ability of a model to recover full geometry from
incomplete observations. For the PCN evaluation we follow their standard official splits and
report results on the test sets.
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• ShapeNet (SN34/SN55) [6]: The ShapeNet34 and ShapeNet55 subsets are drawn from
the ShapeNetCore dataset [6], including 34 and 55 object categories, respectively. These
subsets are used to test model generalization in point cloud completion tasks under more
challenging conditions. for ShapeNet-34 and ShapeNet-55, we follow the hard evaluation
protocol, which measures generalization to unseen categories and shapes. ShapeNet-55
includes all 55 categories for both training and evaluation. ShapeNet-34 is trained and tested
on a 34-category subset, while ShapeNet Unseen-21 evaluates generalization by training on
the same 34 categories but testing on the remaining 21. For the PCN and MM-Fi datasets,
we follow their standard official splits and report results on the test sets.

• MM-Fi Dataset [30]: To evaluate APML on a point cloud generation task from a different
modality, we use the MM-Fi dataset [30]. This dataset provides WiFi Channel State
Information (CSI) measurements collected from commercial WiFi devices, along with
corresponding ground truth 3D point clouds captured with a LiDAR device representing
human subjects performing various activities in indoor settings. This dataset is particularly
relevant for assessing the robustness of loss functions in scenarios involving noisy, real-world
sensor data and the generation of complex, dynamic human shapes. For MM-Fi datasets, we
follow their standard official splits and report results on the test sets.

• PCOU3D Synthetic Dataset [5]: For the additional experiments, we constructed a synthetic
dataset, as shown in Figure 3, as a controlled environment to evaluate the stability of APML
under different input conditions. The dataset comprises four analytic primitives: a cube, a
sphere, a pyramid, and a Gaussian blob. Each primitive is represented as a point cloud with
1024 points sampled uniformly from the interior of the shape within the interval [−0.5, 0.5]3.
The data are partitioned into 1,600 shapes for training, 400 for validation, and 400 for
testing, with all ground-truth point clouds containing exactly 1024 points. During training,
the encoder receives a modified version of the ground truth, while the decoder is supervised
against the complete 1024-point cloud. Five regimes are considered: A) all sparse (256
points), B) all dense (1024 points), C) mixed batches with 50% sparse and 50% dense,
D) random assignment with p(sparse) = 0.5, and E) completion with a contiguous patch
removed, leaving 512–1023 points. Regimes A–D evaluate reconstruction robustness to
density variations, while regime E examines completion with missing surface regions. This
setup enables systematic evaluation of stability and density sensitivity across controlled
conditions.

B.2 Evaluation Metrics

To quantitatively assess and compare the performance of models trained with different loss functions
for point cloud completion and generation tasks, we adopt the following standard metrics. Let
X̂ = {x̂1, . . . , x̂N} be the predicted point set and X = {x1, . . . , xM} be the ground truth point set.

Chamfer Distance (CD). The Chamfer Distance measures the average nearest-neighbor distance
between two point sets [10]. We report two common variants:

• CD-L1 (Mean L2 distances): This is the sum of average Euclidean distances between each
point in one set and its closest point in the other set. Lower values are better.

LCD-L1(X̂,X) =
1

N

∑
x̂∈X̂

min
x∈X
∥x̂− x∥2 +

1

M

∑
x∈X

min
x̂∈X̂
∥x− x̂∥2. (10)

• CD-L2 (Mean Squared L2 distances): This is the sum of average squared Euclidean
distances, and is the most common CD formulation. Lower values are better.

LCD-L2(X̂,X) =
1

N

∑
x̂∈X̂

min
x∈X
∥x̂− x∥22 +

1

M

∑
x∈X

min
x̂∈X̂
∥x− x̂∥22. (11)

Earth Mover’s Distance (EMD). EMD measures the minimum cost to transform one point set into
another, reflecting overall structural similarity [22]. For point sets X̂ and X of equal cardinality
(N = M ), it is defined as the solution to an optimal assignment problem:

LEMD(X̂,X) = min
ϕ:X̂→X

∑
x̂i∈X̂

∥x̂i − ϕ(x̂i)∥2, (12)
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Figure 3: Qualitative visualization on PCOU3D. Rows correspond to four analytic shapes: sphere,
cube, pyramid, and Gaussian cluster. Columns correspond to the five input regimes used in our
stability study: A sparse input with 256 points, B dense input with 1024 points, C batch level mix of
sparse and dense, D random per sample mix with probability 0.5 for sparse, and E completion where
a contiguous patch is removed leaving between 512 and 1023 points. In each panel the full ground
truth point cloud is shown in light gray and the regime specific input is overlaid in blue.

where ϕ is a bijection. Due to its computational cost and cardinality constraint (implementations
often require sampling or padding if N ̸= M ), we report EMD multiplied by 100 (EMD×100).
Lower values are better.

F1-Score (@τ ). The F1-score assesses reconstruction accuracy by balancing precision and recall,
commonly used in point cloud completion [33]. Given a distance threshold τ , precision P (τ) and
recall R(τ) are defined as:

P (τ) =
1

N

∑
x̂∈X̂

I
(
min
x∈X
∥x̂− x∥2 < τ

)
, (13)

R(τ) =
1

M

∑
x∈X

I
(
min
x̂∈X̂
∥x− x̂∥2 < τ

)
, (14)

where I(·) is the indicator function. The F1-score is their harmonic mean:

F1(τ) = 2 · P (τ) ·R(τ)

P (τ) +R(τ) + εF1
, (15)

where εF1 is a small constant (e.g., 10−8) to prevent division by zero if both P (τ) and R(τ) are zero.
In our experiments, we use a threshold value of τ = 0.01. Higher F1-scores are better.

We note that while CD-L1 is widely used in evaluation, its suitability for accurately reflecting
perceptual quality in generation tasks can be limited. As will be discussed with our qualitative results,
numerically higher CD values do not always correspond to visually worse point clouds, particularly
when distributed soft matching is involved, and vice-versa.
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C Technical Appendix: Disaggregated results and statistical significance

This appendix shows disaggregated results per category and complementary metrics for some of
the experiments in Section 4. We evaluated APML on the point cloud completion task using the
PCN dataset, comparing its performance when integrated into three different backbone architectures,
FoldingNet [31], PCN [33], and PoinTr [32], against models trained with HyperCD [17] as a strong
baseline. We present the results in Table 4.

Table 4: Performance across PCN Dataset using Metric EMD*100, disaggregated by categories. Best
results per backbone highlighted.

PCN Object Categories
Airplane Cabinet Car Chair Lamp Sofa Table Watercraft

FoldingNet + CD 15.20 35.98 23.26 36.30 38.32 30.16 28.43 22.01
FoldingNet + HCD 14.19 27.03 19.30 30.26 30.86 23.73 19.52 18.55
FoldingNet + InfoCD 13.76 4.15 18.41 23.27 28.54 22.91 21.42 17.42
FoldingNet + APML 3.36 5.62 3.84 6.40 7.89 5.41 5.66 4.52
PCN + CD 34.70 16.82 10.56 14.66 19.84 15.09 10.79 10.46
PCN + HCD 3.86 6.61 3.91 6.81 13.21 6.02 6.52 5.31
PCN + InfoCD 3.54 5.83 3.58 5.40 10.01 5.66 5.71 4.54
PCN + APML 3.14 4.41 3.33 4.83 8.71 4.59 4.76 4.00
PoinTr + CD 5.62 9.16 6.47 8.29 20.28 9.58 9.28 6.96
PoinTr + HCD 4.78 9.05 6.19 7.99 18.40 9.36 8.47 6.06
PoinTr + InfoCD 8.31 9.88 8.76 9.83 11.29 11.22 11.07 7.39
PoinTr + APML 3.22 6.14 5.30 5.55 7.49 6.03 6.25 5.02

C.1 Stability Analysis on the PCOU3D Dataset

To assess the stability of APML under controlled conditions, we introduce the PCOU3D synthetic
dataset described in Appendix B.1. The dataset allows reproducible experiments across five distinct
regimes: A (sparse, 256 points), B (dense, 1024 points), C (batch-level mix 50% A + 50% B), D
(random per-sample mix p = 0.5), and E (completion with contiguous patch removal, 512–1023
points).

We trained FoldingNet for 30 epochs using identical hyperparameters for all losses (Adam optimizer,
learning rate 1 × 10−4, batch size 32). Each model was supervised with the complete 1024-point
cloud. Results are reported on the test set, and lower values indicate better performance.

Table 5: Comparison of performance using CD and EMD metrics on the PCOU3D synthetic dataset.
Lower values are better.

Loss CD (↓) EMD (↓)
A B C D E A B C D E

APML 0.0474 0.0497 0.0502 0.0471 0.0481 0.0433 0.0459 0.0485 0.0416 0.0423
CD 0.0529 0.0413 0.0429 0.0495 0.0492 0.0706 0.0585 0.0626 0.0600 0.0583
InfoCD 0.0496 0.0557 0.0495 0.0509 0.0495 0.0578 0.0805 0.0597 0.0641 0.0639

Key observations.

Table 5 summarizes the stability analysis across all regimes. APML achieves consistently lower
losses and minimal variation between conditions. For example, the difference between the best and
worst regime in EMD remains below 5%, indicating a high robustness compared to CD and InfoCD.
Training with sparse-only inputs (regime A) increases the EMD for CD by approximately 17% due to
many-to-one assignments, while APML shows a variation less than 6%. This confirms that APML
maintains stable matching behavior even under strong input sparsity.
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This stability originates from the adaptive temperature T , computed locally for each row of the cost
matrix based on the distance gap g (see Eq. 3). When candidate targets are close (e.g., distances
0.010 and 0.012, g = 0.002), T becomes large (T ≈ 80), producing a soft assignment P ≈
(0.83, 0.15, . . . ). When the best match is clear (e.g., distances 0.010 and 0.40, g = 0.39), T becomes
small (T ≈ 0.4), yielding a sharp P ≈ (0.99, 0.006, . . . ). As T is recomputed for each mini-batch,
ambiguous matches remain soft while confident matches stay sharp, ensuring smooth gradients
regardless of density or sampling.

We also tested the effect of disabling the uniform fallback, which replaces the temperature-scaled
softmax with a uniform distribution when several minima coincide (g < ϵg). Removing this safeguard
substantially worsened performance, raising the EMD on dense inputs from approximately 0.055 to
0.10, and confirming its importance for numerical stability when ambiguous matches occur. These
results demonstrate that the analytically derived temperature adapts automatically to local structure,
avoiding the need for a manually tuned hyperparameter and maintaining stability across all sampling
regimes. Qualitative reconstructions for regime A are illustrated in Fig. 4, showing that APML retains
global shape integrity across all primitives while CD and InfoCD shows local collapses or flattened
regions.

C.2 Ablation Studies on pmin and APML Components

Table 6 reports an extended sweep of pmin spanning four orders of magnitude (10−4 to 0.999) on the
PCOU3D dataset, together with the corresponding results on MM-Fi for the tested values. Across
all regimes (sparse input (A), dense input (B), and completion (E)), CD and EMD remain nearly
invariant within the practical range pmin∈ [0.01, 0.8], with variations below 5%. The same stability
pattern appears on MM-Fi, confirming that APML is largely insensitive to this hyperparameter.

Table 6: Ablation of pmin on PCOU3D and MM-Fi. Lower is better. Bold values denote the best
performance in each regime.

pmin A (Sparse) B (Dense) E (Completion) MM-Fi

CD EMD CD EMD CD EMD CD EMD

0.0001 0.05335 0.04722 0.05973 0.06322 0.05302 0.04809 – –
0.01 0.05283 0.05248 0.05703 0.05559 0.05324 0.05648 0.1431 0.1686
0.1 0.05068 0.04954 0.05372 0.05907 0.05505 0.05273 0.1398 0.1661

0.25 0.05466 0.06696 0.05653 0.05586 0.05346 0.04937 – –
0.5 0.05586 0.04945 0.05033 0.04300 0.05417 0.05093 0.1371 0.1671

0.75 0.05655 0.05121 0.06147 0.05975 0.05480 0.05094 – –
0.8 0.05331 0.05067 0.05443 0.05191 0.05840 0.05514 0.1392 0.1637
0.9 0.05067 0.05784 0.06168 0.06910 0.05286 0.04892 – –

0.999 0.05262 0.05040 0.05618 0.05372 0.05326 0.05200 – –

This behaviour can be explained analytically. In APML, pmin acts only as a lower bound on the
probability assigned to the closest candidate in the adaptive softmax. The actual sharpness of the
assignment is determined by the adaptive temperature T , calculated from the local distance gap
g as shown in Equation 3. The mapping T (pmin) is monotonic and smooth for all 0 < pmin < 1.
For small pmin, T grows approximately linearly, creating softer assignments. For larger pmin, T
saturates, producing sharper distributions. Because T is recomputed independently for every row
and mini-batch, this self-adaptive mechanism ensures that local geometric relations dominate the
matching behaviour rather than the global hyperparameter setting. Consequently, changes in pmin
across several decades do not substantially alter the resulting transport plan or its gradients. The
observed robustness reflects that the coupling between T and g maintains numerical stability and
consistent matching entropy without the need for manual tuning.

Ablation of APML components. We further isolate the contributions of each component of the
APML formulation: (1) Full: complete APML with adaptive temperature, symmetrization, and
Sinkhorn normalization; (2) No Sinkhorn: adaptive temperature and symmetrization but without the
iterative normalization; (3) Sinkhorn-only: fixed temperature (T = 0.1) without adaptivity; (4) No
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Figure 4: Qualitative comparison on the PCOU3D synthetic dataset under sparse-input regime
(A). Each column shows an input shape (256 points, blue) and the corresponding predicted dense
reconstruction (1024 points, red) for different analytic primitives (sphere, cube, pyramid, Gaussian
cluster). The rows correspond to models trained with APML, standard CD, and InfoCD losses.
APML produces geometrically faithful reconstructions that better preserve global structure and
surface continuity, even when the input is sparse and incomplete. Visual results align with the
quantitative findings in Table 5, confirming that the adaptive temperature stabilizes optimization
across sampling regimes.
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symmetrization: unidirectional matching without averaging the forward and backward assignments.
The results are presented in Table 7.

Table 7: Ablation of APML components on the PCOU3D dataset under regimes A (sparse), B
(dense), and E (completion). Lower is better.

A (Sparse) B (Dense) E (Completion)

Configuration CD EMD CD EMD CD EMD

Full 0.0531 0.0519 0.0544 0.0519 0.0584 0.0551
No Sinkhorn 0.0588 0.0639 0.0659 0.0814 0.0557 0.0851
Sinkhorn-only (T=0.1) 0.1367 0.1029 0.1439 0.1081 0.1508 0.1161
No symmetrization 0.0571 0.0538 0.0582 0.0555 0.4788 0.4122

The results confirm that each stage of APML is functionally necessary. Removing the Sinkhorn
normalization disrupts the marginal constraints of the transport plan, producing biased probability
mass accumulation and increased EMD, especially under dense and completion regimes. Using a
fixed temperature (T = 0.1) without adaptivity prevents the softmax from scaling with the local
distance gap, leading to unstable optimization and loss of geometric consistency. The absence
of symmetrization introduces directional bias, severely degrading the completion regime due to
one-sided correspondences. The full configuration preserves both geometric fidelity and numerical
stability, demonstrating that the adaptive temperature and Sinkhorn normalization jointly define the
probabilistic matching process. These findings support the theoretical interpretation that T shapes
the initial probability landscape, while Sinkhorn refinement ensures coherent transport consistency
between predicted and ground truth sets.

C.3 Statistical significance

We perform statistical significance tests between different loss functions. Figure 5 reports two-sided
Wilcoxon signed-rank tests across the eight PCN categories. APML differs significantly from every
Chamfer-style loss (p = 0.008 in all comparisons), corroborating the quantitative gains in Table 1.
In contrast, the gap between InfoCD and HyperCD is not significant (p = 0.078), matching their
very similar mean F1 scores. These results support the claim that APML delivers a systematic,
category-wise improvement rather than isolated wins in a few classes.

Figure 5: Pair-wise Wilcoxon signed-rank p-values (8 object categories) comparing class-wise F1
scores for FoldingNet on the PCN dataset. Darker cells denote higher p; values below the 0.05
diagonal line indicate statistically significant differences.
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C.4 Results with additional metrics

We focus our main discussion on the Earth Mover’s Distance (EMD) results, as EMD is often
considered a more reliable indicator of perceptual and structural similarity. However, we provide
comprehensive results on various metrics including F1-score (Table 8), CD-L1 (Table 9), and CD-L2
(Table 10).

Table 8: Performance across PCN Dataset Metric F1, disaggregated by categories

airplane cabinet car chair lamp sofa table watercraft

FoldingNet + HCD 0.787 0.436 0.571 0.411 0.439 0.389 0.571 0.573
FoldingNet + APML 0.773 0.535 0.598 0.473 0.477 0.464 0.631 0.589

PCN + HCD 0.863 0.581 0.683 0.542 0.570 0.520 0.706 0.679
PCN + APML 0.842 0.566 0.662 0.534 0.558 0.496 0.681 0.653

PoinTr + HCD 0.929 0.677 0.733 0.737 0.825 0.652 0.823 0.821
PoinTr + APML 0.864 0.548 0.638 0.627 0.700 0.545 0.727 0.718

Table 9: Performance across PCN Dataset Metric CD-L1, disaggregated by categories

airplane cabinet car chair lamp sofa table watercraft

FoldingNet + HCD 7.601 12.657 10.484 13.492 12.977 13.320 11.338 10.988
FoldingNet + APML 8.223 13.391 11.070 15.486 15.913 15.066 12.414 12.007

PCN + HCD 6.076 11.897 9.470 12.645 12.624 12.938 9.932 9.984
PCN + APML 6.631 13.101 10.091 13.676 13.774 14.550 11.082 10.674

PoinTr + HCD 4.589 9.693 8.361 8.377 6.822 9.715 7.045 6.678
PoinTr + APML 5.957 11.813 9.865 10.595 9.371 12.450 9.103 8.622

Table 10: Performance across PCN Dataset Metric CD-L2, disaggregated by categories

airplane cabinet car chair lamp sofa table watercraft

FoldingNet + HCD 0.249 0.530 0.338 0.691 0.692 0.678 0.595 0.456
FoldingNet + APML 0.348 0.695 0.431 1.037 1.134 0.987 0.825 0.612

PCN + HCD 0.172 0.522 0.292 0.619 0.725 0.678 0.477 0.420
PCN + APML 0.238 0.750 0.352 0.774 0.936 0.897 0.622 0.493

PoinTr + HCD 0.095 0.358 0.231 0.267 0.209 0.346 0.208 0.165
PoinTr + APML 0.161 0.514 0.333 0.477 0.473 0.796 0.399 0.299

As shown in Table 4, models trained with APML consistently achieve lower EMD scores compared
to those trained with HyperCD across the three evaluated architectures. This trend is observed in
most category of objects. For example, when using FoldingNet, the EMD score for the category
’airplane’ is reduced from 14.19 to 3.36, and for ’lamp’ from 30.86 to 7.89. Similar reductions are
observed with the PCN and PoinTr architectures, indicating that the predictions obtained with APML
are more geometrically aligned with the ground truth under the EMD metric.

When using CD-L1, CD-L2, and F1-score for evaluation (see Appendix A), the differences are less
significant. In some cases, models trained with HyperCD yield lower CD-based errors. This is
expected, given that the loss function directly optimizes a Chamfer-based objective and therefore
induces a bias in favor of CD-like metrics. Although APML draws from the same theoretical
framework as EMD, it does not directly minimize the EMD score during training. However, its
performance according to this metric indicates an improvement in the structural consistency between
the predicted and reference point clouds. These results are consistent with the qualitative observations
presented in Figure 1, where APML leads to more coherent spatial reconstructions, smoother point
distributions, and more detailed completions.
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D Technical Appendix: Additional experiments and visualizations

This appendix provides additional visualizations of the experiments and metrics.

D.1 Qualitative Comparison: Visual vs. Metric Discrepancy

Figure 6 illustrates a representative case study comparing point cloud reconstructions from four loss
functions: CD, InfoCD, HyperCD, and our proposed APML. All outputs are generated using the
same FoldingNet backbone trained on the PCN dataset.

Figure 6: Qualitative comparison of chair reconstructions across different loss functions. All models
are trained using FoldingNet on the PCN dataset. Despite lower Chamfer Distance (CD) values, CD-
and InfoCD-based reconstructions suffer from visible structural artifacts. APML yields superior
perceptual quality and shape integrity, aligning better with the ground truth (center).

Although CD and InfoCD achieve lower Chamfer Distance scores, the reconstructions are perceptually
inferior, showing missing legs, clumping, or collapsed surfaces. HyperCD slightly improves both CD
and Earth Mover’s Distance (EMD), but artifacts remain visible. In contrast, APML produces a clean
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and geometrically plausible reconstruction, despite yielding a higher CD. This example underscores
a known limitation of CD-based metrics: they disproportionately emphasize dense regions and fail to
penalize structural mismatches. EMD, although more expensive to compute, better reflects perceptual
alignment. APML minimizes this gap by promoting soft, one-to-one correspondences, improving
EMD and qualitative fidelity simultaneously. These results support our broader claim: CD alone is
insufficient to evaluate reconstruction quality, and APML offers a more robust supervision signal for
geometry-aware learning.

To further assess generalization across architectures and datasets, we extended the qualitative analysis
to the Transformer-based PoinTr model trained on the ShapeNet-55 dataset. Figure 7 presents an
example of car reconstruction results using CD, InfoCD, HyperCD, and APML losses.

Figure 7: Qualitative comparison of car reconstructions using the PoinTr backbone on the ShapeNet-
55 dataset. CD and InfoCD generate oversmoothed or partially collapsed geometries, particularly
around the roof and rear. HyperCD improves global outline but introduces uneven surface density.
APML produces the most coherent and well-defined reconstruction, preserving both large-scale
structure and fine details such as the hood and windshield curvature.

The visual comparison in Figure 7 highlights that APML maintains high geometric consistency
even in more complex models where attention mechanisms amplify local feature dependencies. The
probabilistic formulation provides stable gradients during training and avoids degenerate clustering
in dense regions, a common issue in CD-based methods. These qualitative results confirm that APML
not only improves EMD metrics but also enhances the perceptual realism of reconstructed shapes,
validating its robustness across architectures and datasets.

D.2 Convergence Analysis

To better understand the optimization dynamics of APML compared to other loss functions, we
visualize the training convergence behavior in terms of F1 score over epochs. Figure 8 shows the
evolution of F1 score on the validation set during training for to representative configurations: the
PCN backbone trained on the PCN dataset, and the FoldingNet backbone trained on SN34 and SN55.

As shown in the figure, APML consistently achieves faster convergence compared to other methods.
Within the first 20 epochs, it significantly outpaces CD and its variants, and maintains a stable lead in
final performance. The curve for APML shows both higher peak F1 and reduced variance during
late-stage training, suggesting that the smooth gradients and one-to-one soft matching induced by our
loss improve both optimization speed and stability.

HyperCD and InfoCD, while outperforming CD, still lag behind APML throughout training. These
results support the claim that APML accelerates convergence by reducing ambiguity in point assign-
ments and encouraging better spatial regularity in the predicted clouds.

D.3 Empirical Sparsity of the Transport Matrix

We conduct empirical studies on the sparsity of the transport matrix, as constructed before Sinkhorn.
Across all training batches we find that fewer than 8% of the entries in P exceed 10−3, implying
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effective sparsity well above 90 %. The pattern in Figure 9 (computed for the smaller CSI2PC /
MM-Fi model) is typical for all our transport matrices: most probability mass concentrates on a single
column (value 1), a small shoulder appears near the adaptive gap (≈ 0.5 here), and the remainder of
the row is near-zero.

Each heat-map shows a 1 k×1 k crop from a 1.2 k×1.2 k frame block. The bright vertical stripe
corresponds to the single high-probability match selected by the adaptive softmax; faint horizontal
traces stem from the bidirectional averaging step (Sec. 3.2). All remaining cells are exactly zero after
thresholding at 10−4. Again, the patters are also typical for bigger matrices in larger models (up to
16 k×16 k frame blocks).

Implications for memory. Storing P densely dominates GPU memory for large point counts. The
empirical sparsity suggests two straightforward mitigations:

1. Thresholded sparse format. Retaining only values≥ 10−3 yields a∼5–6× reduction in practice,
bringing the largest 16 k matrix below the 40 GB limit of a single A100.

2. Mixed precision. Encoding the surviving non-zero blocks in FP16 would shave a further ∼30 %
off the footprint.

Figure 8: F1 score on the validation set (Top: PCN. Middle: SN34 Bottom: SN55) over 150 epochs
for four loss functions: Chamfer Distance (CD), InfoCD, HyperCD, and our proposed APML. The
backbone is FoldingNet trained on the PCN dataset.
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Figure 9: Examples of the sparsity of the transport matrix P (1.2k×1.2k), as computed before
Sinkhorn for the CSI2PC model. Top four: log–frequency histograms of four randomly selected
frames (all bins left of 0.05 are clamped into the first bar). Bottom four: 1k×1k crops of the same
frames visualised as heat-maps (log colour-scale). In every row, more than 90% of entries are smaller
than 10−3, producing a dominant spike at zero and confirming that P is effectively sparse.

Both the histogram and heat-map example views confirm that effective memory usage is dominated
by a tiny subset of matrix entries. This justifies storing P in a sparse COO/CSR format or computing
with block-sparse kernels, reducing peak GPU RAM by an order of magnitude without altering the
optimisation dynamics.

Sparse implementation of APML. Based on these findings, we implemented a sparsity-based
optimization in which, dynamically, over 99% of the less important cost values are culled (set to
zero), yielding practically the same empirical results.

Our experiments show that the Sparse APML variant achieves close to linear memory scaling and up
to a 99% reduction in memory usage compared to the dense baseline. To show that quality changes
are minimal, we trained CSI2PC on MM-FI with the manual_split configuration from the original
source for 100 epochs and compare the results in Table 11.

Table 11: Loss comparison on MM-FI (Comparing Sparse implementation).

Dataset Model Loss CD (↓) EMD (↓)
MM-FI CSI2PC Sparse APML 0.148 15.90
MM-FI CSI2PC Dense APML 0.139 16.37

As expected, the results are similar, and the images generated with both are almost the same without
a major change.

Peak memory usage. Table 12 summarizes the peak memory footprint for Sparse APML on a
synthetic dataset and the per-sample reduction.

Table 12: Peak memory usage per sample vs. number of points.

#Points Dense APML Sparse APML Reduction

1024 50 MB 0.39 MB ∼ 99.23% ↓
4096 411 MB 1.31 MB ∼ 99.68% ↓
8192 1.6 GB 2.62 MB ∼ 99.84% ↓

32768 18.5 GB 8.58 MB ∼ 99.95% ↓
65536 68 GB 17.1 MB ∼ 99.97% ↓

For a particular case (e.g., PoinTR on ShapeNet34; see Appendix D3), peak memory consumption
during training can be reduced by a factor of 99.9× (from 320GB of VRAM to < 0.5GB). This
demonstrates that APML is practical for large-scale applications.
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