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Abstract

Learning-to-optimize leverages machine learning
to accelerate optimization algorithms. While em-
pirical results show tremendous improvements
compared to classical optimization algorithms,
theoretical guarantees are mostly lacking, such
that the outcome cannot be reliably assured. Espe-
cially, convergence is hardly studied in learning-
to-optimize, because conventional convergence
guarantees in optimization are based on geomet-
ric arguments, which cannot be applied easily to
learned algorithms. Thus, we develop a proba-
bilistic framework that resembles classical opti-
mization and allows for transferring geometric
arguments into learning-to-optimize. Based on
our new proof-strategy, our main theorem is a
generalization result for parametric classes of po-
tentially non-smooth, non-convex loss functions
and establishes the convergence of learned opti-
mization algorithms to critical points with high
probability. This effectively generalizes the re-
sults of a worst-case analysis into a probabilistic
framework, and frees the design of the learned
algorithm from using safeguards.

1. Introduction

Learning-to-optimize utilizes machine learning techniques
to tailor an optimization algorithm to a concrete family of op-
timization problems with similar structure. While this often
leads to enormous gains in performance for problems simi-
lar to the ones during training, the learned algorithm might
completely fail for others. Thus, to have trustworthy algo-
rithms, guarantees are needed. In optimization, the best way
to show that the algorithm behaves correctly is by proving
its convergence to a critical point. In learning-to-optimize,
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however, proving convergence is a hard and long-standing
problem. This is due to the fact that the problem instances
are functions, which cannot be observed globally. Rather,
the region explored during training is strongly influenced by
the chosen initialization and the maximal number of itera-
tions. This begs a fundamental problem for the theoretical
analysis:

It typically prevents the usage of both limits and the
mathematical argument of induction.

As convergence is, by definition, tied to the notion of limits,
this subtlety prevents proving that the learned algorithm
converges. A way to mitigate this problem rather easily is
the usage of safeguards: The update step of the algorithm is
restricted to such an extent that it can be analyzed similar to
a hand-crafted algorithm, independently of the training. Yet,
this comes at a price:

Not only the analysis of the learned algorithm, also its
performance is restricted and eventually similar to
hand-crafted algorithms.

Intuitively, the degradation in performance can be explained
by the fact that this approach attempts to directly apply
traditional convergence results, which are not well-suited
for learning-to-optimize. Instead, we advocate for taking a
new perspective, in which we make more use of our greatest
advantage compared to traditional optimization:

We can actually observe the algorithm during training.

Thus, we present a new proof-strategy that allows us to
derive convergence in learning-to-optimize by means of
generalization. The core idea is to show that the properties
of the trajectory, which are needed to deduce convergence of
the algorithm, actually generalize to unseen problems (test
cases). To demonstrate this, we combine a general conver-
gence result from variational analysis with a PAC-Bayesian
generalization theorem. This results in our main theorem,
which is applicable in a (possibly) non-smooth non-convex
optimization setup, and lower bounds the probability to ob-
serve a trajectory, generated by the learned algorithm, that
converges to a critical point of the loss function. Here, we
want to emphasize that, while we derive a convergence re-
sult for learning-to-optimize, the idea is not restricted to
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optimization. Rather, it applies more generally to sequential
prediction models that exhibit a Markovian structure.

2. Related Work

This work draws on the fields of learning-to-optimize, the
PAC-Bayesian learning approach, and convergence results
based on the Kurdyka-t.ojasiewicz property. For an intro-
duction to learning-to-optimize, Chen et al. (2022) provide
a good overview about the variety of approaches. Simi-
larly, for the PAC-Bayesian approach, good introductory
references are given by Guedj (2019), Alquier (2024), and
Hellstrom et al. (2025), and for the usage of the Kurdyka-
Lojasiewicz property, we refer to Attouch et al. (2013).

Learning-to-Optimize with Guarantees. To date,
learned optimization methods show impressive perfor-
mance, yet lack theoretical guarantees (Chen et al., 2022).
However, in some applications convergence guarantees are
indispensable: It was shown that learning-based methods
might fail to reconstruct the crucial details in a medical
image (Moller et al., 2019). In the same work, the authors
prove convergence of their learned method by restricting
the update to descent directions. Similar safeguarding tech-
niques were employed by Prémont-Schwarz et al. (2022)
and Heaton et al. (2023). The basic idea is to constrain
the learned object in such a way that known convergence
results are applicable, and it has been applied successfully
for different schemes and under different assumptions
(Sreehari et al., 2016; Chan et al., 2017; Teodoro et al.,
2017; Tirer & Giryes, 2019; Buzzard et al., 2018; Ryu et al.,
2019; Sun et al., 2019; Terris et al., 2021; Cohen et al.,
2021). A major advantage of these “constrained” methods
is the fact that the number of iterations is not restricted a
priori and that, often, some convergence guarantees can
be provided. A major drawback, however, is their severe
restriction: Typically, the update-step has to satisfy certain
geometric properties, and the results only apply to specific
algorithms and/or problems. Another approach, pioneered
by Gregor & LeCun (2010), is unrolling, which limits the
number of iterations, yet can be applied to any iterative
algorithm. Here, the IHT algorithm is studied by Xin
et al. (2016) while Chen et al. (2018) consider the unrolled
ISTA. However, in the theoretical analysis of unrolled
algorithms, the notion of convergence itself is difficult, and
one rather has to consider the generalization performance:
This has been done by means of Rademacher complexity
(Chen et al., 2020), by using a stability analysis (Kobler
et al., 2022), or in terms of PAC-Bayesian generalization
guarantees (Sucker & Ochs, 2023; Sucker et al., 2024).
Recently, generalization guarantees based on the whole
trajectory of the algorithm, for example, the expected time
to reach the stopping criterion, have been proposed (Sucker
& Ochs, 2024). The main drawback of generalization

guarantees is their reliance on a specific distribution. To
solve this, another line of work studies the design of learned
optimization algorithms and their training, and how it
affects the possible guarantees (Wichrowska et al., 2017;
Metz et al., 2019; 2022). Here, Liu et al. (2023) identify
common properties of basic optimization algorithms and
propose a math-inspired architecture. Similarly, Castera &
Ochs (2024) analyze widely used optimization algorithms,
extract common geometric properties from them, and
provide design-principles for learning-to-optimize.

PAC-Bayesian Generalization Bounds. The PAC-
Bayesian framework allows for giving high probability
bounds on the risk. The key ingredient is a change-of-
measure inequality, which determines the divergence or
distance in the resulting bound. While most bounds involve
the Kullback—Leibler divergence as measure of proximity
(McAllester, 2003a;b; Seeger, 2002; Langford & Shawe-
Taylor, 2002; Catoni, 2004; 2007; Germain et al., 2009),
more recently other divergences have been used (Honorio &
Jaakkola, 2014; London, 2017; Bégin et al., 2016; Alquier
& Guedj, 2018; Ohnishi & Honorio, 2021; Amit et al., 2022;
Haddouche & Guedj, 2023). In doing so, the PAC-bound
relates the true risk to other terms such as the empirical risk.
Yet, it does not directly say anything about the absolute
numbers. Therefore, one typically aims to minimize the pro-
vided upper bound (Langford & Caruana, 2001; Dziugaite &
Roy, 2017; Pérez-Ortiz et al., 2021; Thiemann et al., 2017).
Nevertheless, a known difficulty in PAC-Bayesian learn-
ing is the choice of the prior distribution, which strongly
influences the performance of the learned models and the
theoretical guarantees (Catoni, 2004; Dziugaite et al., 2021;
Pérez-Ortiz et al., 2021). In part, this is due to the fact that
the divergence term can dominate the bound, such that the
posterior is close to the prior. Especially, this applies to
the Kullback-Leibler divergence, and lead to the idea of
choosing a data- or distribution-dependent prior (Seeger,
2002; Parrado-Hernandez et al., 2012; Lever et al., 2013;
Dziugaite & Roy, 2018; Pérez-Ortiz et al., 2021).

The Kurdyka-Ft.ojasiewicz inequality. Single-point con-
vergence of the trajectory of an algorithm is a challenging
problem, especially in non-smooth non-convex optimization.
For example, Absil et al. (2005) show that this might fail
even for simple algorithms like gradient descent on highly
smooth functions. Further, they show that a remedy is pro-
vided by the Lojasiewicz inequality, which holds for real
analytic functions (Bierstone & Milman, 1988). The large
class of tame functions or definable functions excludes many
pathological failure cases, and extensions of the Lojasiewicz
inequality to smooth definable functions are provided by
Kurdyka (1998). Similarly, extensions to the nonsmooth
subanalytic or definable setting are shown by Bolte et al.
(2007b), Bolte et al. (2007a), and Attouch & Bolte (2009),
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which yields the Kurdyka—Lojasiewicz inequality. It is im-
portant to note that most functions in practice are definable
and thus satisfy the Kurdyka—t.ojasiewicz inequality auto-
matically. Using this, several algorithms have been shown
to converge even for nonconvex functions (Attouch & Bolte,
2009; Attouch et al., 2010; 2013; Bolte et al., 2014; Ochs
et al., 2014; Ochs, 2019).

3. Contributions

* We present a novel approach for deducing the conver-
gence of a generic learned algorithm with high proba-
bility. In doing so, we effectively generalize the results
of a worst-case convergence analysis into a probabilis-
tic setting. Furthermore, the methodology does not
restrict the design of the algorithm and is widely appli-
cable, that is, it can also be used for other sequential
prediction models that exhibit a Markovian structure.

* To showcase the idea, we combine the PAC-Bayesian
generalization theorem provided by Sucker & Ochs
(2024) with the abstract convergence theorem provided
by Attouch et al. (2013) to derive a new convergence
result for our learned optimization algorithm on (pos-
sibly) non-smooth non-convex loss-functions. In do-
ing so, we bring together highly advanced tools from
non-smooth non-convex optimization, stochastic pro-
cess theory, and PAC-Bayesian learning theory, and
effectively solve a long-standing problem of learning-
to-optimize, namely how to obtain convergence guar-
antees without limiting the design of the algorithm.

* We conduct two experiments to show the validity of
our claims: We use a neural-network based iterative
optimization algorithm to a) solve quadratic problems
and b) to train another neural network. In both cases,
the learned algorithm outperforms the baseline and
converges to a critical point with high probability.

4. Simplified Key Idea

Before detailing the setup for learning-to-optimize, we
shortly (and informally) present the main underlying idea
of our proof-strategy, which otherwise might be obscured
by the details: Given an object x and properties a, b, and c,
we are interested in the implication

x satisfies a A b — x satisfies c.

Whenever a single object x has properties a and b, we are
sure that x also possesses c. However, given a collection
of objects {1, 2, ...}, if the properties a and b only hold
for some of these objects, the traditional “implication” is
invalid for the collection, and the language of probability
theory seems more appropriate: Here, a, b and ¢ have to be
rephrased as sets A := {x : x has property a}, B := {x :

2 has property b}, and C := {x : x has property c}, such
that the implication translates into an inclusion:

ANB = {z: zsatisfiesa Ab} C {z : x satisfies ¢} = C.

This enables a more fine-grained result: If we are given
a probability measure p over objects x, we can always
conclude that p{ANB} < p{C}, that s, it is more likely to
observe an object = with property c than to observe an object
with properties a and b. Furthermore, if u{A N B} =1, we
deduce that c holds almost surely.

Most of the time, however, calculating ©{A N B} is infea-
sible, so that it needs to be estimated on a data set. In this
case, two questions arise:

(1) Is the estimate representative for unseen data?

(il) Why do we not simply estimate ;{C} directly?

The first question can be answered in terms of a generaliza-
tion result. By contrast, the second question can be more
subtle: If the property c is observable, estimating u{C}
should be preferred. However, this is not always possi-
ble. In our case, for example, the objects = will be whole
sequences, the property ¢ will be convergence to a critical
point, and i will be the distribution of a Markov process gen-
erated by the algorithm. Thus, without further assumptions
it is practically impossible to observe property c directly,
because convergence of a sequence is a so-called asymptotic
event, which belongs to the tail-o-algebra, that is, it does
not depend on any finite number of iterates and therefore
cannot be observed.

To summarize: Ultimately, we are interested in how likely
it is to observe an object x that possesses property c (here:
a sequence generated by the learned algorithm that con-
verges to a stationary point). For this, we need at least the
distribution p of the objects « under consideration (see The-
orem 6.3). Additionally, since property c is unobservable,
we resort to properties a and b, which imply ¢ (see Theo-
rem 6.5). Then, to be able to assign probabilities to these
properties, we need to translate them into measurable sets
in the appropriate space (see Section 7.1). This allows for
estimating the probability to observe objects x that possess
a and b, which in turn is a lower bound on how many ob-
jects possess c. Finally, since this estimate depends on the
training data, we need to make sure that it also generalizes
to unseen problems (see Theorem 7.6).

5. Notation

We write generic sets in type-writer font, for example,
A C RY, and generic spaces in script-font, for example,
X. Given a metric space X, B.(z) denotes the open ball
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around z € X with radius ¢ > 0, and we assume ev-
ery metric space to be endowed with the metric topology
and corresponding Borel o-field B(X). Similarly, given a
product space X x Y, the product o-algebra is denoted by
B(X) @ B(Y). We consider the space R? with Euclidean
norm |- || and, for notational simplicity, abbreviate  := R¢
and & := RY. The space of sequences in Z is denoted by
FNo_ and we endow it with the product o-algebra, which is
the smallest o-algebra, such that all canonical projections
7 s ENo 5 F, (2W)en, — 29, are measurable. For
notions from non-smooth analysis, we follow Rockafellar
& Wets (1998). In short, a function f : £ — R U {+o0}
is called proper, if f(z) < +oo for at least one z € Z,
and we denote its effective domain by dom f. Further, it
is called lower semi-continuous, if liminf,_,; f(z) > f(2)
for all Z € Z. Furthermore, for z € dom f, the (limiting)
subdifferential of f at z is denoted by 0 f(z). Similarly, for
f:EXxP = RU{+00}, 01f(21, 22) denotes the (partial)
subdifferential of f(-, z3) at z;. In general, 0f : £ = ZF is
a set-valued mapping, and we denote its domain and graph
by dom 0f and gph Of, respectively. Here, a set-valued
mapping 7' : R¥ = R is said to be outer semi-continuous
at z, if limsup,_,; T'(x) C T'(Z), where the outer limit is
defined as limsup, . T(z) = {u| 3z — z, Ju® —
u with u® € T(x(®)}. For convenience of the reader, we
have collected more details in Appendix A. Also, the ex-
act definition of a Kurdyka-Lojasiewicz (KL) function can
be found there, as it is quite intricate. However, for the
following, it is actually sufficient to understand that these
are functions that are “sharp up to reparametrization” (At-
touch et al., 2013), and that many functions encountered in
real-world problems are KL-functions. Finally, the space
of measures on X is denoted by M(X), and all probabil-
ity measures that are absolutely continuous w.r.t. a refer-
ence measure y € M(X) are denote by My (u) == {v €
M(X) : v < pand v[X] = 1}. Here, the Kullback-Leiber
divergence between two measures 1 and v is defined as
Dict(v || p) = vllog(f)] = [y log(f () v(da), if v <
with density f, and +oo otherwise.

6. Problem Setup

Instead of considering a whole class of problems, we assume
that we are given a parametric loss-function { : £ X P —
[0, 00] and a random variable P taking values in the parame-
ter space P = RY. Here, Z = R? is the optimization space
and the ultimate goal would be to solve

in¢
min (z,p)

for every realization P = p. Since we include non-convex
optimization problems, finding the global minimum is infea-
sible, and we focus on finding a critical point instead. For
this, we apply an algorithmic update A : H X P X EXR —

% iteratively to the initial state 2(*) € F:

Z(t+1) :‘A(hvpaz(t))r(t+1))) te NO' (l)

Here, the hyperparameters h € F allow for adjusting the
algorithm, the parameters p € P specify the loss function
((-,p) the algorithm is applied to, and r(**1) € % models
the (internal) randomness of the algorithm. To find suitable
hyperparameters h € #, the algorithm A is trained on an
i.i.d. data set of problem parameters S = (P, ..., Py) in
such a way that its performance on ¢ is superior to that of
traditional algorithms. However, in optimization “perfor-
mance” is usually measured based on the whole sequence
(z(t))teNO, for example, a linear rate of convergence has to
hold for all iterations. Thus, to deal with such measures of
performance, one needs to access the trajectories generated
by A. This is where the Markovian model of Sucker & Ochs
(2024) comes into play: If h and p are fixed along the itera-
tions, Equation (1) can be read as the functional equation of
a Markov process & = (2(!)),¢n,, which defines a distribu-
tion on Yo and thus allows for analyzing these trajectories.
It is based on the following two assumptions:

Assumption 6.1. The state space (F,B(Z),P;), the
parameter space (P,B(P),Pp), the hyperparameter
space (#,B(%),Py), and the randomization space
(R,B(R),Pr) are Polish! probability spaces.
Assumption 6.2. The (possibly extended-valued) loss-
Sunction 0 : £ x P — [0, 00| and the algorithmic update
A:H X P xE xR — Z are both measurable.

Then, Sucker & Ochs (2024) construct a suitable proba-
bility space (Q, A, IP’) that correctly models the joint dis-
tribution of (H, P,¢) on # x P x FNo, that is, the joint
distribution over hyperparameters h, problem parameters p,
and corresponding trajectories £ generated by A(h,p, -, ).
By leveraging a well-known result due to Catoni (2007),
they show that properties of trajectories &, encoded as sets
A € B(P) ®B(F)®No, generalize in a PAC-Bayesian way
(Sucker & Ochs, 2024, Theorem 42):

Theorem 6.3. Let A C P x ENo be measurable, and define
®; Y (p) = T22B). Then, for A € (0,00), it holds that:

Ps{¥p € Mu(Pu) : plP(poym {A}] <

N
1
! (ﬁ > o [P, emp, {A}]

n=1

+DKL(IOHPP>I\)+IOg(é))}2175.

Here, Py is the so-called prior over hyperparameters. Every
p € My (Pg) is called a posterior, P(p ¢ g is the condi-
tional distribution of the parameters with corresponding

YA Polish space is a separable topological space that admits a
complete metrization.
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trajectory, given the hyperparameters, and Pg is the distribu-
tion of the data set S. On an intuitive level, the probability
to observe a problem instance (-, p) and a corresponding
trajectory £ generated by the algorithm A(h, p, -, -), which
satisfies the properties encoded in A, can be bounded based
on empirical estimates. It is important to note that, except
for a brief remark, Sucker & Ochs (2024) do not make any
further use of this result. In this paper, we observe the
power of this theorem and apply it to the set of sequences
that converge to a critical point of /.

Definition 6.4. Let f : £ — RU{+o0} be proper. A point
z € Z is called critical for f,if 0 € Of(2).

It is crucial to realize that, usually it is impossible to observe
convergence directly, as it belongs to the class of fail events,
which do not depend on any finite number of iterates. Hence,
to be able to apply the generalization result from above, we
need abstract properties that do not depend on the imple-
mentation of the algorithm, are easily observable during
training, and are sufficient to deduce convergence, which, as
we discussed in the related work, is highly non-trivial in the
challenging setup of non-smooth non-convex optimization.
Nevertheless, such conditions are provided by the following
result due to Attouch et al. (2013, Theorem 2.9):

Theorem 6.5. Let f : £ — RU {+o0} be a proper lower
semi-continuous function that is bounded from below. Fur-
ther, suppose that (z(t))teNo C Z is a sequence satisfying
the following property: There exist positive scalars a and b,
such that the following conditions hold:

(i) Sufficient-decrease: For each t € Ny, f(z(Y) +
af 2+ — 202 < f(21).

(ii) Relative-error: For each t € Ny, there exists v('t1) ¢
Of (2D with ||o@D || < b||zHD — 2O,

(iii) Continuity:  For any convergent subsequence
2(8) 720 2 e have f(2(19)) 7257 f(3).

If. additionally, the sequence (2)) e, is bounded and f is
a Kurdyka-Lojasiewicz function, then (Z(t))teNo converges
to a critical point of f.

Remark 6.6. (i) The continuity condition cannot be
checked in practice. Therefore, we will have to as-
sume that ¢(-, p) is continuous on its domain.

(ii)) Theorem 2.9 of Attouch et al. (2013) is stated slightly
different: They assume existence of a convergent sub-
sequence instead of boundedness. Yet, boundedness
implies existence and is standard (Bolte et al., 2014).

(iii) In Appendix B, we provide examples to underline the
necessity of these conditions. Especially, we show that
the sufficient-descent condition alone is not sufficient

for deducing convergence to a critical point, which
appears to be a common misconception.

Since we want to employ these results from variational cal-
culus, we have to make the restriction to £ = R? and
% = R?. However, one could also consider a (finite-
dimensional) state space £ that encompasses the space of
the optimization variable, that is, £ = R x R and, by
projecting onto R%!, the results carry over immediately.’

Assumption 6.7. We have £ = R? and & = RY, and
the function ¢ : £ x P — [0, 0] is proper, lower semi-
continuous, and continuous on dom ¢. Furthermore, the
map (z,p) — 014(z, p) is outer semi-continuous.

7. Theoretical Results

Now, we concretize our key idea from Section 4 for the
setting of learning-to-optimize, and combine Theorem 6.3
with Theorem 6.5 to get a generalization result for the con-
vergence of learned algorithms to critical points. In doing
so, we bring together advanced tools from learning theory
and optimization: We show that the probability to observe
a parameter p and a corresponding trajectory &, which con-
verges to a critical point of ¢(-, p), generalizes. For this, we
formulate the sufficient-descent condition, the relative-error
condition, and the boundedness assumption as measurable
sets in @ x ENo_ such that their intersection is exactly the
set of sequences satisfying the properties of Theorem 6.5.

7.1. Measurability

While measurability is usually dismissed as a technical-
ity, it is absolutely necessary for the validity of employed
theorems. Thus, to be able to apply Theorem 6.3, we
have to show that these sets are actually measurable w.r.t.
B(P) @ B(F)®No, which, unfortunately, is not a given.
Hence, denote the (parametric) set of critical points of £ by

Acit = {(p,2) EP XE : 0€ 01 l(z,p)}.

Then, the section Agyi p = {2z € E
the set of critical points of £(-, p).

i (p,2) € Aqig } is

Lemma 7.1. Suppose that Assumptions 6.1, 6.2 and 6.7
hold. Define the (parametric) set of sequences that converge
to a critical point of £ as

Aconv = {(p, (2 )seny) € P x ET
* . i ) _ x| =
32" € Acrit,p S-1. tlgglo IE3 z*| =0}.

Then Acony is measurable.

Proof. The proof is highly non-trivial and can be found in
Appendix C. However, the idea is simple: Ao,y can be

2For the cost of an even heavier notation, which is why we
have omitted doing it here.
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written as countable intersection/union of measurable sets.
This is possible, because we consider Polish spaces, that is,
they have a countable dense subset and they are complete,
that is, limits of Cauchy sequences are inside the space. [

Lemma 7.2. Assume that Assumptions 6.1 and 6.2 hold.
Define the (parametric) set of sequences that satisfy the
sufficient-descent condition as

AdeSC = {(pv (Z(t))tGNo) €P X %No :

(zM)en, C dom £(-,p) and Ja > 0 5.t. Vt € Ny
(), )+ a4 — 2O < 60, )

Then Agesc is measurable.
Proof. The proof can be found in Appendix D. O

We proceed with the relative error condition. It involves
a union over all subgradients, and thus might not be mea-
surable. Hence, we have to restrict to subgradients given
through a measurable selection, that is, a measurable func-
tion v : dom 014 — Z, such that v(z,p) € 014(z,p) for
every (z,p) € dom 0;¢. Under the given assumptions, its
existence is guaranteed by Corollary E.3.

Lemma 7.3. Suppose that Assumptions 6.1, 6.2 and 6.7
hold. Define the (parametric) set of sequences that satisfy
the relative-error condition as

Acrr = {(pa (Z(t))teNo) €PxEN:
(p,z®) € dom 9,4Vt € Ny and 3b > 0 5.1. Vt € Ny
(=D, p) < BJD = 2O}

Then Ay is measurable.

Proof. The proof can be found in Appendix E. O

Lemma 7.4. Assume that Assumption 6.1 holds. Define the
set of bounded sequences as:

Abound = {(Z(t))teNo e FMo .

Je>0st 2P| <cVte NO} .
Then Apound := P X Abound is measurable.

Proof. The proof can be found in Appendix F. O

7.2. Convergence to critical points

We are now in a position to derive our main result.

Corollary 7.5. Suppose that Assumptions 6.1, 6.2, and
6.7 hold. Furthermore, assume that ((-,p) is a Kurdyka-
Lojasiewicz function for every p € P. Then the sets Agesc N
Acrr N Abound € P X ENo and Acory € P x ENo are
measurable, and it holds that:

Adesc N Aerr N Abound C Aconv .

Proof. Let (p, (z(t))tENo) € Adesec N Acrr N Apouna. Thus,
(2)),en, satisfies both the sufficient-descent and the
relative-error condition for £(-,p), and (2()cn, stays
bounded. Further, (2(Y)),cy, also satisfies the continuity
condition, since we have (2("));cy, C dom £(-,p) and ¢
is continuous on its domain. Hence, Theorem 6.5 implies
that (2(!)),cn, converges to a critical point of £(-, p), that s,
there exists 2* € At p, such that lim;_, o ||z — 2*|| = 0.
Therefore, (p, (2)en,) € Aconv- O

In particular, if y is a (probability) measure on P x FENo,
for example, u = P(p¢) = for a given h € 7, by the
monotonicity of measures it holds that:

ﬂ{Adesc N Aerr N Abound} é N{Aconv} .

This idea yields our main theorem:

Theorem 7.6. Suppose that Assumptions 6.1, 6.2, and 6.7
hold. Further, assume that £(-, p) is a Kurdyka—Lojasiewicz
function for every p € P. Abbreviate A := Adesc N Acrr N
Abound. Then, for A € (0, 00), it holds that:

PS{VP € MI(PH) : p[]P)(P,E)\H {Aconv}] >1-
1 N
-1 c
o (ﬁ ;P [P(p,g1m.p, {A7]

+DKL(p||Pf;)+log(%))}21_6,

Proof. By taking the complementary events in Corol-
lary 7.5, we have Py-a.s.:

]P)(Pvf)‘H{AC} >1- ]P)(P,E)|H {Aconv} .

By Theorem 6.3, for any measurable set B C % x £No and
A € (0,00), we have:

]P’S{Vp € My(Py) : plPipeym {B}] <

N
_ 1
cIJ%l (N ; p [Pp, e H,p, {B}]

+DKL(p|Pfj\)+10g(i))}21_5.

Hence, using B := A€, inserting the inequality above, and
rearranging the terms yields the result. O
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Remark7.77. (i) The lower bound actually applies to
P(p¢) r{A}. Since the difference P(p ¢) i {Aconv \A}
is unknown, we do not know the tightness of this bound

fOf P(P,§)|H{ACOHV}'

(i) We want to stress the following: We do not assume
that the conditions of Theorem 6.5, for example, the
sufficient-descent condition, do hold per se. As de-
scribed in Section 4 about the underlying idea, this
theorem is rather about the fact that, based on our obser-
vations during training, we can deduce how often these
conditions will hold on unseen problem instances.

(iii) For large N, if X is chosen correctly, we can approx-
imate ®3'(p) ~ p. Assuming this holds, and abbre-
N

Viatinj% the empirical approximation as ]13’( PoH =
% > n—1P(p, ¢, H,P,» the inequality reads:

PIPpe)  {Aconv}] > p [I@’(P,g)m {A}}

Dxv(p || Px) + log (%)
+ 1 .

This is intuitive: For larger N, we have more confi-
dence in our estimate I@’( p.e)|H {A}, so we can choose
a larger A\ which dampens the last term and tightens
the lower bound for P(p ¢y 7 { Aconv }-

8. Experiments

In this section, we conduct two experiments: The strongly
convex and smooth problem of minimizing quadratic func-
tions with varying strong convexity, varying smoothness,
and varying right-hand side, and the non-smooth non-convex
problem of training a neural network on different data sets.
The code to reproduce the results can be found at https:
//github.com/MichiSucker/COLA_2024.

8.1. Quadratic Problems

First, we train the algorithm A to solve quadratic problems.
Thus, each optimization problem £(-, p) is of the form

1
min —||Az —b)|?, AR pecRY,
2€Rd 2

such that the parameters are given by p = (A4,b) €
R+ =, 9%, and the optimization variable is z €
R? d = 200. The strong-convexity and smoothness

constants of ¢ are sampled randomly in the intervals
[m_,my],[L_,Ly] C (0,400), and we define the ma-
trix A;, j = 1,...,N, as diagonal matrix with entries
al, = Vg +i(\/Ly — \/mj)/d, i = 1,...,d. In prin-
ciple, this is a severe restriction. However, we do not use
this knowledge explicitly in the design of our algorithm A,

that is, if the algorithm “finds” this structure during learn-
ing by itself, it can leverage on it. Like this, the given
class of functions is L -smooth and m_ -strongly convex,
such that we use heavy-ball with friction (HBF) (Polyak,
1964) as worst-case optimal baseline. Its update is given
by 2+ = 20 — BV F (M) 4 By (2 — 2(t=Y)), where
the optimal worst-case convergence rate is attained for 5; =

2 2

(ﬁ) ,Ba = (%) (Nesterov, 2018).
Similarly, the learned algorithm A performs an update of
the form 2+ = 2(t) 4 (1) where B*) and d) are
predicted by separate blocks of a neural network. Here, we
stress that the update is not constrained in any way. For more
details on the architecture we refer to Appendix G. Since
the functions are smooth and strongly convex, we only have
to check the sufficient-descent condition and the relative-
error condition. Obviously, in practice it is impossible to
check them for all ¢ € Ng. Thus, we restrict to ;4 = 500
iterations. Then, given a measurable selection v(z,p) €
014(z,p), the relative-error condition is trivially satisfied
with b = maxe<y,, {0z, p) ||}/ mins<s,,,, 27—
2= |, such that we only have to check the sufficient-
descent condition during training. Finally, we consider £ to
be converged, if the loss is smaller than 10~ 16, For more de-
tails we refer again to Appendix G. The results are shown in
Figure 1: The left plot shows the distance to the minimizer
z* over the iterations, where HBF is shown in blue and the
learned algorithm in pink, and we can see that the learned
algorithm is clearly superior. The right plot shows the
estimated probabilities P(p¢) iz {A} (yellow dashed line),
P(p.¢)|r{Aconv} (purple dashed line), and the PAC-bound
(orange dotted line) on 250 test sets of size N = 250. We
can see that the PAC-bound is quite tight for P(p ¢y z {A},
while there is a substantial gap P(p ¢y 7 {Aconv \ A}. Never-
theless, it guarantees convergence of the learned algorithm
in about 75% of the test problems.

8.2. Training a Neural Network

As second experiment, we train the algorithm A to train
a neural network N on a regression problem. Thus, the al-
gorithm A predicts parameters 3 € R?, such that N(3, -)
estimates a function ¢ : R — R from noisy observa-
tions Yij = gl(x]) + Eij» T = 17...7N, j = 1,...7K
(K = 50), with &; ; ud N(0,1). Here, we use the mean
square error as loss for the neural network, and for N we
use a fully-connected two layer neural network with ReLLU-
activation functions. Then, by using the data sets as param-
eters, that is, P = R**2 and p; = {(2;,vi;)} ;. the
loss functions for the algorithm are given by £(5,p;) =
+ Zszl(N(B, ;) — vi;)?, which are non-smooth and
non-convex in B. Here, the input x is transformed into
the vector (x, 22, ..., 2°), such that the parameters 3 € R?
are given by the weights A; € R59%% A, € R1*59 and
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Figure 1. Quadratic problems: The left figure shows the distance to the minimizer over the iterations, where heavy-ball with friction
(HBF) is shown in blue and the learned algorithm in pink. The mean and median are shown as dashed and dotted lines, respectively, while
the shaded region represents 95% of the test data. One can see that the learned algorithm converges way faster than HBF. The right plot
shows the estimates (dashed lines) for P(p ¢y 5 {A} (orange), P(p ¢z {Aconv} (purple), and the PAC-bound (dark orange). One can see
that the predicted chain of inequalities 1 — ®~*(...) < Ppeyr{A} < Pp,e) a{Aconv } does hold true.

biases b € R?°,b, € R of the two fully-connected lay-
ers. Thus, the optimization space is of dimension p = 351.
For the functions g; we use polynomials of degree d = 5,
where we sample the coefficients (¢; 0, ..., ¢; 5) uniformly
in [—5, 5]. Similarly, we sample the points {z; ;}/~, uni-
formly in [—2,2]. As baseline we use Adam (Kingma &
Ba, 2015) as it is implemented in PyTorch (Paszke et al.,
2019), and we tune its step-size with a simple grid search
over 100 values in [10~%, 1072], such that its performance
is best for the given ¢y, = 250 iterations. This yields the
value £ = 0.008. Note that we use Adam in the “full-batch
setting” here, while, originally, it was introduced for the
stochastic case. On the other hand, the learned algorithm
performs the update z(*+1) = 2(*) 4 d(®) /\/t, where d® is
predicted by a neural network. Again, we stress that d(*) is
not constrained in any way. For more details on the archi-
tecture, we refer to Appendix I. As we cannot access the
critical points directly, we approximate them by running
gradient descent for 5 - 10* iterations with a step-size of
1-1079, starting for each problem and algorithm from the
last iterate (¢ = 500). Similarly, we cannot estimate the
convergence probability in this case, only the probability for
the event A. The results of this experiment are shown in Fig-
ure 2: The left plot shows the distance to the critical point
and the plot in the middle shows the loss. Here, Adam is
shown in blue, while the learned algorithm is shown in pink.
Finally, the right plot shows the estimate for P(p ¢) g {A}
and the predicted PAC-bound. We can see that the learned
algorithm does indeed seem to converge to a critical point
and it minimizes the loss faster than Adam. Further, the
PAC-bound is quite tight, and it guarantees that the learned
algorithm will converge in about 92% of the problems.

9. Conclusion

We presented a novel method for deducing convergence of
generic learned algorithms that exhibit a Markovian struc-
ture with high probability. To showcase the idea, we derived
a new convergence result for learned optimization algo-
rithms on (possibly) non-smooth non-convex loss-functions
based on generalization. This was based on the fundamental
insight that, contrary to traditional optimization, in learning-
to-optimize we can actually observe the algorithm during
training. While the approach is theoretically sound, prac-
tically it has at least four drawbacks, on which we shortly
want to comment: First, and foremost, one simply cannot
observe the whole trajectory in practice. Thus, one can only
obtain an approximation to this result, that is, whether the
used conditions do hold up to a certain number of iterations.
Nevertheless, by using sufficiently many iterations, one can
guarantee that the algorithm gets sufficiently close to a criti-
cal point. Second, instead of verifying the conditions used
here, one could alternatively try to observe the final result
directly, for example by looking at the norm of the gradient.
However, when checking the proposed conditions one is
guaranteed to get arbitrary close to a critical point, while, in
the other case, one could end up with a small gradient norm
that is arbitrary far away from a critical point. Especially,
this applies in the non-smooth setting, where the subdiffer-
ential does not necessarily tell anything about the distance
to a critical point?, or to applications where one simply can-
not access critical points during training. Third, for now,
training the algorithm in such a way that it actually does
satisfy the proposed properties on a majority of problems

3For example, consider f(z) = |z|.
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Figure 2. Training a neural network: The left figure shows the distance to the estimated critical point and the figure in the middle shows the
loss. Adam is shown in blue and the learned algorithm in pink. The mean and median are shown as dashed and dotted lines, respectively,
while the shaded region represents 95% of the test data. We see that the learned algorithm minimizes the loss faster than Adam, and seems
to converge to a critical point. The right plot shows the estimate for P(p, ¢y z {A} (orange dashed line) and the PAC-bound (dark orange).

is quite difficult and time-consuming. Lastly, due to the
sufficient-descent condition, Theorem 6.5 is not well-suited
for stochastic optimization. Nevertheless, Theorem 6.3 and
the proposed approach can directly be transferred to the
stochastic setting, which we leave for future work.
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A. Missing Definitions

The following definitions can be found in the book of Rockafellar & Wets (1998). A function f : R? — R U {00} is called
proper, if f(z) < +oo for at least one point z € R? and f(x) > —oo for all z € R%. In this case, the effective domain of f

is the set
dom f:={z € R? : f(x) < 4o0}.

Similarly, for a set-valued mapping 7' : X = Y the graph is defined as
gph T :={(z,y) eX xY : yeT(x)},

while its domain is defined as
domT:={zeX : T(x)#0}.

The outer limit of a set-valued map 7" : R* = R is defined as:

limsup T'(x) := {y | 32 — z, Iy — y with y) T(z(t))} .

rT—T

Based on this, T is said to be outer semi-continuous at T, if

limsup T'(z) C T(Z) .

T—T

Definition A.1. Consider a function f : R — R U {#00} and a point Z € dom f. For a vector v € R%, one says that

(1) v is a regular subgradient of f at T, if
f@) = f(2) + (v, = 2) +o(|Jz — z[) -
The set of regular subgradients of f at Z, denoted by d f(Z), is called the regular subdifferential of f at T.
(ii) v is a (general) subgradient of f at z, if there are sequences z(¥) — z and v*) — v with f(z®) — f(z) and

v® € f(x®). The set of subgradients of f at Z, denoted by df (), is called the (limiting) subdifferential of f at Z.

Finally, the following definition can be found in Attouch et al. (2013, Definition 2.4, p.7).
Definition A.2. a) The function f : R? — R U {400} is said to have the Kurdyka-Lojasiewicz property at & € dom Jf,
if there exist € (0, +00], a neighborhood U of Z, and a continuous concave function ¢ : [0, 1) — [0, 00), such that
() »(0) =0,
(i) is C'on (0,7),
(iii) forall s € (0,7), ¢'(s) > 0,
(iv) forallzin U N{f(Z) < f < f(Z) + n}, the Kurdyka-Lojasiewicz inequality holds

¢ (f(x) — f(2)) - dist(0,0f (x)) = 1.
b) Proper lower semi-continuous functions which satisty the Kurdyka-fojasiewicz property at each point of dom O f are

called Kurdyka-Lojasiewicz functions.

B. Counterexamples

Example B.1 (Violation of boundedness assumption). Starting from z(!) := 1, define the sequence for 2 < t € Nby z(*) :=
21 4 +, and consider the positive and convex function f(z) := exp(—z). We show that the sequence (21)en does

satisfy the sufficient-descent condition for f: By definition, we have the recursive formula f(z(*+1)) = f(2(*)) exp (— tJ%l),
which allows for rewriting the sufficient-descent condition as:

13
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Then, we have to find a > 0 satlsfylng this inequality for all ¢ € N. For ¢ = 1, the right-hand side is greater than 1 - such

that we can choose any a € (0, §] (rough estimate). Thus, take a € (0, 5], such that @ := a - 2e € (0, 5], and proceed by
induction (note that a satisfies the stated condition for ¢ = 1). Assuming that the inequality holds true for up to time ¢, we

get by the induction hypothesis:
a t+ 1\ 1
< 1-— - ®
(t+2)2_<t+2) < eXp( t+1)>f(z )

By inserting a trivial 1 three-times, the right-hand side can be written as:

1
t+1)\° 1\ exp (*) -1 1
() oo () gy (e (o) e
+ + exp (H_%) —1 +
Here, the first term is bounded by 1, the second by e, and the third by 2. Hence, dividing both sides by 2e, we get:

e = (1o () 1)

such that (z (t))teN satisfies the sufficient-descent condition for f. Nevertheless, we have 2 = (=1 4 +i=...= Zk 1 k,

such that |z(t)| 20 o0, that is, the sequence is unbounded and does not converge.

Example B.2 (Violation of relative-error condition). Consider the smooth and strongly convex function f(z1, 2z2) =
122 + 123, and define the sequence (), 22());en, C R? through

(21D 2 D) = (5B — 0,12, 2, M)

Then we have ||(z; 01D 25(FD) — (2, () 2, 0)|2 = (0.1zl(t))2, and it holds:

1 2 1 2
F( D, 24Dy = 5 (le _ 0_121@)) +5 (22@))
2 1 2
— ) . 1)y _ (t) 2 (t)
f(Zl , 22 ) 0.1 (2’1 ) + 5 (0.12’1 )
= f(21W, 220) — 9.5]| (21 TV 2o 1) — (2 2|2,

such that (z;*+1) 2,(t+1)) satisfies the sufficient-descent condition. However, for z,(?) # 0, the sequence converges to
(0, 25(9), which is not a critical point of f.

C. Proof of Lemma 7.1

Lemma C.1. Suppose Assumption 6.7 holds. Then, A, is closed.

Proof. Take (p®, 2));en C Acyie with (p®),2()) = (p,2) € P x E. We need to show that (p,2) € A Since
(z,p) = 014(z, p) is outer semi-continuous, we have:

limsup 14(z,p) C 014(Z,D) .
(z:p)—(2,p)

By definition of the outer limit, this is the same as:
{u e Z |30, pM) = (z,p), I — uwithu® e Blf(z(t),p(t))} C 014(z,p) .

In particular, we have that (2, p(!)),cxy — (2, p), and it holds 0 € d1£(z®), p®) for all t € N. Thus, setting 1) := 0 for
all t € N and u := 0, we conclude that 0 € 014(Z, p). Hence, (D, Z) € Acit, and A,y is closed. O

Now, we can prove Lemma 7.1:

14
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Proof. To show measurability of A.qpy, We adopt the notation of the limes inferior for sets from probability theory: If d is a
metric on P x F and ¢ > 0, define the set

{B:(p, 2) ult.} := {(p',z(t)) € B:(p, ult} U ﬂ { P, 2) e B.(p, )} .

neNg t>n

Here, {(p/,2(")) € B.(p,2)} is a short-hand notation for {(p, (2®)en,) € P x ENo : (p/,2M)) € B.(p,2)}. Thus,
{B:(p, z) ult.} is the (parametric) set of all sequences in Z that ultimately lie in the ball with radius € around (p, z). Note
that {B.(p, z) ult.} is measurable w.r.t. to the product o-algebra on % x Zo, since it is the countable union/intersection
of measurable sets, where {(p’, 2®)) € B.(p, 2)} is measurable, since it can be written as {d((p’,2)), (p, 2)) < €} =
(g o (id, 7))~ " [0, ). Here, id is the identity on %, and g(p', z’) := d((p/, '), (p, 2)) is continuous.

Since the proof does not get more complicated by considering general Polish space %, % instead of R? and R¢, we prove
the result in this more general setting. For this, denote the the complete metric on & by dg, and the one on & by d=.
Then we have that dg«% := dg + dg is a metric on &P x ZF that metrizes the product-topology, that is, it yields the same
o-algebra. Similarly, denote the countable dense subset in & by P, and the one in £ by Z. Then we have that D := P x Z
is a countable and dense subset of P x ZF.

If At is empty, we get that A.on, = (), which is measurable. Hence, w.l.0.g. assume that A.;; # 0. We claim that:

Aconv = C:= m U {Bl/k(p, Z) lllt.} .

keN (p,z)€D
AcrisNB1k (p,2) #0

If this equality holds, A.ony is measurable as a countable intersection/union of measurable sets. Thus, it remains to show the
equality A.ony = C, which we do by showing both inclusions. Therefore, first, take (p, (z(t))teNo) € Aconv. Then there
exists z* € ZF, such that (p, 2*) € Acyie and limy_, o dz(z(t), z*) = 0. Hence, for any k € N, there exists ¢, € N, such that
2 € By 31,(2*) for all t > t;,. Now, take (py, z1;) € D, such that py, € By 31.(p) and 2, € By /34(2*), which exists, since
D is dense. Then, for all ¢ > t;, we have:

dg sz ((p, 2), (pr, 21)) = do (p, pi) + dz (29, 21) < dop(p, pr) + dex (29, 2%) + dg (27, 21,) <

)

=

that is, (p, (2V)ten,) € {B1,x(pk, z) ult.}. Further, we have:

| =

<

£l

d@xi((ﬁv Z*)7 (pk7 Zk)) <

—

Hence, (px, z) € D with Acic N By /i (pk, 21) # 0. Since such a tuple (py, zx) € D can be found for any k € N, we get:

(0, (2)sen,) € U {Bi/x(p',2")ult.}, VkeN.
(»',2")eD
AcritNBy /i (p',2")#0

Then, however, this implies (p, (2(!)sen,) € C, which shows the inclusion A,y C C. Now, conversely, let
(p, (2)¢en,) € C. Then, for every k € N there exists (pg,zx) € D with A N Bi/k(Pk,2x) # 0, and a t, € N,
such that

(®)

(p,2'") € Byji(prs2), VE> 1.

The resulting sequence of midpoints (p, 2 )ken is Cauchy in P x E, because: For k,! € N, we have that (p, z(t)) €
B1/k(pk,21) for all t > t, and (p,z(t)) € Bys(pi,z) forall t > t;. Thus, for ¢ > T := max{ty,t;}, we get
(p,2®) € By x(pk, z1) N B11(p1, 1), which allows for the following bound:

doxz ((Pk, 2k), (D1, 21)) < d@x?f((pkazk) (p, 2")) + dgpxez ((p, 2)), (p, 21)))
+dgxz ((p, 27, (p, 2)) + dgp ez ((p, 2, (01, 21))
1+2+2+1 3+§k,13000
—k k l I — k l
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Hence, by completeness of P x Z, the sequence (pg, 2k )ken has a limit (p*, 2*) in P x ZF. First, we show that p* = p:
Since (p, (%)) € B1/k(pk, z1) for all k € N, we have by continuity of the metric:

1
dg(p,p*) = lim dg(p,pr) < lim dgxz((p, 2)), (pr, 2¢)) < lim — = 0.
k—oo k—o00 k

—o0 k

Thus, actually, (pg,zk) — (p, 2*). Second, we show that (p,z*) € A, that is, 2* € Agpig,p: Assume the contrary,

that is, (p, 2*) € A¢. By Lemma C.1, the set A, is closed. Thus, its complement AS;, is open, and there exists

e > 0 with B.(p, z*) C A%, that is, B.(p, z*) N Acis = 0. Since (pk, zx) — (p, 2*), there exists N € N, such that

crit>

dg xz ((Pr; 2k), (p, 2)) < § forall k > N. Then, however, taking & > N with % < §, we conclude that
B1/k(Prs 21) N Acric = 0.

By definition of the sequence (py, zx ) ken, this is a contradiction. Hence, we have (p, z*) € Ait, and it remains to show
that also the sequence (z());cn, converges to z*. For this, assume the contrary again. Then there exists an ¢ > 0 with the
property that for all 7' € N, one can find a t > T, such that ds (z(f), 2*) > e. Now, choose k € N large enough, such that
dz (2, 2*) < § and ¢ < §. Then, since (p, 2®) € By /1.(pk, 2) for all £ > t;,, we have:

2
dgg(z(t),z*) < dgg(z(t),zk) +dg (2, 2%) < Ea <e Vt>t.

Again, this is a contradiction and such an € > 0 cannot exists. Thus, (z(t))teNO converges to z* € Agit,p, and we have
(p, (29)¢en, ) € Aconv, Which concludes the proof. O

D. Proof of Lemma 7.2

Proof. Since Q is dense in R, we can restrict to a € (0,00) N Q =: Q4. Then Ajesc can be written as
U ) A0 ( ARUEEE oo}> ,
acQy teNy teNy
where A, ; is given by:

{‘Z(Z“*l),p) + al|z0H) — 2012 < K(z(“,p)} '

Since o-algebras are stable under countable unions/intersection, it suffices to show that the sets {£(2(Y), p) < oo} and A, ;
are measurable. Here, the set {¢(z(*), p) < oo} can be written as:

{e(z“),p) < oo} = (Lodo(idm)) " [0,00),

where @ : P X £ — F x P just interchanges the coordinates (which is measurable), and id is the identity on . Since
[0, 00) is a measurable set and / is assumed to be measurable, we have that {£(z(*),p) < oo} is measurable for each
t € Np. To show that A, ; is measurable, we define the function g, : (dom £)? — R through ((21,p1), (22,p2)) +
U(z2,p2) — £(z1,p1) + allz2 — 21]|*. Then, g, is measurable and A, ; can be written as:

Ags = {ga(z(t)7p,z(t+”,p) < O}
= {(ga o (ﬂ-taidv 7Tt+1aid) o L) ( 7(Z(t))t€N0> S O}
= (ga © (ﬂ'tvida 7Tt+17id) o L))_l (700, 0] )

where ¢ : P x ENo — (FNo x P)2 is the diagonal inclusion (p, z) — ((2,p), (z,p)), which is measurable w.r.t. to the
product-o-algebra on (ZMN0 x 9P)?2, since ¢ =1 (B; x By) = By N Ba. Thus, the set A, ; is measurable, which concludes the
proof. O
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E. Existence of Measurable Selection and Proof of Lemma 7.3

Definition E.1. A set-valued mapping T : X = R? is measurable, if for every open set O C R the set T~1(0) C X is
measurable. In particular, dom 7" has to be measurable.

Lemma E.2. Suppose Assumption 6.7 holds. Then (z,p) — 014(z,p) is closed-valued and measurable.

Proof. Since 01£(z, p) is the subdifferential of ¢(-, p) at z, by Rockafellar & Wets (1998, Theorem 8.6, p.302) we have that
the set 914(z, p) is closed for every p € P and every z € dom £(-,p). Hence, we have that 9;£(z, p) is closed for every
(z,p) € dom . Further, for (z,p) ¢ dom ¢, we have 91 £(z, p) = (), which is closed, too. Therefore, (z,p) — 914(z,p) is
closed-valued. Finally, since (z,p) — 014(z, p) is also outer semi-continuous, Rockafellar & Wets (1998, Exercise 14.9,
p.649) implies that 0, £ is measurable w.r.t. B(F x P). O

Corollary E.3. Suppose Assumption 6.7 holds. Then there exists a measurable selection for O1¢, that is, a measurable map

v : dom Wl — FE, such that v(z,p) € 01L(z,p) for all (z,p) € E x P.

Proof. By Lemma E.2, the map (z,p) +— 014(z, p) is closed-valued and measurable. Hence, the result follows directly from
Rockafellar & Wets (1998, Corollary 14.6, p.647). O

Now, we can prove Lemma 7.3:

Proof. Again, we can restrict to b € Q N (0, 00) =: Q.. Thus, A, can be written as:

Aoy = U ﬂ Bu: | N ( ﬂ {(z(t),p) € dom 86}) ,

beQ, teN, teNg

where By, ; is given by:
Bo 1= { (b, (:ien) € P x E & o=+, p)| < b2+ — 2O}

Hence, since o-algebras are stable under countable unions/intersections, we only have to show measurability of the sets By ;
and {(2(Y), p) € dom 0, ¢}. Here, it holds that:

{(29), p) € dom 816} = (@ o (id, )" (dom &1 0) |,

where id is the identity on P, and ® : P x F — F x P just interchanges the coordinates. By Lemma E.2, dom 0,/ is
measurable, such that {(z(Y), p) € dom 9, ¢} is measurable for each ¢ € Ny. Thus, it remains to show the measurability of
the set By, ;. For this, introduce the function g, : (dom 91£)? — R, ((21,p1), (22,p2)) + [|v(22,p2)|| — bl|22 — 21]|. Since
v is measurable, and the norm is continuous, we have that g; is measurable. With this, we can write the set By 1, as:

Bu.e = {gs(z",p, 2" p) < 0}
= {(gb o (ﬂ_tvid; 7Tt+17id) © L) (p, (Z(t))teNo) < 0}
= (gb o (ﬂ't,id, Tt41, Zd) [e] L)il (*OO, O] 5

where ¢ : P x ENo — (FNo x P)2 is the diagonal inclusion (zy, 29) + ((22, 21), (22, 21), wWhich again is measurable.
Thus, By ; is measurable for each t € Ny and b € Q. , which concludes the proof. O]

F. Proof of Lemma 7.4

Proof. By definition of the product o-algebra on 975~>< FNo_ it suffices to show that Abound is measurable. Then, as it suffices
to consider ¢ € [0,00) N Q =: Q, one can write Apoung as:

A’bou]ﬂd = U m {(Z(t))tENo € 'zNo : ||Z(t)H < C} .
C€Q+ teNy =:Cot

Thus, by the properties of a o-algebra, it suffices to show that the sets C.; with ¢ € Q4 and ¢ € Ny are measurable. By
defining g(z) = | z|, this follows directly from the identity C., = (g o m) " [0, d]. O
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G. Architecture of the Algorithm for Quadratic Problems
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Figure 3. Update step of A: The directions dY), d;t) and dgt) O] d;t) are inserted as different channels into the Conv2d-block, which
performs 1 x 1 “convolutions”, that is, the algorithm acts coordinate-wise on the input. The scales sgt), s sit)

by the fully-connected block.

get transformed separately

The algorithmic update is adopted from Sucker & Ochs (2024) and consists of two blocks:

1) The first block consists of 1 x 1-convolutional layers with ReLU-activation functions and computes the update

. . . . 2 .
direction d¥). As features, we use the normalized gradient dgt) = %, the normalized momentum term
() _ (-1 . . . T . .
dét) = m, and their coordinate-wise product dgt) © dgt). The normalization is done to stabilize the training.

2) The second block consists of linear layers with ReLU-activation functions and computes the step-size 5*). As features,
we use the (logarithmically transformed) gradient norm sgt) = log (1 + IVe(z®), p)||), the (logarithmically trans-

formed) norm of the momentum term sét) = log (1 + [|2® — 2= ), and the current and previous (logarithmically

transformed) losses sgt) = log (1 + E(z(t),p)), sff) = log (1 + K(z(t*%p)). Again, the logarithmic scaling is done
to stabilize training. Here, the term “+1” is added to map zero onto zero.

Importantly, we want to stress that the algorithmic update is not constrained in any way: the algorithm just predicts a
direction and a step-size, and we do not enforce them to have any specific properties.

H. Training of the Algorithm

For training, we mainly use the procedure proposed (and described in detail) by Sucker et al. (2024); Sucker & Ochs (2024).
For completeness, we briefly summarize it here: In the outer loop, we sample a loss-function ¢(-, p) randomly from the
training set. Then, in the inner loop, we train the algorithm on this loss-function with ¢,.,;, given by

¢ Z(H_l),
Etrain(hvpa Z(t)) = ]1{((z(t),p) > O}W

where C := {(p,2) € P x E : £(z,p) < 10716} is the convergence set. That is, in each iteration the algorithm computes
a new point and observes the 10ss £i;4in, Which is used to update its hyperparameters. We run this procedure for 150 - 103
iterations. This yields hyperparameters () € %, such that A(h(?), -, ) has a good performance. However, typically, it
is not a descent method yet, that is, ]P’( P.&)|[H=h(©) {A} is small, such that the PAC-bound would be useless. Therefore, we
employ the probabilistic constraining procedure proposed (and described in detail) by (Sucker et al., 2024) in a progressive
way: Starting from A(?), we try to find a sequence of hyperparameters h("), h(2) ... such that

° ]1(:C (p7 Z(t)) )

Pipe)ar=n© {A} < P(P,§)|H:h(1>{A} < P(P,g)\H:h(z){A} <

18
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Remark H.1. The notation P(p ¢y 7 {A} is not entirely correct and is rather to be understood suggestively, as the final prior
distribution P is yet to be constructed. However, we think that it is easier to understand this way and therefore allow for
this inaccuracy.

For this, we test the probabilistic constraint every 1000 iterations, that is: Given h(®), we train the algorithm (as before)
for another 1000 iterations, which yields a candidate AU+1. If Ppeya=ne {A} < Ppe)mepc+n{A}, we accept

RO .= pU+D)  otherwise we reject it and start again from h(), This finally yields some hyperparameters hg that have a
good performance and such that P(p ¢y y—p, {A} is large enough (here: about 90%). Then, starting from ho, we construct
the actual discrete prior distribution Py over points hy, ..., by, . € %, by a sampling procedure. Finally, we perform the
(closed-form) PAC-Bayesian optimization step, which yields the posterior p* € My (Pg). In the end, for simplicity, we set
the hyperparameters to

h* = argmax p*{h;}.

i=1,...,Nsample

For the construction of the prior, we use Nyior = 500 functions, for the probabilistic constraint we use Ny, = 500
functions, and for the PAC-Bayesian optimization step we use Ny ain = 250 functions, all of which are sampled i.i.d., that
is, the data sets are independent of each other.
Remark H.2. Training the algorithm to yield a good performance is comparably easy. On the other hand, turning it into
an algorithm, such that P(p ¢) 7 {A} is large enough (in our case: a descent method without enforcing it geometrically) is
challenging and, unfortunately, not guaranteed to work. Nevertheless, it is key to get a meaningful guarantee.

I. Architecture of the Algorithm for Training the Neural Network
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Figure 4. Algorithmic update for training the neural network: Based on the given six features, the first block computes four weights
wi, ..., w4, which are used to perform a weighting of the different directions g ® dgt), dgt), dgt), mQ® dg), which are used in the
second block. This second block consists of a 1x1-convolutional blocks, which compute an update direction dé’;)t. Then, we update
2D = 2O 4 d0) VL

The algorithmic update is adopted from Sucker & Ochs (2024) and consists of two blocks:

1) The first block consists of linear layers with ReLU-activation functions and computes four weights w1, ..., ws. As
), the (logarithmically

features, we use the (logarithmically transformed) gradient norm s(lt) = log (1 +|Ve(z®, p)]

transformed) norm of the momentum term S(Qt) i=log (14 ||z — 2(t=1)||), the difference between the current and

t=1) , D), the scalar product between the (normalized) gradient and the (normalized)

momentum term sff), the maximal absolute value of the coordinates of the gradient sét), and the iteration counter ¢.

previous loss sét) =020 p)— (2

2) The second block consists of 1 x 1-convolutional layers with ReLLU-activation functions and computes the update
L . . ©)
direction dg?t. As features, we use the normalized gradient dgt) = %,

() _,(t-1) . . " . .
d;t) = m, and their “preconditioned” versions g © dgt) and m © dét), where the weights m, d € R? are

the normalized momentum term

learned, too.

Again, we want to stress that the algorithmic update is not constrained in any way: the algorithm just predicts a direction,
and we do not enforce them to have any specific properties.
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